JP2011113951A - Magnesium based composite material - Google Patents

Magnesium based composite material Download PDF

Info

Publication number
JP2011113951A
JP2011113951A JP2009272344A JP2009272344A JP2011113951A JP 2011113951 A JP2011113951 A JP 2011113951A JP 2009272344 A JP2009272344 A JP 2009272344A JP 2009272344 A JP2009272344 A JP 2009272344A JP 2011113951 A JP2011113951 A JP 2011113951A
Authority
JP
Japan
Prior art keywords
mgb
magnesium
particles
composite material
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009272344A
Other languages
Japanese (ja)
Other versions
JP5483078B2 (en
Inventor
Kenji Matsuda
健二 松田
Katsuhiko Nishimura
克彦 西村
Susumu Ikeno
進 池野
Tsunemasa Kawabata
常眞 川畑
Manabu Mizutani
学 水谷
Yusuke Shimizu
勇輔 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2009272344A priority Critical patent/JP5483078B2/en
Publication of JP2011113951A publication Critical patent/JP2011113951A/en
Application granted granted Critical
Publication of JP5483078B2 publication Critical patent/JP5483078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material with MgB<SB>2</SB>particles, which is excellent on superconductive characteristics and uses magnesium or magnesium alloy for a base phase. <P>SOLUTION: The MgB<SB>2</SB>particles are filled up in a cavity of a mold, the magnesium or the magnesium alloy at a molten or half-molten state is infiltrated into the MgB<SB>2</SB>particles in the cavity of the mold at a pressurized state from one side, and the mold is simultaneously cooled from the other side in order to manufacture the magnesium composite material. It is preferable that an average particle size of the MgB<SB>2</SB>particles is 50 μm or below. Furthermore, the MgB<SB>2</SB>particles may be filled up in the cavity of the mold at pressure of 0.05-10 MPa, or a preformed body of the MgB<SB>2</SB>particles molded in advance at pressure of 0.05-10 MPa may be used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は超伝導特性を発現する、マグネシウム又はマグネシウム合金を母相とする複合材料に関する。   The present invention relates to a composite material having magnesium or a magnesium alloy as a parent phase and exhibiting superconducting properties.

超伝導特性を発現するマグネシウム系の複合材料としては、Mg,MgH,MgO粉末等のMg含有粉末と、B,BC,B等のB含有粉末とを混合し、銅や鉄製のパイプにつめて線引き、あるいは圧延し、その後に焼結することでMgBを生成させる方法(PIT法)が公知である。
また、Mg合金にB含有粉末を混合し、複合材料の作製工程でMgBを生成させる技術も公知である。
しかし、これらの方法は複合材料中に粒子に起因する空隙欠陥が生じやすく、高温で焼結処理する際に原料粉末を充填した金属管と一部反応したり、粒子が酸化する問題もあった。
また、製造工程そのものが複雑であり、焼結材料のため製造後に曲げ加工等が難しい問題もあった。
As a magnesium-based composite material that exhibits superconducting properties, Mg-containing powders such as Mg, MgH, and MgO powders and B-containing powders such as B, B 4 C, and B 2 O 3 are mixed to produce copper or iron. A method (PIT method) is known in which MgB 2 is produced by drawing or rolling the pipe and then sintering it.
In addition, a technique is also known in which B-containing powder is mixed into an Mg alloy, and MgB 2 is generated in the composite material manufacturing process.
However, these methods tend to cause void defects due to particles in the composite material, and there is a problem that when the sintering process is performed at a high temperature, the metal tube partially reacts with the raw material powder and the particles are oxidized. .
In addition, the manufacturing process itself is complicated, and since it is a sintered material, it is difficult to bend after manufacturing.

そこで、特許文献1にMgB粒子のプリフォーム体にアルミニウムの溶湯を加圧浸透させることで超伝導特性を発現するMgB粒子−Al複合材料を開示し、特許文献2に鋳型のキャビティ内に無機粉体を充填し、これに半溶融状態のアルミニウムを加圧浸透させるMgB粒子−Al複合材料を開示する。
なお、特許文献2は文面上、半溶融状態の軽金属を加圧浸透させると記載されているが、超伝導材料としては母相にアルミニウムを用いた具体例のみが開示されているに過ぎない。
Therefore, the molten aluminum into a preform of MgB 2 particles disclose MgB 2 particles -Al composite material exhibiting superconducting properties by causing pressurized permeate, into the mold cavity in Patent Document 2 to Patent Document 1 Disclosed is an MgB 2 particle-Al composite material that is filled with inorganic powder and into which aluminum in a semi-molten state is pressed and infiltrated.
In addition, Patent Document 2 describes that a semi-molten light metal is pressed and infiltrated on the text, but only a specific example using aluminum as a matrix is disclosed as a superconductive material.

しかし、上記母相を用いたアルミニウムは純アルミニウムで融点が933K(660℃)で半溶融状態はその前後の固液共存領域となるのに対して、マグネシウムを母相に用いると、純マグネシウムの融点が923K(650℃)でその前後の温度範囲が半溶融状態となる固液共存領域となり、アルミニウムよりもマグネシウムの方が融点で10K低温である。
また、半溶融温度域は約913〜963Kである。
また、Alの比重は約2.7であるのに対してMgの比重は約1.7と軽い。
このように、MgはAlよりも融点が低く、軽い点に着目し、本発明に至った。
However, aluminum using the above mother phase is pure aluminum and has a melting point of 933 K (660 ° C.), and the semi-molten state is a solid-liquid coexistence region before and after that. The melting point is 923 K (650 ° C.) and the temperature range before and after that becomes a semi-liquid coexisting region, and magnesium has a melting point that is 10 K lower than aluminum.
The semi-melting temperature range is about 913 to 963K.
The specific gravity of Al is about 2.7, while the specific gravity of Mg is as light as about 1.7.
Thus, Mg has a melting point lower than that of Al, and has focused on the light point, leading to the present invention.

特許第4125272号公報Japanese Patent No. 4125272 特開2008−200711号公報Japanese Patent Laid-Open No. 2008-200711

本発明は、超伝導特性に優れた、母相にマグネシウム又はマグネシウム合金を用いたMgB粒子との複合材料の提供を目的とする。 The present invention is excellent in superconducting characteristics, and an object thereof is to provide a composite material of MgB 2 particles using magnesium or magnesium alloy in the matrix.

本発明に係るマグネシウム系複合材料は、鋳型のキャビティ内にMgB粒子を充填し、一方から溶融又は半溶融状態のマグネシウム又はマグネシウム合金を加圧浸透させると同時に他方から冷却して製造されたことを特徴とする。
ここで、MgB粒子は平均粒子径が50μm以下であるのが好ましい。
平均粒子径が50μmを超えると脆くなり、機械加工性が低下するからである。
The magnesium-based composite material according to the present invention was manufactured by filling MgB 2 particles in a cavity of a mold, pressure-penetrating molten or semi-molten magnesium or a magnesium alloy from one side, and simultaneously cooling from the other side. It is characterized by.
Here, the MgB 2 particles preferably have an average particle size of 50 μm or less.
This is because when the average particle size exceeds 50 μm, the material becomes brittle and the machinability is lowered.

MgB粒子は、鋳型のキャビティ内に直接0.05〜10MPaの圧力で加圧充填してもよいが、予め0.05〜10MPaの圧力で加圧成形したプリフォーム体を用いてもよい。
ここで加圧するのは、MgBの体積率を高くすることで複合材料中のMgBの密度を向上させるのが目的であり、MgBの体積率は30〜70%の範囲が好ましい。
MgBの体積率が70%を超えると複合材料が脆くなる。
The MgB 2 particles may be pressurized and filled directly into the mold cavity at a pressure of 0.05 to 10 MPa, or a preform body that has been previously pressure-molded at a pressure of 0.05 to 10 MPa may be used.
Here pressurize is for the purpose of the improving the density of the MgB 2 in the composite by increasing the volume fraction of MgB 2, the volume ratio of the MgB 2 is preferably in the range of 30% to 70%.
When the volume ratio of MgB 2 exceeds 70%, the composite material becomes brittle.

本発明に係るマグネシウム系複合材料は、MgB粒子に母相としてマグネシウム又はマグネシウム合金を加圧浸透させたので40K以下の37〜38K付近で超伝導特性を発現し、公知のアルミニウムを母相としたものに比較して、優れた超伝導特性を示し、しかも軽量である。 In the magnesium-based composite material according to the present invention, magnesium or a magnesium alloy is pressed and infiltrated into the MgB 2 particles as a parent phase, so that superconducting properties are exhibited in the vicinity of 37 to 38K of 40K or less, and known aluminum is used as the parent phase. Compared to these, it exhibits excellent superconducting properties and is lightweight.

製造例1に用いた金型を示す。The metal mold | die used for manufacture example 1 is shown. 製造例2に用いたを示す。Used in Production Example 2 is shown. (a)MgB/純Mg超伝導体ビレットの縦断面の接写と、(b)(a)中に四角で記した部分のSEMによる拡大像を示す。(c)MgB/AZ91超伝導体ビレットの縦断面の接写と、(d)(c)中に四角で記した部分のSEMによる拡大像を示す。(A) A close-up view of a longitudinal section of MgB 2 / pure Mg superconductor billet, and (b) an enlarged image by SEM of a portion indicated by a square in (a). (C) A close-up view of a longitudinal section of a MgB 2 / AZ91 superconductor billet and an enlarged image by SEM of a portion indicated by a square in (d) and (c). 電気抵抗率の温度依存性グラフを示す。The temperature dependence graph of electrical resistivity is shown. 磁化率の温度依存性グラフを示す。The temperature dependence graph of a magnetic susceptibility is shown. Beanの式で算出した臨界電流密度(Jc)の外部磁場依存性グラフを示す。The external magnetic field dependence graph of the critical current density (Jc) calculated by the Bean formula is shown.

以下、具体的に本発明に係るマグネシウム系複合材料の製造例を説明するが、これに限定されるものではない。   Hereinafter, although the manufacture example of the magnesium type composite material which concerns on this invention is demonstrated concretely, it is not limited to this.

[製造例1]
図1に金型の構造を模式的に示す。
金型10は軟鋼製で、φ70mm×117mmの外観をしている。金型内部は二段構造となっており、下段に複合材料作製部11、上段に溶湯保持部12がある。
下段の複合材料作製部11はφ32.6mm×55mmであり、溶湯保持部12はφ49.7mm×50mmである。
<母相金属の成形>
純度99.9%のMgをφ49mm×25mmに成形した。
<プリフォームの作製>
株式会社高純度化学研究所製の平均粒子径40μm以下のMgB粒子30gを0.1MPaの圧力で加圧成形し、φ30mm×42mmの形状のプリフォーム(P)を製造した。
<複合材料の製造>
金型10の複合材料作製部11に離型剤としてTiOを塗布する。
その後、金網、プリフォーム(P)を金型に挿入し、そのプリフォームの上に黒鉛13を設置し、その黒鉛の上に軟鋼で作製した孔径φ12mmの絞り板14を載せた。
絞り板の上にMg(M)を設置した。
この状態で金型を99%CO+1%SF混合ガス雰囲気中で環状炉にて加熱した。
Mgの温度が933Kに達して溶解した後、溶湯の上に黒鉛蓋15を載せ、上部より油圧プレスにて2分間加圧して、プリフォーム内にMg溶湯を浸透させた。
また、加圧と同時に金型の下部を冷却水で冷却した。
その後、製造したMgB/Mg複合材料ビレットを取り出した。
このようにして得られたMgB/Mg複合材料ビレットの内容を下記に示す。
ビレット寸法 :φ27.2mm×35.1mm
ビレット重量 :50.5g
ビレット体積 :22.823cm
ビレット比重 :2.212g/cm
粒子体積率 :51%
[Production Example 1]
FIG. 1 schematically shows the structure of the mold.
The mold 10 is made of mild steel and has an appearance of φ70 mm × 117 mm. The inside of the mold has a two-stage structure, with a composite material preparation section 11 at the lower stage and a molten metal holding section 12 at the upper stage.
The lower composite material preparation part 11 is φ32.6 mm × 55 mm, and the molten metal holding part 12 is φ49.7 mm × 50 mm.
<Molding of matrix metal>
Mg having a purity of 99.9% was molded into a diameter of 49 mm × 25 mm.
<Preform production>
30 g of MgB 2 particles having an average particle size of 40 μm or less manufactured by Kojundo Chemical Laboratory Co., Ltd. were pressure-formed at a pressure of 0.1 MPa to produce a preform (P) having a shape of φ30 mm × 42 mm.
<Manufacture of composite materials>
TiO 2 is applied as a mold release agent to the composite material preparation part 11 of the mold 10.
Thereafter, a wire mesh and a preform (P) were inserted into the mold, graphite 13 was placed on the preform, and a diaphragm plate 14 having a hole diameter of 12 mm made of mild steel was placed on the graphite.
Mg (M) was installed on the diaphragm plate.
In this state, the mold was heated in a ring furnace in a 99% CO 2 + 1% SF 6 mixed gas atmosphere.
After the Mg temperature reached 933 K and melted, the graphite lid 15 was placed on the molten metal, and pressurized with a hydraulic press for 2 minutes from the top to infiltrate the molten Mg into the preform.
Further, simultaneously with the pressurization, the lower part of the mold was cooled with cooling water.
Thereafter, the manufactured MgB 2 / Mg composite billet was taken out.
The contents of the MgB 2 / Mg composite billet thus obtained are shown below.
Billet size: φ27.2mm × 35.1mm
Billet weight: 50.5g
Billet volume: 22.823 cm 3
Billet specific gravity: 2.212 g / cm 3
Particle volume ratio: 51%

[製造例2]
使用した金型10aの模式図を図2に示し、軟鋼製で、φ70mm×85mmの外観をしている。
金型内部は二段構造となっており、下段に複合材料作製部11a、上段に半溶融金属保持部12aがある。
下段の複合材料作製部11aはφ10mm×30mmであり、半溶融金属保持部12aはφ49.7mm×43mmである。
<母相金属の成形>
ASTM規格のAZ91(Al:8.3〜9.2wt.%,Zn:0.45〜0.9wt.%,Mn:0.17〜0.50wt.%,Si:<0.20wt.%,Cu:<0.015wt.%,Ni:<0.001wt.%,Fe:<0.004wt.%)相当の合金をφ49mm×25mmに成形した。
<複合材料の製造>
金型の複合材料作製部11aに離型剤としてTiOを塗布する。
その後、金網、金型の複合材料作製部11aにMgB粒子を0.1MPaの圧力をかけて充填する。
その後、金型の半溶融金属保持部12aにAZ91合金を設置した。
この状態で金型を99%CO+1%SF混合ガス雰囲気中で環状炉にて加熱した。
AZ91合金の温度が823Kで、半溶融状態に達した後、AZ91合金の半溶融金属の上に黒鉛蓋15を載せ、上部より油圧プレスにて1分間加圧して、粒子内にAZ91合金の半溶融金属を浸透させ、金型を直接水冷した。
その後、製造したMgB/AZ91複合材料ビレットを取り出した。
このようにして得られたMgB/AZ91複合材料ビレットの内容を下記に示す。
ビレット寸法 :φ10mm×27.6mm
ビレット重量 :4.5g
ビレット体積 :1.99cm
ビレット比重 :2.262g/cm3
粒子体積率 :52%
[Production Example 2]
A schematic diagram of the mold 10a used is shown in FIG. 2, which is made of mild steel and has an appearance of φ70 mm × 85 mm.
The inside of the mold has a two-stage structure. The lower part has a composite material preparation part 11a and the upper part has a semi-molten metal holding part 12a.
The lower composite material preparation part 11a is φ10 mm × 30 mm, and the semi-molten metal holding part 12a is φ49.7 mm × 43 mm.
<Molding of matrix metal>
ASTM standard AZ91 (Al: 8.3 to 9.2 wt.%, Zn: 0.45 to 0.9 wt.%, Mn: 0.17 to 0.50 wt.%, Si: <0.20 wt.%, An alloy corresponding to Cu: <0.015 wt.%, Ni: <0.001 wt.%, Fe: <0.004 wt.%) Was formed into a diameter of 49 mm × 25 mm.
<Manufacture of composite materials>
TiO 2 is applied as a mold release agent to the composite material production part 11a of the mold.
Then, MgB 2 particles are filled in the metal mesh / mold composite material preparation part 11a under a pressure of 0.1 MPa.
Then, AZ91 alloy was installed in the semi-molten metal holding part 12a of the mold.
In this state, the mold was heated in a ring furnace in a 99% CO 2 + 1% SF 6 mixed gas atmosphere.
After the temperature of the AZ91 alloy reaches a semi-molten state at 823 K, a graphite lid 15 is placed on the semi-molten metal of the AZ91 alloy and pressed from above with a hydraulic press for 1 minute. The molten metal was infiltrated and the mold was directly water cooled.
Thereafter, the manufactured MgB 2 / AZ91 composite billet was taken out.
The contents of the MgB 2 / AZ91 composite billet thus obtained are shown below.
Billet size: φ10mm × 27.6mm
Billet weight: 4.5g
Billet volume: 1.99 cm 3
Billet specific gravity: 2.262 g / cm3
Particle volume ratio: 52%

上記製造例1,2にて製造した複合材料の評価結果を次に示す。
図3(a)は、MgB/純Mg超伝導体ビレットを縦方向に切断し、その断面を接写した図である。
濃いグレーの部分が超伝導粒子とマグネシウムが複合している領域であり、矢印で記した両端は、粒子がほとんど存在していない純マグネシウムの部分である。
この図から明らかなように、鋳造による巣や、凝固収縮による割れ、あるいは粒子のみが凝集している部分など、ビレットとしての顕著な欠陥は観察されない。
図3(b)は、(a)中に四角で記した部分を、SEMで拡大して観察した画像である。濃いグレーがMgB粒子で、薄いグレーの部分がマグネシウム母相である。
この倍率においても、粒子の凝集や巣、割れなどの欠陥らしきものは観察されないことから、きわめて良好なビレットが得られたと判断される。
図3(c)は、MgB/AZ91超伝導体ビレットの切断面を示し、(d)(c)中に四角で記した部分のSEM拡大画像を示す。
MgB/AZ91ビレットも内部が良好であった。
図4は、このビレットを用いて電気抵抗率の温度依存性を測定した結果である。
図中には、MgB/Al超伝導体の結果も示した。
いずれの試料も、電気抵抗は38Kあたりから減少し、とくに母相をAZ91とした合金では、残留抵抗が高く、電気抵抗率の大きな減少が顕著に確認される。
図5は、これらの試料で測定した磁化率の温度依存性である。
ここでも37Kあたりから磁化率の低下がみられ、電気抵抗率同様、超伝導材料としての特徴を示した。
特にMgB/Mgの方がMgB/Alよりも約1K高い温度から磁化率の低下が認められる。
図6は、磁化率の外部磁場に対する依存性の結果を用いて、Beanの式で算出された臨界電流密度Jcである。
高いJcを達成しており、特にAZ91では、30000G(3T)で10A/cmであり、実用されているNb−Sn超伝導体で達成されている値に等しい。
以上のことから、母相にマグネシウム又はマグネシウム合金を用いた方がアルミニウムを用いたものより超伝導特性に優れ、且つ軽量であった。
The evaluation results of the composite materials produced in Production Examples 1 and 2 are shown below.
FIG. 3A is a close-up view of a cross section of an MgB 2 / pure Mg superconductor billet cut in the longitudinal direction.
The dark gray portion is a region where superconducting particles and magnesium are combined, and both ends indicated by arrows are portions of pure magnesium in which almost no particles are present.
As is apparent from this figure, no significant defect as a billet such as a nest formed by casting, a crack due to solidification shrinkage, or a portion where only particles are aggregated is not observed.
FIG. 3B is an image obtained by magnifying and observing a portion indicated by a square in FIG. The dark gray is MgB 2 particles, and the light gray part is the magnesium matrix.
Even at this magnification, no defects such as particle agglomeration, nests and cracks were observed, and it is judged that a very good billet was obtained.
FIG. 3 (c), MgB 2 / AZ91 shows the cut surface of the superconductor billet shows SEM enlarged image of a portion marked by a square in (d) (c).
The inside of the MgB 2 / AZ91 billet was also good.
FIG. 4 shows the results of measuring the temperature dependence of the electrical resistivity using this billet.
In the figure, the result of the MgB 2 / Al superconductor is also shown.
In any of the samples, the electrical resistance decreases from around 38K, and particularly in the alloy having the parent phase AZ91, the residual resistance is high, and a large decrease in electrical resistivity is remarkably confirmed.
FIG. 5 shows the temperature dependence of the magnetic susceptibility measured for these samples.
Here, a decrease in magnetic susceptibility was observed from around 37K, and the characteristics as a superconducting material were exhibited as well as the electrical resistivity.
In particular, a decrease in magnetic susceptibility is observed from MgB 2 / Mg at a temperature about 1 K higher than MgB 2 / Al.
FIG. 6 shows the critical current density Jc calculated by the Bean equation using the result of the dependence of the magnetic susceptibility on the external magnetic field.
A high Jc is achieved, especially AZ91, 10 5 A / cm 2 at 30000 G (3T), which is equal to the value achieved with a practical Nb—Sn superconductor.
From the above, the use of magnesium or magnesium alloy for the parent phase was superior in superconducting properties and lighter than that using aluminum.

10 金型 10 Mold

Claims (4)

鋳型のキャビティ内にMgB粒子を充填し、一方から溶融又は半溶融状態のマグネシウム又はマグネシウム合金を加圧浸透させると同時に他方から冷却して製造されたことを特徴とするマグネシウム系複合材料。 A magnesium-based composite material manufactured by filling MgB 2 particles in a cavity of a mold, and infiltrating magnesium or a magnesium alloy in a molten or semi-molten state from one side under pressure and simultaneously cooling from the other side. MgB粒子は平均粒子径が50μm以下であることを特徴とする請求項1記載のマグネシウム系複合材料。 The magnesium-based composite material according to claim 1, wherein the MgB 2 particles have an average particle diameter of 50 μm or less. MgB粒子は0.05〜10MPaの圧力で加圧成形されたプリフォーム体であることを特徴とする請求項1又は2記載のマグネシウム系複合材料。 3. The magnesium-based composite material according to claim 1, wherein the MgB 2 particles are a preform formed by pressure molding at a pressure of 0.05 to 10 MPa. 40K以下で超伝導特性を発現することを特徴とする請求項1〜3のいずれかに記載のマグネシウム系複合材料。   The magnesium-based composite material according to any one of claims 1 to 3, which exhibits superconducting properties at 40K or less.
JP2009272344A 2009-11-30 2009-11-30 Magnesium-based composite material Active JP5483078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272344A JP5483078B2 (en) 2009-11-30 2009-11-30 Magnesium-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272344A JP5483078B2 (en) 2009-11-30 2009-11-30 Magnesium-based composite material

Publications (2)

Publication Number Publication Date
JP2011113951A true JP2011113951A (en) 2011-06-09
JP5483078B2 JP5483078B2 (en) 2014-05-07

Family

ID=44236110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272344A Active JP5483078B2 (en) 2009-11-30 2009-11-30 Magnesium-based composite material

Country Status (1)

Country Link
JP (1) JP5483078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250204B1 (en) 2012-10-08 2013-04-03 한국기계연구원 Magnesium di-boride superconductor and the method of the same
JP2018016777A (en) * 2016-07-29 2018-02-01 国立大学法人富山大学 Stress-induced light emitting material and method for producing the same
JP2020183555A (en) * 2019-05-07 2020-11-12 国立大学法人富山大学 Functional composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204453A (en) * 1999-01-14 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd Production of magnesium matrix composite material, and magnesium matrix composite material
JP2001073049A (en) * 1999-07-19 2001-03-21 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Production of perform for magnesium metal base composite material, production of metal base composite material and composite material
JP2006040852A (en) * 2004-07-26 2006-02-09 Kojundo Chem Lab Co Ltd MgB2 PARTICLE-ALUMINUM COMPOSITE MATERIAL
JP2007123194A (en) * 2005-10-31 2007-05-17 Shin Nikkei Co Ltd MgB2/Al SUPERCONDUCTIVE EXTRUSION MATERIAL AND ITS MANUFACTURING METHOD
JP2008200711A (en) * 2007-02-20 2008-09-04 Toyama Univ Manufacturing method of light metal composite material, and light metal composite material obtained by the method
JP2011014539A (en) * 2009-06-18 2011-01-20 Edison Spa Superconductive element, and relative preparation process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204453A (en) * 1999-01-14 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd Production of magnesium matrix composite material, and magnesium matrix composite material
JP2001073049A (en) * 1999-07-19 2001-03-21 Her Majesty In Right Of Canada As Represented By The Minister Of Natural Resources Production of perform for magnesium metal base composite material, production of metal base composite material and composite material
JP2006040852A (en) * 2004-07-26 2006-02-09 Kojundo Chem Lab Co Ltd MgB2 PARTICLE-ALUMINUM COMPOSITE MATERIAL
JP2007123194A (en) * 2005-10-31 2007-05-17 Shin Nikkei Co Ltd MgB2/Al SUPERCONDUCTIVE EXTRUSION MATERIAL AND ITS MANUFACTURING METHOD
JP2008200711A (en) * 2007-02-20 2008-09-04 Toyama Univ Manufacturing method of light metal composite material, and light metal composite material obtained by the method
JP2011014539A (en) * 2009-06-18 2011-01-20 Edison Spa Superconductive element, and relative preparation process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN7014000396; Qiang Li et al.: 'High critical-current density in robust MgB 2 / Mg nanocomposites' Applied Physics Letters Vol.82,No.13, 2003, pp.2103-2105 *
JPN7014000397; John D. DeFouw et al.: 'In situ synthesis of superconducting MgB 2 fibers within a magnesium matrix' Applied Physics Letters Vol.83,No1, 2003, pp.120-122 *
JPN7014000398; Yusuke Shimizu et al.: 'Superconducting Properties of MgB2 Particle Impregnated with Mg-Based Alloys' Materials Transactions Vol.52,No.3, 20101117, pp.272-275 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250204B1 (en) 2012-10-08 2013-04-03 한국기계연구원 Magnesium di-boride superconductor and the method of the same
JP2018016777A (en) * 2016-07-29 2018-02-01 国立大学法人富山大学 Stress-induced light emitting material and method for producing the same
JP2020183555A (en) * 2019-05-07 2020-11-12 国立大学法人富山大学 Functional composite material
JP7246712B2 (en) 2019-05-07 2023-03-28 国立大学法人富山大学 Functional composite material

Also Published As

Publication number Publication date
JP5483078B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US8293031B2 (en) Magnesium alloy and the respective manufacturing method
CN1969051B (en) Middle alloy for copper alloy casting and its casting method
CN105755340B (en) High strength and low cost high-ductility high heat conduction wrought magnesium alloy and preparation method thereof
US20100183471A1 (en) Metal injection moulding method
CN101713042B (en) Quasicrystal reinforced magnesium alloy and semisolid preparation method thereof
CN101774009B (en) Device and method for shaping amorphous alloy thin-wall slim pipe
CN110819839A (en) High-entropy alloy reinforced magnesium-based composite material and preparation method thereof
JP5483078B2 (en) Magnesium-based composite material
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
WO2018209970A1 (en) Zr-based amorphous alloy and manufacturing method thereof
CN100352581C (en) Metal glass melt cast moulding method and its device
CA2597064A1 (en) Copper-based alloys and their use for infiltration of powder metal parts
Liu et al. Metal injection moulding of aluminium alloy 6061 with tin
JP5645048B2 (en) Heat dissipation member, semiconductor device, and method for manufacturing composite material
CN101628328B (en) New preparation method of AgMgNi alloy conducting ring
JP2020531683A (en) Copper-based alloys for the production of bulk metallic glasses
CN103668010A (en) A series of Zr-Al-Ni-Cu block amorphous alloys having cellular microstructures
US8709961B2 (en) Method for superconducting connection between MgB2 superconducting wires via a MgB2 matrix made from a boron powder compressed element infiltrated with Mg
CN113061778B (en) In-situ amorphous particle reinforced copper alloy material
JP4294947B2 (en) Magnesium alloy shape casting method
JP2005163145A (en) Composite casting, iron based porous body for casting, and their production method
WO2009029992A1 (en) Metal injection moulding method
TW201700758A (en) Method for producing cylindrical sputtering target
JPH1161300A (en) Zinc-base alloy for metal mold, zinc-base alloy block for metal mold, and their manufacture
CN113061774B (en) Endogenous amorphous phase in-situ reinforced silver alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250