JP2011112243A - Method of suppressing differential pressure for air preheater - Google Patents

Method of suppressing differential pressure for air preheater Download PDF

Info

Publication number
JP2011112243A
JP2011112243A JP2009267199A JP2009267199A JP2011112243A JP 2011112243 A JP2011112243 A JP 2011112243A JP 2009267199 A JP2009267199 A JP 2009267199A JP 2009267199 A JP2009267199 A JP 2009267199A JP 2011112243 A JP2011112243 A JP 2011112243A
Authority
JP
Japan
Prior art keywords
coal
air preheater
differential pressure
exhaust gas
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009267199A
Other languages
Japanese (ja)
Inventor
Hiroharu Hayami
宏治 速水
Yasuhito Machii
泰人 待井
Takashi Nagao
隆司 長尾
Ryoji Morooka
良司 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2009267199A priority Critical patent/JP2011112243A/en
Publication of JP2011112243A publication Critical patent/JP2011112243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily and effectively suppressing differential pressure of an air preheater in a thermal power plant. <P>SOLUTION: The thermal power plant P includes a boiler 1 for burning a fuel including coal, and exhaust gas treatment equipment 20 for treating a combustion exhaust gas discharged from the boiler 1. The exhaust gas treatment equipment 20 includes a flue-gas denitration device 21 for removing nitrogen oxide included in the combustion exhaust gas, and the air preheater 22 disposed at a lower stage of the flue-gas denitration device 21 for exchanging heat between the combustion exhaust gas and the air supplied to the boiler 1. In the thermal power plant P, coal or a coal mixture in which a ratio (CaO/S) of a content rate of calcium oxide to a content rate of the total sulfur content is 3.0 or more, is used as the fuel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、火力発電所における空気予熱器の差圧抑制方法に関する。   The present invention relates to a method for suppressing differential pressure of an air preheater in a thermal power plant.

石炭を燃料とする火力発電所において、ボイラにて発生する燃焼排ガスは、排煙脱硝装置、空気予熱器、乾式集塵装置、排煙脱硫装置、湿式集塵装置による処理を経て煙突から排出されることが一般的である。   In a thermal power plant that uses coal as fuel, flue gas generated in a boiler is discharged from the chimney through treatment by a flue gas denitrifier, air preheater, dry dust collector, flue gas desulfurizer, and wet dust collector. In general.

ここで、空気予熱器は、ボイラに供給される燃焼用空気と燃焼装置から排出される高温の排ガスとの熱交換によって、燃焼用空気の予熱を行うものであって、回転再生式と称されるものが一般に用いられる。このものは、常温の燃焼用空気が流れる流路と高温の燃焼排ガスが流れる流路とが設けられているハウジング内に、蓄熱式エレメントが回転可能に収納された構成をなしている。そして、高温の燃焼排ガスの熱がエレメントに一旦蓄熱され、この熱がエレメントの回転に伴って燃焼用空気に伝達されることで熱交換が行われる。   Here, the air preheater preheats the combustion air by exchanging heat between the combustion air supplied to the boiler and the high-temperature exhaust gas discharged from the combustion device, and is called a rotary regeneration type. Is generally used. This has a configuration in which a regenerative element is rotatably accommodated in a housing provided with a flow path through which room-temperature combustion air flows and a flow path through which high-temperature combustion exhaust gas flows. The heat of the high-temperature combustion exhaust gas is temporarily stored in the element, and this heat is transferred to the combustion air as the element rotates, so that heat exchange is performed.

特開2000−300944号公報JP 2000-300904 A

このような空気予熱器においては、エレメントへの燃焼灰等の付着により目詰まりが発生し、入口ダクトと出口ダクトとの圧力差が増大することがある。このような差圧上昇はボイラ運転に支障を生じさせるため、改善が求められていた。   In such an air preheater, clogging may occur due to adhesion of combustion ash or the like to the element, and the pressure difference between the inlet duct and the outlet duct may increase. Such an increase in the differential pressure causes a problem in boiler operation, and hence improvement has been demanded.

本発明は上記のような事情に基づいて完成されたものであって、火力発電所における空気予熱器の差圧を簡易かつ効果的に抑制可能な方法を提供することを目的とする。   This invention is completed based on the above situations, Comprising: It aims at providing the method which can suppress the differential pressure | voltage of the air preheater in a thermal power plant simply and effectively.

本発明の空気予熱器の差圧抑制方法は、石炭を含む燃料を燃焼させるボイラと、前記ボイラから排出される燃焼排ガス中から窒素酸化物を除去するための排煙脱硝装置および前記排煙脱硝装置の下段に設けられて前記燃焼排ガスと前記ボイラへ供給される空気とを熱交換させるための空気予熱器を含む排ガス処理設備とを備える火力発電プラントにおいて、前記空気予熱器に前記燃焼排ガスを導入するガス側入口ダクトと前記空気予熱器から前記燃焼排ガスを排出するガス側出口ダクトとの差圧を抑制する方法であって、前記燃料として、全硫黄分の含有率に対する酸化カルシウム含有率の比率(CaO/S)が3.0以上である石炭または石炭混合物を用いるものである。   The method for suppressing a differential pressure of an air preheater according to the present invention includes a boiler for burning a fuel containing coal, a flue gas denitration device for removing nitrogen oxides from a flue gas discharged from the boiler, and the flue gas denitration In a thermal power plant provided at a lower stage of the apparatus and having an exhaust gas treatment facility including an air preheater for exchanging heat between the combustion exhaust gas and air supplied to the boiler, the combustion exhaust gas is supplied to the air preheater. A method for suppressing a differential pressure between a gas-side inlet duct to be introduced and a gas-side outlet duct that discharges the combustion exhaust gas from the air preheater, wherein the fuel has a calcium oxide content ratio relative to a total sulfur content ratio. Coal or a coal mixture having a ratio (CaO / S) of 3.0 or more is used.

本発明によれば、火力発電所における空気予熱器の差圧を簡易かつ効果的に抑制可能である。   ADVANTAGE OF THE INVENTION According to this invention, the differential pressure | voltage of the air preheater in a thermal power plant can be suppressed simply and effectively.

実施形態における火力発電プラントの概略図Schematic diagram of thermal power plant in the embodiment 実施形態における空気予熱器の概略図Schematic of the air preheater in the embodiment 実施例において、試験期間中における1号機の空気予熱器差圧および節炭機出口のNO濃度の推移を表すチャートIn embodiments, chart showing a transition of the NO x concentration of 1 Unit air preheater differential pressure and economizer machine outlet of the test period 実施例において、試験期間中における2号機の空気予熱器差圧および節炭機出口のNO濃度の推移を表すチャートIn embodiments, chart showing a transition of the NO x concentration of the second car air preheater differential pressure and economizer machine outlet of the test period 実施例において、試験期間中における4号機の空気予熱器差圧および節炭機出口のNO濃度の推移を表すチャートIn embodiments, chart showing a transition of the NO x concentration of 4 Units air preheater differential pressure and economizer machine outlet of the test period 実施例において、試験期間中における5号機の空気予熱器差圧および節炭機出口のNO濃度の推移を表すチャートIn embodiments, chart showing a transition of the NO x concentration of 5 Units air preheater differential pressure and economizer machine outlet of the test period 実施例において、スートブロワのオン/オフによる空気予熱器差圧の変動を示すチャートIn an Example, the chart which shows the fluctuation | variation of the air preheater differential pressure by ON / OFF of a soot blower

図1には、本発明を適用可能な火力発電プラントPの概略図を示した。この火力発電プラントPには、石炭を含む燃料を燃焼させるためのボイラ1が備えられている。ボイラ1には、貯炭場から運ばれてきた石炭を供給する石炭バンカ10と、この石炭バンカ10に貯蔵された石炭の供給量を調整しつつ供給する給炭機11と、給炭機11から供給された石炭を微細な粒度に粉砕してボイラ1へ供給する微粉炭器12とが接続されている。   FIG. 1 shows a schematic diagram of a thermal power plant P to which the present invention can be applied. The thermal power plant P is provided with a boiler 1 for burning fuel containing coal. The boiler 1 includes a coal bunker 10 that supplies coal transported from the coal yard, a coal feeder 11 that supplies the coal bunker 10 while adjusting the amount of coal stored in the coal bunker 10, and a coal feeder 11. A pulverized coal unit 12 that pulverizes the supplied coal to a fine particle size and supplies the coal to the boiler 1 is connected.

ボイラ1は、内部で微粉炭を燃焼させる火炉2と、火炉2の側方に配され、上部で火炉2と連結される排ガス流路3とを有している。火炉2の上部および排ガス流路3には、過熱器の配管およびこの過熱器に接続される節炭器の配管が配置されている。そして、詳細には図示しないが、給水器から供給された水は、節炭器および過熱器の配管内部を順次通過する際に加熱され、最終的に蒸気となって図示しないタービンに供給される。   The boiler 1 has a furnace 2 that burns pulverized coal inside, and an exhaust gas passage 3 that is disposed on the side of the furnace 2 and connected to the furnace 2 at the top. In the upper part of the furnace 2 and the exhaust gas flow path 3, a superheater pipe and a economizer pipe connected to the superheater are arranged. Although not shown in detail, the water supplied from the water feeder is heated when sequentially passing through the pipes of the economizer and the superheater, and finally becomes steam and is supplied to a turbine (not shown). .

排ガス流路3の出口は、煙道4と称される筒状の配管によって煙突5に接続されており、この煙道4上には排ガス処理設備20が配されている。排ガス処理設備20は、排煙脱硝装置21、空気予熱器22、乾式集塵装置23、排煙脱硫装置24、湿式集塵装置25が、ボイラ1に近い側からこの順で配置されたものである。ボイラ1から排出された燃焼排ガスは、まず、排煙脱硝装置21に導入されて窒素酸化物が除去される。排煙脱硝装置21から排出された燃焼排ガスは空気予熱器22に導入され、ここでは、ボイラ燃焼用空気を予熱する代わりに燃焼排ガスを低温化する。空気予熱器22を通過した燃焼排ガスは乾式集塵装置23に導入されて煤塵が除去され、排煙脱硫装置24によって硫黄酸化物が取り除かれ、湿式集塵装置25により煤塵が除去された後、煙突5から排出される。   An outlet of the exhaust gas passage 3 is connected to the chimney 5 by a cylindrical pipe called a flue 4, and an exhaust gas treatment facility 20 is disposed on the flue 4. The exhaust gas treatment facility 20 includes a flue gas denitration device 21, an air preheater 22, a dry dust collector 23, a flue gas desulfurization device 24, and a wet dust collector 25 arranged in this order from the side close to the boiler 1. is there. The combustion exhaust gas discharged from the boiler 1 is first introduced into the flue gas denitration device 21 to remove nitrogen oxides. The combustion exhaust gas discharged from the flue gas denitration device 21 is introduced into the air preheater 22, where the combustion exhaust gas is cooled instead of preheating the boiler combustion air. The combustion exhaust gas that has passed through the air preheater 22 is introduced into a dry dust collector 23 to remove soot and dust, sulfur oxide is removed by the flue gas desulfurizer 24, and soot dust is removed by the wet dust collector 25, It is discharged from the chimney 5.

空気予熱器22は、回転再生式と称されるものであって、内部にエレメント35を収容するハウジング30を備えている。ハウジング30の上面には、ガス側入口ダクト31および空気側出口ダクト32が接続され、一方、ハウジング30の下面においてガス側入口ダクト31の下方位置にはガス側出口ダクト33、空気側出口ダクト32の下方位置には空気側入口ダクト34がそれぞれ接続されている。空気側入口ダクト34には押込送風機36が接続され、空気側出口ダクト32は火炉2に接続されている。またガス側入口ダクト31およびガス側出口ダクト33は、それぞれ煙道4において排煙脱硝装置21の出口の下流側、および乾式集塵装置23の入口の上流側に接続されている。ハウジング30内に収容されるエレメント35は、ハウジング30に取り付けられている各ダクト31、32、33、34の軸方向に沿う方向(図2の上下方向;言い換えれば燃焼排ガスおよび燃焼用空気の流路方向に沿う方向)を軸方向として回転可能とされている。   The air preheater 22 is called a rotary regeneration type, and includes a housing 30 that houses an element 35 therein. A gas-side inlet duct 31 and an air-side outlet duct 32 are connected to the upper surface of the housing 30, while a gas-side outlet duct 33 and an air-side outlet duct 32 are positioned below the gas-side inlet duct 31 on the lower surface of the housing 30. Are respectively connected to air side inlet ducts 34. A pusher blower 36 is connected to the air side inlet duct 34, and the air side outlet duct 32 is connected to the furnace 2. Further, the gas side inlet duct 31 and the gas side outlet duct 33 are connected to the downstream side of the outlet of the flue gas denitration device 21 and the upstream side of the inlet of the dry dust collector 23 in the flue 4, respectively. The element 35 accommodated in the housing 30 is a direction along the axial direction of the ducts 31, 32, 33, 34 attached to the housing 30 (the vertical direction in FIG. 2; in other words, the flow of combustion exhaust gas and combustion air The direction along the road direction) can be rotated as an axial direction.

排煙脱硝装置21から排出された燃焼排ガスは、ガス側入口ダクト31からハウジング30内に導入され、ガス側出口ダクト32から排出されて乾式集塵装置23へ送られる。一方、押込送風機36により送り込まれた燃焼用空気は空気側入口ダクト34からハウジング30内に導入され、空気側出口ダクト32にて火炉2に送られる。この際、ハウジング30内の高温の燃焼排ガスがエレメント35に接触することでエレメント35に熱が一旦蓄熱される。そして、エレメント35の回転に伴ってこのエレメント35における熱を蓄積した部分が燃焼用空気の流路内に入り、燃焼用空気に接触することで、熱が燃焼用空気に伝達される。   The combustion exhaust gas discharged from the flue gas denitration device 21 is introduced into the housing 30 from the gas side inlet duct 31, discharged from the gas side outlet duct 32, and sent to the dry dust collector 23. On the other hand, the combustion air sent by the forced air blower 36 is introduced into the housing 30 from the air side inlet duct 34 and sent to the furnace 2 through the air side outlet duct 32. At this time, the high-temperature combustion exhaust gas in the housing 30 comes into contact with the element 35, whereby heat is temporarily stored in the element 35. And the part which accumulated the heat in this element 35 enters in the flow path of combustion air with rotation of element 35, and heat is transmitted to combustion air by contacting with combustion air.

排煙脱硝装置21による脱硝は接触アンモニア還元法によって行われる。すなわち、燃焼排ガスの流路中に還元剤としてのアンモニアを注入して燃焼排ガスと混合し、この混合ガスを排煙脱硝装置21内で触媒と接触させることにより、排ガス中のNOをNとHOに還元している。このような方法を採用する場合、脱硝反応に使用されなかった未反応アンモニアが燃焼排ガス中に多量に残留すると、まず燃焼排ガス中のSOと水とが反応して硫酸を生成し、この硫酸とアンモニアとが反応して硫酸水素アンモニウムを生成する。硫酸水素アンモニウムは150℃〜230℃で粘着性流体となる性質を持つため、空気予熱器22のエレメント35(特に中温層エレメント)に付着し、詰まりを生じさせる。この詰まりにより、ガス側入口ダクト31とガス側出口ダクト33との圧力差(差圧)が上昇するものと考えられる。 Denitration by the flue gas denitration device 21 is performed by a catalytic ammonia reduction method. That is, ammonia as a reducing agent is injected into the flue gas flow path and mixed with the flue gas, and this mixed gas is brought into contact with the catalyst in the flue gas denitration device 21, thereby reducing NO x in the flue gas to N 2. And H 2 O. When such a method is employed, if a large amount of unreacted ammonia that has not been used in the denitration reaction remains in the combustion exhaust gas, SO 3 in the combustion exhaust gas first reacts with water to produce sulfuric acid. And ammonia react to produce ammonium hydrogen sulfate. Since ammonium hydrogen sulfate has the property of becoming an adhesive fluid at 150 ° C. to 230 ° C., it adheres to the element 35 (especially the middle temperature layer element) of the air preheater 22 and causes clogging. This clogging is considered to increase the pressure difference (differential pressure) between the gas side inlet duct 31 and the gas side outlet duct 33.

そこで、本発明では、燃料である石炭中に、全硫黄分に対して一定量以上のCaOが含まれるようにした。このようにすれば、燃焼排ガス中において、硫黄分(特に硫酸水素アンモニウムの発生源となるSO)の量に対して一定量以上のCaOが含まれることとなる。すると、まず燃焼排ガス中のSOと水とが反応して硫酸を生成し、この硫酸とCaOと水蒸気とが反応して二水石膏(CaSO・2HO)を生成する。この二水石膏は結晶性粉体(さらさらした粉体)であるため空気予熱器22のエレメント35への付着が起こりにくい。また、仮に付着が生じたとしても、スートブロワ等による除灰が硫酸水素アンモニウム付着の場合と比べて極めて容易である。さらに、この反応により燃焼排ガス中のSOが消費されるから、硫酸水素アンモニウムの生成が抑制される。これにより、差圧上昇を抑制することができる。 Therefore, in the present invention, coal, which is a fuel, contains a certain amount or more of CaO with respect to the total sulfur content. In this way, the combustion exhaust gas contains a certain amount or more of CaO with respect to the amount of sulfur content (especially SO 3 that is a source of ammonium hydrogen sulfate). Then, SO 3 in the combustion exhaust gas reacts with water to produce sulfuric acid, and this sulfuric acid, CaO, and water vapor react to produce dihydrate gypsum (CaSO 4 .2H 2 O). Since this dihydrate gypsum is a crystalline powder (free flowing powder), adhesion to the element 35 of the air preheater 22 hardly occurs. Even if adhesion occurs, ash removal by a soot blower or the like is extremely easy as compared to the case of ammonium hydrogen sulfate adhesion. Furthermore, since SO 3 in the combustion exhaust gas is consumed by this reaction, the production of ammonium hydrogen sulfate is suppressed. Thereby, an increase in differential pressure can be suppressed.

なお、「石炭または石炭混合物」とは、単一の銘柄の石炭であってもよく、CaO含有量の高い石炭を他の銘柄の石炭と混合してCaO/Sが3.0以上となるように調整したものであってもよく、石炭(単一の銘柄の石炭でも、2種以上の銘柄の石炭混合物であってもよい)にCaOを添加してCaO/Sが3.0以上となるように調整したものであってもよい、との意である。
特に、CaO含有量の高い石炭として、豪州産のニューランズ炭を使用することができる。
また、石炭にCaOを添加してCaO/Sが3.0以上となるように調整する場合、CaOの添加のためのCaO供給路を給炭機11または微粉炭器12に接続すればよい。
The “coal or coal mixture” may be a single brand of coal, and coal of high CaO content is mixed with other brands of coal so that the CaO / S becomes 3.0 or more. It is possible to adjust to CaO / S by adding CaO to coal (which may be a single brand of coal or a mixture of two or more brands of coal). It may mean that it may be adjusted as described above.
In particular, Australian Newlands coal can be used as coal with a high CaO content.
Moreover, what is necessary is just to connect the CaO supply path for addition of CaO to the coal feeder 11 or the pulverizer 12 when adding CaO to coal and adjusting so that CaO / S may be 3.0 or more.

[空気予熱器差圧と石炭性状の相関分析]
中部電力碧南火力発電所において、空気予熱器差圧と石炭性状の相関を分析した。試験期間は、1号機においては平成19年6月29日〜12月31日、2号機においては平成19年8月16日〜12月27日、4号機においては平成19年5月13日〜9月9日、5号機においては平成19年6月24日〜12月23日とした。
[Correlation analysis of air preheater differential pressure and coal properties]
At Chubu Electric Power Shonan Thermal Power Station, the correlation between air preheater differential pressure and coal properties was analyzed. The test period is from June 29 to December 31, 2007 for Unit 1, August 16 to December 27, 2007 for Unit 2, and May 13, 2007 for Unit 4. On September 9th, it was set as June 24 to December 23, 2007 for Unit 5.

一定期間ごとにボイラに投入される石炭のサンプルを採取し、全硫黄の含有率を元素分析法、CaOの含有率を原子吸光法にて測定した。また、空気予熱器のガス側入口ダクトとガス側出口ダクトに電子式差圧計を設置し、差圧を測定した。
併せて、節炭機出口から排ガスサンプルを採取し、NO分析計(赤外線吸収法)にてNO濃度を計測した。
Samples of coal that were put into the boiler at regular intervals were collected, and the total sulfur content was measured by elemental analysis, and the CaO content was measured by atomic absorption. In addition, an electronic differential pressure gauge was installed in the gas side inlet duct and the gas side outlet duct of the air preheater to measure the differential pressure.
In addition, an exhaust gas sample was collected from the outlet of the economizer and the NO x concentration was measured with a NO x analyzer (infrared absorption method).

図3には、1号機において空気予熱器差圧、および節炭機出口のNO濃度の推移を表すチャートを示した。なお、空気予熱器および節炭機はそれぞれ2系統(系統A、系統B)存在するため、各系統について示した。また、表1〜3には、1号機における試料採取日、使用した石炭の銘柄、空気予熱器(AH)差圧(単位:mmAq)、燃料中のCaO/S、CaO(単位:質量%)、全硫黄S(単位:質量%)、節炭機出口のNO濃度(単位:ppm)をそれぞれ示した。 FIG. 3 shows a chart showing the transition of the air preheater differential pressure and the NO x concentration at the outlet of the economizer in Unit 1. Since there are two air preheaters and economizers (system A and system B), each system is shown. Tables 1 to 3 also show the date of sampling in Unit 1, the brand of coal used, the air preheater (AH) differential pressure (unit: mmAq), CaO / S in fuel, and CaO (unit: mass%). , Total sulfur S (unit: mass%) and NO x concentration (unit: ppm) at the outlet of the economizer were shown.

なお、図1における空気予熱器差圧の推移より、差圧低下が観察された期間および差圧上昇が観察された期間をそれぞれ期間A、期間Cとして区分し、図および表中にB1、B2...およびC1、C2...のように示した。また、特にCaO含有率の高いニューランズ炭を単独または他の銘柄の石炭と混合して使用し、大きな差圧低下が観察された期間を期間Aと区分し、図および表中にA1、A2...のように示した。   From the transition of the air preheater differential pressure in FIG. 1, the period in which the differential pressure drop is observed and the period in which the differential pressure rise is observed are divided into period A and period C, respectively. ... and C1, C2 .... In addition, Newlands coal with a particularly high CaO content is used alone or mixed with other brands of coal, and the period in which a large drop in differential pressure is observed is divided from period A. A1 and A2 are shown in the figures and tables. Shown like ...

図4には、2号機における空気予熱器差圧、および節炭機出口のNOx濃度の推移を表すチャートを示した。また、表4〜6には、2号機における試料採取日、使用した石炭の銘柄、空気予熱器差圧、燃料中のCaO/S、CaO、全硫黄S、節炭機出口のNO濃度をそれぞれ示した。また、図5には、4号機における空気予熱器差圧、および節炭機出口のNO濃度の推移を表すチャートを示した。また、表7〜9には、4号機における使用した石炭の銘柄、空気予熱器差圧、燃料中のCaO/S、CaO、全硫黄S、節炭機出口のNO濃度をそれぞれ示した。さらに、図6には、5号機における空気予熱器差圧、および節炭機出口のNO濃度の推移を表すチャートを示した。また、表10〜12には、5号機における、試料採取日、使用した石炭の銘柄、空気予熱器差圧、燃料中のCaO/S、CaO、全硫黄S、節炭機出口のNO濃度をそれぞれ示した。図4〜6および表4〜12における記載要領は、図3および表1〜3と同様である。但し、図4、図5および表7〜12において、空気予熱器差圧は単位kPaで記載した。 FIG. 4 shows a chart showing changes in the air preheater differential pressure in Unit 2 and the NOx concentration at the outlet of the economizer. Also, Table 4-6, sample days in Unit 2, brand of coal used, air preheater differential pressure, CaO / S in the fuel, CaO, total sulfur S, the concentration of NO x economizer machine outlet Shown respectively. FIG. 5 shows a chart showing the transition of the air preheater differential pressure in Unit 4 and the NO x concentration at the outlet of the economizer. Also, Table 7-9, shows coal used in Unit 4 brands, air preheater differential pressure, CaO / S in the fuel, CaO, total sulfur S, the concentration of NO x economiser machine outlet, respectively. Further, FIG. 6 shows a chart showing the transition of the air preheater differential pressure in Unit 5 and the NO x concentration at the outlet of the economizer. Further, Table 10-12, in Unit 5, sample days, stocks of coal used, air preheater differential pressure, in the fuel CaO / S, CaO, total sulfur S, NO x concentration economizer machine outlet Respectively. The description points in FIGS. 4 to 6 and Tables 4 to 12 are the same as those in FIGS. However, in FIG. 4, FIG. 5 and Tables 7-12, the air preheater differential pressure was described in unit kPa.

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

Figure 2011112243
Figure 2011112243

図3〜6よび表1〜12より、差圧低下した期間A、期間Bと差圧上昇した期間Cとを比較すると、期間Aおよび期間Bでは使用した燃料のCaO/Sが大きく、期間Cでは小さい傾向にあった。概ね、CaO/Sが3以上であれば差圧低下が期待でき、4.5以上であればより確実であると考えられる。さらに、CaOが2以上、Sが0.5以下であることが好ましいと考えられる。   3 to 6 and Tables 1 to 12, when comparing the period A and the period B in which the differential pressure has decreased and the period C in which the differential pressure has increased, the CaO / S of the fuel used in the period A and the period B is large. It was a small trend. Generally, if CaO / S is 3 or more, a decrease in differential pressure can be expected, and if it is 4.5 or more, it is considered to be more reliable. Furthermore, it is considered preferable that CaO is 2 or more and S is 0.5 or less.

また、図7には、平成19年11月7日の2号機におけるスートブロワのオン/オフによる空気予熱器差圧の変動を示すチャートを示した。このチャートからは、スートブロワがオンのときに空気予熱器の差圧が低下し、停止時は横ばいか若干上昇するのみであって、全体として差圧が徐々に低下する傾向にあることが分かる。当日は期間A2に属しており、CaO/Sの高いニューランズ炭を使用していることから、結晶性粉体である石膏が多く生成され、硫酸水素アンモニウムの生成が抑制されているものと考えられる。このことから、スートブロワの運転により容易に除灰が行われて差圧が低下し、スートブロワ停止中においても燃焼灰の付着があまり多くないため差圧があまり上昇しないことが示されている、といえる。   FIG. 7 shows a chart showing fluctuations in the air preheater differential pressure due to ON / OFF of the soot blower in Unit 2 on November 7, 2007. From this chart, it can be seen that the differential pressure of the air preheater decreases when the soot blower is on, and is flat or slightly increased when the soot blower is stopped, and the overall differential pressure tends to gradually decrease. The day belongs to period A2, and because Newlands charcoal with a high CaO / S is used, a large amount of gypsum, which is a crystalline powder, is produced, and the production of ammonium hydrogen sulfate is suppressed. It is done. From this, it is shown that the ash is easily removed by the operation of the soot blower and the differential pressure is lowered, and even when the soot blower is stopped, the adhesion of combustion ash is not so much, so the differential pressure does not rise so much. I can say that.

なお、排煙脱硝装置における脱硝効率の低下が、排ガス中への未反応アンモニア濃度を増大させ、硫酸水素アンモニウム生成量増大の一因となる。   Note that a decrease in the denitration efficiency in the flue gas denitration apparatus increases the concentration of unreacted ammonia in the exhaust gas, which contributes to an increase in the amount of ammonium hydrogen sulfate produced.

脱硝触媒が劣化すると、硫酸水素アンモニウムの発生原因となる未反応アンモニアが排ガス中に多量に残留することとなるので、空気予熱器の差圧上昇が起こりやすいと考えられる。よって、脱硝装置のメンテナンス(脱硝触媒の取替)を行うといった対策を併用すると、より効果的である。   When the denitration catalyst is deteriorated, a large amount of unreacted ammonia that causes ammonium hydrogen sulfate to be generated remains in the exhaust gas. Therefore, it is considered that the differential pressure of the air preheater is likely to increase. Therefore, it is more effective to use measures such as maintenance of the denitration device (replacement of the denitration catalyst) together.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施例では、CaO含有量の高いニューランズ炭を単独で用いた場合、およびニューランズ炭を他の銘柄の石炭と混合してCaO/Sが3.0以上となるように調整したものを燃料として用いた場合に、差圧低下降下が確認された例について示したが、CaO含有量の低い石炭にCaOを添加してCaO/Sが3.0以上となるように調整した燃料を使用しても同様の効果が得られる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above example, when Newlands coal with a high CaO content is used alone, and when Newlands coal is mixed with other brands of coal, the CaO / S is adjusted to 3.0 or more. In the case of using this as a fuel, an example in which a drop in pressure difference was confirmed was shown, but CaO was added to coal with a low CaO content so that CaO / S was adjusted to 3.0 or more. The same effect can be obtained even if fuel is used.

1...ボイラ
20...排ガス処理設備
21...排煙脱硝装置
22...空気予熱器
31...ガス側入口ダクト
33...ガス側出口ダクト
P...火力発電プラント
DESCRIPTION OF SYMBOLS 1 ... Boiler 20 ... Exhaust gas treatment equipment 21 ... Flue gas denitration device 22 ... Air preheater 31 ... Gas side inlet duct 33 ... Gas side outlet duct P ... Thermal power plant

Claims (4)

石炭を含む燃料を燃焼させるボイラと、前記ボイラから排出される燃焼排ガス中から窒素酸化物を除去するための排煙脱硝装置および前記排煙脱硝装置の下段に設けられて前記燃焼排ガスと前記ボイラへ供給される空気とを熱交換させるための空気予熱器を含む排ガス処理設備とを備える火力発電プラントにおいて、前記空気予熱器に前記燃焼排ガスを導入するガス側入口ダクトと前記空気予熱器から前記燃焼排ガスを排出するガス側出口ダクトとの差圧を抑制する方法であって、
前記燃料として、全硫黄分の含有率に対する酸化カルシウム含有率の比率(CaO/S)が3.0以上である石炭または石炭混合物を用いる、空気予熱器の差圧抑制方法。
A boiler for burning fuel containing coal, a flue gas denitration device for removing nitrogen oxides from flue gas discharged from the boiler, and the flue gas and boiler provided in a lower stage of the flue gas denitration device In a thermal power plant comprising an exhaust gas treatment facility including an air preheater for exchanging heat with air supplied to the air preheater, a gas side inlet duct for introducing the combustion exhaust gas into the air preheater and the air preheater A method for suppressing a differential pressure with a gas side outlet duct for discharging combustion exhaust gas,
A method for suppressing a differential pressure of an air preheater using coal or a coal mixture having a ratio of calcium oxide content to total sulfur content (CaO / S) of 3.0 or more as the fuel.
前記燃料としてニューランズ炭を用いる、請求項1に記載の空気予熱器の差圧抑制方法。   The method for suppressing a differential pressure of an air preheater according to claim 1, wherein Newlands coal is used as the fuel. 前記燃料として、CaO/Sが3.0以上となるように前記ニューランズ炭を他の銘柄の前記石炭と混合したものを用いる、請求項1に記載の空気予熱器の差圧抑制方法。   The method for suppressing differential pressure of an air preheater according to claim 1, wherein the fuel is a mixture of the Newlands coal with another brand of coal so that CaO / S is 3.0 or more. 前記燃料として、CaO/Sが3.0以上となるように前記石炭にCaOを添加したものを用いる、請求項1に記載の空気予熱器の差圧抑制方法。   The method for suppressing a differential pressure of an air preheater according to claim 1, wherein the fuel is one in which CaO is added to the coal so that CaO / S is 3.0 or more.
JP2009267199A 2009-11-25 2009-11-25 Method of suppressing differential pressure for air preheater Pending JP2011112243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267199A JP2011112243A (en) 2009-11-25 2009-11-25 Method of suppressing differential pressure for air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267199A JP2011112243A (en) 2009-11-25 2009-11-25 Method of suppressing differential pressure for air preheater

Publications (1)

Publication Number Publication Date
JP2011112243A true JP2011112243A (en) 2011-06-09

Family

ID=44234720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267199A Pending JP2011112243A (en) 2009-11-25 2009-11-25 Method of suppressing differential pressure for air preheater

Country Status (1)

Country Link
JP (1) JP2011112243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456600A (en) * 2014-12-16 2015-03-25 抚顺天赐石灰石开发有限公司 Lime rotary kiln pulverized coal preparing and conveying device
CN106731832A (en) * 2017-01-09 2017-05-31 青岛双瑞海洋环境工程股份有限公司 Marine exhaust denitrating system
JP2019027763A (en) * 2017-08-03 2019-02-21 一般財団法人電力中央研究所 Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623828U (en) * 1979-08-02 1981-03-04
JPS56124429A (en) * 1980-03-07 1981-09-30 Mitsubishi Heavy Ind Ltd Desulfurization in furnace
JP2000300944A (en) * 1999-04-16 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Boiler facility
JP2008039341A (en) * 2006-08-09 2008-02-21 Central Res Inst Of Electric Power Ind Coal combustion method and coal combustion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623828U (en) * 1979-08-02 1981-03-04
JPS56124429A (en) * 1980-03-07 1981-09-30 Mitsubishi Heavy Ind Ltd Desulfurization in furnace
JP2000300944A (en) * 1999-04-16 2000-10-31 Ishikawajima Harima Heavy Ind Co Ltd Boiler facility
JP2008039341A (en) * 2006-08-09 2008-02-21 Central Res Inst Of Electric Power Ind Coal combustion method and coal combustion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456600A (en) * 2014-12-16 2015-03-25 抚顺天赐石灰石开发有限公司 Lime rotary kiln pulverized coal preparing and conveying device
CN106731832A (en) * 2017-01-09 2017-05-31 青岛双瑞海洋环境工程股份有限公司 Marine exhaust denitrating system
JP2019027763A (en) * 2017-08-03 2019-02-21 一般財団法人電力中央研究所 Boiler equipment, power generation equipment, air preheating equipment and differential pressure prediction method of air preheater
JP2021185339A (en) * 2017-08-03 2021-12-09 一般財団法人電力中央研究所 Boiler plant and power generating unit
JP7095949B2 (en) 2017-08-03 2022-07-05 一般財団法人電力中央研究所 Boiler equipment, power generation equipment

Similar Documents

Publication Publication Date Title
AU2010324040B2 (en) Exhaust gas treatment device for an oxygen combustion system
JP7207810B2 (en) Method and system for improving boiler efficiency
JP5863885B2 (en) Boiler system and power plant including the same
CN102047040B (en) Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
CN102084184B (en) Method of controlling combustion in oxygen combustion boiler and apparatus therefor
TW201231147A (en) Exhaust gas treatment method and apparatus
CN103604116A (en) Device and method for reducing oxynitrides smoke product of circulating fluidized bed boiler
CN104801161A (en) Glass melting furnace flue gas desulfurization and denitrification process taking petroleum coke as main fuel and equipment of glass melting furnace flue gas desulfurization and denitrification process
CN106765246B (en) A kind of online method and device for removing refinery&#39;s FCC apparatus waste heat boiler fouling
Pronobis Environmentally oriented modernization of power boilers
CN203595119U (en) Device capable of reducing nitric oxides in flue gas product of circulating fluidized bed boiler
CN112403154A (en) Flue gas multi-pollutant cooperative purification process and device
CN106123613B (en) A kind of glass furnace cigarette advanced purification process
JP2014128775A (en) Exhaust gas treatment equipment and gas turbine power generation system using the same
JP2011112243A (en) Method of suppressing differential pressure for air preheater
CN204380479U (en) A kind of system of coke oven flue exhuast gas desulfurization denitration
CN113731113A (en) System for reducing blockage of ammonium bisulfate of air preheater of coal-fired power plant
CN105935544B (en) A kind of efficient stable glass furnace cigarette advanced purification process
TWI754316B (en) Exhaust gas treatment device and exhaust gas treatment method
CN104197319B (en) A kind of coal combustion method of low emission and device
CN208066118U (en) A kind of coke oven flue gas desulphurization denitration dedusting comprehensive treatment device
CN106338061B (en) A method of preparing low oxygen content gas
WO2017022520A1 (en) Method for inhibiting degradation of denitration device
RU2796494C1 (en) Method and installation for joint flue gas cleaning with several pollutants
WO2019130578A1 (en) Method for evaluating degradation of denitration catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131212