JP2011111773A - Building and earthquake-resistant element selecting method - Google Patents

Building and earthquake-resistant element selecting method Download PDF

Info

Publication number
JP2011111773A
JP2011111773A JP2009267948A JP2009267948A JP2011111773A JP 2011111773 A JP2011111773 A JP 2011111773A JP 2009267948 A JP2009267948 A JP 2009267948A JP 2009267948 A JP2009267948 A JP 2009267948A JP 2011111773 A JP2011111773 A JP 2011111773A
Authority
JP
Japan
Prior art keywords
building
earthquake
seismic
diagnosis
seismic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267948A
Other languages
Japanese (ja)
Other versions
JP5705431B2 (en
Inventor
Masaru Hori
勝 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Housing Corp
Original Assignee
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Housing Corp filed Critical Toyota Housing Corp
Priority to JP2009267948A priority Critical patent/JP5705431B2/en
Publication of JP2011111773A publication Critical patent/JP2011111773A/en
Application granted granted Critical
Publication of JP5705431B2 publication Critical patent/JP5705431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building, facilitating earthquake-resistance diagnosis, and provide an earthquake-resistant element selecting method for selecting an earthquake-resistant element for conducting earthquake-resistance diagnosis to facilitate earthquake-resistance diagnosis. <P>SOLUTION: A plurality of bearing walls 12 are provided in the building 10, computer simulation is previously performed to anticipate the first bearing wall 12 to collapse due to an earthquake, the bearing wall is specified as a reference bearing element, and a strain gauge is stuck to a yield hinge 22 in the specified bearing wall 12. The strain gauge is connected to a diagnostic device 24, and the diagnostic device 24 diagnoses by measuring strain of the yield hinge 22 by the strain gauge. The diagnostic device 24 can determine whether or not the yield hinge 22 causes plastic deformation from the measurement on strain after an earthquake, and simply perform earthquake resistance diagnostic for the building 10 only by measuring strain at one portion. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建物、及び耐震要素選択方法に係り、特に、自身に設けられている耐震要素を診断可能な建物、及び建物において耐震診断を行う耐震要素を選択するための耐震要素選択方法に関する。   The present invention relates to a building and a seismic element selection method, and more particularly to a building capable of diagnosing a seismic element provided in itself and a seismic element selection method for selecting a seismic element for performing seismic diagnosis in the building.

特許文献1には、建造物の柱や壁などの所定構造要素に、構造要素に生じる変形の程度を検出して記録できる検出手段を取り付けておき、この検出手段にて地震の際に構造要素に実際に生ずる変形の程度を記録し、これにより得られる実変形データと地震の規模についてのデータとから所定の計算基準で建造物の耐震性を診断することが提案されている。   In Patent Document 1, detection means capable of detecting and recording the degree of deformation occurring in a structural element is attached to a predetermined structural element such as a pillar or wall of a building. It is proposed to record the degree of deformation that actually occurs and to diagnose the seismic resistance of the building on the basis of a predetermined calculation standard from the actual deformation data obtained thereby and the data on the magnitude of the earthquake.

特許第3388020号Japanese Patent No. 3388020

地震を受けた際の建物は、どの部分が壊れるか限定できないため、大地震後等、個々の耐震要素自体の安全性について、全ての壁などを破壊して検査をしながらの耐震診断が必要となり、作業が非常に煩雑となる。   Since it is not possible to limit which part of the building will be damaged when an earthquake occurs, seismic diagnosis is required while destroying all the walls and inspecting the safety of each seismic element itself after a major earthquake, etc. Therefore, the work becomes very complicated.

さらに、特許文献1に記載の技術では、以下の問題がある。
(1) 実際の地震の際に、地震の規模と、構造要素の変形の程度(実変形データ)とから建物の耐震性能を診断する仕組みであり、建物に設けられた耐震要素自体の安全性を判断するものでは無い。
Furthermore, the technique described in Patent Document 1 has the following problems.
(1) In the event of an actual earthquake, this is a mechanism for diagnosing the seismic performance of a building from the magnitude of the earthquake and the degree of deformation of the structural element (actual deformation data), and the safety of the seismic element provided in the building itself It is not something to judge.

(2) 変形データ等を集中管理期間にオンラインネットで送り、気象庁などから送られてくる地震の規模についてのデータと合わせて所定の計算基準で処理することで耐震性診断を行っており、繰り返し起こる地震(余震等)に対して、リアルタイムで建物の耐震性能を判断することができず、また、地震の規模についてのデータが気象庁などから送られて来ないと建物の耐震性を診断することが出来ない。 (2) Seismic diagnosis is performed by sending deformation data, etc. via an online network during the centralized management period, and processing it according to the prescribed calculation standard together with data on the magnitude of earthquakes sent from the Japan Meteorological Agency, etc. The earthquake resistance of a building cannot be judged in real time for earthquakes (such as aftershocks) that occur, and the earthquake resistance of a building is diagnosed unless data on the magnitude of the earthquake is sent from the Japan Meteorological Agency I can not.

(3) 地震の最中に収集した実変形データに基づき耐震性診断を行うものであり、地震後における耐震要素の劣化の影響を評価することが出来ない。即ち、耐震要素の劣化の程度が全く分からないため、建物が次の地震に耐えられるか否か、改修が必要か否か等を判断することができない。 (3) The earthquake resistance diagnosis is performed based on the actual deformation data collected during the earthquake, and the effects of deterioration of the earthquake resistant elements after the earthquake cannot be evaluated. That is, since the degree of deterioration of the seismic element is not known at all, it cannot be determined whether the building can withstand the next earthquake, whether renovation is necessary, or the like.

本発明は上記事実を考慮し、耐震診断を容易に行うことができる建物、及び耐震診断を容易にするために、耐震診断を行う耐震要素を選択するための耐震要素選択方法の提供を目的とする。   In view of the above facts, the present invention aims to provide a building capable of easily performing seismic diagnosis, and a seismic element selecting method for selecting seismic elements for performing seismic diagnosis in order to facilitate seismic diagnosis. To do.

請求項1に記載の発明は、複数の耐震要素の内の少なくとも1つが診断の基準となる基準耐震要素とされ、基準となった前記基準耐震要素に前記基準耐震要素の状態を診断可能な診断手段が設けられている。   According to the first aspect of the present invention, at least one of a plurality of seismic elements is a reference seismic element serving as a reference for diagnosis, and a diagnosis capable of diagnosing the state of the reference seismic element in the reference seismic element serving as a reference. Means are provided.

次に、請求項1に記載の建物の作用を説明する。
請求項1に記載の建物では、診断の基準となる基準耐震要素に診断手段が設けられているため、診断の基準となる基準耐震要素の状態を任意に診断することができる。したがって、診断装置によって地震後の基準耐震要素が診断されることで、地震による基準耐震要素の損傷状態や劣化具合等が把握できる。なお、診断装置により、地震前の通常の状態においても基準耐震要素の診断は行われる。
Next, the operation of the building according to claim 1 will be described.
In the building according to the first aspect, since the diagnostic means is provided in the reference seismic element serving as a reference for diagnosis, the state of the reference seismic element serving as a reference for diagnosis can be arbitrarily diagnosed. Therefore, by diagnosing the reference seismic element after the earthquake with the diagnostic device, it is possible to grasp the damage state, the deterioration state, etc. of the reference seismic element due to the earthquake. In addition, the reference earthquake-resistant element is diagnosed by the diagnostic device even in a normal state before the earthquake.

例えば、地震を受けることで最初に崩壊する耐震要素(または、地震を受けることで耐震性能が最も低下する耐震要素等であっても良い。)を予めコンピュータシミュレーションで予測し、最初に崩壊する耐震要素を基準となる基準耐震要素として選択しておけば、診断は、最初に崩壊する基準耐震要素のみとなり、壁紙等の表面材を剥がして、建物の全ての耐震要素を診断する場合に比較して診断箇所を大幅に減らすことができ、診断作業は大幅に簡略化できる。診断するのは、最初に崩壊する基準耐震要素であるため、診断の結果、問題が無ければ、その他の耐震要素は、診断せずとも全て問題ないと判断できるので、建物の耐震診断が容易に行える。   For example, a seismic element that collapses first by receiving an earthquake (or an earthquake-resistant element whose seismic performance decreases most by receiving an earthquake, etc.) may be predicted in advance by computer simulation, and the first seismic element that collapses first. If an element is selected as a reference seismic element as a reference, the diagnosis will be limited to the first seismic element that collapses first, compared with the case where all the seismic elements of a building are diagnosed by removing the surface material such as wallpaper. Therefore, the number of diagnosis points can be greatly reduced, and the diagnosis work can be greatly simplified. Diagnosis is based on the reference seismic element that collapses first, so if there are no problems as a result of the diagnosis, it can be determined that all other seismic elements are satisfactory without diagnosis. Yes.

なお、基準耐震要素は、コンピュータシミュレーションで予測して決定するものに限らず、例えば、耐震要素の剛性を低下させる脆弱部(耐震要素の中で、地震による外力が入力した際に、最初に崩壊する剛性の低い部分)を予め設定した耐震要素を基準耐震要素とすることもできる。   The reference seismic elements are not limited to those predicted and determined by computer simulation. For example, a weak part that reduces the rigidity of the seismic elements (when an external force due to an earthquake is input, the first collapses) It is also possible to use a seismic element in which a portion having a low rigidity is set in advance as a reference seismic element.

また、基準耐震要素は、建物の中で最初に崩壊する耐震要素が好ましいが、必ずしも建物の中で最初に崩壊する耐震要素で無くても良く、2番目以降に崩壊する耐震要素であっても良い。例えば、2番目に崩壊する耐震要素を基準耐震要素としても、診断精度が若干低下することも考えられるが、建物の耐震診断は十分可能である。
また、基準耐震要素は、建物に1個設ければ良いが、2個以上設けても良い。
The reference seismic element is preferably the first seismic element that collapses in the building. However, it is not necessarily the first seismic element that collapses in the building. good. For example, even if the seismic element that collapses second is used as the reference seismic element, the diagnostic accuracy may be slightly reduced, but the seismic diagnosis of the building is sufficiently possible.
Further, one reference seismic element may be provided in the building, but two or more reference earthquake resistant elements may be provided.

請求項2に記載の発明は、請求項1に記載の建物において、2階建て以上に構成され、前記基準耐震要素が少なくとも何れかの階に設けられている。   Invention of Claim 2 is comprised in 2 stories or more in the building of Claim 1, and the said reference seismic element is provided in at least one of the floors.

次に、請求項2に記載の建物の作用を説明する。
例えば、2階建以上に構成された建物では、地震時に、上階よりも1階の方が大きな力を受ける。このため、地震を受けた後では、1階の耐震要素の方が上階の耐震要素よりも耐震性能が低くなる傾向にある。
Next, the operation of the building according to claim 2 will be described.
For example, in a building composed of two or more floors, the first floor receives a greater force than the upper floor during an earthquake. For this reason, after an earthquake, the seismic elements on the first floor tend to have lower seismic performance than the seismic elements on the upper floor.

このような1階の耐震要素の方が上階の耐震要素よりも耐震性能が低くなる傾向の建物の場合には、診断装置の設けられた基準耐震要素を1階に設けることが、耐震性能の診断をする上で好ましい形態となる。
なお、診断装置の設けられた基準耐震要素は、1階に限らず、他の階に設ける場合もある。例えば、設計上の崩壊予定部位(耐震性能が最も低くなる階)が、2階に設定された建物の場合には、2階に基準耐震要素設ける。即ち、耐震性能が低くなる階に基準耐震要素を設けることが好ましい。
In the case of buildings where the seismic elements on the first floor tend to have lower seismic performance than the seismic elements on the upper floor, it is possible to install a standard seismic element with a diagnostic device on the first floor. This is a preferable form for the diagnosis.
Note that the reference seismic element provided with the diagnostic device is not limited to the first floor but may be provided on another floor. For example, in the case of a building where the planned site for collapse (the floor with the lowest seismic performance) is set on the second floor, a reference seismic element is provided on the second floor. That is, it is preferable to provide the reference seismic element on the floor where the seismic performance is lowered.

請求項3に記載の発明は、請求項1または請求項2に記載の建物において、前記基準耐震要素は降伏ヒンジを備え、前記診断手段は、前記降伏ヒンジに取り付けられている。   According to a third aspect of the present invention, in the building according to the first or second aspect, the reference seismic element includes a yield hinge, and the diagnostic means is attached to the yield hinge.

次に、請求項3に記載の建物の作用を説明する。
降伏ヒンジは外力によって変形し易いため、基準耐震要素に降伏ヒンジを設け、基準耐震要素の中で最も変形し易い部分である降伏ヒンジに診断手段を設けることが、基準耐震要素の状態を把握する上で好ましい形態となる。
Next, the operation of the building according to claim 3 will be described.
Since the yield hinge is easily deformed by external force, it is possible to grasp the state of the reference seismic element by providing a yield hinge on the reference seismic element and providing diagnostic means on the yield hinge, which is the most easily deformed part of the standard seismic element. This is the preferred form.

請求項4に記載の発明は、請求項1〜請求項3の何れか1項に記載の建物において、前記診断手段は、前記基準耐震要素の歪みを計測可能な塑性変形測定装置を備えている。   According to a fourth aspect of the present invention, in the building according to any one of the first to third aspects, the diagnostic means includes a plastic deformation measuring device capable of measuring a strain of the reference seismic element. .

次に、請求項4に記載の建物の作用を説明する。
歪みを計測可能な塑性変形測定装置を基準耐震要素に設けることで、基準耐震要素の歪み(変形)の程度を正確に把握することができる。
Next, the operation of the building according to claim 4 will be described.
By providing the reference seismic element with a plastic deformation measuring device capable of measuring strain, the degree of distortion (deformation) of the reference seismic element can be accurately grasped.

請求項5に記載の発明は、請求項1〜請求項4の何れか1項に記載の建物において、前記診断手段による診断結果に基いて、前記基準耐震要素の診断結果を通知する通知手段を有する。   According to a fifth aspect of the present invention, in the building according to any one of the first to fourth aspects, a notification means for notifying a diagnosis result of the reference seismic element based on a diagnosis result by the diagnosis means. Have.

次に、請求項5に記載の建物の作用を説明する。
通知手段は、診断手段による診断結果に基いて基準耐震要素の診断結果を通知する。このため、通知手段からの診断結果の通知によって、建物の居住者等は、基準耐震要素の状態を把握することができる。
Next, the operation of the building according to claim 5 will be described.
The notification means notifies the diagnosis result of the reference seismic element based on the diagnosis result by the diagnosis means. For this reason, the resident of a building etc. can grasp the state of the standard seismic element by the notification of the diagnosis result from the notification means.

請求項6に記載の発明は、請求項1〜請求項5の何れか1項に記載の建物において、前記通知手段は、前記診断手段による診断結果に基いて、前記基準耐震要素の変形が弾性域であるか塑性域であるかを区別して通知する。   According to a sixth aspect of the present invention, in the building according to any one of the first to fifth aspects, the notification means is configured such that the deformation of the reference seismic element is elastic based on a diagnosis result by the diagnostic means. A distinction is made as to whether it is a zone or a plastic zone.

次に、請求項6に記載の建物の作用を説明する。
通知手段は、診断手段による診断結果に基いて、基準耐震要素の変形が弾性域であるか塑性域であるかを区別して通知する。
したがって、通知手段からの診断結果の通知によって、建物の居住者等は、基準耐震要素が弾性変形しているか塑性変形しているかを把握することができる。
Next, the operation of the building according to claim 6 will be described.
The notifying means distinguishes and notifies whether the deformation of the reference seismic element is an elastic region or a plastic region based on a diagnosis result by the diagnosis unit.
Therefore, the resident of the building or the like can know whether the reference seismic element is elastically deformed or plastically deformed by notifying the diagnosis result from the notifying means.

請求項7に記載の発明は、請求項6に記載の建物において、前記診断手段による診断結果に基いて、前記基準耐震要素が塑性変形しており、かつ前記基準耐震要素の歪みの値が予め設定した上限値以上であると判断した場合に警告を発する警告手段を有する。   According to a seventh aspect of the present invention, in the building according to the sixth aspect, the reference seismic element is plastically deformed based on a diagnosis result by the diagnostic means, and a distortion value of the reference seismic element is previously set. Warning means for issuing a warning when it is determined that the set upper limit value is exceeded.

次に、請求項7に記載の建物の作用を説明する。
請求項7に記載の建物では、例えば、地震によって基準耐震要素が塑性変形し、かつ基準耐震要素の歪みの値が予め設定した上限値以上になると、警告手段が警告を発する。
Next, the operation of the building according to claim 7 will be described.
In the building according to claim 7, for example, when the reference seismic element is plastically deformed by an earthquake and the strain value of the reference seismic element exceeds a preset upper limit value, the warning means issues a warning.

例えば、地震によって耐震要素が大きく変形した場合には、基準耐震要素の耐震性能が大幅に低下していたり、または失われている可能性があり、耐震性に懸念がある。このような場合、請求項7に記載の建物では、次の地震(余震等)が来る前に警告手段で警告を発することができるので、次の地震が来る前に建物から居住者を退避させることができ、居住者の安全を確保することができる。   For example, when a seismic element is greatly deformed by an earthquake, the seismic performance of the reference seismic element may be significantly reduced or lost, and there is a concern about seismic resistance. In such a case, in the building according to claim 7, warning means can issue a warning before the next earthquake (aftershocks, etc.), so the residents are evacuated from the building before the next earthquake. Can ensure the safety of residents.

請求項8に記載の発明は、請求項1〜請求項7の何れか1項に記載の建物において、前記基準耐震要素は複数設けられている。
次に、請求項8に記載の建物の作用を説明する。
基準耐震要素を複数設けることで、複数の基準耐震要素を診断することができ、1つの基準診断要素を診断するよりも、より精密、かつ正確な耐震診断を行うことが可能となる。
The invention according to claim 8 is the building according to any one of claims 1 to 7, wherein a plurality of the reference seismic elements are provided.
Next, the operation of the building according to claim 8 will be described.
By providing a plurality of reference seismic elements, a plurality of reference seismic elements can be diagnosed, and it becomes possible to perform a more precise and accurate seismic diagnosis than diagnosing one reference diagnostic element.

請求項9に記載の耐震要素選択方法は、請求項1〜請求項7の何れか1項に記載の建物において、前記建物の重心の位置及び剛心の位置少なくとも一方と前記複数の耐震要素の位置との相対的な位置関係に基いて、前記基準耐震要素を選択する。   The seismic element selection method according to claim 9 is the building according to any one of claims 1 to 7, wherein at least one of the position of the center of gravity and the position of the rigid center of the building and the plurality of seismic elements. The reference seismic element is selected based on the relative positional relationship with the position.

次に、請求項9に記載の耐震要素選択方法の作用を説明する。
請求項9に記載の耐震要素選択方法は、建物の重心の位置及び剛心の位置少なくとも一方と複数の耐震要素の位置との相対的な位置関係に基いて、診断の基準となる基準耐震要素が予測され、これが基準耐震要素として選択される。
Next, the operation of the seismic element selection method according to claim 9 will be described.
The seismic element selection method according to claim 9 is a reference seismic element that serves as a reference for diagnosis based on a relative positional relationship between at least one of the position of the center of gravity and the position of the rigid center of the building and the positions of the plurality of seismic elements. Is predicted and selected as the reference seismic element.

例えば、地震により建物が捩じれ変形する場合(上から見て)を考えると、建物の中で最も変形する部位を予測するには、建物の重心または剛心の位置を考慮する必要がある。
重心の位置または剛心の位置から近い部分と、重心の位置または剛心の位置から遠い部分とを比較すると、重心の位置または剛心の位置から遠い部分の方が、重心の位置または剛心の位置から近い部分よりも地震時の変形が大きい傾向にある、即ち、建物は、重心または剛心を中心として捩じれる傾向にあるからである。
For example, considering the case where the building is twisted and deformed by an earthquake (as viewed from above), it is necessary to consider the center of gravity or the position of the center of the building in order to predict the most deformed portion of the building.
Comparing the part near the center of gravity or the position of the rigid center with the part far from the position of the center of gravity or the position of the rigid center, the part of the center of gravity or the part far from the position of the rigid center is more This is because the deformation at the time of earthquake tends to be larger than the portion closer to the position of the center, that is, the building tends to twist about the center of gravity or the rigid center.

したがって、このような場合には、地震を受けることで最初に崩壊する基準耐震要素は、重心の位置または剛心の位置から最も遠い位置に配置されているものであると予想されるので、これを選択すれば良いことになる。
このように、建物の重心の位置及び剛心の位置少なくとも一方と複数の耐震要素の位置との相対的な位置関係に基いて基準耐震要素を選択することで、基準耐震要素の選択作業が容易になる。
Therefore, in such a case, it is expected that the reference seismic element that first collapses due to an earthquake is located farthest from the position of the center of gravity or the position of the rigid center. If you choose.
In this way, it is easy to select the reference seismic element by selecting the reference seismic element based on the relative positional relationship between the position of the center of gravity and the position of the rigid center of the building and the position of the plurality of seismic elements. become.

建物の重心の位置は、建物の構成部材(柱、壁、床、天井、屋根、梁、桟、窓等)の重量及び位置から算出されるので、これら構成部材の重量及び位置から建物の重量バランスも分かる。したがって、地震による建物の変形を予測する際に、建物の重量バランスを考慮しても良い。   Since the position of the center of gravity of a building is calculated from the weight and position of building components (columns, walls, floors, ceilings, roofs, beams, bars, windows, etc.), the weight of the building is calculated from the weight and position of these components. You can see the balance. Therefore, when predicting deformation of a building due to an earthquake, the weight balance of the building may be taken into consideration.

請求項10に記載の耐震要素選択方法は、請求項8に記載の建物において、前記建物の重心の位置及び剛心の位置少なくとも一方と前記複数の耐震要素の位置との相対的な位置関係に基いて、複数の前記基準耐震要素に対して地震によって崩壊し易い順番を決定する。
次に、請求項10に記載の耐震要素選択方法の作用を説明する。
請求項10に記載の耐震要素選択方法は、建物の重心の位置及び剛心の位置少なくとも一方と複数の耐震要素の位置との相対的な位置関係に基いて、複数の基準耐震要素に対して地震によって崩壊し易い順番が予想され、その順番が決定される。
建物の耐震診断に際して複数の基準耐震要素を用いる場合、崩壊し易い上位何個かの耐震要素を基準耐震要素とし、かつ崩壊し易い順番を決めることで、基準耐震要素を1つに限定した場合に比較して、より精密、かつ正確な耐震診断を行うことが可能となる。
According to a tenth aspect of the present invention, in the building according to the eighth aspect, the relative position relationship between the position of the center of gravity and the position of the rigid center of the building and the positions of the plurality of seismic elements is the building according to the eighth aspect. Based on this, the order in which the plurality of the reference seismic elements are likely to collapse due to an earthquake is determined.
Next, the operation of the seismic element selection method according to claim 10 will be described.
The seismic element selection method according to claim 10 is based on a relative positional relationship between at least one of the position of the center of gravity and the position of the rigid center of the building and the position of the plurality of seismic elements. The order in which earthquakes are likely to collapse is expected, and the order is determined.
When multiple seismic elements are used for seismic diagnosis of a building, the top seismic elements that are likely to collapse are used as standard seismic elements, and the order in which they are likely to collapse is determined to limit the number of standard seismic elements to one Compared to the above, it is possible to perform a more accurate and accurate earthquake-resistant diagnosis.

以上説明したように、本発明の建物では、地震を受けることで耐震性能が最も低下する耐震要素の状態を診断することで、壁紙等の表面材を剥がして、建物の全ての耐震要素を診断する必要が無く、建物の耐震性を容易に診断することができる。   As explained above, in the building of the present invention, by diagnosing the state of the seismic element whose seismic performance is most degraded by receiving an earthquake, the surface material such as wallpaper is peeled off to diagnose all seismic elements in the building The earthquake resistance of the building can be easily diagnosed.

また、本発明の耐震要素選択方法では、建物の耐震性を容易に診断可能とするための診断すべき耐震要素を容易に選択することができる。これにより、建物の耐震性を容易に診断することができるようになる。   Moreover, in the seismic element selection method of the present invention, it is possible to easily select the seismic element to be diagnosed so that the earthquake resistance of the building can be easily diagnosed. Thereby, it becomes possible to easily diagnose the earthquake resistance of the building.

[第1の実施形態]
以下、図1〜図6を用いて、本発明の建物の第1の実施形態について説明する。
図1、及び図2に示すように、本実施形態の建物10は、鉄骨軸組み工法による2階建の住宅であり、1階、及び2階の複数箇所に、耐力要素としての耐力壁12が設けられている。なお、図2の建物10の平面図において、符合Gは建物10の重心を示し、符合Hは建物10の剛心を示している。
[First Embodiment]
Hereinafter, the first embodiment of the building of the present invention will be described with reference to FIGS.
As shown in FIG. 1 and FIG. 2, the building 10 of the present embodiment is a two-story house by a steel frame assembling method, and a bearing wall 12 as a bearing element is provided at a plurality of locations on the first and second floors. Is provided. In the plan view of the building 10 in FIG. 2, the symbol G indicates the center of gravity of the building 10, and the symbol H indicates the rigid center of the building 10.

次に、本実施形態の耐力壁12の構造を説明する。
図3〜図5に示すように、本実施形態の耐力壁12は、一定の間隔(本実施形態では中心間距離500mm)を隔てて配置された3本の管柱(角型鋼管:75mm×75mm×4.5mm)14と、管柱14同士を連結し、上下方向にジグザグ形状で延びるラチス16を含んで構成されている。
Next, the structure of the load bearing wall 12 of the present embodiment will be described.
As shown in FIGS. 3 to 5, the load-bearing wall 12 of the present embodiment has three tube columns (square steel pipe: 75 mm ××) arranged at a constant interval (in this embodiment, a center-to-center distance of 500 mm). 75 mm × 4.5 mm) 14 and the tube pillars 14 are connected to each other and include a lattice 16 extending in a zigzag shape in the vertical direction.

本実施形態のラチス16は、鋼の丸棒(本実施形態ではφ22mm)を曲げ加工して形成されており、管柱14の軸方向に沿って延びる複数の直線部16Aと、直線部16Aの端部に連続し直線部16Aに対して傾斜する複数の傾斜部16Bとを有する。   The lattice 16 of the present embodiment is formed by bending a steel round bar (φ22 mm in the present embodiment), and includes a plurality of straight portions 16A extending along the axial direction of the tube column 14 and the straight portions 16A. A plurality of inclined portions 16B that are continuous with the end portions and are inclined with respect to the linear portion 16A.

また、両側の2本の管柱14には、側面に鋼板(本実施形態では、60mm×75mm×19mm)18が溶接されているが、中央の管柱14の側面には鋼板18は溶接されていない。
また、管柱14の長手方向両端部には、梁(図示せず)と接続するためのフランジ(鋼板:200mm×100mm×16mm)20が溶接されている。
ラチス16は、両側の管柱14に対しては、鋼板18に溶接されており、中央の管柱14に対しては、側面に直接溶接されている。
Further, a steel plate (60 mm × 75 mm × 19 mm in this embodiment) 18 is welded to the side surfaces of the two tube columns 14 on both sides, but the steel plate 18 is welded to the side surfaces of the central tube column 14. Not.
Further, flanges (steel plates: 200 mm × 100 mm × 16 mm) 20 for welding to beams (not shown) are welded to both ends in the longitudinal direction of the tube pillar 14.
The lattice 16 is welded to the steel plate 18 with respect to the pipe columns 14 on both sides, and is welded directly to the side surface with respect to the central tube column 14.

本実施形態では、ラチス16の直線部16Aと傾斜部16Bとの接続部分が、所謂降伏ヒンジ22とされている。
降伏ヒンジ22は粘り強い構造とし、かつ曲げ変形等でエネルギーを吸収させる構造とすることが、後述する歪みゲージ26による歪みの測定上好ましい形態となる。
In the present embodiment, a connecting portion between the straight portion 16 </ b> A and the inclined portion 16 </ b> B of the lattice 16 is a so-called yield hinge 22.
A yield hinge 22 having a tenacious structure and a structure that absorbs energy by bending deformation or the like is a preferable form in measuring strain by a strain gauge 26 described later.

ここで、本実施形態の建物10には、複数の耐力壁12が設けられているが、新築設計時にコンピュータを用いて地震時に建物10がどのように変形するかを事前に調べるために建物10のコンピュータシミュレーションが行われ、設計時において、複数の中から地震時に最も崩壊し易い耐力壁12(本発明の基準耐震要素)が選択されている。
なお、ここでの崩壊とは、耐力壁としての機能が失われる程度に損傷(変形)していることを意味する。
Here, the building 10 of the present embodiment is provided with a plurality of load-bearing walls 12. In order to investigate in advance how the building 10 is deformed during an earthquake using a computer at the time of new construction design, the building 10 is used. In the design, the load bearing wall 12 (the reference seismic element of the present invention) that is most likely to collapse during an earthquake is selected from among a plurality of computer simulations.
In addition, the collapse here means that it is damaged (deformed) to such an extent that the function as the bearing wall is lost.

さらに、設計時には、地震時に最も崩壊し易い耐力壁12の中で最も変形しやすい降伏ヒンジ22(一例として、図1の矢印Aで示す部分の降伏ヒンジ22)が選択され、該降伏ヒンジ22に後述する診断装置24の歪みゲージ26(図3では図示せず。図6参照。)が取り付けられている。歪みゲージ26によって、降伏ヒンジ22の歪みが計測可能となっている。   Furthermore, at the time of design, the yield hinge 22 (for example, the yield hinge 22 indicated by the arrow A in FIG. 1) that is most easily deformed among the load bearing walls 12 that are most likely to collapse during an earthquake is selected. A strain gauge 26 (not shown in FIG. 3; see FIG. 6) of a diagnostic device 24 to be described later is attached. The strain of the yield hinge 22 can be measured by the strain gauge 26.

次に、図6にしたがって診断装置24を説明する。
診断装置24は、歪みゲージ26、ストレインアンプ28、及びパーソナルコンピュータ(PC)30等を含んで構成されている。
Next, the diagnostic device 24 will be described with reference to FIG.
The diagnostic device 24 includes a strain gauge 26, a strain amplifier 28, a personal computer (PC) 30, and the like.

PC30は、CPU32、ROM34、RAM36、及び入出力ポート38を備えている。これらがアドレスバス、データバス、及び制御バス等のバス40を介して互いに接続されている。入出力ポート38には、各種の入出力機器として、ディスプレイ42、ハードディスク(HD)44、及び各種ディスク45からの情報の読み出しを行うディスクドライブ46等が各々接続されている。なお、入出力ポート38には、マウス47、キーボード49等も接続可能である。   The PC 30 includes a CPU 32, a ROM 34, a RAM 36, and an input / output port 38. These are connected to each other via a bus 40 such as an address bus, a data bus, and a control bus. The input / output port 38 is connected to a display 42, a hard disk (HD) 44, a disk drive 46 for reading information from various disks 45, and the like as various input / output devices. Note that a mouse 47 and a keyboard 49 can be connected to the input / output port 38.

入出力ポート38には、ストレインアンプ28を介して歪みゲージ26が接続されており、また、警告を行うための警告装置48が接続されている。   The strain gauge 26 is connected to the input / output port 38 via the strain amplifier 28, and a warning device 48 for warning is connected.

ディスプレイ42は、地震発生の日時、測定日時、どの耐力壁12の降伏ヒンジ22がどのような状態となっているか等の各種情報を、グラフィック(画像、図形)、数字、記号、文字等を用いて表示することが出来る。ディスプレイ42は、建物10の中に少なくとも1つは必要であり、複数の部屋、または部屋毎に設置しても良い。   The display 42 uses various information such as the date and time of earthquake occurrence, the date and time of measurement, and the state of the yielding hinge 22 of which bearing wall 12 using graphics (images, figures), numbers, symbols, characters, and the like. Can be displayed. At least one display 42 is required in the building 10 and may be installed in a plurality of rooms or in each room.

また、警告装置48は、本実施形態では赤色の光を発する警告ランプを用いているが、サイレン、スピーカー、ブザー等の音を発するものを更に加えても良い。   In the present embodiment, the warning device 48 uses a warning lamp that emits red light. However, a warning device such as a siren, a speaker, and a buzzer may be added.

診断装置24は、歪みゲージ26の取り付けられている耐力壁12を識別するための識別情報、歪みゲージ26の取り付けられている降伏ヒンジ22を識別するための情報、歪みゲージ26で計測した歪みの大きさ等の各種情報を関連付けて記憶することができる。
また、診断装置24には、耐力壁12の単価、修繕に必要な日数等の各種情報も合わせて記憶することができる。
The diagnostic device 24 has identification information for identifying the load bearing wall 12 to which the strain gauge 26 is attached, information for identifying the yield hinge 22 to which the strain gauge 26 is attached, and the strain measured by the strain gauge 26. Various information such as size can be stored in association with each other.
The diagnostic device 24 can also store various information such as the unit price of the bearing wall 12 and the number of days required for repair.

さらに、本実施形態の診断装置24には、降伏ヒンジ22が歪んでいない(変形していない)、または歪んでいても弾性限度内にあることが分かる歪み量の値、即ち、弾性限度としての歪み量の上限値が予め記憶されており、本実施形態では、予め設定しておいた該上限値と、実際に降伏ヒンジ22の歪みを計測した際の値とを比較し、計測した値が上限値以下の場合には降伏ヒンジ22が歪んでいない、または歪んでいても歪みは小さく、ラチス16の降伏ヒンジ22が弾性限度内にあると判断し、計測した値が上限値を超えた場合には塑性変形していると判断する。   Furthermore, in the diagnostic device 24 of the present embodiment, the yield hinge 22 is not distorted (not deformed), or even if it is distorted, the value of the strain amount that is found to be within the elastic limit, that is, as the elastic limit. The upper limit value of the distortion amount is stored in advance, and in this embodiment, the upper limit value set in advance is compared with the value when the distortion of the yield hinge 22 is actually measured, and the measured value is If the yield hinge 22 is not distorted if it is less than the upper limit value, or if it is distorted, the distortion is small, and it is determined that the yield hinge 22 of the lattice 16 is within the elastic limit, and the measured value exceeds the upper limit value Is judged to be plastically deformed.

次に、建物10の設計段階から、完成後の診断までの流れを説明する。
(1) 設計段階で、上下階の耐力壁12のバランスを考慮し、万が一、大地震等で建物10が崩壊する場合の崩壊する階を決める。本実施形態では、耐力壁12の数を、2階を1階よりも多く設定し、1階が先に崩壊するように決めている(なお、場合によっては、耐力壁12の数を、2階と1階とで同数とする、1階を2階よりも多く設定し、2階が先に崩壊するように設定しても良い。)。
Next, the flow from the design stage of the building 10 to the diagnosis after completion will be described.
(1) At the design stage, considering the balance of the load-bearing walls 12 on the upper and lower floors, the floor to be collapsed is determined in the event that the building 10 collapses due to a major earthquake or the like. In the present embodiment, the number of bearing walls 12 is set so that the second floor is more than the first floor, and the first floor is collapsed first (in some cases, the number of bearing walls 12 is set to 2 (The same number may be set for the first floor and the first floor, and the first floor may be set more than the second floor, and the second floor may be collapsed first.)

(2) その際、建物10の中で最初に崩壊する部分が耐力壁12に限定できるように、接合部等、耐力壁12そのもの以外の部分を耐力壁12に対して十分に強く構成する。 (2) At that time, a part other than the load bearing wall 12 itself, such as a joint portion, is configured to be sufficiently strong with respect to the load bearing wall 12 so that the first collapsed portion of the building 10 can be limited to the load bearing wall 12.

(3) コンピュータシミュレーションにより、建物10の重心Gの位置、及び剛心Hの位置に基いて(図2参照。なお、耐力壁12の配置は一例であり、これに限定されない。)、地震時に建物10の中で最初に崩壊する耐力壁12を予測し、これを基準耐震要素として特定する。
本実施形態では、地震を受けた際に1階が先に崩壊するように決めているので、最初に崩壊する耐力壁12を1階の中から特定して診断装置24に記憶する。
(3) Based on the computer simulation, based on the position of the center of gravity G of the building 10 and the position of the rigid center H (see FIG. 2, the arrangement of the load bearing wall 12 is an example and is not limited to this). The bearing wall 12 that collapses first in the building 10 is predicted and specified as a reference seismic element.
In the present embodiment, since the first floor is determined to collapse first when an earthquake occurs, the load bearing wall 12 that first collapses is identified from the first floor and stored in the diagnostic device 24.

(4) 耐力壁12は、崩壊する部分を局部的に限定できるように、降伏ヒンジ22を持った構造とする。なお、面材を用いた耐力壁では、崩壊する部分を局部的に限定することが困難である。 (4) The bearing wall 12 has a structure having a yielding hinge 22 so that the collapsing portion can be limited locally. In the bearing wall using the face material, it is difficult to locally limit the portion that collapses.

(5) 耐力壁12の中で、最初に崩壊する(塑性変形する)降伏ヒンジ22を選択し、選択した降伏ヒンジ22に歪みゲージ26を貼り付ける。歪みゲージ26をストレインアンプ28を介して診断装置24に接続し、歪みゲージ26と耐力壁12とを対応させて診断装置24に記憶させる。
また、診断装置24には、降伏ヒンジ22の弾性限度に対応した歪みの値(上限値)を予め記憶させておく。降伏ヒンジ22の歪みと弾性限度の関係は、予め実験により求めておく。
(5) A yield hinge 22 that first collapses (plastically deforms) is selected from the bearing wall 12, and a strain gauge 26 is attached to the selected yield hinge 22. The strain gauge 26 is connected to the diagnostic device 24 via the strain amplifier 28, and the strain gauge 26 and the load bearing wall 12 are associated with each other and stored in the diagnostic device 24.
The diagnostic device 24 stores in advance a strain value (upper limit value) corresponding to the elastic limit of the yielding hinge 22. The relationship between the distortion of the yield hinge 22 and the elastic limit is obtained in advance by experiments.

(6) 次に、診断装置24の作用を説明する。
建物10は、診断装置24によって降伏ヒンジ22の歪みが常時監視されている。
地震により建物10が揺れると、降伏ヒンジ22の歪み量が変動するので、予め設定した時間内(例えば、数秒)に、歪みが予め設定した変動幅(値)以上に変動した事を診断装置24が判断すると、診断装置24は、地震が生じていると判断する。
なお、診断装置24に接続した加速度計を建物10に取り付け、建物10の加速度が予め設定した値を超えた際に、地震であると判断することもできる。地震が発生したことを判断した診断装置24は、地震発生日時等を記憶することができる。
(6) Next, the operation of the diagnostic device 24 will be described.
In the building 10, the distortion of the yield hinge 22 is constantly monitored by the diagnostic device 24.
When the building 10 is shaken by an earthquake, the amount of distortion of the yield hinge 22 changes, so that the diagnosis device 24 indicates that the distortion has changed more than a preset fluctuation range (value) within a preset time (for example, several seconds). , The diagnostic device 24 determines that an earthquake has occurred.
Note that an accelerometer connected to the diagnostic device 24 is attached to the building 10, and when the acceleration of the building 10 exceeds a preset value, it can be determined that the earthquake is an earthquake. The diagnosis device 24 that has determined that an earthquake has occurred can store the date and time of occurrence of the earthquake.

地震後、診断装置24は、各降伏ヒンジ22の歪みの値と、予め記憶しておいた歪みの上限値との比較を行い、例えば、以下のa,b,cのような判断を行う。   After the earthquake, the diagnosis device 24 compares the distortion value of each yield hinge 22 with the upper limit value of the distortion stored in advance, and makes the following determinations such as a, b, and c, for example.

a.「計測した歪みの値<予め記憶した上限値」となる場合には、降伏ヒンジ22が弾性限度内にある(塑性変形していない)と判断する。 a. If “measured strain value <preliminarily stored upper limit value”, it is determined that the yield hinge 22 is within the elastic limit (not plastically deformed).

b.「計測した値≧予め記憶した上限値」かつ「計測した値−予め記憶した上限値≦予め設定した値」の時は、降伏ヒンジ22は、変形はしているものの、塑性変形量は小さく、耐震改修する必要は無いと判断する。 b. When “measured value ≧ pre-stored upper limit value” and “measured value−pre-stored upper limit value ≦ pre-set value”, although the yield hinge 22 is deformed, the plastic deformation amount is small, Judging that there is no need for seismic retrofit.

c.「計測した値≧予め設定した値」かつ「計測した値−予め設定した値>予め設定した値」の時は、降伏ヒンジ22は大きく塑性変形しており、耐震改修する必要が有ると判断する。 c. When “measured value ≧ predetermined value” and “measured value−predetermined value> predetermined value”, it is determined that the yield hinge 22 is greatly plastically deformed and needs to be retrofitted. .

ここで、診断装置24により、上記3つの判断の何れかが下され、例えばaの場合はディスプレイ42に「改修は不要です(安全です)」と表示し、bの場合は「改修は不要です(変形していますが安全です)」、cの場合は「改修が必要です(費用は○○です。修繕日数は○○です)」と表示することができる。
歪み量と安全性の関係は、事前に耐力壁12の架構実験などにより評価しておく。
なお、ディスプレイ42には、これら以外のメッセージを表示しても良い。
Here, one of the above three judgments is made by the diagnostic device 24. For example, in the case of a, the display 42 displays “repair is not necessary (safe)”, and in the case of b, “repair is not necessary.” (It is deformed but safe) ”, and in the case of c,“ repair is necessary (cost is XX. Repair days are XX) ”can be displayed.
The relationship between the strain amount and the safety is evaluated in advance by a frame experiment of the bearing wall 12 or the like.
Note that other messages may be displayed on the display 42.

また、cの場合、大地震後の余震によって建物10が耐えられない場合も想定されるので、緊急事態であることを知らしめる様に警告装置48にて警告(例えば、赤色の光の点滅)を発し、建物10の中にいる居住者等に対し、建物10からの緊急の避難を促すこともできる。なお、ディスプレイ42に「建物から退避してください」等の表示をしても良い。   Also, in the case of c, since it is also assumed that the building 10 cannot withstand due to an aftershock after a major earthquake, a warning device 48 warns the user (eg, flashing red light) so as to notify an emergency situation. And urgent evacuation from the building 10 can be urged to a resident or the like in the building 10. The display 42 may display “Please evacuate from the building” or the like.

このように、地震を受けることで耐震性能が最も低下する耐力壁12の状態を診断装置24で常時監視しているので、地震を受けることで耐震性能が最も低下する耐力壁12に問題が無ければ、その他の耐力壁12は診断せずとも全て問題ないと判断できる。
したがって、壁紙等の表面材を剥がして全ての耐力壁を診断して建物の耐震性能を診断する場合に比較して診断箇所は大幅に少なくなり、建物の診断は極めて容易になる。
As described above, since the diagnosis device 24 constantly monitors the state of the load-bearing wall 12 where the seismic performance is most deteriorated due to the earthquake, there is no problem with the load-bearing wall 12 where the seismic performance is most degraded due to the earthquake. For example, it can be determined that there is no problem without diagnosing the other bearing walls 12.
Therefore, the number of diagnosis points is greatly reduced compared to the case of diagnosing the seismic performance of a building by peeling off the surface material such as wallpaper and diagnosing all the bearing walls, and the diagnosis of the building becomes extremely easy.

また、このように診断装置24で常時監視することで、建物10の劣化(経時変化)を診断することもできる。
なお、各降伏ヒンジ22の歪みの値と、予め記憶しておいた歪みの上限値との比較は、地震を感知した後には即座に実行する必要があるが、通常時においては、所定の間隔(例えば、数時間毎、数日毎等)で実行しても良い。
In addition, by constantly monitoring with the diagnostic device 24 as described above, it is possible to diagnose the deterioration (change over time) of the building 10.
It should be noted that the comparison between the strain value of each yield hinge 22 and the upper limit strain value stored in advance needs to be executed immediately after the earthquake is detected. (For example, every few hours, every few days, etc.).

本実施形態では、2階の耐力壁12の数を1階の耐力壁12の数よりも多く設定しているので、2階の耐力壁12の足元(2階の床)の変形による影響等の診断上問題となる不確定要素を減らすことができる。   In the present embodiment, since the number of bearing walls 12 on the second floor is set to be larger than the number of bearing walls 12 on the first floor, the influence of the deformation of the foot of the second floor bearing wall 12 (second floor) It is possible to reduce the uncertainties that cause problems in diagnosis.

なお、本実施形態の診断装置24は、インターネット回線等の通信手段に接続することもできる。例えば、降伏ヒンジ22が塑性変形した場合等、建築業者に修理を促すように、診断結果をインターネット回線等の通信回線50を介して建築業者のコンピュータ52に送信しても良い(図6参照)。これにより、建築業者では、建物10の地震による被害状況を迅速かつ確実に得ることができ、資材や人員の確保に迅速に対応することができる。   In addition, the diagnostic apparatus 24 of this embodiment can also be connected to communication means, such as an internet line. For example, when the yield hinge 22 is plastically deformed, the diagnosis result may be transmitted to the contractor's computer 52 via the communication line 50 such as the Internet line so as to prompt the contractor to repair (see FIG. 6). . As a result, the contractor can quickly and reliably obtain the damage status of the building 10 due to the earthquake, and can quickly respond to securing materials and personnel.

[第2の実施形態]
次に、第2の実施形態を説明する。なお、第1の実施形態と同一構成には同一符合を付し、その説明は省略する。
本実施形態の建物10では、第1の実施形態と同様に設計時にコンピュータを用いて地震時のシミュレーションが行われるが、その際、複数の耐力壁12の中で、地震時に崩壊し易い順番が付けられ、最も早く崩壊する1番目の耐力壁12から崩壊する順番に上位何番目かまでの耐力壁12を予測し、基準耐力要素として特定され記憶される。なお、特定された耐力壁12について、耐力壁内の最も破壊しやすい降伏ヒンジ22に対して歪みゲージ26が取り付けられる。
したがって、診断装置24には、図7に示すように複数の歪みゲージ26が接続されることになる。
[Second Embodiment]
Next, a second embodiment will be described. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment, and the description is abbreviate | omitted.
In the building 10 of the present embodiment, a simulation at the time of an earthquake is performed using a computer at the time of design, as in the first embodiment. The highest bearing wall 12 is predicted in the order of collapse from the first bearing wall 12 that collapses the earliest, and is specified and stored as a standard bearing element. In addition, about the specified bearing wall 12, the strain gauge 26 is attached with respect to the yielding hinge 22 in the bearing wall which is most likely to break.
Therefore, a plurality of strain gauges 26 are connected to the diagnostic device 24 as shown in FIG.

次に、本実施形態の建物10の設計段階から、完成後の診断までを説明する。
(1) 上下階の耐震要素(耐力壁12)のバランスを考慮し、建物10が崩壊する階を決める。本実施形態では、耐力壁12の数を、2階を1階よりも多く設定する(なお、場合によっては、耐力壁12の数を、2階と1階とで同数とする、1階を2階よりも多く設定しても良い。)。
Next, from the design stage of the building 10 of this embodiment to the diagnosis after completion will be described.
(1) The floor where the building 10 collapses is determined in consideration of the balance of the seismic elements (bearing walls 12) on the upper and lower floors. In the present embodiment, the number of the load-bearing walls 12 is set so that the second floor is larger than the first floor (in some cases, the number of the load-bearing walls 12 is the same for the second floor and the first floor. You may set more than the second floor.)

(2) 建物10において、地震で崩壊する(塑性変形する)部分を、耐力壁12に限定できるように、接合部等を耐力壁12に対して十分に強く構成する。 (2) In the building 10, the joint portion and the like are sufficiently strong with respect to the load bearing wall 12 so that the portion that collapses (plastically deforms) by the earthquake can be limited to the load bearing wall 12.

(3) コンピュータシミュレーションにより、建物10の重心Gの位置、及び剛心Hの位置に基いて、地震時に、建物10の中で、複数の耐力壁12に対して崩壊し易い順番を付け、予め設定した上位何個かの耐力壁12を診断装置24に記憶する。 (3) By computer simulation, based on the position of the center of gravity G of the building 10 and the position of the rigid center H, an order in which the plurality of bearing walls 12 are likely to collapse in the building 10 during the earthquake is assigned in advance. The set upper several bearing walls 12 are stored in the diagnostic device 24.

(4) 耐力壁12は、崩壊する部分を局部的に限定できるように、降伏ヒンジ22を持ったものとする。 (4) The bearing wall 12 is assumed to have a yielding hinge 22 so that the collapsing portion can be limited locally.

(5) 前記(3)にて特定した耐力壁12の中で、最初に壊れる(塑性変形する)降伏ヒンジ22に歪みゲージ26を貼り付け、各歪みゲージ26を診断装置24に接続する。そして、歪みゲージ26と耐力壁12とを対応させて診断装置24に記憶させる。
また、診断装置24には、降伏ヒンジ22の弾性限度に対応した歪みの値、即ち上限値を記憶させておく。
(5) A strain gauge 26 is affixed to the yielding hinge 22 that breaks (plastically deforms) first in the bearing wall 12 specified in (3), and each strain gauge 26 is connected to the diagnostic device 24. Then, the strain gauge 26 and the bearing wall 12 are associated with each other and stored in the diagnostic device 24.
The diagnostic device 24 stores a strain value corresponding to the elastic limit of the yield hinge 22, that is, an upper limit value.

(6) 次に、地震が起きた際の診断装置24の作用を説明する。
先ず、第1の実施形態と同様に診断装置24によって、降伏ヒンジ22の歪みの値を常時監視させ、地震後においては、各降伏ヒンジ22の歪みの値と、予め記憶しておいた歪みの上限値との比較を行い、降伏ヒンジ22が弾性変形しているか、塑性変形しているかの判断を予め記憶しておいた複数の耐力壁12に対して行う。
(6) Next, the operation of the diagnostic device 24 when an earthquake occurs will be described.
First, the strain value of the yield hinge 22 is constantly monitored by the diagnostic device 24 as in the first embodiment, and after the earthquake, the strain value of each yield hinge 22 and the strain value stored in advance are stored. Comparison with the upper limit value is performed, and a determination as to whether the yielding hinge 22 is elastically deformed or plastically deformed is performed on the plurality of bearing walls 12 stored in advance.

診断装置24により上記の判断が耐力壁毎にされ、例えば、塑性変形している耐力壁12がある場合には、何れの耐力壁12が塑性変形しているかがディスプレイ42を見て分かるように、ディスプレイ42に耐力壁12の番号、位置情報等と共に診断結果を表示する。表示内容としては、例えば「1番から○番までの耐力壁は改修必要」、「○番の耐力壁は改修必要」等を上げることができるが、これら以外のメッセージを表示しても良い。   The diagnosis device 24 makes the above determination for each load-bearing wall. For example, when there is a load-bearing wall 12 that is plastically deformed, it can be seen from the display 42 which load-bearing wall 12 is plastically deformed. The diagnosis result is displayed on the display 42 together with the number and position information of the bearing wall 12. For example, “the bearing walls from No. 1 to No. ○ need to be repaired” and “the No. bearing walls need to be repaired” can be raised as the display contents, but other messages may be displayed.

また、崩壊した耐力壁12が複数の場合には、大地震後の余震によって建物10が耐えられない場合も想定されるので、予め設定した崩壊個数の上限値を超える数の耐力壁12が崩壊したと判断された場合には、緊急事態であることを知らしめる様に警告装置48にて警告を発し、建物10の中にいる居住者等に対し、建物10からの緊急の避難を促すこともできる。   In addition, when there are a plurality of collapsed load bearing walls 12, it may be assumed that the building 10 cannot withstand aftershocks after a large earthquake, so the number of load bearing walls 12 exceeding the preset upper limit number of collapses has collapsed. If it is determined that an emergency has occurred, the warning device 48 issues a warning so as to inform the resident of the building 10 of an urgent evacuation. You can also.

[その他の実施形態]
上記実施形態では、耐震要素の一例として耐力壁を説明したが、耐震要素は、降伏ヒンジ等の、地震時に崩壊(塑性変形)する箇所が特定できる部位が備えられていれば耐力壁以外の従来周知の構成のものであっても良い。
[Other Embodiments]
In the above-described embodiment, the bearing wall has been described as an example of the earthquake-resistant element. However, the earthquake-resistant element has a conventional structure other than the load-bearing wall as long as a part that can identify a location that collapses (plastic deformation) such as a yield hinge can be specified. It may be of a known configuration.

上記実施形態では、耐力壁12の中で地震時に崩壊する箇所が特定できるように、耐力壁12の内部に降伏ヒンジ22を設ける構成としたが、地震時に崩壊する箇所が特定できれば、必ずしも降伏ヒンジ22は必要なく、降伏ヒンジ22に代えて他の構成を採用しても良い。
例えば、耐震要素を構成している部材の一部を細くしたり、薄くする等して該部材の一部の剛性を低く設定し、剛性を低くした部分を塑性変形し易いように構成しても良い。
In the above embodiment, the yield hinge 22 is provided inside the load bearing wall 12 so that the location of the load bearing wall 12 that collapses at the time of the earthquake can be specified. 22 is not necessary, and another configuration may be adopted instead of the yielding hinge 22.
For example, a part of the member constituting the seismic element is made thin or thin so that the rigidity of the part of the member is set low, and the part having the reduced rigidity is configured to be easily plastically deformed. Also good.

なお、上記実施形態では、警告する際、警告装置48で赤色の光を点滅させたが、塑性変形の大きさに応じて光の色を変えても良い。例えば、大地震後の余震に建物10が耐えられない場合には赤色の光を点滅させ、かつサイレンで警戒状況を発信して、すぐに部屋からの避難を促し、大地震後の余震に建物10が耐えられるようであれば、黄色の光を点滅させる等、耐力壁(耐震要素)12の状態に応じて警告レベルを複数に設定しても良い。   In the above embodiment, when warning is given, the warning device 48 blinks red light. However, the color of the light may be changed according to the magnitude of plastic deformation. For example, if the building 10 cannot withstand an aftershock after a major earthquake, a red light flashes and a warning is sent with a siren to prompt evacuation from the room. As long as 10 can withstand, a plurality of warning levels may be set according to the state of the load-bearing wall (seismic element) 12, such as blinking yellow light.

また、地震により停電も予想されるので、診断装置24にバックアップ用の電源(バッテリー等)を設けても良い。   In addition, since a power failure is expected due to an earthquake, the diagnostic device 24 may be provided with a backup power source (battery or the like).

上記実施形態では、耐力壁12の診断(歪みの測定)に、塑性変形測定装置としての歪みゲージ26を用いたが、歪み(変形)が測定できるものであれば歪みゲージ26以外のセンサーを用いても良い。   In the above embodiment, the strain gauge 26 as a plastic deformation measuring device is used for the diagnosis (measurement of strain) of the bearing wall 12, but a sensor other than the strain gauge 26 is used as long as the strain (deformation) can be measured. May be.

また、上記実施形態では、耐力壁12の歪みのみを計測していたが、診断装置24の機能を利用して、耐力壁12以外の部分の歪みを計測することもできる。例えば、図8に示すように、非耐力壁54に歪みゲージ26を取り付け、非耐力壁54の歪みも同時に計測しても良い。これにより、耐力壁12のみならず、非耐力壁54の変形(損傷)の程度も把握することができる。
なお、歪みゲージ26は、柱、梁等の他の構成部材に取り付け、柱、梁等の他の構成部材の歪みを計測しても良く、これら構成部材の歪みを計測したデータを建築業者のコンピュータ52に送信しても良い。
Moreover, in the said embodiment, although only the distortion of the bearing wall 12 was measured, the distortion of parts other than the bearing wall 12 can also be measured using the function of the diagnostic apparatus 24. FIG. For example, as shown in FIG. 8, the strain gauge 26 may be attached to the non-bearing wall 54 and the strain of the non-bearing wall 54 may be measured simultaneously. Thereby, it is possible to grasp not only the bearing wall 12 but also the degree of deformation (damage) of the non-bearing wall 54.
The strain gauge 26 may be attached to other structural members such as columns and beams, and may measure the distortion of other structural members such as columns and beams. You may transmit to the computer 52.

上記第1の実施形態では、1階の耐力壁12の矢印Aで示す部分に歪みゲージ26を取り付けられ、歪みゲージ26の取り付けられた耐力壁12が基準耐震要素とされていたが、基準耐震要素としての耐力壁12は1階に設定することに限定されず、建物10が2階建以上の場合、2階以上の何れかの階に設定されていれば良い。
例えば、図1に示すような2階建の場合、地震時に最も崩壊し易い耐力壁12(基準耐震要素)を2階のものとなるように建物10の設計を行い、地震時に最も崩壊し易い2階の耐力壁12(矢印B部分)に歪みゲージ26を取り付けるようにしても良い。
In the first embodiment, the strain gauge 26 is attached to the portion indicated by the arrow A of the load bearing wall 12 on the first floor, and the load bearing wall 12 to which the strain gauge 26 is attached is used as the reference seismic element. The bearing wall 12 as an element is not limited to being set on the first floor, and if the building 10 has two or more floors, it may be set on any floor of two or more floors.
For example, in the case of a two-story building as shown in FIG. 1, the building 10 is designed so that the load-bearing wall 12 (reference seismic element) that is most likely to collapse during an earthquake is the one on the second floor, and is most likely to collapse during an earthquake. You may make it attach the strain gauge 26 to the load-bearing wall 12 (arrow B part) of the 2nd floor.

耐力壁の位置を示す第1の実施形態に係る建物の正面図である。It is a front view of the building concerning a 1st embodiment which shows the position of a bearing wall. 耐力壁の位置、重心の位置、及び剛心に位置を示す建物の概略を示す平面図である。It is a top view which shows the outline of the building which shows the position of a bearing wall, the position of a gravity center, and a rigid position. 耐力壁の正面図である。It is a front view of a bearing wall. 図3に示す耐力壁の4−4線断面図である。FIG. 4 is a cross-sectional view taken along line 4-4 of the load bearing wall shown in FIG. 3. 図3に示す耐力壁の5−5線断面図である。FIG. 5 is a cross-sectional view of the bearing wall shown in FIG. 3 taken along line 5-5. 第1の実施形態に係る診断装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a diagnostic device concerning a 1st embodiment. 第2の実施形態に係る診断装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the diagnostic apparatus which concerns on 2nd Embodiment. その他の実施形態に係る建物の概略構成を示す正面図である。It is a front view which shows schematic structure of the building which concerns on other embodiment.

10 建物
12 耐力壁(耐震要素)
22 降伏ヒンジ
24 診断装置
26 歪みゲージ(塑性変形測定装置)
42 ディスプレイ
48 警告装置
G 重心
H 剛心
10 Buildings 12 Bearing walls (seismic elements)
22 Yield hinge 24 Diagnostic device 26 Strain gauge (plastic deformation measuring device)
42 Display 48 Warning device G Center of gravity H Rigidity

Claims (10)

複数の耐震要素を備えた建物であって、
複数の耐震要素の内の少なくとも1つが診断の基準となる基準耐震要素とされ、基準となった前記基準耐震要素に前記基準耐震要素の状態を診断可能な診断手段が設けられている建物。
A building with multiple seismic elements,
A building in which at least one of a plurality of seismic elements is set as a reference seismic element serving as a reference for diagnosis, and a diagnostic unit capable of diagnosing the state of the reference seismic element is provided in the reference seismic element serving as a reference.
2階建て以上に構成され、前記基準耐震要素が少なくとも何れかの階に設けられている、請求項1に記載の建物。   The building according to claim 1, wherein the building is constructed of two or more stories, and the reference seismic element is provided on at least one of the stories. 前記基準耐震要素は降伏ヒンジを備え、
前記診断手段は、前記降伏ヒンジに取り付けられている、請求項1または請求項2に記載の建物。
The reference seismic element comprises a yield hinge;
The building according to claim 1, wherein the diagnosis unit is attached to the yield hinge.
前記診断手段は、前記基準耐震要素の歪みを計測可能な塑性変形測定装置を備えている、請求項1〜請求項3の何れか1項に記載の建物。   The building according to any one of claims 1 to 3, wherein the diagnostic means includes a plastic deformation measuring device capable of measuring distortion of the reference seismic element. 前記診断手段による診断結果に基いて、前記基準耐震要素の診断結果を通知する通知手段を有する、請求項1〜請求項4の何れか1項に記載の建物。   The building according to any one of claims 1 to 4, further comprising notification means for notifying a diagnosis result of the reference seismic element based on a diagnosis result by the diagnosis means. 前記通知手段は、前記診断手段による診断結果に基いて、前記基準耐震要素の変形が弾性域であるか塑性域であるかを区別して通知する、請求項5に記載の建物。   The building according to claim 5, wherein the notification unit distinguishes and notifies whether the deformation of the reference seismic element is an elastic region or a plastic region based on a diagnosis result by the diagnosis unit. 前記診断手段による診断結果に基いて、前記基準耐震要素が塑性変形しており、かつ前記基準耐震要素の歪みの値が予め設定した上限値以上であると判断した場合に警告を発する警告手段を有する、請求項1〜請求項7の何れか1項に記載の建物。   Warning means for issuing a warning when it is determined that the reference seismic element is plastically deformed and the strain value of the reference seismic element is greater than or equal to a preset upper limit value based on a diagnosis result by the diagnosis means. The building according to any one of claims 1 to 7, further comprising: 前記基準耐震要素は複数設けられている請求項1〜請求項7の何れか1項に記載の建物。   The building according to claim 1, wherein a plurality of the reference seismic elements are provided. 請求項1〜請求項7の何れか1項に記載の建物において、前記建物の重心の位置及び剛心の位置少なくとも一方と前記複数の耐震要素の位置との相対的な位置関係に基いて、前記基準耐震要素を選択する、耐震要素選択方法。   In the building according to any one of claims 1 to 7, based on the relative positional relationship between the position of the center of gravity and the position of the rigid center of the building and the position of the plurality of seismic elements, A seismic element selection method for selecting the reference seismic element. 請求項8に記載の建物において、前記建物の重心の位置及び剛心の位置少なくとも一方と前記複数の耐震要素の位置との相対的な位置関係に基いて、複数の前記基準耐震要素に対して地震によって崩壊し易い順番を決定する、耐震要素選択方法。   The building according to claim 8, wherein a plurality of the reference seismic elements are based on a relative positional relationship between at least one of the position of the center of gravity and the position of the rigid center of the building and the positions of the plurality of seismic elements. A seismic element selection method that determines the order in which earthquakes are likely to collapse.
JP2009267948A 2009-11-25 2009-11-25 Building and seismic element selection method Expired - Fee Related JP5705431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267948A JP5705431B2 (en) 2009-11-25 2009-11-25 Building and seismic element selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267948A JP5705431B2 (en) 2009-11-25 2009-11-25 Building and seismic element selection method

Publications (2)

Publication Number Publication Date
JP2011111773A true JP2011111773A (en) 2011-06-09
JP5705431B2 JP5705431B2 (en) 2015-04-22

Family

ID=44234323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267948A Expired - Fee Related JP5705431B2 (en) 2009-11-25 2009-11-25 Building and seismic element selection method

Country Status (1)

Country Link
JP (1) JP5705431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138744A (en) * 2011-12-29 2013-07-18 Dunlop Sports Co Ltd Iron type golf club set and iron type golf club head set

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962965A (en) * 1995-08-21 1997-03-07 Ig Tech Res Inc House
JPH10177085A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Load hysteresis and cumulative damage monitoring system
JP2002221453A (en) * 2001-01-29 2002-08-09 Nippon Denshi Kogyo Kk System for collecting load information of structure
JP2004037351A (en) * 2002-07-05 2004-02-05 Kumagai Gumi Co Ltd Damage degree estimation method of member of structure
JP2004163328A (en) * 2002-11-14 2004-06-10 Public Works Research Institute Determination method and system for degree of damage by earthquake in structural member
JP2005068849A (en) * 2003-08-26 2005-03-17 Nishimatsu Constr Co Ltd Whole yielding structure of building skeleton
JP2006064483A (en) * 2004-08-25 2006-03-09 Okumura Corp Inspection support method and inspection support system for building struck by earthquake
JP2010060401A (en) * 2008-09-03 2010-03-18 Sekisui House Ltd Method for checking damage state of brace

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962965A (en) * 1995-08-21 1997-03-07 Ig Tech Res Inc House
JPH10177085A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Load hysteresis and cumulative damage monitoring system
JP2002221453A (en) * 2001-01-29 2002-08-09 Nippon Denshi Kogyo Kk System for collecting load information of structure
JP2004037351A (en) * 2002-07-05 2004-02-05 Kumagai Gumi Co Ltd Damage degree estimation method of member of structure
JP2004163328A (en) * 2002-11-14 2004-06-10 Public Works Research Institute Determination method and system for degree of damage by earthquake in structural member
JP2005068849A (en) * 2003-08-26 2005-03-17 Nishimatsu Constr Co Ltd Whole yielding structure of building skeleton
JP2006064483A (en) * 2004-08-25 2006-03-09 Okumura Corp Inspection support method and inspection support system for building struck by earthquake
JP2010060401A (en) * 2008-09-03 2010-03-18 Sekisui House Ltd Method for checking damage state of brace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138744A (en) * 2011-12-29 2013-07-18 Dunlop Sports Co Ltd Iron type golf club set and iron type golf club head set

Also Published As

Publication number Publication date
JP5705431B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP6082597B2 (en) Damage status notification system and earthquake disaster prevention system
JP4914162B2 (en) Earthquake damage determination device, earthquake damage determination method, and earthquake damage determination program
US7817499B2 (en) CO end of life timing circuit
JP5469970B2 (en) Earthquake risk assessment system
JP2008298704A (en) Damage diagnosis system of building
JP5004955B2 (en) Strain detector and strain detection system
JP2013534615A (en) Surface accumulation monitoring system
JP4969886B2 (en) Building diagnostic system
US20220382927A1 (en) Computer-assisted method and system for determining and visualising force flows in a scaffold
Roghaei et al. An efficient and reliable structural health monitoring system for buildings after earthquake
JP2020087389A (en) Tunnel emergency facility and disaster prevention facility
JP5705431B2 (en) Building and seismic element selection method
JP4261278B2 (en) Flood control support device, program, and flood control support method
JP6352329B2 (en) Avalanche / fall rock monitoring system
JP2007039879A (en) Damage rate estimating method of pile foundation and damage rate estimating system of pile foundation
JPH10177085A (en) Load hysteresis and cumulative damage monitoring system
JP3931979B2 (en) A simple seismic diagnosis system for building equipment and fixtures
JP2019144031A (en) Building evaluation system and building evaluation method
Dayawansa et al. Fracture mechanics of mining dragline booms
KR20020021548A (en) Remote Structure Measuring and Managing System Using Internet and Method Thereof
KR102287889B1 (en) Method of predicting crack in scaffold and scaffold safety management system using the same
CN115578838A (en) Building monitoring data abnormity early warning method and related device
JP6742014B1 (en) Abnormality discrimination method for structure and abnormality discrimination system
JP2013002979A (en) Method and apparatus for diagnosing deformation amount or durability of structure receiving strong external force
JP5272500B2 (en) Device for determining the possibility of damage to the fixing bracket, device for creating a mounting plan for the fixing bracket, a method for determining the possibility of damage to the fixing bracket, and a method for preparing the mounting plan for the fixing bracket

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150225

R150 Certificate of patent or registration of utility model

Ref document number: 5705431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees