JP2006064483A - Inspection support method and inspection support system for building struck by earthquake - Google Patents

Inspection support method and inspection support system for building struck by earthquake Download PDF

Info

Publication number
JP2006064483A
JP2006064483A JP2004246012A JP2004246012A JP2006064483A JP 2006064483 A JP2006064483 A JP 2006064483A JP 2004246012 A JP2004246012 A JP 2004246012A JP 2004246012 A JP2004246012 A JP 2004246012A JP 2006064483 A JP2006064483 A JP 2006064483A
Authority
JP
Japan
Prior art keywords
building
inspection
monitored
earthquake
arithmetic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246012A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuruya
雅之 鶴谷
Kunio Hayakawa
邦夫 早川
Yasuhiro Wakabayashi
康弘 若林
Nobuyasu Kawai
伸泰 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2004246012A priority Critical patent/JP2006064483A/en
Publication of JP2006064483A publication Critical patent/JP2006064483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection support method and an inspection support system for buildings struck by an earthquake capable of rationally specifying an inspection work requiring part of a building struck by the earthquake. <P>SOLUTION: By using an arithmetic unit, a vibrational response analytic model for a monitoring object building is formed based on structural data of the monitoring object building and ground data of the monitoring object building, and a seismograph which observes an earthquake acting on the monitoring object building and outputs an observed value to the arithmetic unit, is provided. Then, the arithmetic unit compares and detects whether the observed value inputted from the seismograph is not lower than a preset set value, which is presumed to require inspection work. Then, the arithmetic unit performs a vibrational response analytic of the monitoring object building, with respect to the vibration response analytic model for the monitoring object building by the use of the observed value, when the observed value is not lower than the set value. After that, the arithmetic unit specifies a part which is presumed to be relatively heavily damaged as an inspection requiring part, out of each part of the monitoring object building, from the vibration response analytic result. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地震を被った建物に対し、点検作業が必要な部位を合理的に特定することが可能な地震を被った建物の点検支援方法および点検支援システムに関する。   The present invention relates to an inspection support method and an inspection support system for an earthquake-affected building that can reasonably specify a site that requires an inspection operation for an earthquake-affected building.

建物が地震を被った場合、補修の必要性の有無を確認するために、現地で建物の損傷状況の点検作業が行われる。この点検作業を、すべての建物に対して実施することは容易でなく、各建物それぞれについて、この点検作業の要否を簡便に判断することができれば効率的である。例えば特許文献1は、建物内に設置された地震監視装置が地震計を備え、地震計は地震の発生を検出して震度を算出し、地震監視装置は、算出された震度が所定値以上であるとき、震度を携帯電話に報知するマイコンを備えることを開示していて、これを利用することで、各建物に作用した地震に関する情報を取得することが可能で、その地震情報に基づいて点検作業が必要な建物と必要でない建物とを区別することができる。   When a building suffers an earthquake, an inspection of the damage status of the building is performed on site to confirm whether or not repairs are necessary. It is not easy to carry out this inspection work for all buildings, and it is efficient if the necessity of this inspection work can be easily determined for each building. For example, in Patent Document 1, an earthquake monitoring device installed in a building includes a seismometer, the seismometer detects the occurrence of an earthquake and calculates a seismic intensity, and the seismic monitoring device has a calculated seismic intensity greater than or equal to a predetermined value. In some cases, it is disclosed that a microcomputer is provided to notify the mobile phone of the seismic intensity, and by using this, it is possible to obtain information on earthquakes that acted on each building, and check based on the earthquake information It is possible to distinguish between buildings that require work and buildings that do not.

また、建物の損傷状況を知ることができれば、それに応じた点検作業計画を立案することができて便利であり、例えば特許文献2は、既存建物の地震に対する被害率および被害額を予測するにあたって、評価対象建物の構造体に関する耐震診断結果である構造耐震指標を入力し、その入力された構造耐震指標をもとに、あらかじめ過去に起きた地震の被害データから算定された破壊確率算出条件を用いて、地震入力レベルに応じた破壊確率を算出し、算出された破壊確率に基づき、評価対象建物の被害予測を行う、すなわち既往の震害結果のデータ分析をもとに、構造耐震指標から建物の被害予測を行うようにしていて、この被害予測を建物自体の損傷状況の推定に利用することも可能である。
特開2003−294849号公報 特開2003−132296号公報
In addition, if it is possible to know the damage status of the building, it is convenient to be able to devise an inspection work plan according to it, and for example, Patent Document 2 predicts the damage rate and damage amount for an existing building earthquake. Enter the structural seismic index, which is the seismic diagnosis result for the structure of the building to be evaluated, and use the failure probability calculation condition calculated from damage data of earthquakes that occurred in the past based on the input structural seismic index. The failure probability is calculated according to the earthquake input level, and the damage is predicted for the building to be evaluated based on the calculated failure probability, that is, the building is calculated from the structural earthquake resistance index based on the data analysis of the past earthquake damage results. It is also possible to use this damage prediction to estimate the damage status of the building itself.
JP 2003-294849 A JP 2003-132296 A

ところで、各建物に対して取得された地震情報や算出された被害予測を利用して、点検作業が必要な建物を特定できかつまた損傷状況を予測できたとしても、さらに以下のような課題があった。すなわち、建物の損傷状況の点検作業では具体的には、地震を被った建物の全体に対して、どのような箇所が損傷を受けているかという、個々の損傷部位を探し出しての特定と、これら各損傷部位がどの程度にまで損傷を受けているのかという、損傷程度を計測するなどしての特定とを行う必要があって、そのために大変な労力と時間を要するという課題があった。   By the way, even if the earthquake information acquired for each building and the calculated damage prediction can be used to identify the building that needs to be inspected and the damage situation can be predicted, the following problems will still arise. there were. In other words, in the inspection work on the damage status of buildings, specifically, it is necessary to identify and identify individual damaged parts, such as what kind of parts are damaged with respect to the entire building that has suffered an earthquake. There is a problem that it is necessary to specify to what extent each damaged part is damaged, for example, by measuring the degree of damage, which requires a lot of labor and time.

特に、地震によって建物が受ける損傷は、建物の振動応答特性と緊密な因果関係があり、いかなる周期特性で、どのようなエネルギの地震波が建物に作用したかによって、損傷部位や損傷程度は異なり、従って過去の地震データなどを用いても、これら損傷部位や損傷程度を的確に推定することは困難であって、このため、上述したように建物の特定や被害予測が可能であったとしても、点検作業を軽減することはできなかった。   In particular, damage to buildings caused by earthquakes has a close causal relationship with the vibration response characteristics of buildings. Depending on what periodic characteristics and what kind of energy seismic waves act on the buildings, the damage site and damage level differ, Therefore, even using past earthquake data, it is difficult to accurately estimate these damaged parts and extent of damage. For this reason, even if building identification and damage prediction are possible as described above, Inspection work could not be reduced.

本発明は上記従来の課題に鑑みて創案されたものであって、地震を被った建物に対し、点検作業が必要な部位を合理的に特定することが可能な地震を被った建物の点検支援方法および点検支援システムを提供することを目的とする。   The present invention was devised in view of the above-described conventional problems, and for earthquake-damaged buildings, it is possible to rationally specify parts that require inspection work. An object is to provide a method and an inspection support system.

本発明にかかる地震を被った建物の点検支援方法は、監視対象建物を構成する各種構成部材の部材データから構築される該監視対象建物の構造データおよび該監視対象建物の地盤データに基づき、演算装置を用いて、監視対象建物振動応答解析モデルを作成する一方で、上記監視対象建物に作用する地震を観測して観測値を上記演算装置に出力する地震計を設け、次いで、上記演算装置に、上記地震計から入力された上記観測値が点検作業を要すると推定される予め設定した設定値以上か否かを比較させ、次いで、上記演算装置に、上記観測値が上記設定値以上である場合には、上記監視対象建物振動応答解析モデルに対し該観測値を用いて、上記監視対象建物の振動応答解析を実行させ、その後、上記演算装置に、上記振動応答解析結果から、上記監視対象建物の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位として特定させることを特徴とする。   An inspection support method for a building subjected to an earthquake according to the present invention is based on the structure data of the monitored building constructed from the member data of various components constituting the monitored building and the ground data of the monitored building. While creating a monitoring target building vibration response analysis model using a device, a seismometer is provided for observing an earthquake acting on the monitored building and outputting the observed value to the arithmetic device. The observation value input from the seismometer is compared with a preset set value that is estimated to require inspection work, and then the calculation device has the observed value equal to or greater than the set value. In such a case, the observed response is used for the monitored building vibration response analysis model, and the vibration response analysis of the monitored building is executed. , Of each portion of the monitoring target building, characterized thereby identified as inspections required site area to be estimated relatively damage is large.

前記演算装置は、推定される損傷の大きさに従って順位を付けて前記点検必要部位を特定することを特徴とする。   The computing device is characterized in that the site requiring inspection is specified by ranking according to the estimated magnitude of damage.

前記演算装置は、推定される損傷の大きさが大きい方から予め設定した個数だけ、前記点検必要部位を特定することを特徴とする。   The arithmetic unit is characterized in that the inspection-required parts are identified by a preset number from the larger estimated damage.

前記演算装置は、予め設定した損傷設定値よりも損傷が大きいと推定される部位を前記点検必要部位として特定することを特徴とする。   The arithmetic unit is characterized in that a part that is estimated to be damaged more than a preset damage setting value is specified as the inspection-required part.

前記演算装置には、鉄筋コンクリート部材の変形に関し、前記部材データから予め算定される前記構成部材の降伏時の変形量θ1と、前記振動応答解析結果から得られた該構成部材の実変形量θ2との比(θ2/θ1)に対して、前記損傷設定値が設定されることを特徴とする。   Regarding the deformation of the reinforced concrete member, the arithmetic device includes a deformation amount θ1 at the time of yielding of the component member calculated in advance from the member data, and an actual deformation amount θ2 of the component member obtained from the vibration response analysis result. The damage set value is set with respect to the ratio (θ2 / θ1).

前記演算装置には、鉄筋コンクリート部材のひび割れに関し、前記部材データから予め算定される、補修が必要なひび割れが発生する前記構成部材の変形量に対して、前記損傷設定値が設定されることを特徴とする。   In the arithmetic unit, the damage set value is set with respect to the deformation amount of the component member that is preliminarily calculated from the member data and has a crack that needs repair, with respect to the crack of the reinforced concrete member. And

本発明にかかる地震を被った建物の点検支援システムは、監視対象建物に作用する地震を観測して観測値を出力する地震計と、該地震計に接続され、上記監視対象建物を構成する各種構成部材の部材データから構築される該監視対象建物の構造データおよび該監視対象建物の地盤データに基づき、監視対象建物振動応答解析モデルの作成に用いられる一方で、上記地震計から入力される上記観測値が点検作業を要すると推定される予め設定した設定値以上か否かを比較し、該観測値が該設定値以上である場合には、該監視対象建物振動応答解析モデルに対し該観測値を用いて、該監視対象建物の振動応答解析を実行し、該振動応答解析結果から、該監視対象建物の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位として特定する演算装置とを備えたことを特徴とする。   An inspection support system for a building that has suffered an earthquake according to the present invention includes a seismometer that observes an earthquake acting on a monitored building and outputs an observation value, and a variety of devices that are connected to the seismometer and constitute the monitored building. Based on the structural data of the monitoring target building constructed from the component data of the constituent members and the ground data of the monitoring target building, it is used to create a monitoring target building vibration response analysis model, while being input from the seismometer It is compared whether or not the observed value is greater than or equal to a preset set value estimated to require inspection work. If the observed value is greater than or equal to the set value, the observed response to the monitored building vibration response analysis model is compared. Using the value, the vibration response analysis of the monitoring target building is executed, and from the vibration response analysis result, a part estimated to be relatively damaged among the parts of the monitoring target building Characterized in that a constant computing device.

前記地震計は、複数の前記監視対象建物それぞれに対して備えられるとともに、前記演算装置は中央監視センターに設置され、各監視対象建物の前記監視対象建物振動応答解析モデルの作成に用いられ、各地震計から入力される前記観測値と各監視対象建物の前記設定値とを比較し、該観測値が該設定値以上である各監視対象建物の前記振動応答解析を実行して各監視対象建物に対し前記点検必要部位を特定することを特徴とする。   The seismometer is provided for each of the plurality of monitored buildings, and the arithmetic unit is installed in a central monitoring center, and is used to create the monitored building vibration response analysis model of each monitored building, The observed value input from the seismometer is compared with the set value of each monitored building, and the vibration response analysis of each monitored building whose observed value is equal to or greater than the set value is executed to each monitored building The inspection-required part is specified.

本発明にかかる地震を被った建物の点検支援方法および点検支援システムにあっては、地震を被った建物に対し、点検作業が必要な部位を合理的に特定することができ、適切に点検作業を支援することができる。   In the inspection support method and the inspection support system for a building that has suffered an earthquake according to the present invention, it is possible to rationally specify a part that needs to be inspected for a building that has suffered an earthquake, and to appropriately perform the inspection work. Can help.

以下に、本発明にかかる地震を被った建物の点検支援方法および点検支援システムの好適な一実施形態を、添付図面を参照して詳細に説明する。本実施形態にかかる地震を被った建物の点検支援システムは基本的には、図1に示すように、監視対象建物1に作用する地震を観測して観測値を出力する地震計2と、地震計2に接続され、監視対象建物1を構成する各種構成部材の部材データから構築される監視対象建物1の構造データおよび監視対象建物1の地盤データに基づき、監視対象建物振動応答解析モデルの作成に用いられる一方で、地震計2から入力される観測値が点検作業を要すると推定される予め設定した設定値以上か否かを比較し、観測値が設定値以上である場合には、監視対象建物振動応答解析モデルに対し観測値を用いて、監視対象建物1の振動応答解析を実行し、振動応答解析結果から、監視対象建物1の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位rとして特定する演算装置3とを備えて構成される。   Hereinafter, a preferred embodiment of an inspection support method and an inspection support system for a building subjected to an earthquake according to the present invention will be described in detail with reference to the accompanying drawings. As shown in FIG. 1, an inspection support system for a building that has suffered an earthquake according to the present embodiment basically includes a seismometer 2 that observes an earthquake acting on a monitored building 1 and outputs an observed value, and an earthquake Based on the structural data of the monitoring target building 1 and the ground data of the monitoring target building 1 that are connected to the total 2 and constructed from the member data of various components constituting the monitoring target building 1 On the other hand, the observation value input from the seismometer 2 is compared with a preset set value that is estimated to require inspection work. If the observed value is greater than the set value, monitoring is performed. Using the observed values for the target building vibration response analysis model, the vibration response analysis of the monitored building 1 is executed, and it is estimated from the vibration response analysis results that each part of the monitored building 1 is relatively damaged. The part to be It constructed an arithmetic unit 3 for identifying a test requiring portion r.

複数の監視対象建物1を対象として点検支援システムを構成する場合には、地震計2は、複数の監視対象建物1それぞれに対して備えられるとともに、演算装置3は中央監視センター4に設置され、各監視対象建物1の監視対象建物振動応答解析モデルの作成に用いられ、各地震計2から入力される観測値と各監視対象建物1の設定値とを比較し、観測値が設定値以上である各監視対象建物1の振動応答解析を実行して各監視対象建物1に対し点検必要部位rを特定するようになっている。   When the inspection support system is configured for a plurality of monitored buildings 1, the seismometer 2 is provided for each of the plurality of monitored buildings 1, and the arithmetic device 3 is installed in the central monitoring center 4, It is used to create a monitored building vibration response analysis model for each monitored building 1 and compares the observed value input from each seismometer 2 with the set value of each monitored building 1, and the observed value is greater than or equal to the set value The vibration response analysis of each monitoring target building 1 is executed, and the inspection required part r is specified for each monitoring target building 1.

監視対象となる各種様々な建物1は通常、柱や梁、床、壁などの各種構成部材から構成されている。これら構成部材は、長さ寸法、断面寸法などの諸元や、材質、構造などからなる部材データによって強度などが算定される。そしてこのような部材データそれぞれに対し、監視対象建物1における各構成部材の取り付け位置などを特定することで、監視対象建物1の構造データが構築される。この構造データを構造計算用プログラムや後述する振動応答解析用プログラムなどに読み込ませれば、一般周知のように、適宜に作用外力のデータを入力することで、監視対象建物1のあらゆる部位、具体的にはすべての構成部材それぞれについて、当該作用外力によって生じ得る応力値および変形値が算定される。他方、監視対象建物1の地盤データは、ボーリング調査などによって取得される。   Various kinds of buildings 1 to be monitored are usually composed of various constituent members such as columns, beams, floors, and walls. The strength and the like of these constituent members are calculated from member data including specifications such as length dimensions and cross-sectional dimensions, materials, and structures. And the structural data of the monitoring object building 1 is constructed | assembled by specifying the attachment position etc. of each structural member in the monitoring object building 1 with respect to each such member data. If this structural data is read into a structural calculation program or a vibration response analysis program, which will be described later, by inputting appropriate external force data as is generally known, any part of the building 1 to be monitored, concretely For each of the constituent members, the stress value and the deformation value that can be generated by the applied external force are calculated. On the other hand, the ground data of the monitoring target building 1 is acquired by a boring survey or the like.

他方、地震計2は、実際に監視対象建物1に作用した地震を観測して観測値を出力するために、監視対象建物1が構築されている地盤、また必要に応じて、当該監視対象建物1内に設置される。観測値は、地震の波形や加速度、震度など、地震の強度に関する各種データで構成される。地震計2は、有線もしくは無線通信回線網を介して、監視対象建物1から遠隔な場所に設けられた中央監視センター4に設置された演算装置3と接続され、演算装置3には、地震計2から観測値が入力される。   On the other hand, the seismometer 2 observes the earthquake actually acting on the monitored building 1 and outputs the observed value, so that the ground on which the monitored building 1 is constructed and, if necessary, the monitored building 1 is installed. The observed values are composed of various data relating to the intensity of the earthquake, such as the earthquake waveform, acceleration, and seismic intensity. The seismometer 2 is connected to a computing device 3 installed in a central monitoring center 4 provided at a location remote from the monitored building 1 via a wired or wireless communication line network. The observation value is input from 2.

この演算装置3には、キーボートやモニタ、プリンタなどの一般的構成でなる入出力装置が備えられるとともに、また、周知の振動応答解析用プログラムやその他各種のプログラムが実行可能に搭載される。そして演算装置3は、入力装置から入力される上記監視対象建物1の構造データおよび地盤データを振動応答解析用プログラムに読み込み、これにより監視対象建物1の振動応答解析モデルを作成する機能を有する。   The arithmetic device 3 is provided with an input / output device having a general configuration such as a keyboard, a monitor, and a printer, and is also equipped with a known vibration response analysis program and other various programs. The arithmetic device 3 has a function of reading the structural data and ground data of the monitoring target building 1 input from the input device into a vibration response analysis program, thereby creating a vibration response analysis model of the monitoring target building 1.

また演算装置3は、地震計2から入力された観測値が、点検作業を要すると推定される予め設定された設定値以上か否かを比較する機能を有する。設定値について説明すると、発生したすべての地震に対して、後述する振動応答解析を実行してもよいが、このような取り扱いは非効率的であるため、監視対象建物1が相当の損傷を受ける可能性があって、点検作業が必要になると推定される地震のみを対象として振動応答解析を実行させるために、当該設定値が設定される。この設定値は、地震計2から入力される地震データと比較可能な、例えば地震震度や地震加速度を対象として、任意にかつ変更可能に演算装置3に設定される。   The arithmetic device 3 has a function of comparing whether or not the observation value input from the seismometer 2 is equal to or higher than a preset set value estimated to require inspection work. Explaining the set values, the vibration response analysis described later may be executed for all the earthquakes that occurred. However, since such handling is inefficient, the monitored building 1 is considerably damaged. The set value is set in order to execute the vibration response analysis only for an earthquake that is likely to require inspection work. This set value is set in the arithmetic unit 3 so that it can be compared with the seismic data input from the seismometer 2, for example, seismic intensity and acceleration, and can be changed arbitrarily.

さらに演算装置3は、地震計2で観測された地震の観測値を用いて、振動応答解析用プログラムにより、監視対象建物振動応答解析モデルに対し、監視対象建物1の振動応答解析を実行し、振動応答解析結果を算出し、また必要に応じて出力する機能を有する。振動応答解析結果は、監視対象建物1のあらゆる部位、すなわち監視対象建物1における取り付け位置などが特定された各種構成部材に対して算定された変形量や応力値などで構成される。   Further, the arithmetic device 3 executes the vibration response analysis of the monitored building 1 with respect to the monitored building vibration response analysis model by the vibration response analysis program using the observed value of the earthquake observed by the seismometer 2, It has a function of calculating the vibration response analysis result and outputting it if necessary. The vibration response analysis result is composed of deformation amounts and stress values calculated for various components in which every part of the monitoring target building 1, that is, the mounting position in the monitoring target building 1 is specified.

一般に建物は固有の振動系を構成していて、図2に示すように異なる地震波が入力されると、異なる応答加速度が観測されるとともに、異なる応答層間変位が観測され、従って、建物の各部位、具体的には各構成部材は、異なる応力値を示す。従って、点検作業を実施すべき監視対象建物1の損傷部位や損傷程度を的確に推定するための応力値を、過去の地震データや擬似的な地震データで算定することは不適当であり、そこで本実施形態にあっては、監視対象建物1に作用した地震を観測した地震計2の実際の観測値を用いるようにしていて、この観測値を用いて当該監視対象建物振動応答解析モデルに対し、振動応答解析が実行されて監視対象建物1の各部位の応力値が算定されるようにしている。   Generally, a building constitutes a unique vibration system. When different seismic waves are input as shown in FIG. 2, different response accelerations are observed and different response interlayer displacements are observed. Specifically, each constituent member shows a different stress value. Therefore, it is inappropriate to calculate the stress value for accurately estimating the damaged part and damage level of the monitored building 1 to be inspected based on past earthquake data and pseudo earthquake data. In the present embodiment, the actual observation value of the seismometer 2 that observed the earthquake acting on the monitored building 1 is used, and the observed vibration value analysis model is used for the monitored building vibration response analysis model. Then, vibration response analysis is executed to calculate the stress value of each part of the monitoring target building 1.

また、各種構成部材についても、長さ寸法、断面寸法などの諸元や、材質、構造、さらには取り付け位置に応じて、図3に示すように異なる荷重−変形曲線となり、ひび割れ発生荷重や鉄筋降伏荷重は異なる。本実施形態にあっては、このような事情を考慮して、監視対象建物1を構成する各種構成部材の部材データで構築される構造データに基づいて振動応答解析モデルを作成するようにし、当該振動応答解析モデルに対して振動応答解析が実行されて監視対象建物1の各部位の応力値が算定されるようにしている。そしてさらに演算装置3は、算定された応力値の大きさを逐一比較し、監視対象建物1の各部位のうち、算定された応力値が大きな部位を、相対的に損傷が大きいと推定される部位として抽出して、当該部位を点検必要部位rとして特定して出力装置に出力する機能を有する。   In addition, various component members have different load-deformation curves as shown in FIG. 3 depending on the specifications such as length and cross-sectional dimensions, material, structure, and mounting position. Yield load is different. In the present embodiment, in consideration of such circumstances, the vibration response analysis model is created based on the structure data constructed by the member data of various constituent members constituting the monitoring target building 1, Vibration response analysis is performed on the vibration response analysis model to calculate the stress value of each part of the monitored building 1. Further, the arithmetic device 3 compares the calculated stress values one by one, and among the parts of the monitored building 1, the parts having the large calculated stress values are estimated to be relatively damaged. It has a function of extracting as a part, specifying the part as the inspection required part r, and outputting it to the output device.

上述したように、地震波個々の特性や、寸法や材質などの構成部材個々の特性およびそれらの取り付け位置に起因して、異なる地震が作用すると監視対象建物1の各部位の応力状態は異なることとなり、図4に示すように、相対的に損傷が大きいと推定される部位、例えばひび割れや鉄筋の降伏といった損傷が見受けられる降伏ヒンジの発生する順序(図中、1→10の順番で発生する)、言い換えれば、最初に降伏ヒンジが発生する応力値が大きな部位と、その後に降伏ヒンジが発生する応力値が小さな部位とが、振動応答解析結果の応力値の大小から把握される。   As described above, due to the characteristics of individual seismic waves, the characteristics of individual structural members such as dimensions and materials, and their mounting positions, the stress state of each part of the monitored building 1 will be different when different earthquakes act. As shown in FIG. 4, the order of occurrence of yield hinges where damages such as cracks and yielding of reinforcing bars are found (for example, 1 → 10 in the figure) where damage is estimated to be relatively large. In other words, the part where the stress value where the yield hinge first occurs is large and the part where the stress value where the yield hinge occurs after that are small are grasped from the magnitude of the stress value of the vibration response analysis result.

図示例にあっては、相対的に損傷が大きいと推定される部位が、地震波Aでは、右から2番目の柱と1階の梁との接合部周辺であり、また地震波Bでは、1階の梁全体にわたっており、地震波Aと地震波Bとでは異なっている。そして演算装置3は、応力値の大小に基づいて、例えば図示の1→10の部位を、それ以外の部位に対し、必要点検部位rとして特定するようになっている。すなわち、図示例は、演算装置3が、推定される損傷の大きさに従って順位を付けて点検必要部位rを特定した場合である。また演算装置3は、大きさの順位にかかわらず、あるいは順位に従って、推定される損傷の大きさが大きい方から予め設定した個数だけ、例えば図4のように、10個の点検必要部位rを特定するようにしてもよい。   In the illustrated example, the part that is estimated to be relatively damaged is the vicinity of the joint between the second pillar from the right and the first-floor beam in the seismic wave A, and the first floor in the seismic wave B. The seismic wave A and the seismic wave B are different. Then, the arithmetic unit 3 specifies, for example, a 1 → 10 portion shown in the figure as a necessary inspection portion r with respect to other portions based on the magnitude of the stress value. That is, the example of illustration is a case where the arithmetic unit 3 specifies the inspection required part r by ranking according to the estimated magnitude of damage. Further, the arithmetic unit 3 sets ten inspection-required parts r as many as a preset number from the larger damage size estimated, for example, as shown in FIG. 4, regardless of the rank order or according to the rank order. It may be specified.

また、演算装置3の自動演算によって点検必要部位rを特定するにあたり、予め設定した損傷設定値よりも大きいと推定される部位を、点検必要部位rとして特定するようにしてもよい。具体的には、図5に示すように、鉄筋コンクリート部材の変形に関し、各構成部材毎に、部材データから予め算定される構成部材の鉄筋降伏時の変形量θ1と、振動応答解析結果から得られた構成部材の実変形量θ2との比(θ2/θ1:塑性率という)に対して、損傷設定値を設定する。構成部材の損傷は塑性率が大きいことに応じて大きくなることに基づく。例えばこの損傷設定値(塑性率)を1.0に設定し、それ以上であれば、演算装置3に点検必要部位rとして特定させるようにする。   Further, when the inspection-required part r is specified by the automatic calculation of the arithmetic device 3, a part that is estimated to be larger than a preset damage setting value may be specified as the inspection-required part r. Specifically, as shown in FIG. 5, regarding the deformation of the reinforced concrete member, for each component member, the deformation amount θ1 when the component member yields in advance and calculated from the member data and the vibration response analysis result are obtained. The damage set value is set with respect to the ratio (θ2 / θ1: plasticity factor) to the actual deformation amount θ2 of the component member. The damage to the component is based on the fact that the damage increases as the plasticity ratio increases. For example, the damage set value (plasticity factor) is set to 1.0, and if it is more than that, the arithmetic unit 3 is specified as the inspection required part r.

また、図6に示すように、鉄筋コンクリート部材のひび割れに関し、各構成部材毎に、部材データから予め算定される、補修が必要なひび割れが発生する変形量を損傷設定値として設定する。例えば、各構成部材それぞれに対し、0.3mm以上のひび割れが発生する変形量を損傷設定値として設定し、振動応答解析結果、変形量が損傷設定値以上である場合に、演算装置3に点検必要部位rとして特定させるようにする。   Moreover, as shown in FIG. 6, regarding the crack of the reinforced concrete member, the deformation amount that is calculated in advance from the member data and causes a crack that requires repair is set as a damage setting value for each component member. For example, for each component, a deformation amount that causes cracks of 0.3 mm or more is set as a damage setting value, and if the vibration response analysis result shows that the deformation amount is equal to or greater than the damage setting value, the arithmetic device 3 is inspected. The necessary part r is specified.

点検必要部位rの特定については、柱や梁、床、壁などに異なる適当な重み付けをして算定させるようにしてもよい。また、点検必要部位rの特定については、演算装置3による演算実行結果に対し、設計者などが振動応答解析結果を参照して、修正を行うようにしてもよい。   For specifying the inspection-required portion r, calculation may be performed by applying different appropriate weights to columns, beams, floors, walls, and the like. For specifying the inspection-required portion r, the designer or the like may correct the calculation execution result by the calculation device 3 with reference to the vibration response analysis result.

特に演算装置3には、複数の監視対象建物1が対象となる場合には、各監視対象建物1それぞれに作用する地震を個別に観測する各地震計2から複数の観測値が入力され、各監視対象建物1それぞれについて、観測値が設定値以上か否かの比較を実行する。また、演算装置3は、各監視対象建物1それぞれについて作成した振動応答解析モデルに対して個々に振動応答解析を実行し、それに基づいて、各監視対象建物1に対して固有の点検必要部位rを特定する。監視対象建物1のうち、観測値が設定値以上でなかった監視対象建物1については、演算装置3による振動応答解析は実行されず、従ってまた必要点検部位rの特定もなされることはない。   In particular, when a plurality of monitored buildings 1 are targeted, the arithmetic unit 3 receives a plurality of observation values from each seismometer 2 that individually observes earthquakes acting on each monitored building 1. For each monitored building 1, a comparison is made as to whether the observed value is equal to or greater than the set value. In addition, the arithmetic device 3 individually performs a vibration response analysis on the vibration response analysis model created for each monitoring target building 1, and based on that, a specific inspection required part r for each monitoring target building 1 Is identified. Among the monitoring target buildings 1, for the monitoring target building 1 whose observed value is not equal to or higher than the set value, the vibration response analysis by the arithmetic device 3 is not executed, and therefore the necessary inspection site r is not specified.

演算装置3については、すべての機能を実行することが可能なものを用いてもよく、また、監視対象建物振動応答解析モデルの作成を実行する機能、地震計2が接続されるとともに設定値が設定されて観測値との比較を実行する機能、観測値を用いて振動応答解析を実行して必要点検部位rを特定する機能などの各機能毎に、別々の演算装置3を用いるようにしてもよい。   The computing device 3 may be one capable of executing all functions, and also has a function for creating a monitoring target building vibration response analysis model, the seismometer 2 being connected, and a set value. A separate arithmetic unit 3 is used for each function, such as a function that is set and executes comparison with the observed value, and a function that performs vibration response analysis using the observed value and identifies the necessary inspection site r. Also good.

次に、このような地震を被った建物の点検支援システムを用いた点検支援方法を、図7を用いて説明する。まず、監視対象である建物1の設計を行う(S1)。次いで、設計された監視対象建物1を構成する各種構成部材の部材データから構築される監視対象建物1の構造データおよび監視対象建物1の地盤データに基づき、演算装置3を用いて、監視対象建物振動応答解析モデルを作成する(S2)。他方、監視対象となる建物1を築造し(S3)、監視対象建物1の近傍などに、当該監視対象建物1に作用した地震を観測して観測値を演算装置3に出力する地震計2を設置する(S4)。その後、地震計2は、常時継続的に地震の計測を行い(S5)、計測された観測値は、これを演算装置3へ入力するために、地震計2から中央監視センター4に転送される(S6)。   Next, an inspection support method using an inspection support system for a building that has suffered such an earthquake will be described with reference to FIG. First, the building 1 to be monitored is designed (S1). Next, based on the structural data of the monitoring target building 1 and the ground data of the monitoring target building 1 constructed from the member data of the various components constituting the designed monitoring target building 1, the monitoring target building is calculated using the arithmetic device 3. A vibration response analysis model is created (S2). On the other hand, the building 1 to be monitored is built (S3), and a seismometer 2 that observes an earthquake acting on the monitored building 1 in the vicinity of the monitored building 1 and outputs the observation value to the arithmetic unit 3 is provided. Install (S4). Thereafter, the seismometer 2 continuously measures earthquakes (S5), and the observed values are transferred from the seismometer 2 to the central monitoring center 4 in order to input them to the arithmetic unit 3. (S6).

中央監視センター4の演算装置3は、地震計2から入力された観測値が設定値以上か否かの比較処理を実行する(S7)。観測値が設定値よりも小さい場合には、S5に戻って、地震の計測が継続される。観測値が設定値以上である場合には、演算装置3に、監視対象建物振動応答解析モデルに対し観測値を用いて、監視対象建物1の振動応答解析を実行させる(S8)。次いで、演算装置3に、振動応答解析結果から、監視対象建物1の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位rとして特定する処理を実行させる(S9)。このようにして点検必要部位rが特定されたならば、現地にて監視対象建物1に対し、補修が必要か否かを判定する点検作業を実施する(S10)。   The arithmetic device 3 of the central monitoring center 4 performs a comparison process to determine whether or not the observation value input from the seismometer 2 is equal to or greater than a set value (S7). When the observed value is smaller than the set value, the process returns to S5 and the earthquake measurement is continued. If the observed value is greater than or equal to the set value, the arithmetic device 3 is caused to execute vibration response analysis of the monitored building 1 using the observed value for the monitored building vibration response analysis model (S8). Next, the processing unit 3 is caused to execute a process of identifying a part that is estimated to be relatively large as a part to be inspected r from each part of the monitored building 1 based on the vibration response analysis result (S9). If the inspection-required part r is specified in this way, an inspection operation is performed to determine whether or not repair is necessary for the monitored building 1 at the site (S10).

以上説明した本実施形態にかかる地震を被った建物の点検支援システムおよび点検支援方法にあっては、監視対象建物1に作用した実際の地震の観測値を出力する地震計2と、監視対象建物1の振動応答解析モデルを、監視対象建物1固有のデータ、すなわち当該監視対象建物1を構成する各種構成部材の部材データから構築される構造データおよび監視対象建物1の地盤データに基づいて作成するのに用いられ、当該監視対象建物振動応答解析モデルに対し観測値を用いて振動応答解析を実行し、振動応答解析結果から、監視対象建物1の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位rとして特定する演算装置3とを備えて、実際の観測値から実際の監視対象建物1の構造データ等を利用して損傷部位と損傷程度とを算出処理するようにしたので、監視対象建物1の各部位レベルで具体的に損傷部位と損傷程度とを推定させ、かつ特に相対的に損傷が大きいと推定される部位を合理的に特定させることができるので、損傷部位も損傷程度も不明な状態で監視対象建物全体を点検するのに比べ、特定された点検必要部位rに対して点検を行えばよく、点検作業工数を軽減することができて、地震を被った建物に対する点検作業を適切に支援することができる。   In the inspection support system and the inspection support method for an earthquake-affected building according to the present embodiment described above, the seismometer 2 that outputs the observed value of the actual earthquake that has acted on the monitored building 1, and the monitored building 1 vibration response analysis model is created based on data unique to the monitoring target building 1, that is, structural data constructed from member data of various components constituting the monitoring target building 1 and ground data of the monitoring target building 1. When the vibration response analysis is performed on the monitoring target building vibration response analysis model using the observation value and the damage is relatively large among the parts of the monitoring target building 1 from the vibration response analysis result. And an arithmetic unit 3 that identifies the estimated part as the inspection-required part r, and uses the structural data of the actual monitoring target building 1 from the actual observation value and the damage part and the degree of damage. Since the calculation processing is performed, the damage part and the damage level are specifically estimated at each part level of the monitored building 1, and the part that is estimated to be relatively damaged is rationally specified. Therefore, compared to inspecting the entire monitored building in a state where the damaged part and the degree of damage are unknown, it is only necessary to inspect the specified inspection required part r, thereby reducing the inspection work man-hours. It is possible to appropriately support the inspection work for the building that suffered the earthquake.

また、点検作業を要すると推定される設定値を観測値と比較させて、振動応答解析を実行させるか否かを制御するようにしたので、演算装置3による演算処理を軽減することができる。また、点検必要部位rを特定させるにあたり、推定される損傷の大きさに従って順位を付けたり、推定される損傷の大きさが大きい方から予め設定した個数だけ特定させたり、また予め設定した損傷設定値よりも損傷が大きいと推定される部位を特定させるようにしたので、点検必要部位rが必要以上に数多くなることを防止でき、点検作業を効率化することができる。   Moreover, since the setting value estimated to require the inspection work is compared with the observed value to control whether or not the vibration response analysis is executed, the arithmetic processing by the arithmetic device 3 can be reduced. Further, in order to specify the inspection-required portion r, the rank is given according to the estimated damage size, the preset number is specified from the larger estimated damage size, or the preset damage setting is set. Since the part estimated to be damaged more than the value is specified, it is possible to prevent the inspection required part r from being increased more than necessary, and the inspection work can be made efficient.

損傷設定値として、塑性率やひび割れを考慮した変形量を用いるようにしたので、合理的に点検必要部位rを特定することができる。また、各監視対象建物1それぞれに対応させて地震計2を設置し、これら地震計2を演算装置3に接続して構成することで、各監視対象建物1の点検必要部位rを一括して特定することを可能にして、点検作業を支援することができる。   Since the amount of deformation taking into account the plasticity rate and cracks is used as the damage setting value, it is possible to rationally specify the site r required for inspection. In addition, by installing seismometers 2 corresponding to each monitored building 1 and connecting these seismometers 2 to the arithmetic unit 3, the inspection-required parts r of each monitored building 1 are collectively collected. It is possible to identify and support inspection work.

本発明にかかる地震を被った建物の点検支援システムの好適な一実施形態を示す概略構成図である。It is a schematic block diagram which shows suitable one Embodiment of the inspection assistance system of the building which suffered the earthquake concerning this invention. 異なる地震波が作用した場合における建物の応答加速度および応答層間変位の相違を説明する説明図である。It is explanatory drawing explaining the difference of the response acceleration of a building in case a different seismic wave acts, and a response interlayer displacement. 異なる性質の構成部材の荷重−変形曲線の相違を説明する説明図である。It is explanatory drawing explaining the difference of the load-deformation curve of the structural member of a different property. 図1に示した点検支援システムによって必要点検部位が特定された状態を説明する説明図である。It is explanatory drawing explaining the state by which the required inspection site | part was specified by the inspection assistance system shown in FIG. 図1に示した点検支援システムで、鉄筋コンクリート部材の変形に関して設定される損傷設定値を説明する説明図である。It is explanatory drawing explaining the damage setting value set regarding the deformation | transformation of a reinforced concrete member by the inspection assistance system shown in FIG. 図1に示した点検支援システムで、鉄筋コンクリート部材のひび割れに関して設定される損傷設定値を説明する説明図である。It is explanatory drawing explaining the damage setting value set regarding the crack of a reinforced concrete member by the inspection assistance system shown in FIG. 本発明にかかる地震を被った建物の点検支援方法の好適な一実施形態を示すフローチャート図である。It is a flowchart figure which shows suitable one Embodiment of the inspection assistance method of the building which suffered the earthquake concerning this invention.

符号の説明Explanation of symbols

1 監視対象建物
2 地震計
3 演算装置
4 中央監視センター
r 点検必要部位
1 Building to be monitored 2 Seismometer 3 Computing device 4 Central monitoring center r Inspection required part

Claims (8)

監視対象建物を構成する各種構成部材の部材データから構築される該監視対象建物の構造データおよび該監視対象建物の地盤データに基づき、演算装置を用いて、監視対象建物振動応答解析モデルを作成する一方で、
上記監視対象建物に作用する地震を観測して観測値を上記演算装置に出力する地震計を設け、
次いで、上記演算装置に、上記地震計から入力された上記観測値が点検作業を要すると推定される予め設定した設定値以上か否かを比較させ、
次いで、上記演算装置に、上記観測値が上記設定値以上である場合には、上記監視対象建物振動応答解析モデルに対し該観測値を用いて、上記監視対象建物の振動応答解析を実行させ、
その後、上記演算装置に、上記振動応答解析結果から、上記監視対象建物の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位として特定させることを特徴とする地震を被った建物の点検支援方法。
A monitoring target building vibration response analysis model is created using an arithmetic unit based on the structural data of the monitoring target building and the ground data of the monitoring target building which are constructed from the member data of various components constituting the monitoring target building On the other hand,
Establish a seismometer that observes earthquakes acting on the monitored buildings and outputs the observed values to the arithmetic unit,
Next, the arithmetic unit is made to compare whether or not the observation value input from the seismometer is equal to or higher than a preset set value estimated to require inspection work,
Next, when the observed value is equal to or more than the set value, the arithmetic unit is caused to execute the vibration response analysis of the monitored building using the observed value for the monitored building vibration response analysis model,
Thereafter, the computing device is subjected to an earthquake characterized in that, from the result of the vibration response analysis, among the parts of the monitored building, a part that is estimated to be relatively damaged is identified as a part requiring inspection. Checking method for damaged buildings.
前記演算装置は、推定される損傷の大きさに従って順位を付けて前記点検必要部位を特定することを特徴とする請求項1に記載の地震を被った建物の点検支援方法。   The method according to claim 1, wherein the computing device identifies the site requiring inspection by ranking in accordance with an estimated magnitude of damage. 前記演算装置は、推定される損傷の大きさが大きい方から予め設定した個数だけ、前記点検必要部位を特定することを特徴とする請求項1または2に記載の地震を被った建物の点検支援方法。   3. The inspection support for an earthquake-damaged building according to claim 1 or 2, wherein the arithmetic unit specifies the inspection-required part by a preset number from the larger estimated damage magnitude. Method. 前記演算装置は、予め設定した損傷設定値よりも損傷が大きいと推定される部位を前記点検必要部位として特定することを特徴とする請求項1または2に記載の地震を被った建物の点検支援方法。   The said arithmetic unit specifies the site | part estimated that a damage is larger than the preset damage setting value as said site | part which needs to be inspected, The inspection assistance of the building which received the earthquake of Claim 1 or 2 characterized by the above-mentioned. Method. 前記演算装置には、鉄筋コンクリート部材の変形に関し、前記部材データから予め算定される前記構成部材の降伏時の変形量θ1と、前記振動応答解析結果から得られた該構成部材の実変形量θ2との比(θ2/θ1)に対して、前記損傷設定値が設定されることを特徴とする請求項4に記載の地震を被った建物の点検支援方法。   Regarding the deformation of the reinforced concrete member, the arithmetic device includes a deformation amount θ1 at the time of yielding of the component member calculated in advance from the member data, and an actual deformation amount θ2 of the component member obtained from the vibration response analysis result. 5. The inspection support method for an earthquake-damaged building according to claim 4, wherein the damage set value is set with respect to the ratio (θ2 / θ1). 前記演算装置には、鉄筋コンクリート部材のひび割れに関し、前記部材データから予め算定される、補修が必要なひび割れが発生する前記構成部材の変形量に対して、前記損傷設定値が設定されることを特徴とする請求項4または5に記載の地震を被った建物の点検支援方法。   In the arithmetic unit, the damage set value is set with respect to the deformation amount of the component member that is preliminarily calculated from the member data and has a crack that needs repair, with respect to the crack of the reinforced concrete member. The inspection support method of the building which received the earthquake of Claim 4 or 5. 監視対象建物に作用する地震を観測して観測値を出力する地震計と、
該地震計に接続され、上記監視対象建物を構成する各種構成部材の部材データから構築される該監視対象建物の構造データおよび該監視対象建物の地盤データに基づき、監視対象建物振動応答解析モデルの作成に用いられる一方で、上記地震計から入力される上記観測値が点検作業を要すると推定される予め設定した設定値以上か否かを比較し、該観測値が該設定値以上である場合には、該監視対象建物振動応答解析モデルに対し該観測値を用いて、該監視対象建物の振動応答解析を実行し、該振動応答解析結果から、該監視対象建物の各部位のうち、相対的に損傷が大きいと推定される部位を点検必要部位として特定する演算装置とを備えたことを特徴とする地震を被った建物の点検支援システム。
A seismometer that observes earthquakes acting on monitored buildings and outputs observations;
Based on the structural data of the monitored building and the ground data of the monitored building that are connected to the seismometer and are constructed from the member data of the various components constituting the monitored building, When the observed value input from the seismometer is compared to a preset value that is estimated to require inspection work, and is compared to the preset value. The vibration response analysis of the monitoring target building is executed using the observed value for the monitoring target building vibration response analysis model. An inspection support system for a building that has suffered an earthquake, comprising: an arithmetic unit that identifies a part that is estimated to be highly damaged as a part requiring inspection.
前記地震計は、複数の前記監視対象建物それぞれに対して備えられるとともに、
前記演算装置は中央監視センターに設置され、各監視対象建物の前記監視対象建物振動応答解析モデルの作成に用いられ、各地震計から入力される前記観測値と各監視対象建物の前記設定値とを比較し、該観測値が該設定値以上である各監視対象建物の前記振動応答解析を実行して各監視対象建物に対し前記点検必要部位を特定することを特徴とする請求項7に記載の地震を被った建物の点検支援システム。
The seismometer is provided for each of the plurality of monitored buildings,
The arithmetic unit is installed in a central monitoring center and is used to create the monitored building vibration response analysis model for each monitored building, and the observed value input from each seismometer and the set value for each monitored building The said response required part is identified with respect to each monitoring object building by performing the said vibration response analysis of each monitoring object building whose said observed value is more than this setting value, The said inspection site | part is identified. Inspection support system for buildings that suffered earthquakes.
JP2004246012A 2004-08-25 2004-08-25 Inspection support method and inspection support system for building struck by earthquake Pending JP2006064483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246012A JP2006064483A (en) 2004-08-25 2004-08-25 Inspection support method and inspection support system for building struck by earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246012A JP2006064483A (en) 2004-08-25 2004-08-25 Inspection support method and inspection support system for building struck by earthquake

Publications (1)

Publication Number Publication Date
JP2006064483A true JP2006064483A (en) 2006-03-09

Family

ID=36111100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246012A Pending JP2006064483A (en) 2004-08-25 2004-08-25 Inspection support method and inspection support system for building struck by earthquake

Country Status (1)

Country Link
JP (1) JP2006064483A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298704A (en) * 2007-06-04 2008-12-11 Sekisui Chem Co Ltd Damage diagnosis system of building
JP2010144487A (en) * 2008-12-22 2010-07-01 Railway Technical Res Inst Method and system for evaluating level of damage to rc member
JP2010170291A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Building management system
JP2011033448A (en) * 2009-07-31 2011-02-17 Railway Technical Res Inst Early-stage operation resumption support system in earthquake using planar earthquake motion prediction
JP2011111773A (en) * 2009-11-25 2011-06-09 Toyota Home Kk Building and earthquake-resistant element selecting method
JP2014163866A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Diagnostic device and diagnostic method for nonlinear response
JP2016197014A (en) * 2015-04-02 2016-11-24 アズビル株式会社 Building damage intensity estimating system, and method
JP2018009838A (en) * 2016-07-12 2018-01-18 新日鉄住金エンジニアリング株式会社 Building damage presence estimation method
JP2018100494A (en) * 2016-12-19 2018-06-28 株式会社益田建設 Building having earthquake damage evaluation function
JP2019060884A (en) * 2018-11-21 2019-04-18 株式会社Nttファシリティーズ Building earthquake resistance evaluation system and building earthquake resistance evaluation method
JP2019138661A (en) * 2018-02-06 2019-08-22 一般社団法人 レトロフィットジャパン協会 Evaluation method and evaluation system for remaining life of building
JP2019211998A (en) * 2018-06-04 2019-12-12 富士通株式会社 Inspection support program, inspection support method and inspection support device
JP2020101941A (en) * 2018-12-20 2020-07-02 旭化成ホームズ株式会社 Damage level deriving system, damage level deriving device, damage level deriving method, and program
JP2020112445A (en) * 2019-01-11 2020-07-27 株式会社竹中工務店 Earthquake information processing device
JP2023021857A (en) * 2021-08-02 2023-02-14 松本設計ホールディングス株式会社 Earthquake proof safety performance diagnostic system, earthquake proof safety performance diagnostic program and earthquake proof safety performance diagnostic method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298704A (en) * 2007-06-04 2008-12-11 Sekisui Chem Co Ltd Damage diagnosis system of building
JP2010144487A (en) * 2008-12-22 2010-07-01 Railway Technical Res Inst Method and system for evaluating level of damage to rc member
JP2010170291A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Building management system
JP2011033448A (en) * 2009-07-31 2011-02-17 Railway Technical Res Inst Early-stage operation resumption support system in earthquake using planar earthquake motion prediction
JP2011111773A (en) * 2009-11-25 2011-06-09 Toyota Home Kk Building and earthquake-resistant element selecting method
JP2014163866A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Diagnostic device and diagnostic method for nonlinear response
JP2016197014A (en) * 2015-04-02 2016-11-24 アズビル株式会社 Building damage intensity estimating system, and method
JP2018009838A (en) * 2016-07-12 2018-01-18 新日鉄住金エンジニアリング株式会社 Building damage presence estimation method
JP2018100494A (en) * 2016-12-19 2018-06-28 株式会社益田建設 Building having earthquake damage evaluation function
JP2019138661A (en) * 2018-02-06 2019-08-22 一般社団法人 レトロフィットジャパン協会 Evaluation method and evaluation system for remaining life of building
JP6994760B2 (en) 2018-02-06 2022-01-14 一般社団法人 レトロフィットジャパン協会 Evaluation method and evaluation system for the remaining useful life of the building
JP2019211998A (en) * 2018-06-04 2019-12-12 富士通株式会社 Inspection support program, inspection support method and inspection support device
JP2019060884A (en) * 2018-11-21 2019-04-18 株式会社Nttファシリティーズ Building earthquake resistance evaluation system and building earthquake resistance evaluation method
JP2020101941A (en) * 2018-12-20 2020-07-02 旭化成ホームズ株式会社 Damage level deriving system, damage level deriving device, damage level deriving method, and program
JP2020112445A (en) * 2019-01-11 2020-07-27 株式会社竹中工務店 Earthquake information processing device
JP7180946B2 (en) 2019-01-11 2022-11-30 株式会社竹中工務店 Earthquake information processing equipment
JP2023021857A (en) * 2021-08-02 2023-02-14 松本設計ホールディングス株式会社 Earthquake proof safety performance diagnostic system, earthquake proof safety performance diagnostic program and earthquake proof safety performance diagnostic method

Similar Documents

Publication Publication Date Title
JP2006064483A (en) Inspection support method and inspection support system for building struck by earthquake
Moaveni et al. Finite-element model updating for assessment of progressive damage in a 3-story infilled RC frame
Kita et al. Rapid post-earthquake damage localization and quantification in masonry structures through multidimensional non-linear seismic IDA
Lam et al. Dynamic reduction-based structural damage detection of transmission towers: Practical issues and experimental verification
Perera et al. Identification of damage in RC beams using indexes based on local modal stiffness
JP6934434B2 (en) Building evaluation system and building evaluation method
KR101653116B1 (en) Strain estimation system, global and local safety evaluation system, and method for structure through impact hammer test
Hwang et al. Nonmodel-based framework for rapid seismic risk and loss assessment of instrumented steel buildings
Masciotta et al. Damage identification and seismic vulnerability assessment of a historic masonry chimney
Işık et al. Performance based assessment of steel frame structures by different material models
Masciotta et al. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model
Tee et al. Substructural first‐and second‐order model identification for structural damage assessment
Katam et al. A review on structural health monitoring: past to present
KR20110005180A (en) System for structural health monitoring of each construction member, and method for the same
Rajanayagam et al. Evaluation of inter-modular connection behaviour under lateral loads: An experimental and numerical study
Mordini et al. The finite element model updating: a powerful tool for structural health monitoring
Farajian et al. Effects of bolted connections’ properties on natural dynamic characteristics of corner-supported modular steel buildings
Moravej et al. Computation-effective structural performance assessment using Gaussian process-based finite element model updating and reliability analysis
You et al. Rapid probabilistic loss assessment of buildings based on post-earthquake structural deformation conditions
Zhang et al. Integrated system identification and reliability evaluation of stochastic building structures
Amani et al. Identification of changes in the stiffness and damping matrices of linear structures through ambient vibrations
JP4212533B2 (en) Inspection support method and inspection support system for buildings subjected to earthquake
Mahdavi et al. Determination of joint stiffness of a three story steel frame by finite element model updating
KR102692127B1 (en) System and method for predicting impact load
Mendler et al. Detecting changes in boundary conditions based on sensitivity-based statistical tests

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111