JP2011109822A - Electrostatic drive type actuator and variable capacity device - Google Patents

Electrostatic drive type actuator and variable capacity device Download PDF

Info

Publication number
JP2011109822A
JP2011109822A JP2009262899A JP2009262899A JP2011109822A JP 2011109822 A JP2011109822 A JP 2011109822A JP 2009262899 A JP2009262899 A JP 2009262899A JP 2009262899 A JP2009262899 A JP 2009262899A JP 2011109822 A JP2011109822 A JP 2011109822A
Authority
JP
Japan
Prior art keywords
side electrode
substrate
electrode portion
substrate side
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009262899A
Other languages
Japanese (ja)
Inventor
Keiichi Umeda
圭一 梅田
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009262899A priority Critical patent/JP2011109822A/en
Publication of JP2011109822A publication Critical patent/JP2011109822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic drive type actuator wherein the DC voltage required for hot switching is controlled easily, and the fineness is reduced as compared with the prior art. <P>SOLUTION: The electrostatic drive type actuator includes a substrate 2, a movable plate 6, and lower driving electrodes 5A-5D. The movable plate 6 is connected to the substrate 2 by a support 6C. A sub-movable part 6E and a sub-beam part 6D constitute a cantilever structure which is connected to the main movable part 6B at one end of the sub-beam part 6D. The main movable part 6B and the lower driving electrodes 5C and 5D change the connection state between the lower driving electrodes 5C and 5D by displacement of the main movable part 6B. The sub-movable part 6E and the lower driving electrode 5A deform the movable plate 6 with an electrostatic force which is produced when a DC voltage is applied and is based on the capacitance. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、静電力により駆動するMEMSを利用した静電駆動型アクチュエータと、静電駆動型アクチュエータによりキャパシタンスを可変する可変容量装置と、に関するものである。   The present invention relates to an electrostatic drive type actuator using MEMS driven by an electrostatic force, and a variable capacitance device that varies the capacitance by the electrostatic drive type actuator.

従来、スイッチ装置や可変容量装置などに静電駆動型アクチュエータが利用されることがある(特許文献1〜3参照。)。   Conventionally, electrostatic drive actuators are sometimes used for switch devices, variable capacitance devices, and the like (see Patent Documents 1 to 3).

図1は、片持ち梁構造を採用した従来の静電駆動型アクチュエータの構成例を説明する図である。
静電駆動型アクチュエータ101は、基板102、支持部103、および可動板104を備える。可動板104は、一端が基板102に対して支持部103で固定され、片持ち梁構造を構成する。可動板104および基板102には、間隔を隔てて対向する第1の電極対105A,105Bと第2の電極対106A,106Bとが形成される。第1の電極対105A,105Bは、静電駆動型アクチュエータ101の駆動用容量形成部として機能するものであり、DC電圧が印加されることで静電容量が発生し、静電力により可動板104を変形させる。第2の電極対106A,106Bは、静電駆動型アクチュエータ101の信号可変部として機能するものである。電極106Aは基板102上に設けられた電極ギャップを有する信号ラインであり、この電極ギャップに電極106Bは対向し、可動板104が変形することで電極106Aの間を電極106Bが接続する。
FIG. 1 is a diagram for explaining a configuration example of a conventional electrostatic drive actuator adopting a cantilever structure.
The electrostatic drive actuator 101 includes a substrate 102, a support portion 103, and a movable plate 104. One end of the movable plate 104 is fixed to the substrate 102 by the support portion 103 to form a cantilever structure. The movable plate 104 and the substrate 102 are formed with first electrode pairs 105A and 105B and second electrode pairs 106A and 106B that are opposed to each other with a gap therebetween. The first electrode pairs 105A and 105B function as a drive capacitance forming portion of the electrostatic drive type actuator 101, and a capacitance is generated when a DC voltage is applied, and the movable plate 104 is driven by an electrostatic force. Deform. The second electrode pairs 106 </ b> A and 106 </ b> B function as signal variable portions of the electrostatic drive actuator 101. The electrode 106A is a signal line having an electrode gap provided on the substrate 102. The electrode 106B faces the electrode gap, and the movable plate 104 is deformed to connect the electrode 106B between the electrodes 106A.

図2は、両持ち梁構造を採用した従来の静電駆動型アクチュエータの構成例を説明する図である。
静電駆動型アクチュエータ201は、支持部203A,203B、駆動用容量形成部204A,204B、および信号可変部205を備える。駆動用容量形成部204A,204Bは、支持部203A,203Bと信号可変部205との間に配置される。
FIG. 2 is a diagram for explaining a configuration example of a conventional electrostatic drive actuator adopting a double-supported beam structure.
The electrostatic drive type actuator 201 includes support portions 203A and 203B, drive capacitance forming portions 204A and 204B, and a signal variable portion 205. The drive capacitance forming units 204A and 204B are disposed between the support units 203A and 203B and the signal variable unit 205.

図3は、両持ち梁構造を組み合わせたマルチリンク構造を採用した、従来の静電駆動型アクチュエータの構成例を説明する図である。
静電駆動型アクチュエータ301は、第1の支持部303A,303B、第2の支持部304A,304B、駆動用容量形成部305A,305B、および信号可変部306を備える。信号可変部306は、第1の支持部303A,303Bに両端が支持される第1の両持ち梁構造の中央部分に配置される。駆動用容量形成部305Aは、第1の両持ち梁構造の中央部分と第2の支持部304Aとに両端が支持される第2の両持ち梁構造に配置される。駆動用容量形成部305Bは、第1の両持ち梁構造の中央部分と第2の支持部304Bとに両端が支持される第3の両持ち梁構造に配置される。
FIG. 3 is a diagram for explaining a configuration example of a conventional electrostatic drive actuator that employs a multi-link structure in which a double-supported beam structure is combined.
The electrostatic drive actuator 301 includes first support portions 303A and 303B, second support portions 304A and 304B, drive capacitance forming portions 305A and 305B, and a signal variable portion 306. The signal variable unit 306 is disposed in the central portion of the first double-supported beam structure, both ends of which are supported by the first support units 303A and 303B. The drive capacity forming portion 305A is arranged in a second both-end supported beam structure in which both ends are supported by the central portion of the first both-end supported beam structure and the second support portion 304A. The driving capacity forming portion 305B is arranged in a third both-end supported beam structure in which both ends are supported by the central portion of the first both-end supported beam structure and the second support portion 304B.

特開平09−17300号公報Japanese Patent Laid-Open No. 09-17300 特許第3538109号公報Japanese Patent No. 3538109 特開2008−278634号公報JP 2008-278634 A

特許文献1および2に記載された静電駆動型アクチュエータは、信号ラインに高電圧のRF信号が乗った状態でのスイッチング(ホットスイッチング)時に、高電圧のRF信号によって信号可変部の電極間に静電力が生じる。すると、駆動用容量形成部のDC電圧によって梁構造を適正に変形させることが不能になり、ホットスイッチングに支障を来すことがある。梁構造のバネ定数が高ければ、高電圧のRF信号に基づく変形を抑制できるが、同時にDC電圧に基づく梁構造の変形も抑制されてしまう。そのため、ホットスイッチングに必要なDC電圧が高まり、昇圧回路などが必要になって回路構成が複雑化する新たな問題が発生する。   The electrostatic drive type actuators described in Patent Documents 1 and 2 use a high voltage RF signal between the electrodes of the signal variable unit during switching (hot switching) with a high voltage RF signal on the signal line. An electrostatic force is generated. As a result, the beam structure cannot be properly deformed by the DC voltage of the drive capacitor forming portion, which may hinder hot switching. If the spring constant of the beam structure is high, deformation based on a high-voltage RF signal can be suppressed, but at the same time, deformation of the beam structure based on a DC voltage is also suppressed. For this reason, the DC voltage required for hot switching increases, and a booster circuit or the like is required, resulting in a new problem that complicates the circuit configuration.

特許文献3に記載された静電駆動型アクチュエータでは、第1の両持ち梁構造のバネ定数を大きく、第2・第3の両持ち梁構造のバネ定数を第1の両持ち梁構造のバネ定数よりも小さくする。この構造では、第2・第3の両持ち梁構造は変形し易く、小さなDC電圧で比較的大きな静電容量を発生させることが可能になる。すなわち、小さなDC電圧で必要とする静電力を発生させられ、第1の両持ち梁構造のバネ定数を大きくしてもDC電圧を抑制してスイッチングすることが可能になる。
ただし、第2・第3の両持ち梁構造のバネ定数を小さくするためには、第2・第3の両持ち梁構造における支持部から駆動用容量形成部までの距離を長くすることや梁幅を狭くする必要がある。このため、第2・第3の両持ち梁構造が微細化し、製造方法に起因する微細度の限界から性能やサイズに制約が発生することがある。
In the electrostatic drive actuator described in Patent Document 3, the spring constant of the first cantilever beam structure is increased, and the spring constant of the second and third cantilever beam structures is increased. Make it smaller than a constant. In this structure, the second and third cantilever beam structures are easily deformed, and a relatively large capacitance can be generated with a small DC voltage. That is, the necessary electrostatic force can be generated with a small DC voltage, and switching can be performed while suppressing the DC voltage even if the spring constant of the first doubly supported beam structure is increased.
However, in order to reduce the spring constant of the second and third both-end supported beam structures, the distance from the support portion to the drive capacity forming portion in the second and third both-end supported beam structures can be increased. It is necessary to narrow the width. For this reason, the second and third cantilever beam structures are miniaturized, and the performance and size may be restricted due to the limit of the fineness due to the manufacturing method.

そこで本発明の目的は、ホットスイッチングに必要なDC電圧を抑制することが容易で、従来より微細度を低減できる静電駆動型アクチュエータ、および、その静電駆動型アクチュエータを用いた可変容量装置を提供することにある。   Accordingly, an object of the present invention is to provide an electrostatic drive actuator that can easily suppress a DC voltage required for hot switching and can reduce the fineness as compared with the prior art, and a variable capacitance device using the electrostatic drive actuator. It is to provide.

この発明の静電駆動型アクチュエータは、基板と主梁部と副梁部と信号可変部と駆動用容量形成部とを備える。主梁部は接続端で基板に接続される。副梁部は片持ち梁構造であり、接続端で主梁部の可動部位に接続される。信号可変部は主梁部および基板に構成され、主梁部の可動部位の変位により制御対象信号を変化させる。駆動用容量形成部は副梁部および基板に構成され、DC電圧が印加されて生じる静電容量に基づく静電力で主梁部および副梁部を変形させる。
この構成では、副梁部が片持ち梁構造なので、副梁部を両持ち梁構造で構成する場合よりも副梁部のバネ定数および専有面積を低減できる。したがって、副梁部を両持ち梁構造で構成する従来のように構造微細度を高めずとも副梁部のバネ定数を小さくできる。これにより、主梁部のバネ定数を副梁部のバネ定数よりも大きくしてホットスイッチングに必要なDC電圧を抑制することが容易になる。
The electrostatic drive actuator according to the present invention includes a substrate, a main beam portion, a sub beam portion, a signal variable portion, and a drive capacitance forming portion. The main beam is connected to the substrate at the connection end. The secondary beam portion has a cantilever structure and is connected to the movable portion of the main beam portion at the connection end. The signal variable part is configured by a main beam part and a substrate, and changes a control target signal by displacement of a movable part of the main beam part. The drive capacity forming section is configured on the sub-beam section and the substrate, and deforms the main beam section and the sub-beam section with an electrostatic force based on a capacitance generated when a DC voltage is applied.
In this configuration, since the secondary beam portion has a cantilever structure, the spring constant and the exclusive area of the secondary beam portion can be reduced as compared with the case where the secondary beam portion is configured as a double-supported beam structure. Therefore, the spring constant of the sub-beam portion can be reduced without increasing the structural fineness as in the conventional case where the sub-beam portion is constituted by a double-supported beam structure. This makes it easier to suppress the DC voltage required for hot switching by making the spring constant of the main beam portion larger than the spring constant of the sub beam portion.

この発明の副梁部は主軸方向に垂直な断面において基板に平行な方向の寸法が部分的に小さい部位が、主軸方向に複数配列された構成であると好適である。
副梁部の幅寸法を一定ではなく不連続にすれば、副梁部の面積を局所的に拡張して静電容量を確保し易くなるが、バネ定数が一様ではなくなり、DC電圧の制御による梁部の変形の程度が不規則になる。そのため、制御対象信号の制御が難しくなる。そこで、副梁部の幅寸法が幅広な部位と幅狭な部位を軸方向に交互に配列する構成を採用し、副梁部におけるバネ定数を等価的に一様にする。これにより、梁部の変形の程度の制御が容易になり、制御対象信号を安定して制御可能になる。
It is preferable that the sub-beam portion of the present invention has a configuration in which a plurality of portions whose dimensions in the direction parallel to the substrate are partially small in the cross section perpendicular to the main axis direction are arranged in the main axis direction.
If the width dimension of the secondary beam part is not constant but discontinuous, the area of the secondary beam part is locally expanded to facilitate securing the capacitance, but the spring constant is not uniform and the DC voltage is controlled. The degree of deformation of the beam due to is irregular. Therefore, it becomes difficult to control the control target signal. Therefore, a configuration is adopted in which a portion having a wide width and a portion having a narrow width of the secondary beam portion are alternately arranged in the axial direction, and the spring constant in the secondary beam portion is equivalently uniform. As a result, the degree of deformation of the beam portion can be easily controlled, and the control target signal can be stably controlled.

この発明の主梁部および副梁部は一体の導電性材料からなり、駆動用容量形成部に信号カット用の素子を接続してもよい。また、この発明の主梁部および副梁部は絶縁性材料からなり、駆動用容量形成部または信号可変部となる電極が表面に形成されていてもよい。
主梁部および副梁部を一体の導電性材料で構成すると、駆動用容量形成部や信号可変部となる電極を付設する必要がなくなる。すると、梁部を異素材貼り合わせ構造とする必要がなくなり、内部応力差に基づく反りや、線膨張差に基づく静電容量の変化を抑制でき、特性バラツキの小さい高精度な可変容量を得ることができる。主梁部および副梁部を絶縁性材料で構成すると、信号カット用の素子を駆動用容量形成部に接続する必要がなくなる。
The main beam portion and the sub beam portion of the present invention may be made of an integral conductive material, and an element for signal cut may be connected to the drive capacitor forming portion. In addition, the main beam portion and the sub beam portion of the present invention may be made of an insulating material, and an electrode serving as a drive capacitance forming portion or a signal variable portion may be formed on the surface.
If the main beam portion and the sub-beam portion are formed of an integral conductive material, it is not necessary to provide an electrode that becomes a drive capacitance forming portion or a signal variable portion. Then, it is not necessary to make the beam part a different material bonding structure, and it is possible to suppress the warpage based on the difference in internal stress and the change in capacitance based on the difference in linear expansion, and to obtain a highly accurate variable capacity with small characteristic variation. Can do. If the main beam portion and the sub beam portion are made of an insulating material, it is not necessary to connect the signal cut element to the drive capacitance forming portion.

この発明の駆動用容量形成部は、副梁部に対向する第1の基板側電極部および第2の基板側電極部と、第1の基板側電極部および第2の基板側電極部に対向する梁側電極部とを備え、第1の基板側電極部と第2の基板側電極部との間にDC電圧が印加される構成であってもよい。また、この発明の駆動用容量形成部は、副梁部に対向する基板側電極部と、基板側電極部に対向する梁側電極部とを備え、基板側電極部と梁側電極部との間にDC電圧が印加される構成であってもよい。
梁側電極部と基板側電極部との間にDC電圧が印加される構造(以下、MIM構造と称する。)は、梁側電極部を介して結合する2つの基板側電極部の間にDC電圧が印加される構造(以下、MIMIM構造と称する。)に比べて、数式1および数式2に示すように静電容量および静電力が4倍になる。そのため、同一の静電力を得るためのDC電圧を抑制できる。一方、MIMIM構造は、梁側電極部にDC電圧を印加するための電気的接点が不要であり、構成が簡単にでき小型化し易い。
The drive capacitor forming portion of the present invention is opposed to the first substrate side electrode portion and the second substrate side electrode portion, and the first substrate side electrode portion and the second substrate side electrode portion facing the sub beam portion. The beam side electrode part to be provided may be configured such that a DC voltage is applied between the first substrate side electrode part and the second substrate side electrode part. The drive capacitor forming portion of the present invention includes a substrate-side electrode portion facing the sub-beam portion and a beam-side electrode portion facing the substrate-side electrode portion, and includes a substrate-side electrode portion and a beam-side electrode portion. A configuration in which a DC voltage is applied between them may be used.
A structure in which a DC voltage is applied between the beam-side electrode part and the substrate-side electrode part (hereinafter referred to as an MIM structure) is a DC between two substrate-side electrode parts coupled via the beam-side electrode part. Compared with a structure to which a voltage is applied (hereinafter referred to as a MIMIM structure), the capacitance and electrostatic force are quadrupled as shown in Equation 1 and Equation 2. Therefore, the DC voltage for obtaining the same electrostatic force can be suppressed. On the other hand, the MIMIM structure does not require an electrical contact for applying a DC voltage to the beam-side electrode portion, and can be easily configured and easily downsized.

Figure 2011109822
Figure 2011109822

Figure 2011109822
Figure 2011109822

この発明の主梁部は両持ち梁構造であってもよく、片持ち梁構造であってもよい。両持ち梁構造は片持ち梁構造よりもバネ定数を高められ、主梁部と基板とを信号可変部で平行にして静電容量の変化安定性を高められる。一方、片持ち梁構造は両持ち梁構造よりもサイズを抑制できる。   The main beam portion of the present invention may have a double-supported beam structure or a cantilever structure. The cantilever beam structure has a higher spring constant than the cantilever beam structure, and the capacitance change stability can be improved by making the main beam part and the substrate parallel to each other at the signal variable part. On the other hand, the size of the cantilever beam structure can be smaller than that of the double-sided beam structure.

この発明の駆動用容量形成部は、信号可変部よりも電極部対向面積が大きいと好適である。
平行平板キャパシタに働く静電力は電極部対向面積に比例する。そのため駆動用容量形成部での電極部対向面積を、信号可変部よりも大きい構成とすることにより、ホットスイッチング時に信号可変部で発生する静電力を弱めて、適正な動作を実現させることが容易になる。
The drive capacitor forming portion of the present invention preferably has a larger electrode area facing area than the signal variable portion.
The electrostatic force acting on the parallel plate capacitor is proportional to the electrode portion facing area. Therefore, it is easy to realize proper operation by weakening the electrostatic force generated in the signal variable unit during hot switching by configuring the electrode facing area in the drive capacitance forming unit to be larger than that of the signal variable unit. become.

この発明の信号可変部は、主梁部に対向する第1の基板側電極部および第2の基板側電極部と、第1の基板側電極部と第2の基板側電極部とのギャップに対向する梁側電極部とを備え、梁側電極部を介して導通する第1の基板側電極部と第2の基板側電極部との間を電気信号が伝搬する構成であってもよい。   The signal variable portion according to the present invention includes a first substrate side electrode portion and a second substrate side electrode portion facing the main beam portion, and a gap between the first substrate side electrode portion and the second substrate side electrode portion. A configuration may be adopted in which an electric signal is propagated between a first substrate side electrode portion and a second substrate side electrode portion which are provided with opposing beam side electrode portions and are conducted through the beam side electrode portion.

この発明の信号可変部は、主梁部に対向する第1の基板側電極部および第2の基板側電極部と、第1の基板側電極部および第2の基板側電極部に対向する梁側電極部とを備え、梁側電極部を介して結合する第1の基板側電極部と第2の基板側電極部との間をRF信号が伝搬する構成であってもよい。   The signal variable portion of the present invention includes a first substrate side electrode portion and a second substrate side electrode portion facing the main beam portion, and a beam facing the first substrate side electrode portion and the second substrate side electrode portion. A configuration in which an RF signal propagates between a first substrate side electrode portion and a second substrate side electrode portion that are provided with a side electrode portion and are coupled via a beam side electrode portion may be possible.

この発明の可変容量装置は、上記の静電駆動型アクチュエータを複数備え、各々の第1の基板側電極部を接続するとともに、各々の第2の基板側電極部を接続した構成であると好適である。   The variable capacitance device according to the present invention preferably includes a plurality of the above-described electrostatic drive actuators, and is configured to connect each first substrate-side electrode unit and each second substrate-side electrode unit. It is.

この発明に寄れば、副梁部が片持ち梁構造なので、副梁部を両持ち梁構造で構成する場合よりも副梁部のバネ定数および専有面積が低減される。したがって、副梁部を両持ち梁構造で構成する従来のように構造微細度を高めずとも副梁部のバネ定数を小さくできる。これにより、主梁部のバネ定数を副梁部のバネ定数よりも大きくしてホットスイッチングに必要なDC電圧を抑制することが容易になる。   According to this invention, since the secondary beam portion has a cantilever structure, the spring constant and the exclusive area of the secondary beam portion are reduced as compared with the case where the secondary beam portion is configured as a double-supported beam structure. Therefore, the spring constant of the sub-beam portion can be reduced without increasing the structural fineness as in the conventional case where the sub-beam portion is constituted by a double-supported beam structure. This makes it easier to suppress the DC voltage required for hot switching by making the spring constant of the main beam portion larger than the spring constant of the sub beam portion.

従来の静電駆動型アクチュエータの第1の構成例を説明する図である。It is a figure explaining the 1st structural example of the conventional electrostatic drive type actuator. 従来の静電駆動型アクチュエータの第2の構成例を説明する図である。It is a figure explaining the 2nd structural example of the conventional electrostatic drive type actuator. 従来の静電駆動型アクチュエータの第3の構成例を説明する図である。It is a figure explaining the 3rd structural example of the conventional electrostatic drive type actuator. 本発明の第1の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 1st Embodiment of this invention. 静電駆動型アクチュエータの製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of an electrostatic drive type actuator. 本発明の第2の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る静電駆動型アクチュエータの構成例を説明する図である。It is a figure explaining the structural example of the electrostatic drive type actuator which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る可変容量装置の構成例を説明する図である。It is a figure explaining the structural example of the variable capacitance apparatus which concerns on the 7th Embodiment of this invention.

本発明の第1の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   A configuration example of the electrostatic drive actuator according to the first embodiment of the present invention will be described.

図4(A)は静電駆動型アクチュエータ1の上部カバーを除いた状態での平面図である。図4(B)はスイッチOFF時の静電駆動型アクチュエータ1の側面断面図である。図4(C)はスイッチON時の静電駆動型アクチュエータ1の側面断面図である。   FIG. 4A is a plan view of the electrostatic drive actuator 1 with the upper cover removed. FIG. 4B is a side sectional view of the electrostatic drive actuator 1 when the switch is OFF. FIG. 4C is a side sectional view of the electrostatic drive actuator 1 when the switch is ON.

静電駆動型アクチュエータ1は、基板2と上面カバー3と側面カバー4と下駆動電極5A〜5Dと可動板6と誘電体膜7とを備える。基板2と上面カバー3と側面カバー4とは外装材となる。基板2および上面カバー3はガラス基板からなり、側面カバー4および可動板6は抵抗率0.0026Ωcmの低抵抗Si基板からなる。   The electrostatic drive actuator 1 includes a substrate 2, an upper cover 3, a side cover 4, lower drive electrodes 5 </ b> A to 5 </ b> D, a movable plate 6, and a dielectric film 7. The substrate 2, the upper surface cover 3, and the side surface cover 4 serve as exterior materials. The substrate 2 and the top cover 3 are made of a glass substrate, and the side cover 4 and the movable plate 6 are made of a low resistance Si substrate having a resistivity of 0.0026 Ωcm.

基板2にはスルーホール8、バンプ電極9A、およびハンダバンプ9Bが形成される。バンプ電極9Aは基板2の底面に形成される。ハンダバンプ9Bはバンプ電極9Aに接合される。スルーホール8は基板2を貫通して形成され、下駆動電極5A〜5Dとバンプ電極9Aとを接続する。   The substrate 2 is formed with through holes 8, bump electrodes 9A, and solder bumps 9B. The bump electrode 9A is formed on the bottom surface of the substrate 2. The solder bump 9B is joined to the bump electrode 9A. The through hole 8 is formed through the substrate 2 and connects the lower drive electrodes 5A to 5D and the bump electrode 9A.

可動板6は開口が設けられた厚みが一様な平板状の導電性材料からなり、2本の主梁状部6Aと主可動部6Bと支持部6Cと2本の副梁状部6Dと副可動部6Eを備える。支持部6Cは可動板6の図中左側端部に凸形状に形成され、基板2に接合される。主可動部6Bは可動板6の図中右側端部に矩形状に形成される。2本の主梁状部6Aは支持部6Cと主可動部6Bとの間をつなぐ線路状領域である。主梁状部6Aと主可動部6Bと支持部6Cとは本発明の主梁部を構成し、主梁状部6Aと主可動部6Bとが基板2から離間した状態で支持部6Cにより支持され、片持ち梁構造を構成する。   The movable plate 6 is made of a flat plate-like conductive material having an opening and a uniform thickness, and includes two main beam-like portions 6A, a main movable portion 6B, a support portion 6C, and two sub-beam-like portions 6D. A sub movable part 6E is provided. The support portion 6 </ b> C is formed in a convex shape at the left end portion of the movable plate 6 in the figure and is joined to the substrate 2. The main movable portion 6B is formed in a rectangular shape at the right end portion of the movable plate 6 in the figure. The two main beam-like portions 6A are line-like regions that connect between the support portion 6C and the main movable portion 6B. The main beam-shaped portion 6A, the main movable portion 6B, and the support portion 6C constitute the main beam portion of the present invention, and the main beam-shaped portion 6A and the main movable portion 6B are supported by the support portion 6C in a state where they are separated from the substrate 2. And constitute a cantilever structure.

副可動部6Eは可動板6の開口内に矩形状で設けられる。2本の副梁状部6Dは副可動部6Eと主可動部6Bとの間をつなぐ線路状領域である。副可動部6Eと副梁状部6Dとは本発明の副梁部を構成し、基板2から離間した状態で主可動部6Bに支持され、片持ち梁構造を構成する。なお、副可動部6Eにおける底面には、副可動部6Eが下駆動電極5Aと接触することを防ぐために底面から部分的に突出するフランジ部を設けている。このように副梁状部6Dおよび副可動部6Eを片持ち梁構造とすることにより、両持ち梁構造の場合よりもバネ定数および専有面積を低減できる。また、副可動部6Eを副梁状部6Dとは別に設けているので、副梁部の面積を局所的に拡張して静電容量を確保することが容易になる。   The sub movable portion 6 </ b> E is provided in a rectangular shape in the opening of the movable plate 6. The two auxiliary beam-like portions 6D are line-like regions that connect between the auxiliary movable portion 6E and the main movable portion 6B. The sub movable part 6E and the sub beam-like part 6D constitute a sub beam part of the present invention, and are supported by the main movable part 6B in a state of being separated from the substrate 2 to form a cantilever structure. A flange portion that partially protrudes from the bottom surface is provided on the bottom surface of the sub movable portion 6E in order to prevent the sub movable portion 6E from coming into contact with the lower drive electrode 5A. Thus, by making the sub-beam-like portion 6D and the sub-movable portion 6E have a cantilever structure, the spring constant and the exclusive area can be reduced as compared with the case of the double-support beam structure. Further, since the auxiliary movable portion 6E is provided separately from the auxiliary beam-like portion 6D, it becomes easy to secure the capacitance by locally expanding the area of the auxiliary beam portion.

下駆動電極5Bは基板上面の中央左側付近に形成された凸形状部分で可動板6の支持部6Cに接合し、スルーホール8を介してグランドに接続される。下駆動電極5Aは基板上面の中央付近に形成された矩形状部分で可動板6の副可動部6Eに対向し、スルーホール8を介して基準DC電圧に接続される。下駆動電極5Aと副可動部6Eとは基準DC電圧とグランドとによる静電容量を形成し、静電力により可動板6全体の変形を促す本発明の駆動用容量形成部を構成する。この駆動用容量形成部の構造はいわゆる下駆動電極5A、副可動部6Eおよび下駆動電極5Aと副可動部6Eとがなす空隙からなるMIM構造である。下駆動電極5Aが本発明の基板側電極部に相当し、下駆動電極5Aに対向する副可動部6Eが本発明の梁側電極部に相当し、電圧が印加される下駆動電極5Aと副可動部6Eとがそれぞれ対向する。このMIM構造は、後述するMIMIM構造に比べて面積当たりの静電力が大きく、電極面積の低減に有利である。   The lower drive electrode 5B is joined to the support portion 6C of the movable plate 6 at a convex portion formed near the center left side of the upper surface of the substrate, and is connected to the ground via the through hole 8. The lower drive electrode 5A is a rectangular portion formed near the center of the upper surface of the substrate, faces the sub movable portion 6E of the movable plate 6, and is connected to the reference DC voltage via the through hole 8. The lower drive electrode 5A and the sub movable portion 6E form a capacitance by the reference DC voltage and the ground, and constitute a drive capacitance forming portion of the present invention that promotes deformation of the entire movable plate 6 by electrostatic force. The structure of the driving capacitance forming portion is a so-called MIM structure including a lower drive electrode 5A, a sub movable portion 6E, and a gap formed by the lower drive electrode 5A and the sub movable portion 6E. The lower drive electrode 5A corresponds to the substrate side electrode portion of the present invention, the sub movable portion 6E facing the lower drive electrode 5A corresponds to the beam side electrode portion of the present invention, and the lower drive electrode 5A and the sub drive electrode to which a voltage is applied. The movable part 6E faces each other. This MIM structure has a larger electrostatic force per area than the MIMIM structure described later, and is advantageous in reducing the electrode area.

下駆動電極5Cは基板上面の中央右側付近に形成された線路部分で可動板6の主可動部6Bに対向し、スルーホール8を介して高周波信号入力端子に接続される。下駆動電極5Dは下駆動電極5Cの線路部分に平行する線路部分で可動板6の主可動部6Bに対向し、スルーホール8を介して高周波信号出力端子に接続される。誘電体膜7は、下駆動電極5Cと下駆動電極5Dとの線路部分を覆い、可動板6の主可動部6Bに対向する。高周波信号が本発明の制御対象信号であり、下駆動電極5C,5D、誘電体膜7、および主可動部6Bは、主可動部6Bと誘電体膜7との接触状態によって下駆動電極5Cと下駆動電極5Dとの間の結合状態を変化させる本発明の信号可変部を構成する。この信号可変部の構造はいわゆる下駆動電極5C、誘電体膜7、主可動部6B、誘電体膜7、下駆動電極5DからなるMIMIM構造である。下駆動電極5C,5Dが本発明の第1・第2の基板側電極部に相当し、下駆動電極5Aに対向する主可動部6Bが本発明の梁側電極部に相当し、信号が印加される下駆動電極5C,5Dが可動板6に対向し、可動板6を介して結合する。MIMIM構造は、MIM構造に比べて面積当たりの静電力が小さく、ホットスイッチング時の変形を抑制するのに有利である。   The lower drive electrode 5C is opposed to the main movable portion 6B of the movable plate 6 at a line portion formed near the center right side of the upper surface of the substrate, and is connected to the high frequency signal input terminal through the through hole 8. The lower drive electrode 5D is opposed to the main movable portion 6B of the movable plate 6 at a line portion parallel to the line portion of the lower drive electrode 5C, and is connected to the high frequency signal output terminal through the through hole 8. The dielectric film 7 covers the line portion of the lower drive electrode 5C and the lower drive electrode 5D and faces the main movable portion 6B of the movable plate 6. The high frequency signal is the control target signal of the present invention, and the lower drive electrodes 5C and 5D, the dielectric film 7, and the main movable part 6B are connected to the lower drive electrode 5C depending on the contact state between the main movable part 6B and the dielectric film 7. The signal variable portion of the present invention is configured to change the coupling state with the lower drive electrode 5D. The signal variable portion has a so-called MIMIM structure including a lower drive electrode 5C, a dielectric film 7, a main movable portion 6B, a dielectric film 7, and a lower drive electrode 5D. The lower drive electrodes 5C and 5D correspond to the first and second substrate side electrode portions of the present invention, the main movable portion 6B facing the lower drive electrode 5A corresponds to the beam side electrode portion of the present invention, and a signal is applied. The lower drive electrodes 5 </ b> C and 5 </ b> D are opposed to the movable plate 6 and coupled via the movable plate 6. The MIMIM structure has a smaller electrostatic force per area than the MIM structure, and is advantageous in suppressing deformation during hot switching.

図4(B)に示すスイッチOFF時には、下駆動電極5Aに基準DC電圧が印加されず、下駆動電極5Aと副可動部6Eとの間に静電容量が形成されない。このため、可動板6には静電力が作用せず変形も生じず、可動板6の主可動部6Bは誘電体膜7から離間した状態となる。これにより、下駆動電極5Cと下駆動電極5Dとの間の電気的な接続は遮断される。   When the switch shown in FIG. 4B is OFF, the reference DC voltage is not applied to the lower drive electrode 5A, and no capacitance is formed between the lower drive electrode 5A and the sub movable portion 6E. Therefore, no electrostatic force acts on the movable plate 6 and no deformation occurs, and the main movable portion 6B of the movable plate 6 is in a state of being separated from the dielectric film 7. Thereby, the electrical connection between the lower drive electrode 5C and the lower drive electrode 5D is cut off.

図4(C)に示すスイッチON時には、下駆動電極5Aに基準DC電圧が印加され、下駆動電極5Aと副可動部6Eとの間に静電容量が形成される。このため、可動板6には静電力が作用して変形が生じ、可動板6の主可動部6Bは誘電体膜7に接触した状態となる。これにより、下駆動電極5Cおよび下駆動電極5Dは、可動板6の主可動部6Bとの間に発生する静電容量を介して結合する。   When the switch shown in FIG. 4C is ON, a reference DC voltage is applied to the lower drive electrode 5A, and a capacitance is formed between the lower drive electrode 5A and the sub movable portion 6E. For this reason, electrostatic force acts on the movable plate 6 to cause deformation, and the main movable portion 6B of the movable plate 6 comes into contact with the dielectric film 7. As a result, the lower drive electrode 5C and the lower drive electrode 5D are coupled to each other via the capacitance generated between the main movable portion 6B of the movable plate 6.

ホットスイッチング時には、下駆動電極5Aに基準DC電圧が印加されない場合でも下駆動電極5Cと主可動部6Bとの間、および下駆動電極5Dと主可動部6Bとの間にある程度の大きさの静電容量が発生し、それによる静電力で可動板6が変形して誘電体膜7に接触する恐れがある。そのため、ここでは主梁状部6Aのバネ定数を、副梁状部6Dのバネ定数よりも大きくしている。これにより、ホットスイッチング時に信号可変部に生じる静電力による可動板6の撓みを抑制して、誘電体膜7に主可動部6Bが接触することを防いでいる。   At the time of hot switching, static electricity having a certain size between the lower drive electrode 5C and the main movable portion 6B and between the lower drive electrode 5D and the main movable portion 6B even when the reference DC voltage is not applied to the lower drive electrode 5A. There is a possibility that a capacitance is generated and the movable plate 6 is deformed by the electrostatic force thereby to come into contact with the dielectric film 7. Therefore, here, the spring constant of the main beam-like portion 6A is made larger than the spring constant of the sub-beam-like portion 6D. Thereby, the bending of the movable plate 6 due to the electrostatic force generated in the signal variable portion at the time of hot switching is suppressed, and the main movable portion 6B is prevented from contacting the dielectric film 7.

ここで、可動板6に作用する静電力について説明する。可動板6と下駆動電極5A,5C,5Dとは平行平板キャパシタとして機能する。平行平板キャパシタに働く静電力Fは数式1で表され、平行平板キャパシタの対向面積Aや印加電圧Vの二乗に比例し、対向距離zの二乗に反比例する。   Here, the electrostatic force acting on the movable plate 6 will be described. The movable plate 6 and the lower drive electrodes 5A, 5C, 5D function as a parallel plate capacitor. The electrostatic force F acting on the parallel plate capacitor is expressed by Equation 1, and is proportional to the square of the opposed area A and the applied voltage V of the parallel plate capacitor and inversely proportional to the square of the opposed distance z.

Figure 2011109822
Figure 2011109822

したがって、副可動部6Eと下駆動電極5Aとからなる駆動用容量形成部における対向距離zは、より小さい方が静電力Fの確保に有利である。換言すれば、同一の静電力Fを得る場合に対向距離zが小さい方が対向面積Aや印加電圧Vを低減できる。即ち、主梁状部6Aのバネ定数が大きくても、副梁状部6Dのバネ定数が小さい場合には、副梁状部6Dの撓み量が大きくなり易く、副可動部6Eと下駆動電極5Aとの対向距離zが小さくなり、低い基準DC電圧であっても必要とする静電力Fが駆動用容量形成部で得られる。   Therefore, the smaller the facing distance z in the drive capacitance forming portion composed of the sub movable portion 6E and the lower drive electrode 5A is advantageous in securing the electrostatic force F. In other words, when the same electrostatic force F is obtained, the facing area A and the applied voltage V can be reduced when the facing distance z is smaller. That is, even if the spring constant of the main beam-like portion 6A is large, if the spring constant of the sub-beam-like portion 6D is small, the amount of bending of the sub-beam-like portion 6D tends to increase, and the sub-movable portion 6E and the lower drive electrode The facing distance z to 5A is reduced, and the required electrostatic force F can be obtained at the drive capacitor forming portion even at a low reference DC voltage.

また、副可動部6Eと下駆動電極5Aとからなる駆動用容量形成部における対向面積は、主可動部6Bと下駆動電極5C,5Dとからなる信号可変部における対向面積よりも大きい構成とすると好適である。これにより、ホットスイッチング時に信号可変部で発生する静電力を駆動用容量形成部で発生する静電力よりも弱めて、より適正な動作を実現させることが容易になる。   In addition, the opposing area in the drive capacitance forming part composed of the sub movable part 6E and the lower drive electrode 5A is larger than the opposing area in the signal variable part composed of the main movable part 6B and the lower drive electrodes 5C and 5D. Is preferred. This makes it easier to realize a more appropriate operation by weakening the electrostatic force generated in the signal variable unit at the time of hot switching than the electrostatic force generated in the drive capacitance forming unit.

次に静電駆動型アクチュエータ1の製造方法について、図5を参照して説明する。なお、通常は広大な母基板から複数の素子を形成するが、ここでは説明の簡易化のために、母基板から一つの素子を形成するものとして説明する。   Next, a method for manufacturing the electrostatic drive actuator 1 will be described with reference to FIG. Normally, a plurality of elements are formed from a very large mother board. However, here, for the sake of simplicity of explanation, it is assumed that one element is formed from the mother board.

まず、基板2となるガラス基板を用意する(S1)。   First, a glass substrate to be the substrate 2 is prepared (S1).

次に、基板2のスルーホール8を形成する位置にサンドブラスト等により非貫通開口を形成し、その開口内を含む基板2の上面全面を充填メッキ法等により銅被覆する(S2)。   Next, a non-through opening is formed by sandblasting or the like at a position where the through hole 8 of the substrate 2 is to be formed, and the entire upper surface of the substrate 2 including the inside of the opening is covered with copper by a filling plating method or the like (S2).

次に、研削と研磨により基板2の上面から銅被覆を除去する。これにより、基板2の開口内に残る銅がスルーホール8を形成する(S3)。   Next, the copper coating is removed from the upper surface of the substrate 2 by grinding and polishing. Thereby, the copper remaining in the opening of the substrate 2 forms the through hole 8 (S3).

次に基板2の上面にAu/Pt/NiCr,Cr/Au/Pt/Cr等の金属膜を0.2μm厚で成膜し、リフトオフ法等により所定パターンの下駆動電極5A〜5Dを形成する(S4)。なお、下駆動電極5C,5Dの低抵抗化のために、下駆動電極の引き回し配線部をCr/Au/Pt・Crで0.6μm厚程度にしてもよい。   Next, a metal film such as Au / Pt / NiCr and Cr / Au / Pt / Cr is formed on the upper surface of the substrate 2 to a thickness of 0.2 μm, and lower drive electrodes 5A to 5D having a predetermined pattern are formed by a lift-off method or the like. (S4). In order to reduce the resistance of the lower drive electrodes 5C and 5D, the lead wiring portion of the lower drive electrode may be made about 0.6 μm thick with Cr / Au / Pt · Cr.

次にTa(ε=22〜28)等からなる誘電体膜を0.2μm厚でスパッタ成膜し、RIE法等により所定パターンの誘電体膜7を形成する(S5)。 Next, a dielectric film made of Ta 2 O 5 (ε = 22 to 28) or the like is formed by sputtering to a thickness of 0.2 μm, and a dielectric film 7 having a predetermined pattern is formed by the RIE method or the like (S5).

次にRIE法等で所定形状の凹部を設けた低抵抗Si基板4Aを用意し、基板2に400℃で陽極接合する(S6)。   Next, a low-resistance Si substrate 4A provided with a recess having a predetermined shape is prepared by RIE or the like, and anodic bonded to the substrate 2 at 400.degree.

次に、低抵抗Si基板をTMAH/研削/ポリッシュ法等により30μm厚に簿化し、RIE法等により所定パターンを形成して側面カバー4および可動板6を設ける(S7)。   Next, the low-resistance Si substrate is booked to a thickness of 30 μm by TMAH / grinding / polishing method or the like, a predetermined pattern is formed by RIE method or the like, and the side cover 4 and the movable plate 6 are provided (S7).

次に、サンドブラスト等により所定形状の凹部を設けたガラス基板を用意し、上面カバー3として側面カバー4の上面に400℃で熱接合する。この際、上面カバー3、側面カバー4、基板2により囲まれる内部空間を減圧封止する(S8)。なお、上面カバー3における凹部深さは、各基板の厚みや接合方法等の都合の兼ね合いで決定し、例えば100μm程度にするとよい。   Next, a glass substrate provided with a concave portion having a predetermined shape is prepared by sandblasting or the like, and thermally bonded at 400 ° C. to the upper surface of the side cover 4 as the upper surface cover 3. At this time, the internal space surrounded by the top cover 3, the side cover 4, and the substrate 2 is sealed under reduced pressure (S8). Note that the depth of the recess in the upper surface cover 3 is determined in consideration of the thickness of each substrate, the bonding method, and the like, and may be about 100 μm, for example.

次に、基板2の底面をグラインド/ポリッシュ等により基板厚0.1mmまで研削し、スルーホール8を底面から露出させる(S9)。   Next, the bottom surface of the substrate 2 is ground to a substrate thickness of 0.1 mm by grinding / polishing or the like, and the through hole 8 is exposed from the bottom surface (S9).

次に、ポリイミド等によるハンダレジストを形成し、電界メッキなどでスルーホールを被覆するバンプ電極9Aを形成する。そして、印刷等によりバンプ電極9Aにハンダバンプ9Bを接合する(S10)。   Next, a solder resist made of polyimide or the like is formed, and a bump electrode 9A that covers the through hole is formed by electroplating or the like. Then, the solder bump 9B is joined to the bump electrode 9A by printing or the like (S10).

以上の工程により本発明の静電駆動型アクチュエータ1を製造する。なお、複数の静電駆動型アクチュエータ1を広大な母基板に形成してから個片化する場合には、母基板をダイシングによりハーフカットしてテープ材に貼り付けた後、再びダイシングして各素子を個片化するとよい。   The electrostatic drive actuator 1 of the present invention is manufactured through the above steps. When the plurality of electrostatic drive actuators 1 are formed on a large mother board and then separated into individual pieces, the mother board is half-cut by dicing and attached to a tape material, and then diced again. It is good to divide an element into pieces.

次に、本発明の第2の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   Next, a configuration example of the electrostatic drive actuator according to the second embodiment of the present invention will be described.

本実施形態の静電駆動型アクチュエータ11は前述の静電駆動型アクチュエータ1とは下駆動電極の形状や可動部の形状が相違し、特には可動部の構成する主梁部が両持ち梁構造であり、副梁部を2つ設ける点で相違する。図6(A)は静電駆動型アクチュエータ11の上部カバーを除いた状態での平面図である。図6(B)はスイッチOFF時の静電駆動型アクチュエータ11の側面断面図である。図6(C)はスイッチON時の静電駆動型アクチュエータ11の側面断面図である。   The electrostatic drive actuator 11 of the present embodiment is different from the above-mentioned electrostatic drive actuator 1 in the shape of the lower drive electrode and the shape of the movable part, and in particular, the main beam part constituting the movable part has a double-supported beam structure. This is different in that two auxiliary beam portions are provided. FIG. 6A is a plan view of the electrostatic drive actuator 11 with the upper cover removed. FIG. 6B is a side sectional view of the electrostatic drive actuator 11 when the switch is OFF. FIG. 6C is a side sectional view of the electrostatic drive actuator 11 when the switch is ON.

静電駆動型アクチュエータ11は、基板12と上面カバー13と側面カバー14と下駆動電極15A〜15Dと可動板16と誘電体膜17とを備える。   The electrostatic drive actuator 11 includes a substrate 12, an upper cover 13, a side cover 14, lower drive electrodes 15 </ b> A to 15 </ b> D, a movable plate 16, and a dielectric film 17.

可動板16は2つの開口が設けられた矩形平板状の導電性材料からなり、2本×2組の主梁状部16Aと主可動部16Bと2つの支持部16Cと2本×2組の副梁状部16Dと2つの副可動部16Eを備える。2つの支持部16Cは可動板16の両端部に矩形状で形成され、基板12に接合される。主可動部16Bは可動板16の図中中央部分に矩形状に形成される。各組の2本の主梁状部16Aは支持部16Cと主可動部16Bとの間をつなぐ線路状領域である。主梁状部16Aと主可動部16Bと支持部16Cとは本発明の主梁部を構成し、主梁状部16Aと主可動部16Bとが基板12から離間した状態で支持部16Cにより支持され、両持ち梁構造を構成する。   The movable plate 16 is made of a rectangular flat plate-shaped conductive material provided with two openings, 2 × 2 sets of main beam-shaped portions 16A, a main movable portion 16B, two support portions 16C, and 2 × 2 sets. The auxiliary beam-shaped part 16D and the two auxiliary movable parts 16E are provided. The two support portions 16 </ b> C are formed in a rectangular shape at both ends of the movable plate 16 and are joined to the substrate 12. The main movable portion 16B is formed in a rectangular shape at the center of the movable plate 16 in the figure. The two main beam-like portions 16A of each set are line-like regions that connect between the support portion 16C and the main movable portion 16B. The main beam portion 16A, the main movable portion 16B, and the support portion 16C constitute the main beam portion of the present invention, and the main beam portion 16A and the main movable portion 16B are supported by the support portion 16C in a state where they are separated from the substrate 12. And constitutes a doubly supported beam structure.

2つの副可動部16Eは可動板16の2つの開口内に矩形状で設けられる。各組の2本の副梁状部16Dは副可動部16Eと主可動部16Bとの間をつなぐ線路状領域である。副可動部16Eと副梁状部16Dとは本発明の副梁部を構成し、基板12から離間した状態で主可動部16Bに支持され、片持ち梁構造を構成する。   The two sub movable parts 16E are provided in a rectangular shape in the two openings of the movable plate 16. The two sub beam-like portions 16D of each group are line-like regions that connect between the sub movable portion 16E and the main movable portion 16B. The sub movable portion 16E and the sub beam-like portion 16D constitute a sub beam portion of the present invention, and are supported by the main movable portion 16B in a state of being separated from the substrate 12, thereby constituting a cantilever structure.

下駆動電極15Bは可動板16の図中右側端部に設けられた支持部16Cに接合し、グランドに接続される。下駆動電極15Aは2つの矩形状部分で可動板16の2つの副可動部16Eに対向し、基準DC電圧に接続される。下駆動電極15Aと副可動部16Eとは本発明の駆動用容量形成部を構成する。下駆動電極15Cは線路部分で可動板16の主可動部16Bに対向し、高周波信号入力端子に接続される。下駆動電極15Dは線路部分で可動板16の主可動部16Bに対向し、高周波信号出力端子に接続される。誘電体膜17は、下駆動電極15Cと下駆動電極15Dとの線路部分を覆い、可動板16の主可動部16Bに対向する。これらの下駆動電極15C,15D、誘電体膜17、および主可動部16Bとは、本発明の信号可変部を構成する。   The lower drive electrode 15B is joined to a support portion 16C provided at the right end of the movable plate 16 in the figure and connected to the ground. The lower drive electrode 15A is opposed to the two sub movable portions 16E of the movable plate 16 at two rectangular portions, and is connected to a reference DC voltage. The lower drive electrode 15A and the sub movable portion 16E constitute a drive capacitance forming portion of the present invention. The lower drive electrode 15C faces the main movable portion 16B of the movable plate 16 at the line portion, and is connected to the high frequency signal input terminal. The lower drive electrode 15D faces the main movable portion 16B of the movable plate 16 at the line portion, and is connected to the high frequency signal output terminal. The dielectric film 17 covers the line portion between the lower drive electrode 15C and the lower drive electrode 15D, and faces the main movable portion 16B of the movable plate 16. These lower drive electrodes 15C and 15D, the dielectric film 17, and the main movable portion 16B constitute a signal variable portion of the present invention.

この静電駆動型アクチュエータ11では、主可動部16Bが両持ち梁構造で支持されて基板12と並行する。したがって、信号可変部における静電容量のバラツキが抑制される。   In the electrostatic drive type actuator 11, the main movable portion 16 </ b> B is supported by a doubly supported beam structure and is parallel to the substrate 12. Therefore, variation in capacitance in the signal variable unit is suppressed.

次に、本発明の第3の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   Next, a configuration example of an electrostatic drive actuator according to the third embodiment of the present invention will be described.

図7(A)は、本実施形態に係る静電駆動型アクチュエータ21の上部カバー及び側面カバーを除いた状態での平面図である。この静電駆動型アクチュエータ21は、前述の静電駆動型アクチュエータ1とは形状が相違する可動板26を備える構成である。   FIG. 7A is a plan view of the electrostatic drive actuator 21 according to this embodiment with the upper cover and side covers removed. The electrostatic drive actuator 21 includes a movable plate 26 having a shape different from that of the electrostatic drive actuator 1 described above.

可動板26は基板22に垂直な方向Zの厚み寸法が一様であり、主梁状部26A、主可動部26B、支持部26C、副梁部26Dを備える。副梁部26Dは、梁の主軸方向Xに配列された複数のスリット26Eを備える。   The movable plate 26 has a uniform thickness dimension in the direction Z perpendicular to the substrate 22, and includes a main beam portion 26A, a main movable portion 26B, a support portion 26C, and a sub beam portion 26D. The sub beam portion 26D includes a plurality of slits 26E arranged in the main axis direction X of the beam.

この静電駆動型アクチュエータ21では、方向X,Zに対して垂直な方向Yに沿った副梁部26Dの寸法(幅寸法)は、スリット26Eの設けられた部位で小さくなる。したがって、複数のスリット26Eを主軸方向Xに配列することで、前述の静電駆動型アクチュエータ1よりも副梁部がなだらかに変形し、スイッチON時に副梁部の基板と平行な部分が次第に拡大していくようになり、静電容量の変化を安定させやすくなる。   In the electrostatic drive actuator 21, the dimension (width dimension) of the sub-beam portion 26D along the direction Y perpendicular to the directions X and Z is reduced at the portion where the slit 26E is provided. Therefore, by arranging the plurality of slits 26E in the main axis direction X, the sub beam portion is more gently deformed than the above-described electrostatic drive actuator 1, and the portion of the sub beam portion parallel to the substrate is gradually enlarged when the switch is turned on. It becomes easier to stabilize the change in capacitance.

図7(B)は、本実施形態に係る静電駆動型アクチュエータの構成で主梁部を両持ち梁構造とした構成例を示す平面図である。この静電駆動型アクチュエータ31では、前述の静電駆動型アクチュエータ11よりも副梁部がなだらかに変形し、スイッチON時に副梁部の基板と平行な部分が次第に拡大していくようになり、静電容量の変化を安定させやすくなる。   FIG. 7B is a plan view showing a configuration example in which the main beam portion has a double-supported beam structure in the configuration of the electrostatic drive actuator according to the present embodiment. In this electrostatic drive type actuator 31, the secondary beam portion is deformed more gently than the electrostatic drive type actuator 11 described above, and when the switch is turned on, the portion parallel to the substrate of the secondary beam portion gradually expands. It becomes easy to stabilize the change in capacitance.

次に、本発明の第4の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   Next, a configuration example of an electrostatic drive actuator according to the fourth embodiment of the present invention will be described.

図8は、本実施形態に係る静電駆動型アクチュエータ41の上部カバー及び側面カバーを除いた状態での平面図である。この静電駆動型アクチュエータ41は、前述の静電駆動型アクチュエータ21とは形状が相違する下駆動電極45A,45Bを備える構成である。   FIG. 8 is a plan view of the electrostatic drive actuator 41 according to this embodiment with the upper cover and the side cover removed. The electrostatic drive actuator 41 includes lower drive electrodes 45A and 45B having a shape different from that of the electrostatic drive actuator 21 described above.

下駆動電極45Bは基板上面の中央右側付近に形成された矩形状部分で可動板の副梁部に対向し、グランドに接続される。下駆動電極45Aは基板上面の中央左側付近に形成された矩形状部分で可動板の副梁部に対向し、基準DC電圧に接続される。下駆動電極45Aと下駆動電極45Bとは本発明の駆動用容量形成部を構成する。この駆動用容量形成部の構造はいわゆるMIMIM構造である。下駆動電極45A,25Bが本発明の第1・第2の基板側電極部に相当し、下駆動電極45A,45Bに対向する副可動部6Eが本発明の梁側電極部に相当し、電圧が印加される下駆動電極45A,45Bが可動板に対向し、可動板を介して結合する。この構成は、MIM構造に比べて面積当たりの静電力が小さくなるが、可動板に電圧を印加する必要が無く、可動板の小型化に有利である。   The lower drive electrode 45B is a rectangular portion formed near the center right side of the upper surface of the substrate, faces the sub-beam portion of the movable plate, and is connected to the ground. The lower drive electrode 45A is a rectangular portion formed near the center left side of the upper surface of the substrate, faces the sub-beam portion of the movable plate, and is connected to a reference DC voltage. The lower drive electrode 45A and the lower drive electrode 45B constitute a drive capacitance forming portion of the present invention. The structure of the driving capacitor forming portion is a so-called MIMIM structure. The lower drive electrodes 45A and 25B correspond to the first and second substrate side electrode portions of the present invention, the auxiliary movable portion 6E facing the lower drive electrodes 45A and 45B corresponds to the beam side electrode portion of the present invention, and the voltage Are applied to the lower drive electrodes 45A and 45B facing the movable plate. Although this configuration has a smaller electrostatic force per area than the MIM structure, it is not necessary to apply a voltage to the movable plate, which is advantageous for downsizing the movable plate.

次に、本発明の第5の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   Next, a configuration example of an electrostatic drive actuator according to the fifth embodiment of the present invention will be described.

図9(A)は、本実施形態に係る静電駆動型アクチュエータ51の上部カバー及び側面カバーを除いた状態での平面図である。この静電駆動型アクチュエータ51は、前述の静電駆動型アクチュエータ41とは形状が相違する下駆動電極55Aを備える構成である。   FIG. 9A is a plan view of the electrostatic drive actuator 51 according to this embodiment with the upper cover and side covers removed. The electrostatic drive actuator 51 includes a lower drive electrode 55A having a shape different from that of the electrostatic drive actuator 41 described above.

下駆動電極55Aは基板上面の中央左側付近に形成された矩形状部分で可動板の副梁部に対向するとともに、基板上面の右側付近に形成された線路状部分55A1で可動板の主梁部に対向し、基準DC電圧に接続される。この構成では、比較的大きな静電力が得られ、基準DC電圧をさらに抑制することが可能になる。なお、下駆動電極55Aは一部を下駆動電極55Cと交差させる必要が生じるので、基板52の一部を絶縁性のブリッジ層53で被覆して下駆動電極55Aと下駆動電極55Cとの間の絶縁を確保する。   The lower drive electrode 55A is a rectangular portion formed near the central left side of the upper surface of the substrate and faces the sub-beam portion of the movable plate. The lower drive electrode 55A is a main beam portion of the movable plate at the line-shaped portion 55A1 formed near the right side of the upper surface of the substrate. And is connected to a reference DC voltage. With this configuration, a relatively large electrostatic force can be obtained, and the reference DC voltage can be further suppressed. Since the lower drive electrode 55A needs to partially intersect the lower drive electrode 55C, a part of the substrate 52 is covered with an insulating bridge layer 53 so that it is between the lower drive electrode 55A and the lower drive electrode 55C. Ensure insulation.

図9(B)は、本実施形態に係る静電駆動型アクチュエータの構成で駆動用容量形成部をMIM構造とした構成例を示す平面図である。この静電駆動型アクチュエータ61でも、前述の静電駆動型アクチュエータ51と同様に、基板上面の右側付近に形成された線路状部分65A1を有するため、比較的大きな静電力が得られ、基準DC電圧をさらに抑制することが可能になる。   FIG. 9B is a plan view showing a configuration example in which the drive capacitor forming portion has a MIM structure in the configuration of the electrostatic drive actuator according to the present embodiment. Similarly to the electrostatic drive actuator 51 described above, this electrostatic drive actuator 61 has the line-shaped portion 65A1 formed near the right side of the upper surface of the substrate, so that a relatively large electrostatic force can be obtained and the reference DC voltage can be obtained. Can be further suppressed.

次に、本発明の第6の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   Next, a configuration example of the electrostatic drive actuator according to the sixth embodiment of the present invention will be described.

図10は、本実施形態に係る静電駆動型アクチュエータ71の側面断面図である。この静電駆動型アクチュエータ71は、可動板76とは別に上駆動電極76A,76Bを備える点で、前述の静電駆動型アクチュエータ1と相違する。   FIG. 10 is a side sectional view of the electrostatic drive actuator 71 according to the present embodiment. The electrostatic drive actuator 71 is different from the electrostatic drive actuator 1 described above in that the upper drive electrodes 76A and 76B are provided separately from the movable plate 76.

可動板76が静電駆動型アクチュエータ1と同様に低抵抗Si基板であれば、上駆動電極76A,76Bを設ける事により、信号可変部で形成する可変容量の抵抗分が小さくなり、Q値を改善することができる。また、可動板76を高抵抗Si基板などの絶縁性基板とすれば、信号可変部からRF信号などが漏れることが無くなり、後述する信号遮断用の抵抗素子などを設ける必要がなくなる。この場合、Si基板側に電極を用いる必要があり、材料としては陽極接合時の熱負荷で表面荒れしないW(タングステン)またはMo(モリブデン)が良い。   If the movable plate 76 is a low-resistance Si substrate like the electrostatic drive type actuator 1, by providing the upper drive electrodes 76A and 76B, the resistance component of the variable capacitor formed by the signal variable portion is reduced, and the Q value is reduced. Can be improved. Further, if the movable plate 76 is an insulating substrate such as a high-resistance Si substrate, the RF signal or the like does not leak from the signal variable section, and there is no need to provide a resistance element for signal cutoff described later. In this case, it is necessary to use an electrode on the Si substrate side, and the material is preferably W (tungsten) or Mo (molybdenum), which does not roughen the surface due to the thermal load during anodic bonding.

次に、本発明の第7の実施形態に係る静電駆動型アクチュエータの構成例について説明する。   Next, a configuration example of the electrostatic drive actuator according to the seventh embodiment of the present invention will be described.

図11は、本実施形態に係る静電駆動型アクチュエータ81の側面断面図である。この静電駆動型アクチュエータ81は、信号可変部に誘電体層を設けずに構成し、上駆動電極86Bと下駆動電極85C、および上駆動電極86Bと下駆動電極85Dとの接触により、スイッチングを行う点で、前述の静電駆動型アクチュエータ71と相違する。このような構成であっても本発明は好適に実施できる。なお、下駆動電極85C,85Dが本発明の第1・第2の基板側電極部に相当し、上駆動電極86Bが第1・第2の基板側電極部間のギャップに対向する本発明の梁側電極部に相当し、上駆動電極86Bを介して導通する下駆動電極85C,85D間を制御対象信号である電気信号が伝搬する。   FIG. 11 is a side sectional view of the electrostatic drive actuator 81 according to the present embodiment. The electrostatic drive type actuator 81 is configured without providing a dielectric layer in the signal variable portion, and switching is performed by contact between the upper drive electrode 86B and the lower drive electrode 85C, and the upper drive electrode 86B and the lower drive electrode 85D. This is different from the electrostatic drive actuator 71 described above. Even with such a configuration, the present invention can be suitably implemented. The lower drive electrodes 85C and 85D correspond to the first and second substrate side electrode portions of the present invention, and the upper drive electrode 86B faces the gap between the first and second substrate side electrode portions of the present invention. An electric signal, which is a control target signal, propagates between the lower drive electrodes 85C and 85D that correspond to the beam-side electrode portion and are conducted through the upper drive electrode 86B.

次に、本発明の第8の実施形態に係る静電駆動型アクチュエータを用いた可変容量装置の構成例について説明する。   Next, a configuration example of a variable capacitance device using an electrostatic drive actuator according to an eighth embodiment of the present invention will be described.

図12(A)は、本実施形態に係る可変容量装置91を説明する図である。この可変容量装置91は、単一の基板に複数の静電駆動型アクチュエータ1を備え、それぞれの信号可変部を並列に接続して、各静電駆動型アクチュエータ1へ印加する基準DC電圧のON/OFFの組み替えにより静電容量を可変する構成である。なお、ここでは各静電駆動型アクチュエータ1固有の静電容量を異ならせて、可変容量装置91で可変し得る静電容量値の範囲を広げている。また、各静電駆動型アクチュエータ1の基準DC電圧ライン上にはRF信号が漏れることを防ぐために信号遮断用の抵抗素子を挿入している。   FIG. 12A is a diagram illustrating the variable capacitance device 91 according to the present embodiment. The variable capacitance device 91 includes a plurality of electrostatic drive actuators 1 on a single substrate, and each signal variable unit is connected in parallel to turn on a reference DC voltage applied to each electrostatic drive actuator 1. The capacitance is variable by rearranging / OFF. Note that here, the capacitances unique to each of the electrostatic drive actuators 1 are varied to widen the range of capacitance values that can be varied by the variable capacitance device 91. In addition, a resistance element for signal interruption is inserted on the reference DC voltage line of each electrostatic drive actuator 1 in order to prevent leakage of the RF signal.

このような可変容量装置91は、VMD(Variable Matching Device)装置に組み込まれる。図12(B)はVMD装置95の構成例を説明する図である。VMD装置95は第1の外部負荷96Aと第2の外部負荷96Bとの間の信号ラインでのインピーダンスマッチングに用いられる。VMD装置95は信号ラインにシリーズに接続したインダクタ97、およびインダクタ97の両端とグランドとの間に接続した可変容量装置91からなる。このように可変容量装置91を利用することにより、VMD装置95の小型化が可能になる。   Such a variable capacitance device 91 is incorporated in a VMD (Variable Matching Device) device. FIG. 12B is a diagram for explaining a configuration example of the VMD device 95. The VMD device 95 is used for impedance matching on a signal line between the first external load 96A and the second external load 96B. The VMD device 95 includes an inductor 97 connected in series to a signal line, and a variable capacitance device 91 connected between both ends of the inductor 97 and the ground. By using the variable capacitance device 91 in this way, the VMD device 95 can be reduced in size.

1,11,21,31,41,51,61,71,81…静電駆動型アクチュエータ
2,12,22,52…基板
3,13…上面カバー
4,14…側面カバー
4A…低抵抗Si基板
5A〜5D,15A〜15D,45A,45B,55A,55C,65A,85C,85D…下駆動電極
6,16,26,56,66…可動板
6A,16A,26A…主梁状部
6B,16B,26B…主可動部
6C,16C,26C…支持部
6D,16D…副梁状部
6E,16E…副可動部
7,17…誘電体膜
8…スルーホール
9A…バンプ電極
9B…ハンダバンプ
26D…副梁部
26E…スリット
53…ブリッジ層
76…可動板
76A,76B…上駆動電極
86B…上駆動電極
91…可変容量装置
95…VMD装置
96A,96B…外部負荷
DESCRIPTION OF SYMBOLS 1,11,21,31,41,51,61,71,81 ... Electrostatic drive type actuator 2,12,22,52 ... Substrate 3,13 ... Top cover 4,14 ... Side cover 4A ... Low resistance Si substrate 5A to 5D, 15A to 15D, 45A, 45B, 55A, 55C, 65A, 85C, 85D ... Lower drive electrodes 6, 16, 26, 56, 66 ... Movable plates 6A, 16A, 26A ... Main beam-like portions 6B, 16B , 26B ... main movable part 6C, 16C, 26C ... support part 6D, 16D ... sub beam-like part 6E, 16E ... sub movable part 7, 17 ... dielectric film 8 ... through hole 9A ... bump electrode 9B ... solder bump 26D ... sub Beam portion 26E ... Slit 53 ... Bridge layer 76 ... Movable plate 76A, 76B ... Upper drive electrode 86B ... Upper drive electrode 91 ... Variable capacitance device 95 ... VMD device 96A, 96B ... External load

Claims (12)

基板と、
接続端で前記基板に接続される主梁部と、
接続端で前記主梁部の可動部位に接続される片持ち梁構造の副梁部と、
前記主梁部および前記基板に構成した、前記主梁部の可動部位の変位により制御対象信号を変化させる信号可変部と、
前記副梁部および前記基板に構成した、DC電圧が印加されて生じる静電容量に基づく静電力で前記副梁部および前記主梁部を変形させる駆動用容量形成部と、
を備える静電駆動型アクチュエータ。
A substrate,
A main beam portion connected to the substrate at a connection end;
A sub-beam portion of a cantilever structure connected to a movable part of the main beam portion at a connection end;
A signal variable unit configured to change a control target signal by displacement of a movable part of the main beam part, configured on the main beam part and the substrate,
A driving capacity forming portion configured to deform the sub beam portion and the main beam portion with an electrostatic force based on an electrostatic capacitance generated when a DC voltage is applied, configured on the sub beam portion and the substrate,
An electrostatic drive type actuator comprising:
前記副梁部は主軸方向に垂直な断面において前記基板に垂直な方向の厚み寸法が軸方向に一定で、前記基板に平行な方向の幅寸法が部分的に小さい部位が、主軸方向に複数配列された構成である、請求項1に記載の静電駆動型アクチュエータ。   The sub-beam portion has a plurality of portions arranged in the principal axis direction in a section perpendicular to the principal axis direction, the thickness dimension in the direction perpendicular to the substrate is constant in the axial direction, and the width dimension in the direction parallel to the substrate is partially small The electrostatic drive actuator according to claim 1, wherein the actuator is configured. 前記主梁部および前記副梁部は一体の導電性材料からなり、前記駆動用容量形成部に信号カット用の素子が接続される、請求項1または2に記載の静電駆動型アクチュエータ。   The electrostatic drive actuator according to claim 1, wherein the main beam portion and the sub beam portion are made of an integral conductive material, and an element for signal cut is connected to the drive capacitance forming portion. 前記主梁部および前記副梁部は絶縁性材料からなり、前記駆動用容量形成部または前記信号可変部となる電極が表面に形成される、請求項1または2に記載の静電駆動型アクチュエータ。   The electrostatic drive actuator according to claim 1, wherein the main beam portion and the sub beam portion are made of an insulating material, and electrodes serving as the drive capacitance forming portion or the signal variable portion are formed on a surface. . 前記駆動用容量形成部は、前記副梁部に対向する第1の基板側電極部および第2の基板側電極部と、前記第1の基板側電極部および前記第2の基板側電極部に対向する梁側電極部とを備え、前記第1の基板側電極部と前記第2の基板側電極部との間にDC電圧が印加される構成である請求項1〜4のいずれかに記載の静電駆動型アクチュエータ。   The drive capacitance forming portion is formed on the first substrate side electrode portion and the second substrate side electrode portion, the first substrate side electrode portion, and the second substrate side electrode portion facing the sub beam portion. 5. The structure according to claim 1, further comprising a beam-side electrode portion facing each other, wherein a DC voltage is applied between the first substrate-side electrode portion and the second substrate-side electrode portion. Electrostatic drive type actuator. 前記駆動用容量形成部は、前記副梁部に対向する基板側電極部と、前記基板側電極部に対向する梁側電極部とを備え、前記基板側電極部と前記梁側電極部との間にDC電圧が印加される構成である請求項1〜4のいずれかに記載の静電駆動型アクチュエータ。   The drive capacitance forming portion includes a substrate side electrode portion facing the sub-beam portion and a beam side electrode portion facing the substrate side electrode portion, and the substrate side electrode portion and the beam side electrode portion The electrostatic drive actuator according to claim 1, wherein a DC voltage is applied between them. 前記主梁部は両持ち梁構造である、請求項1〜6のいずれかに記載の静電駆動型アクチュエータ。   The electrostatic drive actuator according to claim 1, wherein the main beam portion has a double-supported beam structure. 前記主梁部は片持ち梁構造である、請求項1〜6のいずれかに記載の静電駆動型アクチュエータ。   The electrostatic drive actuator according to claim 1, wherein the main beam portion has a cantilever structure. 前記駆動用容量形成部は、前記信号可変部よりも電極部対向面積が大きい、請求項1〜8のいずれかに記載の静電駆動型アクチュエータ。   The electrostatic drive actuator according to claim 1, wherein the driving capacitance forming unit has a larger electrode facing area than the signal variable unit. 前記信号可変部は、前記主梁部に対向する第1の基板側電極部および第2の基板側電極部と、前記第1の基板側電極部と前記第2の基板側電極部とのギャップに対向する梁側電極部とを備え、前記梁側電極部を介して導通する前記第1の基板側電極部と前記第2の基板側電極部との間を電気信号が伝搬する構成である、請求項1〜9のいずれかに記載の静電駆動型アクチュエータ。   The signal variable portion includes a first substrate side electrode portion and a second substrate side electrode portion facing the main beam portion, and a gap between the first substrate side electrode portion and the second substrate side electrode portion. And an electric signal propagates between the first substrate side electrode portion and the second substrate side electrode portion that are conducted through the beam side electrode portion. The electrostatic drive actuator according to claim 1. 前記信号可変部は、前記主梁部に対向する第1の基板側電極部および第2の基板側電極部と、前記第1の基板側電極部および前記第2の基板側電極部に対向する梁側電極部とを備え、前記梁側電極部を介して結合する前記第1の基板側電極部と前記第2の基板側電極部との間をRF信号が伝搬する構成である、請求項1〜9のいずれかに記載の静電駆動型アクチュエータ。   The signal variable portion faces the first substrate side electrode portion and the second substrate side electrode portion facing the main beam portion, and faces the first substrate side electrode portion and the second substrate side electrode portion. An RF signal propagates between the first substrate side electrode unit and the second substrate side electrode unit coupled to each other through the beam side electrode unit. The electrostatic drive actuator according to any one of 1 to 9. 請求項11に記載の静電駆動型アクチュエータを複数備え、
各静電駆動型アクチュエータの第1の基板側電極部を接続するとともに、各静電駆動型アクチュエータの第2の基板側電極部を接続した構成である、可変容量装置。
A plurality of the electrostatic drive actuators according to claim 11,
A variable capacitance device having a configuration in which a first substrate side electrode portion of each electrostatic drive actuator is connected and a second substrate side electrode portion of each electrostatic drive actuator is connected.
JP2009262899A 2009-11-18 2009-11-18 Electrostatic drive type actuator and variable capacity device Pending JP2011109822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262899A JP2011109822A (en) 2009-11-18 2009-11-18 Electrostatic drive type actuator and variable capacity device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262899A JP2011109822A (en) 2009-11-18 2009-11-18 Electrostatic drive type actuator and variable capacity device

Publications (1)

Publication Number Publication Date
JP2011109822A true JP2011109822A (en) 2011-06-02

Family

ID=44232690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262899A Pending JP2011109822A (en) 2009-11-18 2009-11-18 Electrostatic drive type actuator and variable capacity device

Country Status (1)

Country Link
JP (1) JP2011109822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090442A (en) * 2011-10-18 2013-05-13 Murata Mfg Co Ltd Electrostatic drive type actuator, variable capacitance element and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311394A (en) * 2002-11-18 2004-11-04 Samsung Electronics Co Ltd Mems switch
JP2005318783A (en) * 2004-03-31 2005-11-10 Sharp Corp Electrostatic actuator, microswitch, microlight switch, microlight switching system, communications system, and manufacturing method for the electrostatic actuator
JP2008059865A (en) * 2006-08-30 2008-03-13 Kagoshima Univ Mems switch and portable wireless terminal equipment
JP2008517568A (en) * 2004-06-25 2008-05-22 インテル・コーポレーション Tunable antenna based on MEMS for wireless reception and transmission
JP2008186771A (en) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd Switch and wireless terminal using it
JP2009105031A (en) * 2007-10-02 2009-05-14 Toshiba Corp Electrostatic actuator, microswitch, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311394A (en) * 2002-11-18 2004-11-04 Samsung Electronics Co Ltd Mems switch
JP2005318783A (en) * 2004-03-31 2005-11-10 Sharp Corp Electrostatic actuator, microswitch, microlight switch, microlight switching system, communications system, and manufacturing method for the electrostatic actuator
JP2008517568A (en) * 2004-06-25 2008-05-22 インテル・コーポレーション Tunable antenna based on MEMS for wireless reception and transmission
JP2008059865A (en) * 2006-08-30 2008-03-13 Kagoshima Univ Mems switch and portable wireless terminal equipment
JP2008186771A (en) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd Switch and wireless terminal using it
JP2009105031A (en) * 2007-10-02 2009-05-14 Toshiba Corp Electrostatic actuator, microswitch, and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090442A (en) * 2011-10-18 2013-05-13 Murata Mfg Co Ltd Electrostatic drive type actuator, variable capacitance element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4334581B2 (en) Electrostatic actuator
KR101424297B1 (en) Electronic element, variable capacitor, micro switch, method for driving micro switch, mems type electronic element, micro actuator and mems optical element
US7489004B2 (en) Micro-electro-mechanical variable capacitor for radio frequency applications with reduced influence of a surface roughness
JP2006093463A (en) Piezoelectric mems element and tunable filter
JP4879760B2 (en) Microswitching device and method for manufacturing microswitching device
JP2008159661A (en) Variable capacitor, variable capacitor device, filter for high-frequency circuit, and high-frequency circuit
KR20130109166A (en) Magnetically actuated micro-electro-mechanical capacitor switches in laminate
EP1385189A2 (en) Switch
TW200414574A (en) Piezoelectric actuator for tunable electronic components
SE468067B (en) CAPACITIVE ACCELEROMETER AND SET FOR MANUFACTURING THEM
JP2008146939A (en) Micro switching element
TW200539204A (en) Variable capacitor and manufacturing method thereof
JP2011109822A (en) Electrostatic drive type actuator and variable capacity device
WO2011058826A1 (en) Variable capacitance device
JP2013051297A (en) Variable capacitance device
JPWO2013108705A1 (en) Micro movable mechanism and variable capacitor
JP2007259691A (en) Electrostatic drive method of mems, electrostatic actuator, and microswitch
JP4628275B2 (en) Microswitching device and method for manufacturing microswitching device
WO2011158708A1 (en) Variable capacitance device
JP4571488B2 (en) Fine structure
JP2009252516A (en) Mems switch
EP2317532A1 (en) Piezoelectric MEMS Device
US9418793B2 (en) Variable capacitance device
JP2007522609A (en) Electronic device with microelectromechanical switch made of piezoelectric material
WO2012073829A1 (en) Bulk elastic wave resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20131025

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304