JP2011112423A - Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator - Google Patents

Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator Download PDF

Info

Publication number
JP2011112423A
JP2011112423A JP2009267154A JP2009267154A JP2011112423A JP 2011112423 A JP2011112423 A JP 2011112423A JP 2009267154 A JP2009267154 A JP 2009267154A JP 2009267154 A JP2009267154 A JP 2009267154A JP 2011112423 A JP2011112423 A JP 2011112423A
Authority
JP
Japan
Prior art keywords
substrate
inspected
light
irradiation lamp
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009267154A
Other languages
Japanese (ja)
Inventor
Kazunobu Hori
和伸 宝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009267154A priority Critical patent/JP2011112423A/en
Publication of JP2011112423A publication Critical patent/JP2011112423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear irradiator capable of also achieving the enhancement of the detection force of a fine flaw by supplying a sufficient quantity of light to a linear imaging object, which requires much quantity of light, by applying directionality to light, and an imaging unit for the visual examination of a substrate to be inspected containing the linear irradiator. <P>SOLUTION: The imaging unit for the visual examination of the substrate to be inspected is constituted of the linear irradiator 11 used as a regular reflection side irradiation lamp 32 and a dark field side irradiation lamp 33 and the linear imaging object 35 arranged between the regular reflection side irradiation lamp 32 and the dark field side irradiation lamp 33. The regular reflection side irradiation lamp 32 is arranged so that the injection port 27 thereof is directed toward the inspection position S of the substrate P to be inspected from the downstream side in a feed direction and the dark field side irradiation lamp 33 is arranged so that the injection port 27 is directed toward the inspection position S of the substrate P to be inspected from the upstream side in the feed direction. The linear imaging object 35 is arranged so that the imaging surface 35a thereof is positioned so as to receive light at the position rearwardly inclined by about 15° toward the upstream side from the vertical axis L perpendicular to the feed direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被検査基板のキズ、汚れ、異物等の欠陥の有無をライン撮像体を用いて外観検査する際に必要なライン状照射体および該ライン状照射体を含む被検査基板外観検査用撮像ユニットに関する技術である。   The present invention relates to a line-shaped irradiation body required for visual inspection using a line imaging body for the presence or absence of defects such as scratches, dirt, and foreign matter on the substrate to be inspected, and for inspection of a substrate to be inspected including the line-shaped irradiation body. This is a technique related to an imaging unit.

プリント基板からなる被検査基板の外観上の適否を検査する外観検査手法には、人間が目視確認する検査手法のほか、例えば下記特許文献1に開示されている「プリント基板の穴充填部欠陥検査システム」などのような被検査基板外観検査用撮像ユニットを用いる検査手法もある。   As an appearance inspection method for inspecting the suitability of the appearance of a substrate to be inspected made of a printed circuit board, in addition to an inspection method visually confirmed by humans, for example, disclosed in the following Patent Document 1 is “Inspection of a hole filling portion defect of a printed circuit board” There is also an inspection method using an imaging unit for inspecting a substrate to be inspected such as a “system”.

特開2008−124306号公報JP 2008-124306 A

このうち、上記特許文献1に開示されている被検査基板外観検査用撮像ユニットによる検査手法は、スルーホールに充填材料が充填されたプリント基板を被検査基板とし、該被検査基板の穴充填部に形成される凹部の深さを高精度に検出して、欠陥の有無を高精度に判定できるようにしようとするものである。   Among these, the inspection method using the imaging unit for inspecting a substrate to be inspected disclosed in Patent Document 1 uses a printed board in which a through material is filled in a through hole as a substrate to be inspected, and a hole filling portion of the substrate to be inspected. The depth of the concave portion formed in the substrate is detected with high accuracy so that the presence or absence of a defect can be determined with high accuracy.

この場合、搬送手段を介して検査位置を通過するように搬送される被検査基板は、前記検査位置にてライン状照射体からのライン状の照射光を受け、その反射光をライン状撮像体によりライン状に撮像した上で欠陥の有無が判定されることになる。   In this case, the substrate to be inspected that is transported so as to pass through the inspection position via the transport means receives the line-shaped irradiation light from the line-shaped irradiation body at the inspection position, and the reflected light is reflected on the line-shaped imaging body. Thus, the presence or absence of a defect is determined after imaging in a line shape.

図6は、上記特許文献1を含めてプリント基板を被検査基板として外観検査する際に通常用いられる被検査基板外観検査用撮像ユニットの一例を示す説明図である。   FIG. 6 is an explanatory diagram illustrating an example of an imaging unit for inspecting a substrate to be inspected, which is usually used when a printed circuit board is subjected to an appearance inspection including the above-described Patent Document 1.

同図によれば、図示しない搬送手段を介して被検査基板Pが一定速度で搬送される途上位置に設定されている検査位置Sの上方位置には、ライン状照射体2である正反射側照射灯3および暗視野側照射灯4と、被検査基板Pの搬送方向と直交する垂直軸Lから下流側に向けて20度後傾させた位置で受光できるようにその撮像面8aを位置させたラインスキャンカメラからなるライン状撮像体8とで構成された被検査基板外観検査用撮像ユニット1が固定配置されている。   According to the figure, the specular reflection side that is the line-shaped illuminator 2 is positioned above the inspection position S set at a position where the substrate P to be inspected is conveyed at a constant speed via a conveying means (not shown). The imaging surface 8a is positioned so that light can be received at a position tilted backward by 20 degrees from the vertical axis L perpendicular to the conveyance direction of the inspection substrate P and the irradiation lamp 3 and the dark field side irradiation lamp 4 toward the downstream side. An imaging unit 1 for inspecting a substrate to be inspected, which is composed of a line-shaped imaging body 8 composed of a line scan camera, is fixedly arranged.

この場合に用いられる正反射側照射灯3と暗視野側照射灯4とについては、安価であることから2本の直管タイプの蛍光管を横列方向に組み込んだものが従来から用いられてきている。しかし、最近では、直管2本を使用するよりも管間距離を密にして、被検査対象物に対する照射密度を高くすることができる図7に示すようなUラインやツイン管と称されているU字形蛍光管6を横列方向に配置するパターンが多く採用されるようになってきている。   The specular reflection side illumination lamp 3 and the dark field side illumination lamp 4 used in this case have been conventionally used because they are inexpensive and incorporate two straight tube type fluorescent tubes in the row direction. Yes. However, recently, it is called a U line or a twin tube as shown in FIG. 7 that can increase the irradiation density to the object to be inspected by increasing the distance between the tubes than using two straight tubes. The pattern which arrange | positions the U-shaped fluorescent tube 6 currently arranged in the row direction has come to be adopted many.

すなわち、正反射側照射灯3と暗視野側照射灯4とのそれぞれは、図6に示されているように、深さが比較的浅い断面コ字形を呈して反射板としても機能するアルミニウム板などからなるカバー5と、該カバー5の幅方向を列方向として一側折返し管部6aと他側折返し管部6bとが横列配置されるU字形蛍光管6とで形成されているものが多く用いられるようになってきている。   That is, each of the regular reflection side illumination lamp 3 and the dark field side illumination lamp 4 is an aluminum plate that also has a U-shaped cross section with a relatively shallow depth and also functions as a reflection plate, as shown in FIG. And the like, and a U-shaped fluorescent tube 6 in which the one side folded tube portion 6a and the other side folded tube portion 6b are arranged in a row with the width direction of the cover 5 as the column direction is often formed. It has come to be used.

また、カラーラインスキャンカメラなどからなるライン状撮像体8は、正反射側照射灯3からの光線の反射光により被検査基板P上の欠陥を陰影として捕らえることができるほか、被検査基板Pの凹凸面に対し正反射側照射灯3から光線を照射した際に発生する陰影の影響を暗視野側照射灯4で軽減するとともに、正射光線のみによっては捕らえられない欠陥を散乱光として検出することもできるようになっている。   Further, the line-shaped imaging body 8 formed of a color line scan camera or the like can capture defects on the inspected substrate P as shadows by reflected light of the light from the specular reflection side irradiation lamp 3, and can also detect the defect of the inspected substrate P. The dark field side illumination lamp 4 reduces the influence of shadows generated when light is emitted from the specular reflection side illumination lamp 3 to the uneven surface, and a defect that cannot be captured only by the orthogonal radiation is detected as scattered light. You can also do that.

しかし、図6に示すライン状照射体2を用いる場合には、図8に示されているようにカバー5の内側面5aに光線Rが反射され、これが拡散光となって被検査基板P側に到達してさらに反射され、その反射光がライン状撮像体8の撮像面8aの受光領域のほか、それ以外の領域にも幅広く照射される結果、撮像面8aへの照射効率が悪くなるという不都合があった。   However, when the line-shaped irradiation body 2 shown in FIG. 6 is used, the light beam R is reflected on the inner surface 5a of the cover 5 as shown in FIG. The reflected light is further reflected to the light receiving area of the imaging surface 8a of the line-shaped imaging body 8 and also to other areas so that the irradiation efficiency to the imaging surface 8a is deteriorated. There was an inconvenience.

特に、ライン状撮像体8としてカラーラインスキャンカメラを用いる場合には、カラーフィルタが付加されている分だけモノクロタイプに比べて感度が落ちて光量不足となることから、スキャンレートを遅くすることでこれに対処しようとすればタクトタイムの増大を招き、感度を上げるとノイズが増加して検査に不具合を生じるなどの問題があった。   In particular, when a color line scan camera is used as the line-shaped imaging body 8, the sensitivity is lowered and the amount of light is insufficient compared to the monochrome type by the amount of the added color filter. Attempting to deal with this would cause an increase in tact time, and increasing sensitivity would increase noise and cause problems in inspection.

また、このような問題に対しては、カバー5の内側反射面の反射率を大きくすることで、被検査基板Pに対する照度をある程度までは上げることができるものの、例えば金属表面の鏡面反射による場合にはU字形蛍光管6の後面からの光が管面に邪魔されて効率を上げることができないという問題があった。   Further, for such a problem, the illuminance on the substrate P to be inspected can be increased to some extent by increasing the reflectance of the inner reflection surface of the cover 5, but for example due to specular reflection of the metal surface Has a problem that the light from the rear surface of the U-shaped fluorescent tube 6 is obstructed by the tube surface and the efficiency cannot be increased.

さらに、U字形蛍光管6を用いる場合には、これから生じる拡散光によりパッド部の研磨筋等の微細欠陥を消すことができるので、それだけ虚報(エラー)を減らすことができる効果があるものの、逆に微細欠陥を検出するためには指向性の強い光源が必要になるという要請には効果的に対処することができないデメリットもあった。   Further, when the U-shaped fluorescent tube 6 is used, fine defects such as the polishing streaks of the pad portion can be erased by the diffused light generated from this, so that although there is an effect of reducing the false alarm (error), the reverse In addition, there is a demerit that cannot effectively cope with a request that a light source with high directivity is required to detect a fine defect.

本発明は、従来技術にみられた上記課題に鑑み、従来は撮像に寄与させることなく無駄に拡散させていた光線に指向性を与えて有効に活用することで、ライン状撮像体がより多くの光量を要求されるものであっても十分な光量を供給できるほか、微細欠陥に対する検出力も向上させることができるライン状照射体および該ライン状照射体を含む被検査基板外観検査用撮像ユニットを提供することを目的とする。   In view of the above-mentioned problems found in the prior art, the present invention increases the number of line-shaped imaging bodies by providing directivity and effectively utilizing rays that have been diffused wastefully without contributing to imaging. A line-shaped illuminator that can supply a sufficient amount of light even if a large amount of light is required, and that can also improve the detection power for fine defects, and an imaging unit for inspecting the appearance of a substrate to be inspected including the line-shaped illuminant The purpose is to provide.

本発明は、上記目的を達成すべくなされたものであり、そのうちの第1の発明は、一側管部と他側管部とからなる蛍光管と、これら一側管部と他側管部とが縦列方向に配列された前記蛍光管をその深さ方向に収容配置した際にその全体を隠蔽する深さを有し、かつ、該蛍光管が発する光線に指向性を与えて外部に照射する射出口を下端面に備えるカバーとで構成され、該カバーの内側面には、拡散反射材としての超微細発泡反射板を配設したことを最も主要な特徴とする。   The present invention has been made to achieve the above object, and a first invention is a fluorescent tube comprising a one-side tube portion and another-side tube portion, and these one-side tube portion and other-side tube portion. When the fluorescent tubes arranged in the column direction are accommodated and arranged in the depth direction, the fluorescent tube has a depth to conceal the whole, and the light emitted from the fluorescent tubes is given directivity and irradiated to the outside. The main feature is that an ultrafine foamed reflector as a diffuse reflector is disposed on the inner side surface of the cover.

また、第2の発明は、正反射側照射灯と暗視野側照射灯として用いられる第1の発明に係るライン状照射体と、これら正反射側照射灯と暗視野側照射灯との間に配置されるライン状撮像体とで構成され、前記正反射側照射灯は、前記射出口を被検査基板搬送方向での下流側から被検査基板の検査位置に向けて、前記暗視野側照射灯は、前記射出口を被検査基板搬送方向での上流側から前記被検査基板の検査位置に向けてそれぞれが配置され、前記ライン状撮像体は、前記被検査基板の検査位置にあってその搬送方向と直交する垂直軸から上流側に向けて15度程度後傾させた位置で受光できるようにその撮像面を位置させて配置したことを最も主要な特徴とする。   Moreover, 2nd invention is the line-shaped irradiation body which concerns on 1st invention used as a regular reflection side irradiation lamp and a dark field side irradiation lamp, Between these regular reflection side irradiation lamps and dark field side irradiation lamps The specular reflection side illumination lamp is arranged such that the exit port is directed from the downstream side in the substrate transport direction toward the inspection position of the substrate to be inspected, and the dark field side illumination lamp is formed. Are respectively arranged from the upstream side in the substrate transfer direction toward the inspection position of the substrate to be inspected, and the line-shaped imaging body is at the inspection position of the substrate to be inspected and is transported The most important feature is that the imaging surface is positioned so that light can be received at a position inclined backward by about 15 degrees toward the upstream side from the vertical axis orthogonal to the direction.

第1の発明によれば、蛍光管が発する光線を減衰量を極端に少なくしてあらゆる方向に拡散反射させることができるので、蛍光管の背面側や側面側が発する光線であっても超微細発泡反射板との間で拡散反射を繰り返させながらカバーの射出口へと効率よく導くことができる光源を安価に提供することができる。   According to the first aspect of the present invention, the light emitted from the fluorescent tube can be diffusely reflected in all directions with an extremely small attenuation. Therefore, even if the light is emitted from the back side or the side of the fluorescent tube, ultrafine foaming is performed. A light source that can be efficiently guided to the exit of the cover while repeating diffuse reflection with the reflecting plate can be provided at low cost.

しかも、カバーは、一側管部と他側管部とを縦列の配列にした蛍光管をその深さ方向に配置することができる内部空間を備えているので、その射出口も狭幅にすることができることから、蛍光管が発する光線が射出口から照射される際に指向性を付与してやることができる。   Moreover, since the cover has an internal space in which the fluorescent tubes in which the one-side tube portion and the other-side tube portion are arranged in tandem can be arranged in the depth direction, the emission port is also narrowed. Therefore, directivity can be imparted when light emitted from the fluorescent tube is irradiated from the exit.

第2の発明によれば、第1の発明に係るライン状照射体が正反射側照射灯と暗視野側照射灯として用いられているので、正反射側照射灯側からの光線も被検査基板の搬送方向に対し射出口を狭くすることで指向性が付与されるため、被検査基板の搬送方向と直交する垂直軸と正反射側照射灯との間の角度を小さくした状態のもとで被検査基板の凸部に照射できることから、虚報の要因となる凸部の陰影をそれだけ小さくすることができる。   According to the second invention, since the line-shaped irradiation body according to the first invention is used as the regular reflection side irradiation lamp and the dark field side irradiation lamp, the light beam from the regular reflection side irradiation lamp side is also the substrate to be inspected. Because the directivity is given by narrowing the injection port with respect to the transport direction, the angle between the vertical axis orthogonal to the transport direction of the substrate to be inspected and the regular reflection side irradiation lamp is reduced. Since the projections on the substrate to be inspected can be irradiated, the projections of the projections that cause a false alarm can be reduced accordingly.

このため、ライン状撮像体は、その配置位置も被検査基板の検査位置に対し被検査基板の搬送方向との直交する垂直軸から上流側に向けて15度程度後傾させた位置で、被検査基板で反射された正反射側照射灯からの光線を照射効率を高めて撮像面で受光することができることになり、虚報の要因となる凸部の陰影を小さくして撮像することができるほか、ユニット全体の配置関係もそれだけコンパクト化することができることになる。   For this reason, the line-shaped imaging body is also positioned at a position inclined backward about 15 degrees toward the upstream side from the vertical axis perpendicular to the inspection substrate transport direction with respect to the inspection position of the inspection substrate. In addition to being able to receive light from the specular reflection side illumination lamp reflected by the inspection board on the imaging surface with improved illumination efficiency, it is possible to capture images with reduced shadows on convex parts that cause false alarms. Thus, the arrangement relationship of the entire unit can be made compact accordingly.

しかも、暗視野側照射灯側からの光線は、被検査基板の凸部に対し正反射側照射灯から光線を照射した際に発生する陰影の影響を軽減するとともに、正反射側照射灯側からの光線Rのみによっては捕らえられない欠陥をライン状撮像体が散乱光として検出することもできることになる。   In addition, the light from the dark field side illumination lamp side reduces the influence of shadows generated when the light beam is irradiated from the regular reflection side illumination lamp to the convex portion of the substrate to be inspected, and from the regular reflection side illumination lamp side. The line-shaped imaging body can also detect a defect that cannot be captured only by the light ray R as scattered light.

また、ライン状撮像体については、光量不足を来すことなくスキャンレートを高めながらタクトタイムの減少を図ることができるほか、ノイズを少なくして撮像することもできる。   In addition, with respect to the line-shaped imaging body, it is possible to reduce the tact time while increasing the scan rate without causing a shortage of light amount, and it is also possible to perform imaging with less noise.

第1の発明による場合の光線の拡散反射状況の一例を模式的に示す説明図。Explanatory drawing which shows typically an example of the diffuse reflection condition of the light ray in the case of 1st invention. 第2の発明の構成例を搬送途上にある検査位置に到達した被検査基板との関係で示す説明図。Explanatory drawing which shows the structural example of 2nd invention with respect to the to-be-inspected board | substrate which reached | attained the test | inspection position in the middle of conveyance. 本発明のライン状照射体と図6に示すライン状照射体とを用いた場合の照射状況例を各別に示す説明図であり、そのうちの(a)は本発明による照射状況を、(b)は図6に示すライン状照射体の照射状況をそれぞれ示す。It is explanatory drawing which shows the example of an irradiation condition at the time of using the line-shaped irradiation body of this invention, and the line-shaped irradiation body shown in FIG. 6, respectively, (a) of them shows the irradiation condition by this invention, (b) Respectively show the irradiation conditions of the line-shaped irradiation body shown in FIG. 超微細発泡光反射板(古河電工製品「MCPET」)と金属鏡面系反射板とを拡散反射材として用いた場合の全反射率を比較して示すグラフ図。The graph which compares and shows the total reflectance at the time of using an ultra-fine foam light reflection board (Furukawa Electric product "MCPET") and a metal mirror surface type reflection board as a diffused reflection material. 超微細発泡光反射板(古河電工製品「MCPET」)と金属鏡面系反射板とを拡散反射材として用いた場合の拡散反射率を比較して示すグラフ図。The graph which compares and shows the diffuse reflectance at the time of using an ultrafine foaming light reflection board (Furukawa Electric product "MCPET") and a metal mirror surface type reflection board as a diffused reflection material. 従来からある被検査基板外観検査用撮像ユニットの構成例を示す説明図。Explanatory drawing which shows the structural example of the conventional imaging unit for a board | substrate external appearance inspection. 通常に使用されているU字形蛍光管の形状例を示す説明図。Explanatory drawing which shows the example of a shape of the U-shaped fluorescent tube currently used normally. 図6に示されているライン状照射体における光線の拡散反射状況を模式的に示す説明図。Explanatory drawing which shows typically the diffuse reflection condition of the light ray in the linear irradiation body shown by FIG.

図1は、本発明のうち、第1の発明であるライン状照射体の一例についての断面構造を示す説明図であり、ライン状照射体11は、図7に示されているように一側管部12aと他側管部12bとで略U字形を呈してなる蛍光管12と、これら一側管部12aと他側管部12bとが縦列方向に配列された蛍光管12をその深さ方向に収容配置した際にその全体を隠蔽する深さを有し、かつ、該U字形蛍光管12が発する光線Rに指向性を与えて外部に照射する射出口27を下端面に備えるカバー22とで構成されている。なお、本発明における蛍光管12としては、図7に示されているような略U字形を呈して一体に形成された蛍光管12のほか、独立した2本の直線状の蛍光管を所望に応じて用いることもできる。   FIG. 1 is an explanatory view showing a cross-sectional structure of an example of a line-shaped illuminator according to the first invention of the present invention, and the line-shaped illuminator 11 has one side as shown in FIG. The fluorescent tube 12 having a substantially U-shape with the tube portion 12a and the other tube portion 12b, and the depth of the fluorescent tube 12 in which the one tube portion 12a and the other tube portion 12b are arranged in the tandem direction. A cover 22 having a depth for concealing the whole when accommodated in a direction, and having an emission port 27 on the lower end surface for directing the light R emitted from the U-shaped fluorescent tube 12 and irradiating the light to the outside. It consists of and. As the fluorescent tube 12 in the present invention, in addition to the fluorescent tube 12 having a substantially U shape as shown in FIG. 7 and integrally formed, two independent linear fluorescent tubes are desired. It can also be used accordingly.

この場合、適宜の金属材や合成樹脂材からなるカバー22は、収容される蛍光管12の管長さ方向を長辺側とし、該蛍光管12にあって縦列配置される一側管部12aまたは他側管部12bの管径方向を短辺側とする略長方形を呈する天板部23と、該天板部23の各長辺側から垂設された左側板部24および右側板部25と、天板部23の各短辺側から垂設された前側板部および後側板部(図示省略)とで、その下端面に射出口27を備える内部空間26を有して形成されている。   In this case, the cover 22 made of a suitable metal material or synthetic resin material has the tube length direction of the fluorescent tube 12 accommodated in the long side, and the one-side tube portion 12a arranged in a row in the fluorescent tube 12 or A top plate portion 23 having a substantially rectangular shape with the tube diameter direction of the other side tube portion 12b as a short side, and a left side plate portion 24 and a right side plate portion 25 that are suspended from each long side of the top plate portion 23; The front plate portion and the rear plate portion (not shown) suspended from each short side of the top plate portion 23 are formed with an internal space 26 having an injection port 27 at the lower end surface.

この場合、カバー22の内部空間26の深さの程度は、左側板部24および右側板部25と前側板部および後側板部との縦方向での寸法により規定される。   In this case, the degree of the depth of the internal space 26 of the cover 22 is defined by the vertical dimensions of the left side plate portion 24 and the right side plate portion 25 and the front side plate portion and the rear side plate portion.

これを具体的に説明すれば、左側板部24、右側板部25、前側板部および後側板部の縦寸は、一側折返し管部12aと他側折返し管部12bとを縦列方向に配列させた状態で蛍光管12を収容した際に、該蛍光管12の全体を内部空間26内に確実に、かつ、余裕をもって隠蔽することができる程度の適宜長さ、例えば図7に示すように折り返された一側管部12aと他側管部12bとが縦列となっている蛍光管12の縦寸aの例えば略1.8倍程度の長さとなっている。   More specifically, the vertical dimensions of the left side plate part 24, the right side plate part 25, the front side plate part and the rear side plate part are arranged such that the one side folded pipe part 12a and the other side folded pipe part 12b are arranged in the vertical direction. When the fluorescent tube 12 is accommodated in a state of being made to be in an appropriate length, for example, as shown in FIG. 7, the entire fluorescent tube 12 can be reliably concealed in the internal space 26 with sufficient margin. The length of the vertical dimension a of the fluorescent tube 12 in which the folded-back one-side tube portion 12a and the other-side tube portion 12b are arranged in a column is, for example, about 1.8 times.

また、カバー22の内部空間26の横幅、つまり図1における射出口27の左右方向での横幅は、一側管部12aまたは他側管部12bの外径の例えば略1.9倍程度の長さとなっている。   Further, the lateral width of the internal space 26 of the cover 22, that is, the lateral width of the injection port 27 in FIG. 1 in the left-right direction is, for example, approximately 1.9 times the outer diameter of the one-side tube portion 12a or the other-side tube portion 12b. It has become.

つまり、カバー22は、内部空間26の深さ(縦寸)が深く、かつ、射出口27が一側管部12aまたは他側管部12bの外径の1.5〜2倍程度の狭幅となって形成することができることから、蛍光管12が発する光線Rが射出口27から照射される際に指向性を付与することができることになる。   That is, the cover 22 has a deep depth (vertical dimension) of the internal space 26, and the injection port 27 has a narrow width of about 1.5 to 2 times the outer diameter of the one-side tube portion 12a or the other-side tube portion 12b. Therefore, directivity can be imparted when the light ray R emitted from the fluorescent tube 12 is irradiated from the exit port 27.

しかも、カバー22の内側面28には、例えば古河電工製品「MCPET」などのような超微細発泡反射板29を拡散反射材として貼着するなどして固着配置されているので、蛍光管12が発する光線Rをあらゆる方向に減衰量を極端に少なくして拡散反射させることができる。   Moreover, the fluorescent tube 12 is fixedly disposed on the inner side surface 28 of the cover 22 by, for example, attaching an ultrafine foam reflecting plate 29 such as Furukawa Electric product “MCPET” as a diffuse reflecting material. The emitted light ray R can be diffusely reflected with extremely little attenuation in all directions.

このため、カバー22の射出口27には、蛍光管12の背面側や側面側が発する光線Rであっても超微細発泡反射板29との間で拡散反射を繰り返させながら効率よく導いてやることができることになる。   For this reason, even the light ray R emitted from the back side or the side surface of the fluorescent tube 12 can be efficiently guided to the outlet 27 of the cover 22 while repeating diffuse reflection with the ultrafine foamed reflection plate 29. Will be able to.

図2は、第1の発明である図1に示すライン状照射体11を組み込んで構成される第2の発明の一例を示す説明図であり、被検査基板外観検査用撮像ユニット31の全体は、正反射側照射灯32と暗視野側照射灯33として用いられるライン状照射体11と、これら正反射側照射灯32と暗視野側照射灯33との間の上方位置に配置されるカラーラインスキャンカメラやモノクロラインスキャンカメラからなるライン状撮像体35とで構成されている。   FIG. 2 is an explanatory view showing an example of the second invention constructed by incorporating the line-shaped illuminator 11 shown in FIG. 1 which is the first invention, and the entire imaging unit 31 for inspecting a substrate to be inspected is shown. The line-shaped irradiation body 11 used as the regular reflection side irradiation lamp 32 and the dark field side irradiation lamp 33, and a color line arranged at an upper position between the regular reflection side irradiation lamp 32 and the dark field side irradiation lamp 33. It is comprised with the linear imaging body 35 which consists of a scan camera and a monochrome line scan camera.

この場合、正反射側照射灯32は、その射出口27を被検査基板搬送方向での下流側から被検査基板Pの検査位置Sに向けて、暗視野側照射灯33は、その射出口27を被検査基板搬送方向での上流側から前記被検査基板Pの検査位置Sに向けて、それぞれが被検査基板Pの上方に配置されている。   In this case, the regular reflection side irradiation lamp 32 directs its exit 27 from the downstream side in the substrate transport direction to the inspection position S of the substrate P to be inspected, and the dark field side illumination lamp 33 has its exit 27. Are arranged above the inspected substrate P from the upstream side in the substrate transport direction toward the inspection position S of the inspected substrate P.

図3は、図1に示すライン状照射体11を正反射側照射灯32として用いた場合と、従来からある図6に示すライン状照射体2を正反射側照射灯3として用いた場合とにおける光線Rの照射状況を示す説明図であり、そのうちの(a)は図1の正反射側照射灯32の照射状況を、(b)は図6の正反射側照射灯3の照射状況をそれぞれ示す。同図によれば、図1に示す正反射側照射灯32を用いる場合には、照射される光線Rに指向性を与えることができることにより、被検査基板Pの搬送方向と直交する垂直軸Lと正反射側照射灯32との間の角度を小さくすることができるので、被検査基板Pに凸部Tがあっても、該凸部Tの陰影tが小さくなるようにして検査位置を照射することができる。これに対し、図6に示す正反射側照射灯3を用いる場合には、カバー5が大きく、照射される光線Rが拡散光となることにより、被検査基板Pの搬送方向と直交する垂直軸Lと正反射側照射灯3との間の角度を小さく配置できないために照射される光線Rが拡散光となることから、被検査基板Pに凸部Tがあった場合に該凸部Tの陰影tが大きくなった状態のもとで検査位置を照射することになる。   3 shows a case where the line-shaped irradiation body 11 shown in FIG. 1 is used as the regular reflection side irradiation lamp 32 and a case where the conventional line-shaped irradiation body 2 shown in FIG. 6 is used as the regular reflection side irradiation lamp 3. 8A and 9B are explanatory views showing the irradiation state of the light ray R, in which (a) shows the irradiation state of the regular reflection side irradiation lamp 32 in FIG. 1, and (b) shows the irradiation state of the regular reflection side irradiation lamp 3 in FIG. Each is shown. According to the figure, when the regular reflection side illumination lamp 32 shown in FIG. 1 is used, directivity can be given to the irradiated light beam R, so that the vertical axis L orthogonal to the transport direction of the substrate P to be inspected. And the specular reflection side irradiation lamp 32 can be reduced, so that even if the inspected substrate P has a convex portion T, the shadow t of the convex portion T is reduced so that the inspection position is irradiated. can do. On the other hand, when the regular reflection side irradiation lamp 3 shown in FIG. 6 is used, the vertical axis perpendicular to the transport direction of the substrate P to be inspected is obtained because the cover 5 is large and the irradiated light R becomes diffused light. Since the angle R between the L and the regular reflection side irradiation lamp 3 cannot be arranged small, the irradiated light ray R becomes diffused light. Therefore, when the convex portion T is present on the substrate P to be inspected, The inspection position is irradiated under the condition that the shadow t becomes large.

したっがって、ライン状撮像体35は、図3(a)からも明らかなように、被検査基板Pの検査位置Sに対し被検査基板Pの搬送方向と直交する垂直軸Lから上流側に向けて例えば15度程度後傾させた位置で、被検査基板Pで反射された正反射側照射灯32や暗視野側照射灯33からの光線Rを受光できるようにその撮像面35aを対向させて配置することができることになる。   Therefore, as is apparent from FIG. 3A, the line-shaped imaging body 35 is located upstream from the vertical axis L perpendicular to the conveyance direction of the substrate P to be inspected with respect to the inspection position S of the substrate P to be inspected. The imaging surface 35a is opposed so that the light R from the specular reflection side irradiation lamp 32 and the dark field side irradiation lamp 33 reflected by the substrate to be inspected P can be received at a position tilted backward by, for example, about 15 degrees. Can be arranged.

次に、図1ないし図5を参酌しながら本発明の作用効果を説明すれば、正反射側照射灯32や暗視野側照射灯33として用いられるライン状照射体11は、蛍光管12が発する光線Rを減衰量を極端に少なくしてあらゆる方向に拡散反射させることができるので、蛍光管12の背面側や側面側が発する光線Rであっても超微細発泡反射板29との間で拡散反射を繰り返させながらカバー22の射出口27へと効率よく導いてやることができる。   Next, the effects of the present invention will be described with reference to FIGS. 1 to 5. The line-shaped irradiation body 11 used as the regular reflection side irradiation lamp 32 or the dark field side irradiation lamp 33 emits the fluorescent tube 12. Since the light ray R can be diffusely reflected in all directions with extremely small attenuation, even the light ray R emitted from the back side or side surface side of the fluorescent tube 12 is diffusely reflected between the ultrafine foamed reflection plate 29. Can be efficiently guided to the injection port 27 of the cover 22.

すなわち、超微細発泡光反射板(古河電工製品「MCPET」)29を拡散反射材として用いる場合には、図4および図5からも明らかなように可視光領域における全反射率が99%で、拡散反射率が95%であることから、従来から用いられている金属鏡面系反射板に比較して蛍光管12が発する光線Rを減衰量を極端に少なくしてあらゆる方向に拡散反射させることができることが判明する。   That is, when the ultrafine foamed light reflector (Furukawa Electric product “MCPET”) 29 is used as a diffuse reflector, the total reflectance in the visible light region is 99%, as is apparent from FIGS. 4 and 5. Since the diffuse reflectance is 95%, the light ray R emitted from the fluorescent tube 12 can be diffusely reflected in all directions with an extremely small attenuation compared to a conventionally used metal mirror reflector. It turns out that you can.

しかも、カバー22は、一側管部12aと他側管部12bとを縦列に配列にした蛍光管12をその深さ方向に配置することができる内部空間26を備えているので、その射出口27も極端に狭幅にすることができることから、蛍光管12が発する光線Rが射出口27から照射される際に指向性を付与してやることもできる。   Moreover, the cover 22 includes an internal space 26 in which the fluorescent tubes 12 in which the one-side tube portion 12a and the other-side tube portion 12b are arranged in tandem can be arranged in the depth direction thereof. Since 27 can be made extremely narrow, directivity can be imparted when the light ray R emitted from the fluorescent tube 12 is irradiated from the exit 27.

つまり、ライン状照射体11を用いる場合には、図6に示すライン状照射体2に比較して約2.5倍の光量を射出口27から照射することができることになる。   That is, when the line-shaped irradiation body 11 is used, it is possible to irradiate about 2.5 times the amount of light from the outlet 27 as compared with the line-shaped irradiation body 2 shown in FIG.

また、上記したライン状照射体11を含んで構成される被検査基板外観検査用撮像ユニット31によれば、図1に示すライン状照射体11が図2に示されているように正反射側照射灯32と暗視野側照射灯33として用いられているので、搬送途上にある被検査基板Pの検査位置Sに対する指向性を高め、かつ、従来例に比較して約2.5倍の光量のもとで光線Rをそれぞれの射出口27から照射することができる。   Further, according to the imaging unit 31 for inspecting a substrate to be inspected configured to include the above-described line-shaped irradiation body 11, the line-shaped irradiation body 11 shown in FIG. 1 is a regular reflection side as shown in FIG. Since it is used as the irradiation lamp 32 and the dark field side irradiation lamp 33, the directivity with respect to the inspection position S of the inspected substrate P in the middle of conveyance is improved, and the light amount is about 2.5 times that of the conventional example. The light rays R can be irradiated from the respective outlets 27 under the above.

また、正反射側照射灯32と暗視野側照射灯33とは、それぞれの射出口27を被検査基板Pの搬送方向に対し狭くした状態のもとで向けることができるので、正反射側照射灯32側からの光線Rも、図3(a)に示すように被検査基板Pの凸部Tに対しその斜め上方から照射された際に、指向性が高いために垂直軸L側により接近した状態で入射されることになり、虚報の要因となる凸部Tの陰影tも図3(b)の従来例に比較して減少させてやることができる。   Further, the specular reflection side irradiation lamp 32 and the dark field side irradiation lamp 33 can be directed with their respective exits 27 narrowed with respect to the transport direction of the substrate P to be inspected. As shown in FIG. 3A, the light ray R from the lamp 32 side is closer to the vertical axis L side because of high directivity when irradiated on the convex portion T of the substrate P to be inspected obliquely from above. Therefore, the shadow t of the convex portion T, which is a cause of false alarm, can be reduced as compared with the conventional example of FIG.

このように正反射側照射灯32および暗視野側照射灯33にライン状照射体11を用いたことにより、ライン状撮像体35は、その配置位置に余裕ができ、図2に示されているように被検査基板Pの検査位置Sに対し被検査基板Pの搬送方向と直交する垂直軸Lから上流側に向けて例えば15度後傾させた位置で、被検査基板Pで反射された正反射側照射灯32からの光線Rを撮像面35aで受光することができるので、図3(a)に示されているように虚報の要因となる凸部Tの陰影tを小さくして撮像することができることになる。   Thus, by using the line-shaped irradiation body 11 for the specular reflection side irradiation lamp 32 and the dark field side irradiation lamp 33, the line-shaped imaging body 35 has a margin in the arrangement position, and is shown in FIG. In this way, the positive light reflected from the inspection substrate P at a position inclined, for example, by 15 degrees toward the upstream side from the vertical axis L orthogonal to the conveyance direction of the inspection substrate P with respect to the inspection position S of the inspection substrate P. Since the light ray R from the reflection side illumination lamp 32 can be received by the imaging surface 35a, the shadow t of the convex portion T that causes a false alarm is reduced as shown in FIG. Will be able to.

しかも、暗視野側照射灯33側からの光線Rは、被検査基板Pの凸部Tに対し正反射側照射灯3から光線Rを照射した際に発生する陰影tの影響を軽減するとともに、正反射側照射灯32側からの光線Rのみによっては捕らえられない欠陥をライン状撮像体35が散乱光として検出することもできることになる。   Moreover, the light ray R from the dark field side irradiation lamp 33 side reduces the influence of the shadow t generated when the light ray R is irradiated from the specular reflection side irradiation lamp 3 to the convex portion T of the substrate P to be inspected. It is also possible for the line-shaped imaging body 35 to detect a defect that cannot be captured only by the light beam R from the regular reflection side irradiation lamp 32 side as scattered light.

また、正反射側照射灯32側からの光線Rは、カバー22の内側面28に固着配置されている超微細発泡反射板26と、内部空間26の深さおよび射出口27の具体的形状とにより、指向性が付与された高い光量のもとでその射出口27から照射される結果、被検査基板Pで反射した反射光がライン状撮像体35の撮像面35aに照射効率を高めて到達させることができる。   Further, the light ray R from the specular reflection side irradiation lamp 32 side includes an ultrafine foamed reflection plate 26 fixedly disposed on the inner side surface 28 of the cover 22, the depth of the internal space 26, and the specific shape of the emission port 27. As a result, the reflected light reflected by the substrate P to be inspected reaches the imaging surface 35a of the line-shaped imaging body 35 with improved irradiation efficiency as a result of irradiation from the exit 27 under a high light quantity to which directivity is imparted. Can be made.

したがって、ライン状撮像体35については、モノクロラインスキャンカメラを用いる場合のみならず、カラーラインスキャンカメラを用いる場合であっても、光量不足を来すことなくスキャンレートを高めながらタクトタイムの減少を図ることができるほか、ノイズを少なくして撮像することもできることになる。   Therefore, for the line-shaped imaging body 35, not only when a monochrome line scan camera is used but also when a color line scan camera is used, the tact time can be reduced while increasing the scan rate without causing a shortage of light. In addition to being able to plan, it is also possible to take images with less noise.

以上は、本発明を図示例に基づいて説明したものであり、その具体的な構成例はこれに限定されるものではない。例えば、カバー22は、図示例では断面が略コ字径を呈するものが用いられているが、一側管部12aと他側管部12bとを縦列に配列させた蛍光管12が隠蔽される深さを有し、かつ、該蛍光管12が発する光線Rに指向性を与えて外部に照射する射出口27を下端面に備えているものでさえあれば、その具体的な形状は所望に応じて適宜設計変更することができる。   The above is the description of the present invention based on the illustrated example, and the specific configuration example is not limited to this. For example, in the illustrated example, the cover 22 having a substantially U-shaped cross section is used, but the fluorescent tube 12 in which the one-side tube portion 12a and the other-side tube portion 12b are arranged in tandem is concealed. As long as it has a depth and an exit 27 for directing the light ray R emitted from the fluorescent tube 12 and irradiating it to the outside, the specific shape thereof is desired. The design can be changed accordingly.

11 ライン状照射体
12 蛍光管
12a 一側管部
12b 他側管部
22 カバー
23 天板部
24 左側板部
25 右側板部
26 内部空間
27 射出口
28 内側面
29 超微細発泡反射板
31 被検査基板外観検査用撮像ユニット
32 正反射側照射灯
33 暗視野側照射灯
35 ライン状撮像体
35a 撮像面
L 垂直軸
P 被検査基板
R 光線
S 検査位置
T 凸部
t 陰影
DESCRIPTION OF SYMBOLS 11 Line-shaped irradiation body 12 Fluorescent tube 12a One side pipe part 12b Other side pipe part 22 Cover 23 Top plate part 24 Left side plate part 25 Right side plate part 26 Internal space 27 Outlet 28 Inner side surface 29 Ultrafine foam reflector 31 Inspected Substrate visual inspection imaging unit 32 Regular reflection side irradiation lamp 33 Dark field side irradiation lamp 35 Line-shaped imaging body 35a Imaging surface L Vertical axis P Substrate to be inspected R Ray S Inspection position T Convex t shadow

Claims (2)

一側管部と他側管部とからなる蛍光管と、これら一側管部と他側管部とが縦列方向に配列された前記蛍光管をその深さ方向に収容配置した際にその全体を隠蔽する深さを有し、かつ、該蛍光管が発する光線に指向性を与えて外部に照射する射出口を下端面に備えるカバーとで構成され、
該カバーの内側面には、拡散反射材としての超微細発泡反射板を配設したことを特徴とするライン状照射体。
When the fluorescent tube composed of one side tube portion and the other side tube portion, and the fluorescent tube in which the one side tube portion and the other side tube portion are arranged in the column direction are accommodated and arranged in the depth direction, the whole And a cover having a lower end surface provided with an exit for directing the light emitted by the fluorescent tube and irradiating the light to the outside.
A line-shaped illuminator characterized in that an ultrafine foamed reflector as a diffuse reflector is disposed on the inner surface of the cover.
正反射側照射灯と暗視野側照射灯として用いられる請求項1に記載のライン状照射体と、これら正反射側照射灯と暗視野側照射灯との間に配置されるライン状撮像体とで構成され、
前記正反射側照射灯は、前記射出口を被検査基板搬送方向での下流側から被検査基板の検査位置に向けて、前記暗視野側照射灯は、前記射出口を被検査基板搬送方向での上流側から前記被検査基板の検査位置に向けてそれぞれが配置され、
前記ライン状撮像体は、前記被検査基板の検査位置にあってその搬送方向と直交する垂直軸から上流側に向けて15度程度後傾させた位置で受光できるようにその撮像面を位置させて配置したことを特徴とする被検査基板外観検査用撮像ユニット。
The line-shaped irradiation body according to claim 1, which is used as a regular reflection-side irradiation lamp and a dark-field-side irradiation lamp, and a line-shaped imaging body disposed between the regular-reflection-side irradiation lamp and the dark-field-side irradiation lamp Consists of
The regular reflection side irradiation lamp directs the exit from the downstream side in the substrate transport direction to the inspection position of the substrate to be inspected, and the dark field side illumination lamp directs the exit from the inspection substrate transport direction. Each from the upstream side toward the inspection position of the substrate to be inspected,
The line-shaped imaging body has its imaging surface positioned so as to be able to receive light at a position inclined at about 15 degrees toward the upstream side from the vertical axis orthogonal to the transport direction at the inspection position of the board to be inspected. An imaging unit for inspecting a substrate to be inspected, characterized in that
JP2009267154A 2009-11-25 2009-11-25 Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator Pending JP2011112423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267154A JP2011112423A (en) 2009-11-25 2009-11-25 Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267154A JP2011112423A (en) 2009-11-25 2009-11-25 Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator

Publications (1)

Publication Number Publication Date
JP2011112423A true JP2011112423A (en) 2011-06-09

Family

ID=44234876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267154A Pending JP2011112423A (en) 2009-11-25 2009-11-25 Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator

Country Status (1)

Country Link
JP (1) JP2011112423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242256A (en) * 2012-05-22 2013-12-05 Ricoh Elemex Corp Inspection data acquisition method and visual inspection apparatus
USRE44685E1 (en) 1994-04-28 2013-12-31 Opentv, Inc. Apparatus for transmitting and receiving executable applications as for a multimedia system, and method and system to order an item using a distributed computing system
CN111957470A (en) * 2020-08-27 2020-11-20 安徽芯瑞达科技股份有限公司 Method for realizing backlight brightness uniformity compensation by using coating technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214877A (en) * 2004-01-30 2005-08-11 Futec Inc Defect detecting apparatus and high lighting intensity illumination device for the same
JP2005309093A (en) * 2004-04-21 2005-11-04 Asagi Create:Kk Illumination signboard and surface light source
JP2008124306A (en) * 2006-11-14 2008-05-29 Hinstec Co Ltd Hole filler defect inspection system of printed board and defect inspection method
JP2008216059A (en) * 2007-03-05 2008-09-18 Kurabo Ind Ltd Inspection apparatus of printed board
JP2009231128A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led illuminating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214877A (en) * 2004-01-30 2005-08-11 Futec Inc Defect detecting apparatus and high lighting intensity illumination device for the same
JP2005309093A (en) * 2004-04-21 2005-11-04 Asagi Create:Kk Illumination signboard and surface light source
JP2008124306A (en) * 2006-11-14 2008-05-29 Hinstec Co Ltd Hole filler defect inspection system of printed board and defect inspection method
JP2008216059A (en) * 2007-03-05 2008-09-18 Kurabo Ind Ltd Inspection apparatus of printed board
JP2009231128A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led illuminating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44685E1 (en) 1994-04-28 2013-12-31 Opentv, Inc. Apparatus for transmitting and receiving executable applications as for a multimedia system, and method and system to order an item using a distributed computing system
JP2013242256A (en) * 2012-05-22 2013-12-05 Ricoh Elemex Corp Inspection data acquisition method and visual inspection apparatus
CN111957470A (en) * 2020-08-27 2020-11-20 安徽芯瑞达科技股份有限公司 Method for realizing backlight brightness uniformity compensation by using coating technology

Similar Documents

Publication Publication Date Title
US4555635A (en) Surface flaw inspection apparatus for a convex body
CA2842544C (en) Apparatus and method for inspecting matter and use thereof for sorting recyclable matter
KR102395039B1 (en) Bulk material inspection apparatus and method
CN101952712A (en) Device and method for optically detecting surface defect of round wire rod
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
JP2011112423A (en) Linear irradiator, and imaging unit for visual examination of substrate to be inspected containing linear irradiator
JP4675120B2 (en) Granule sorter
JP4001387B2 (en) Equipment for visual inspection of surface properties of matching surfaces with large dimensions
JP2011209112A (en) Appearance inspection method of to-be-inspected object and appearance inspection apparatus of the same
JP2002039952A (en) Apparatus and method for inspecting defect
JP2006242814A (en) Surface inspection device
JP2006017685A (en) Surface defect inspection device
JP2008216150A (en) Inspection device and method of transparent object
JP7392470B2 (en) Lighting for inspecting defects in sheet-like objects and defect inspection device for sheet-like objects
JP2017125805A (en) Flaw defect checking device for sheet
JP5471157B2 (en) Method and apparatus for detecting adhering matter on glass plate surface
JP6175819B2 (en) Image inspection apparatus and image inspection method
US6798525B1 (en) System for inspecting matt, flat and/or slightly curved surfaces
JP2001183306A (en) Apparatus for inspecting solder joined part
JPH0894542A (en) Device for detecting defect in surface of galvanized sheet iron
JP4628256B2 (en) Internal inspection method for transparent body
JP2018066590A (en) Inspection device, inspection system, and method for manufacturing article
JP2008097923A (en) Vehicular lighting fixture
JP2005010111A (en) Component placed state discrimination device
JP2001165864A (en) Surface inspection device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140205