JP2011111376A - Method for producing expansion material clinker - Google Patents

Method for producing expansion material clinker Download PDF

Info

Publication number
JP2011111376A
JP2011111376A JP2009271022A JP2009271022A JP2011111376A JP 2011111376 A JP2011111376 A JP 2011111376A JP 2009271022 A JP2009271022 A JP 2009271022A JP 2009271022 A JP2009271022 A JP 2009271022A JP 2011111376 A JP2011111376 A JP 2011111376A
Authority
JP
Japan
Prior art keywords
raw material
expansion
clinker
producing
expansion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009271022A
Other languages
Japanese (ja)
Inventor
Takayuki Higuchi
隆行 樋口
Kazuhide Iwanami
和英 岩波
Taiichiro Mori
泰一郎 森
Hideo Ishida
秀朗 石田
Ryoetsu Yoshino
亮悦 吉野
Yasuhiro Kyogoku
康弘 京極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009271022A priority Critical patent/JP2011111376A/en
Publication of JP2011111376A publication Critical patent/JP2011111376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing expansion material clinker which imparts a prescribed expansion coefficient even when fired at a low temperature, and has a high effect to compensate drying shrinkage strain on and after 7-day material age and a low environmental load. <P>SOLUTION: In a method for producing expansion material clinker containing free lime, a hydraulic compound and anhydrous gypsum by mixing and pulverizing a CaO raw material, an Al<SB>2</SB>O<SB>3</SB>raw material, an SiO<SB>2</SB>raw material and a CaSO<SB>4</SB>raw material and firing the resulting pulverized mixture, (1) a method for producing the expansion material clinker includes: mixing and pulverizing the raw materials, prepared so that the content of SO<SB>3</SB>in the expansion material clinker becomes 10-30 mass%; then press forming the resulting pulverized mixture into granules, and firing the granules at 1,100-1,500°C. (2) In the method for producing the expansion material clinker (1), the ignition loss of the press-formed granules is ≤40 mass%. (3) In the methods for producing the expansion material clinker (1) or (2), the CaO raw material is previously fired at 800-1,600°C before mixing and pulverizing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、土木・建築分野で使用する膨張材クリンカの製造方法に関する。   The present invention relates to a method for producing an expansion material clinker used in the field of civil engineering and construction.

コンクリート用膨張材として、カルシウムサルホアルミネート系膨張材や石灰系膨張材などが知られている。また、少ない添加量で優れた膨張特性を有するコンクリート膨張材や膨張材クリンカの製造方法が提案されている(特許文献1、2、3)。   Calcium sulfoaluminate-based expansion materials and lime-based expansion materials are known as concrete expansion materials. Moreover, the manufacturing method of the concrete expansion | swelling material and expansion | swelling material clinker which have the outstanding expansion | swelling characteristic with the small addition amount is proposed (patent document 1, 2, 3).

特開2002−29797号公報JP 2002-29797 A 特開2008−201603号公報JP 2008-201603 A 特開2008−156187号公報JP 2008-156187 A

従来の膨張材クリンカの製造では、所定の膨張率を確保するために1300〜1500℃の高温で焼成していた。しかし、高温での焼成は多くの燃料を必要とし、CO排出も多く環境負荷が大きいという課題があった。また、従来の膨張材と比べ、材齢7日までに大きく膨張すると共に、材齢7日以降の乾燥収縮ひずみも小さくする収縮補償効果の高い膨張材が求められていた。 In the production of a conventional expansion material clinker, firing was performed at a high temperature of 1300 to 1500 ° C. in order to ensure a predetermined expansion rate. However, sintering at a high temperature requires a lot of fuel, there is a problem in that CO 2 emissions many environmental load is large. Moreover, compared with the conventional expansion | swelling material, the expansion | swelling material with a high shrinkage compensation effect which expand | swells greatly by the age of 7 days and also reduces the drying shrinkage strain after the age of 7 days was calculated | required.

すなわち、本発明は、(1)CaO原料、Al原料、SiO原料、CaSO原料を混合粉砕して焼成し、遊離石灰、水硬性化合物、無水石膏を含有する膨張材クリンカを製造する工程において、前記膨張材クリンカ中のSO含有量が10〜30質量%となるように調合した前記原料を混合粉砕後、加圧して作製した造粒物を1100〜1500℃で焼成する膨張材クリンカの製造方法、(2)加圧造粒物の強熱減量が40質量%以下である(1)の膨張材クリンカの製造方法、(3)混合粉砕前に予めCaO原料を800〜1600℃で焼成しておく(1)又は(2)の膨張材クリンカの製造方法、である。 That is, the present invention produces (1) an expanded material clinker containing free lime, a hydraulic compound, and anhydrous gypsum by mixing and grinding CaO raw material, Al 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material. In the step of expanding, the granulated product prepared by mixing and pulverizing the raw materials prepared so that the SO 3 content in the expansion material clinker is 10 to 30% by mass and then pressurizing is expanded at 1100 to 1500 ° C. (2) A method for producing an expanded material clinker according to (1) in which the loss on ignition of the pressure granulated product is 40% by mass or less, (3) 800 to 1600 CaO raw material in advance before mixing and grinding. It is a manufacturing method of the expansion material clinker of (1) or (2) baked at ° C.

本発明は、低温で焼成しても所定の膨張率を付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高い、環境負荷の小さい膨張材クリンカの製造方法である。   The present invention is a method for producing an expanded material clinker with a low environmental load, which can impart a predetermined expansion rate even when fired at a low temperature, and has a high effect of compensating for drying shrinkage strain after the age of 7 days.

なお、本発明で使用する部、%は、特に規定しない限り質量基準である。また、本発明で云うコンクリートとは、セメントペースト、セメントモルタル、セメントコンクリートを総称するものである。   The parts and% used in the present invention are based on mass unless otherwise specified. The concrete referred to in the present invention is a generic term for cement paste, cement mortar, and cement concrete.

本発明で製造される膨張材クリンカには、遊離石灰、水硬性化合物、無水石膏が含まれる。
遊離石灰とは、通常、生石灰と呼ばれ、f−CaOと表記される。
水硬性化合物とは、3CaO・3Al・CaSOで表されるアウイン、3CaO・SiO(CSと略記)や2CaO・SiO(CSと略記)で表されるカルシウムシリケート、4CaO・Al・Fe(CAFと略記)や6CaO・2Al・Fe(CFと略記)、6CaO・Al・Fe(CAFと略記)で表されるカルシウムアルミノフェライト、2CaO・Fe(CFと略記)等のカルシウムフェライトなどであり、これらのうちの1種または2種以上を含むものであるが、2種以上を含むことがより好ましい。
無水石膏は、CaSOとして表記される。
The expansion material clinker produced in the present invention includes free lime, a hydraulic compound, and anhydrous gypsum.
Free lime is usually called quick lime and is written as f-CaO.
The hydraulic compound, calcium silicate represented by Auin represented by 3CaO · 3Al 2 O 3 · CaSO 4, 3CaO · SiO 2 (C 3 S for short) and 2CaO · SiO 2 (C 2 S for short) , 4CaO · Al 2 O 3 · Fe 2 O 3 (C 4 AF for short) and 6CaO · 2Al 2 O 3 · Fe 2 O 3 (C 6 a 2 F abbreviated), 6CaO · Al 2 O 3 · Fe 2 Calcium aluminoferrite represented by O 3 (abbreviated as C 6 AF), calcium ferrite such as 2CaO · Fe 2 O 3 (abbreviated as C 2 F), etc., including one or more of these Although it is a thing, it is more preferable that 2 or more types are included.
Anhydrous gypsum is denoted as CaSO 4 .

本発明では、膨張材クリンカ中の各鉱物の割合は、膨張材クリンカ100部中、遊離石灰は20〜60部が好ましく、水硬性化合物は10〜40部が好ましく、無水石膏は15〜50部が好ましい。
各鉱物の含有量は、従来一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折法で生成鉱物を確認するとともにデータをリートベルト法にて解析し、鉱物を定量することができる。また、化学成分と粉末X線回折の同定結果に基づいて、鉱物量を計算によって求めることもできる。例えば、遊離石灰、アウイン、CS、CAF、無水石膏が粉末X線回折で検出された場合、Fe含有率からCAF量を求め、残りのAl含有率からアウイン量を求め、残りのSO含有率から無水石膏量を求め、SiO含有率からCS量を求め、残りのCaOを遊離石灰とする。
さらに、膨張材クリンカの化学成分に基づくSO量を10〜30%とすることが好ましい。前記範囲外では原料を加圧造粒しても、低温で焼成した場合、膨張率や材齢7日以降の収縮補償率が小さくなる場合がある。
In the present invention, the proportion of each mineral in the expansion material clinker is preferably 20 to 60 parts of free lime, 10 to 40 parts of hydraulic compound, and 15 to 50 parts of anhydrous gypsum in 100 parts of expansion material clinker. Is preferred.
The content of each mineral can be confirmed by a conventional general analysis method. For example, minerals can be quantified by confirming the generated minerals in a pulverized sample by powder X-ray diffraction and analyzing the data by Rietveld method. Further, based on the identification result of chemical components and powder X-ray diffraction, the amount of minerals can also be obtained by calculation. For example, when free lime, Auin, C 2 S, C 4 AF, and anhydrous gypsum are detected by powder X-ray diffraction, the amount of C 4 AF is determined from the content of Fe 2 O 3 , and the remaining Al 2 O 3 content From the remaining SO 3 content, the anhydrous gypsum amount is determined, the C 2 S amount is determined from the SiO 2 content, and the remaining CaO is defined as free lime.
Furthermore, it is preferable that the amount of SO 3 based on the chemical component of the expansion material clinker is 10 to 30%. Outside the above range, even if the raw material is granulated under pressure, if it is fired at a low temperature, the expansion rate and the shrinkage compensation rate after 7 days of age may be small.

本発明に使用する原料について説明する。
CaO原料としては、石灰石、消石灰、生石灰等が挙げられる。特に低温焼成時の膨張率や収縮補償率の観点から消石灰や生石灰が好ましく、800〜1600℃で焼成された生石灰を原料に用いることがさらに好ましい。
Al原料としては、ボーキサイトや水酸化アルミニウム、水酸化アルミニウムを主体とするアルミ残灰等が挙げられ、特に水酸化アルミニウムやアルミ残灰を用いることが膨張率や収縮補償率の観点から好ましい。
SiO原料としては、珪石等が挙げられる。
CaSO原料としては、二水石膏、半水石膏及び無水石膏等が挙げられ、特に二水石膏を用いることが膨張率や収縮補償率の観点から好ましい。
これら原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物としては、Fe、MgO、TiO、ZrO、MnO、P、NaO、KO、LiO、硫黄、フッ素、塩素等が挙げられる。
The raw material used for this invention is demonstrated.
Examples of the CaO raw material include limestone, slaked lime, and quicklime. In particular, slaked lime and quicklime are preferred from the viewpoint of expansion coefficient and shrinkage compensation rate during low-temperature firing, and it is more preferred to use quicklime calcined at 800 to 1600 ° C. as a raw material.
Examples of the Al 2 O 3 raw material include bauxite, aluminum hydroxide, aluminum residual ash mainly composed of aluminum hydroxide, and the use of aluminum hydroxide or aluminum residual ash is particularly preferred from the viewpoint of expansion rate and shrinkage compensation rate. preferable.
Examples of the SiO 2 raw material include silica.
Examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. In particular, dihydrate gypsum is preferably used from the viewpoint of expansion rate and shrinkage compensation rate.
These raw materials may contain impurities, but this is not a problem as long as the effects of the present invention are not impaired. As the impurity, Fe 2 O 3, MgO, TiO 2, ZrO 2, MnO, P 2 O 5, Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, chlorine and the like.

これら原料を、焼成後に所定の鉱物割合となるように調合し混合粉砕する。混合粉砕の方法は、特に限定されるものではなく、乾式法または湿式法を適用することができ、湿式法の場合は後段で加圧造粒するために脱水処理を施す必要がある。また原料に生石灰を用いる場合は、乾式で行うことが望ましい。
粉砕後の原料粒度は90μm残分で0〜30%程度が好ましく5〜20%程度が好ましい。調合原料を1000℃で加熱した時の強熱減量は、40%以下が好ましく、30%以下がより好ましい。強熱減量には、水分の蒸発、消石灰、水酸化アルミニウム、二水石膏等に含まれる結晶水の脱水、炭酸カルシウムの脱炭酸等が含まれる。前記範囲外では、低温で焼成した場合、膨張量や材齢7日以降の収縮補償効果が小さくなる場合がある。
また、原料としてポルトランドセメントや膨張材を用いることは、膨張率と収縮補償率を高める観点から望ましい。
These raw materials are mixed and pulverized so as to have a predetermined mineral ratio after firing. The method for mixing and pulverizing is not particularly limited, and a dry method or a wet method can be applied. In the case of the wet method, it is necessary to perform a dehydration process in order to perform pressure granulation in a subsequent stage. Moreover, when using quicklime as a raw material, it is desirable to carry out by a dry type.
The raw material particle size after pulverization is preferably about 0 to 30%, preferably about 5 to 20%, with the remaining 90 μm. The ignition loss when the blended raw material is heated at 1000 ° C. is preferably 40% or less, and more preferably 30% or less. The ignition loss includes evaporation of water, dehydration of crystal water contained in slaked lime, aluminum hydroxide, dihydrate gypsum, etc., decarboxylation of calcium carbonate, and the like. Outside the above range, when baked at a low temperature, the amount of expansion and the shrinkage compensation effect after 7 days of age may be reduced.
In addition, it is desirable to use Portland cement or an expansion material as a raw material from the viewpoint of increasing the expansion coefficient and the shrinkage compensation ratio.

本発明では、これら原料を混合粉砕したものを加圧して造粒する。造粒物の形状は特に限定されるものではなく、球状や平板状などが選択できる。原料にかける圧力は造粒物(ブリケット)の大きさによって異なるが、0.1〜50t程度であることが好ましい。0.1t未満では膨張率や材齢7日以降の収縮補償率が小さくなる場合があり、50t以上では設備にかかる費用が大きくなる。   In the present invention, a mixture obtained by mixing and pulverizing these raw materials is pressurized and granulated. The shape of the granulated product is not particularly limited, and a spherical shape or a flat plate shape can be selected. The pressure applied to the raw material varies depending on the size of the granulated product (briquette), but is preferably about 0.1 to 50 t. If it is less than 0.1 t, the expansion rate and the shrinkage compensation rate after the age of 7 days may be small, and if it is 50 t or more, the cost for the equipment increases.

本発明では、膨張材クリンカの熱処理方法は、特に限定されるものではないが、電気炉やキルン等を用いて1100〜1500℃の温度で焼成することが好ましく、1150〜1450℃がより好ましい。1100℃未満では膨張率や収縮補償率が充分でなく、1500℃を超えると無水石膏が分解する場合がある。また、従来の焼成温度の範囲外の1300℃未満でも充分な性能が得られる。   In the present invention, the heat treatment method of the expansion material clinker is not particularly limited, but it is preferably fired at a temperature of 1100 to 1500 ° C., more preferably 1150 to 1450 ° C. using an electric furnace or kiln. If it is less than 1100 ° C., the expansion coefficient and shrinkage compensation rate are not sufficient, and if it exceeds 1500 ° C., anhydrous gypsum may decompose. Moreover, sufficient performance can be obtained even at a temperature lower than 1300 ° C. outside the range of the conventional firing temperature.

本発明で製造された膨張材クリンカは、粉砕してコンクリート用の膨張材として使用される。膨張材の粉末度は、ブレーン比表面積で1500〜9000cm/gが好ましく、2000〜4000cm/gがより好ましい。1500cm/g未満では長期に渡って膨張しコンクリート組織が壊れる場合があり、9000cm/gを超えると膨張性能が低下する場合がある。 The expansion material clinker produced in the present invention is pulverized and used as an expansion material for concrete. Fineness of expanding material is preferably 1500~9000cm 2 / g in Blaine specific surface area, 2000~4000cm 2 / g is more preferable. If it is less than 1500 cm < 2 > / g, it may expand | swell over a long term and a concrete structure may be broken, and if it exceeds 9000 cm < 2 > / g, expansion performance may fall.

本発明で製造された膨張材の使用量は、膨張材の鉱物組成やコンクリートの配合に応じて適宜決定されるため、特に限定されるものではないが、通常、セメントと膨張材からなるセメント組成物100部中、3〜15部が好ましく、5〜13部がより好ましい。3部未満では充分な膨張性能が得られない場合があり、15部を超えて使用すると過膨張となりコンクリートに膨張クラックを生じる場合がある。   The amount of the expandable material produced in the present invention is not particularly limited because it is appropriately determined according to the mineral composition of the expandable material and the composition of the concrete, but is usually a cement composition composed of cement and an expandable material. In 100 parts of the product, 3 to 15 parts are preferable, and 5 to 13 parts are more preferable. If it is less than 3 parts, sufficient expansion performance may not be obtained, and if it exceeds 15 parts, it may overexpand and may cause expansion cracks in the concrete.

以下、実施例で詳細に説明する。   Examples will be described in detail below.

「実験例1」
CaO原料、Al原料、SiO原料、CaSO原料を、表1に示す化学組成及び鉱物組成のクリンカとなるように配合して混合粉砕し、90μm残分10%に調製した。この原料50gを直径40mm、高さ20mmの円柱型枠に充填し、上部から5tの荷重を与えて造粒(ブリケット化)した。この造粒物(ブリケット)を電気炉中1250℃で熱処理してクリンカを合成し、ボールミルを用いてブレーン比表面積で3000cm/gに粉砕して膨張材とした。
この膨張材の膨張性能と収縮補償効果を評価するため、セメントと膨張材からなるセメント組成物100部中、膨張材を7部使用し、水/セメント組成物比=50%、セメント組成物/砂比=1/3のモルタル(膨張モルタルという)を20℃の室内で調製して、長さ変化率の測定を行った。材齢7日までは20℃水中で養生し、材齢7日〜28日までは20℃、60%RHの乾燥室内で養生した。
なお、膨張材を配合しないプレーンモルタルを調製して同様に試験を行い、膨張モルタルとの収縮ひずみの差を収縮補償率とした(例:材齢7日を基長とした乾燥収縮ひずみが、プレーンモルタル600×10−6、膨張モルタル500×10−6の場合、収縮補償率=600×10−6−500×10−6=100×10−6)。
結果を表2に示す。
"Experiment 1"
A CaO raw material, an Al 2 O 3 raw material, a SiO 2 raw material, and a CaSO 4 raw material were blended so as to be a clinker having a chemical composition and a mineral composition shown in Table 1, mixed and pulverized to prepare a 90 μm residue of 10%. 50 g of this raw material was filled into a cylindrical mold having a diameter of 40 mm and a height of 20 mm, and granulated (briquette) by applying a load of 5 t from the top. This granulated product (briquette) was heat-treated at 1250 ° C. in an electric furnace to synthesize a clinker, and pulverized to 3000 cm 2 / g with a brain specific surface area using a ball mill to obtain an expanded material.
In order to evaluate the expansion performance and shrinkage compensation effect of this expansion material, 7 parts of the expansion material was used in 100 parts of the cement composition composed of cement and the expansion material, and the water / cement composition ratio = 50%, A mortar having a sand ratio of 1/3 (referred to as expanded mortar) was prepared in a room at 20 ° C., and the length change rate was measured. It was cured in water at 20 ° C. until the age of 7 days, and was cured in a dry room at 20 ° C. and 60% RH until the age of 7 to 28 days.
In addition, the plain mortar which does not mix | blend an expandable material was prepared, it tested similarly, and the difference of the shrinkage strain with an expansion mortar was made into the shrinkage compensation rate (Example: Dry shrinkage strain based on material age 7 days is In the case of plain mortar 600 × 10 −6 and expansion mortar 500 × 10 −6 , shrinkage compensation rate = 600 × 10 −6 −500 × 10 −6 = 100 × 10 −6 ).
The results are shown in Table 2.

(使用材料)
CaO原料(A):石灰石、100メッシュ
CaO原料(B):消石灰、ブレーン比表面積3400cm/g
Al原料(A):水酸化アルミニウム、90μm篩通過率100%
SiO原料(A):珪石、ブレーン比表面積3000cm/g
CaSO原料(A):二水石膏、ブレーン比表面積5000cm/g
CaSO原料(B):無水石膏、ブレーン比表面積5000cm/g
セメント:普通ポルトランドセメント、ブレーン比表面積3000cm/g
砂:JIS標準砂
水:水道水
(Materials used)
CaO raw material (A): Limestone, 100 mesh CaO raw material (B): Slaked lime, Blaine specific surface area 3400 cm 2 / g
Al 2 O 3 raw material (A): Aluminum hydroxide, 90 μm sieve passage rate 100%
SiO 2 raw material (A): Silica, Blaine specific surface area 3000 cm 2 / g
CaSO 4 raw material (A): dihydrate gypsum, Blaine specific surface area 5000 cm 2 / g
CaSO 4 raw material (B): anhydrous gypsum, Blaine specific surface area 5000 cm 2 / g
Cement: Normal Portland cement, Blaine specific surface area of 3000 cm 2 / g
Sand: JIS standard sand water: Tap water

(試験方法)
強熱減量:原料を1000℃で熱処理し、重量減少率を算出した。
化学組成;蛍光X線にて定量した。
鉱物組成:化学組成と粉末X線回折の同定結果に基づいて計算により求めた。
長さ変化率:JIS A 6202に準拠して測定した。
(Test method)
Ignition loss: The raw material was heat-treated at 1000 ° C., and the weight reduction rate was calculated.
Chemical composition: quantified by fluorescent X-ray.
Mineral composition: Obtained by calculation based on the chemical composition and the identification result of powder X-ray diffraction.
Length change rate: Measured according to JIS A 6202.

Figure 2011111376
Figure 2011111376

Figure 2011111376
Figure 2011111376

「実験例2」
使用原料をオに固定し、原料の造粒圧力と焼成温度を変えたこと以外は実験例1と同様に行った。結果を表3に示す。
"Experimental example 2"
The same procedure as in Experimental Example 1 was performed except that the raw material used was fixed to o and the granulation pressure and firing temperature of the raw material were changed. The results are shown in Table 3.

Figure 2011111376
Figure 2011111376

「実験例3」
使用原料を変更し、表4に示す化学組成および鉱物組成のクリンカとなるように原料を配合して、原料の造粒圧力と焼成温度を変えたこと以外は実験例1と同様に行った。結果を表5に示す。
"Experiment 3"
It was carried out in the same manner as in Experimental Example 1 except that the raw materials used were changed, the raw materials were blended so that the clinker had the chemical composition and mineral composition shown in Table 4, and the granulation pressure and firing temperature of the raw materials were changed. The results are shown in Table 5.

(使用材料)
CaO原料(B):消石灰、ブレーン比表面積3400cm/g
CaO原料(C):生石灰、炭酸カルシウム800℃焼成品、ブレーン比表面積3000cm/g
Al原料(B):ボーキサイト、90μm篩通過率100%
(Materials used)
CaO raw material (B): slaked lime, Blaine specific surface area 3400 cm 2 / g
CaO raw material (C): quicklime, calcined calcium carbonate 800 ° C., Blaine specific surface area 3000 cm 2 / g
Al 2 O 3 raw material (B): bauxite, 90 μm sieve passage rate 100%

Figure 2011111376
Figure 2011111376

Figure 2011111376
Figure 2011111376

「実験例4」
生石灰の焼成温度を表6に示すように変更し、原料の造粒圧力を変えたこと以外は実験例3と同様に行った。結果を表7に示す。
"Experimental example 4"
The calcining temperature of quicklime was changed as shown in Table 6, and the same procedure as in Experimental Example 3 was performed except that the granulation pressure of the raw material was changed. The results are shown in Table 7.

(使用材料)
CaO原料(D):生石灰、炭酸カルシウム1200℃焼成品、ブレーン比表面積3000cm/g
CaO原料(E):生石灰、炭酸カルシウム1600℃焼成品、ブレーン比表面積3000cm/g
(Materials used)
CaO raw material (D): quicklime, calcined calcium carbonate at 1200 ° C., Blaine specific surface area of 3000 cm 2 / g
CaO raw material (E): quicklime, calcined product of calcium carbonate at 1600 ° C., Blaine specific surface area of 3000 cm 2 / g

Figure 2011111376
Figure 2011111376

Figure 2011111376
Figure 2011111376

本発明の膨張材クリンカの製造方法は、低温で焼成しても所定の膨張率を付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高く環境負荷が小さいという利点を有し、土木、建築分野等で幅広く活用できる。   The method for producing an expandable material clinker of the present invention can provide a predetermined expansion rate even when fired at a low temperature, and has an advantage that the effect of compensating for drying shrinkage strain after the age of 7 days is high and the environmental load is small. Widely used in civil engineering and construction fields.

Claims (3)

CaO原料、Al原料、SiO原料、CaSO原料を混合粉砕して焼成し、遊離石灰、水硬性化合物、無水石膏を含有する膨張材クリンカを製造する工程において、前記膨張材クリンカ中のSO含有量が10〜30質量%となるように調合した前記原料を混合粉砕後、加圧して作製した造粒物を1100〜1500℃で焼成することを特徴とする膨張材クリンカの製造方法。 In the step of producing an expansion material clinker containing free lime, a hydraulic compound and anhydrous gypsum by mixing and pulverizing CaO raw material, Al 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, A granulated product prepared by mixing and pulverizing the raw materials prepared so that the SO 3 content of the mixture becomes 10 to 30% by mass and then pressing the granulated product is fired at 1100 to 1500 ° C. Method. 加圧造粒物の強熱減量が40質量%以下であることを特徴とする請求項1に記載の膨張材クリンカの製造方法。 The method for producing an expanded material clinker according to claim 1, wherein the ignition loss of the pressure granulated product is 40% by mass or less. 混合粉砕前に予めCaO原料を800〜1600℃で焼成しておくことを特徴とする請求項1又は2記載の膨張材クリンカの製造方法。 The method for producing an expanded material clinker according to claim 1 or 2, wherein the CaO raw material is preliminarily calcined at 800 to 1600 ° C before mixing and grinding.
JP2009271022A 2009-11-30 2009-11-30 Method for producing expansion material clinker Pending JP2011111376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271022A JP2011111376A (en) 2009-11-30 2009-11-30 Method for producing expansion material clinker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271022A JP2011111376A (en) 2009-11-30 2009-11-30 Method for producing expansion material clinker

Publications (1)

Publication Number Publication Date
JP2011111376A true JP2011111376A (en) 2011-06-09

Family

ID=44233975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271022A Pending JP2011111376A (en) 2009-11-30 2009-11-30 Method for producing expansion material clinker

Country Status (1)

Country Link
JP (1) JP2011111376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038908A1 (en) * 2011-09-14 2013-03-21 電気化学工業株式会社 Lime slurry and clinker production method using same
JP2013184843A (en) * 2012-03-07 2013-09-19 Taiheiyo Cement Corp Method of manufacturing cement clinker
JP2021017376A (en) * 2019-07-18 2021-02-15 デンカ株式会社 Expandable composition for cement, and cement composition
JP2021017377A (en) * 2019-07-18 2021-02-15 デンカ株式会社 Expandable composition for cement, cement composition, and method for producing expandable composition for cement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038908A1 (en) * 2011-09-14 2013-03-21 電気化学工業株式会社 Lime slurry and clinker production method using same
JPWO2013038908A1 (en) * 2011-09-14 2015-03-26 電気化学工業株式会社 Lime slurry and method for producing clinker using the same
JP2013184843A (en) * 2012-03-07 2013-09-19 Taiheiyo Cement Corp Method of manufacturing cement clinker
JP2021017376A (en) * 2019-07-18 2021-02-15 デンカ株式会社 Expandable composition for cement, and cement composition
JP2021017377A (en) * 2019-07-18 2021-02-15 デンカ株式会社 Expandable composition for cement, cement composition, and method for producing expandable composition for cement
JP7257278B2 (en) 2019-07-18 2023-04-13 デンカ株式会社 EXPANSION COMPOSITION FOR CEMENT AND CEMENT COMPOSITION
JP7293019B2 (en) 2019-07-18 2023-06-19 デンカ株式会社 EXPANDING COMPOSITION FOR CEMENT, CEMENT COMPOSITION, AND METHOD FOR PRODUCING THE EXPANSION COMPOSITION FOR CEMENT

Similar Documents

Publication Publication Date Title
TWI478891B (en) Expandable material and its manufacturing method
JP5946107B2 (en) Method for producing cement composition
US8409344B2 (en) Cement and methods of preparing cement
JP2017527516A (en) Carbonate-capable calcium silicate composition and method for producing the same
CN114560638A (en) Method for producing cement mixtures
US20210198144A1 (en) Non-fired monoliths
JP2013103865A (en) Method of manufacturing cement paste
WO2016156761A1 (en) Insulating construction material comprising plant additives
JP5923104B2 (en) Early mold release material and method for producing concrete product
CN109942211A (en) A method of improving gypsum-slag cements early strength
TW201904910A (en) Concrete composition and method of manufacturing same
TWI545100B (en) Cement mix and cement composition
Jewell et al. Fabrication and testing of low-energy calcium sulfoaluminate-belite cements that utilize circulating fluidized bed combustion by-products
JP2011111376A (en) Method for producing expansion material clinker
CN107382107B (en) Method for preparing sulphoaluminate cement clinker by using magnesium slag and manganese slag
CN111943549A (en) Magnesium oxide composite expanding agent and preparation method thereof
Alkhateeb Chemical analysis of ordinary Portland cement of Iraq
Seco et al. Assessment of the ability of MGO based binary binders for the substitution of Portland cement for mortars manufacturing
JP2007331976A (en) Cement admixture and cement composition
JP2003327457A (en) Substitution for portland cement, production method thereof, hard block cement board obtained by using the same and production method thereof
JP7257278B2 (en) EXPANSION COMPOSITION FOR CEMENT AND CEMENT COMPOSITION
WO2014140614A1 (en) Cement composition and method of producing the same
WO2012169005A1 (en) Process for producing expanding-material clinker
JP2012201520A (en) Cement composition, and method for producing the same
JP2014185042A (en) Cement composition