JP2011109004A - Method of manufacturing magnetic anisotropic magnet - Google Patents

Method of manufacturing magnetic anisotropic magnet Download PDF

Info

Publication number
JP2011109004A
JP2011109004A JP2009265069A JP2009265069A JP2011109004A JP 2011109004 A JP2011109004 A JP 2011109004A JP 2009265069 A JP2009265069 A JP 2009265069A JP 2009265069 A JP2009265069 A JP 2009265069A JP 2011109004 A JP2011109004 A JP 2011109004A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
molding
magnetic anisotropic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009265069A
Other languages
Japanese (ja)
Inventor
Yasutaka Fujimoto
康孝 藤本
Nobuyuki Hirano
信幸 平野
Zhen Lu
振 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI KASAHARA ELECTRONIC EQUIPMENT CO Ltd
Yokohama National University NUC
Original Assignee
SHANGHAI KASAHARA ELECTRONIC EQUIPMENT CO Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI KASAHARA ELECTRONIC EQUIPMENT CO Ltd, Yokohama National University NUC filed Critical SHANGHAI KASAHARA ELECTRONIC EQUIPMENT CO Ltd
Priority to JP2009265069A priority Critical patent/JP2011109004A/en
Publication of JP2011109004A publication Critical patent/JP2011109004A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetic anisotropic magnet in which the magnetic anisotropic magnet having orientation of a more superior easy magnetization direction. <P>SOLUTION: When the magnetic anisotropic magnet is manufactured which has an easy magnetization direction of magnet powder oriented at one point on a curved surface of a magnet surface to a direction of a straight line perpendicular to a tangential plane at the point, the magnetic powder is molded first in a magnetic field to form a flat plate molding having the easy magnetization direction of the magnet powder oriented to the direction of the straight line perpendicular to a molding plane comprising mutually parallel planes. Then planes of the flat plate molding are molded by a bending die to form a magnet molding. Lastly, the magnet molding is magnetized to manufacture the magnetic anisotropic magnet. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は磁気異方性磁石の製造方法に係り、より詳細には、磁石表面の曲面上の任意の一点で、その点での接平面に垂直な直線の方向に容易磁化方向が配向された、モータなどへの使用に適する磁気異方性磁石の製造方法に関するものである。   The present invention relates to a method for manufacturing a magnetic anisotropic magnet, and more specifically, an easy magnetization direction is oriented at an arbitrary point on the curved surface of the magnet surface in a direction perpendicular to the tangential plane at that point. The present invention relates to a method for producing a magnetic anisotropic magnet suitable for use in a motor or the like.

磁気異方性磁石として異方性焼結磁石があり、異方性焼結磁石としては、Baフェライト系、Srフェライト系などのフェライト磁石、R−Co系、R−Fe−B系などの希土類磁石(Rは、ScとYを含む希土類金属から選ばれる一以上である。)が広く使用されている。   There are anisotropic sintered magnets as magnetic anisotropic magnets, and anisotropic sintered magnets include ferrite magnets such as Ba ferrite and Sr ferrite, and rare earths such as R-Co and R-Fe-B. Magnets (R is one or more selected from rare earth metals including Sc and Y) are widely used.

これら磁気異方性磁石は、磁性を担っている結晶粒からなる磁石粉末の容易磁化方向をある一定の方向に揃えたものであり、そのため、結晶粒の容易磁化方向がばらばらの方向を向いている等方性磁石に比較して、その容易磁化方向に着磁されたときに残留磁束密度の値が大きく、従って、最大エネルギー積を大きくすることができる。また、焼結磁石であるため、樹脂などで結合されたボンド磁石と比較して、非磁性物質の存在量が少ないため、残留磁束密度の値が大きくなり、最大エネルギー積を大きくできる。従って、異方性焼結磁石が、同じ材料を用いた磁石の中で、一番大きな最大エネルギー積を得ることができるため、広く利用されている。   These magnetic anisotropic magnets are obtained by aligning the easy magnetization directions of magnet powders composed of crystal grains carrying magnetism in a certain direction, so that the easy magnetization directions of the crystal grains are scattered. Compared to the isotropic magnet, the value of the residual magnetic flux density is large when magnetized in the easy magnetization direction, and therefore the maximum energy product can be increased. In addition, since it is a sintered magnet, the amount of nonmagnetic substance is small compared to a bonded magnet bonded with resin or the like, so that the value of residual magnetic flux density is increased and the maximum energy product can be increased. Therefore, anisotropic sintered magnets are widely used because they can obtain the largest maximum energy product among magnets using the same material.

磁気異方性磁石は、磁性結晶粒の容易磁化方向をある一定の方向に揃えるために、その材料を、それぞれの粉砕粉が単結晶になるまで粉砕し、その粉砕粉に外部磁場を印加することにより磁石粉の磁化容易軸を外部磁場の方向と平行な方向に揃え、圧力をかけて圧縮し成形する。異方性焼結磁石の場合、その後、成形された磁石粉は、所定の条件で焼結され、異方性焼結磁石を製造する。材料によっては、焼結後、熱処理を要する場合もある。   In order to align the easy magnetization direction of magnetic crystal grains in a certain direction, the magnetic anisotropic magnet pulverizes the material until each pulverized powder becomes a single crystal, and applies an external magnetic field to the pulverized powder. Thus, the easy axis of magnet powder is aligned in a direction parallel to the direction of the external magnetic field, and compression is performed by applying pressure. In the case of an anisotropic sintered magnet, the molded magnet powder is then sintered under predetermined conditions to produce an anisotropic sintered magnet. Depending on the material, heat treatment may be required after sintering.

成形工程で使用される磁場プレス機は、金型と磁場発生手段からなる。金型キャビティ内に磁石粉を供給し、磁場発生手段により配向磁場を印加することにより磁石粉の容易磁化方向を一方向に揃え、プレスを用いて圧力を伝達し、キャビティ内の磁石粉を成形する。成形は電磁石などで静磁場を印加しながら行われるのが一般的である。キャビティ内に充填された磁石粉に配向磁場をかける方向には、圧力印加の方向と平行方向に磁場をかける平行磁場成形と、圧力印加の方向に対し垂直方向に磁場を印加する垂直磁場成形とがある。   The magnetic field press used in the molding process includes a mold and a magnetic field generating means. Magnetic powder is supplied into the mold cavity, and an orientation magnetic field is applied by the magnetic field generator to align the easy magnetization direction of the magnet powder in one direction, and pressure is transmitted using a press to mold the magnetic powder in the cavity. To do. Molding is generally performed while applying a static magnetic field with an electromagnet or the like. In the direction of applying an orientation magnetic field to the magnet powder filled in the cavity, parallel magnetic field shaping in which a magnetic field is applied parallel to the direction of pressure application, and vertical magnetic field shaping in which a magnetic field is applied in a direction perpendicular to the direction of pressure application There is.

次に、実際にモータなどに使われる磁石の形状およびそのモータについて説明する。トルクリップルのない滑らかなトルクを求めるモータには、ロータヨークの表面に図8のような断面が瓦状の磁石を貼り付けた表面磁石型モータが採用される。このモータは、回転子の磁石に、磁化が矢印で示したように磁石の厚み方向(径方向)に向いているラジアル配向の磁石を用い、固定子巻線に比較的コストのかからない矩形波の電流制御を行うと、脈動の少ないトルク波形が得られる。   Next, the shape of the magnet actually used for the motor and the motor will be described. As a motor for obtaining smooth torque without torque ripple, a surface magnet type motor in which a magnet having a tile-like cross section as shown in FIG. This motor uses a radially oriented magnet whose magnetization is directed in the thickness direction (radial direction) of the magnet as indicated by an arrow, and the stator winding has a rectangular wave that is relatively inexpensive. When current control is performed, a torque waveform with less pulsation can be obtained.

ラジアル配向の磁気異方性磁石を製造する方法として、瓦状断面のキャビティを形成するダイスと、キャビティ内を圧縮するためにプレスに連動可能なパンチと、キャビティの外弧と内弧に沿うようにダイス内に設けられた少なくとも2つの磁性コアとを含んでなり、キャビティの外弧に沿う磁性コアが、外弧の両端から延びてオーバーハングする形状を有する、磁石粉末用磁場成形に用いられる金型を使用することにより、円弧端までラジアル配向が得られるようにしたものがある(例えば、特許文献1参照)。   As a method of manufacturing a radially oriented magnetic anisotropic magnet, a die that forms a cavity with a tile-like cross section, a punch that can be interlocked with the press to compress the inside of the cavity, and an outer arc and an inner arc of the cavity are aligned. And at least two magnetic cores provided in the die, and the magnetic core along the outer arc of the cavity has a shape extending from both ends of the outer arc and overhanging, and is used for magnetic powder molding for magnet powder There is one in which radial orientation can be obtained up to the end of the arc by using a mold (see, for example, Patent Document 1).

特開2009−111418号公報JP 2009-111418 A

この製造方法では、キャビティの外弧に沿う磁性コアに、外弧の両端から延びてオーバーハングする形状をもたせることで、中心から両端側に離れるに従って弱くなっているキャビティ部の瓦状断面における磁場配向を局部的に強め、全体として、キャビティ部の瓦状断面における磁場配向をおおむね放射状とすることができるようにしている。   In this manufacturing method, the magnetic core along the outer arc of the cavity has a shape that extends from both ends of the outer arc and overhangs, so that the magnetic field in the tile-shaped cross section of the cavity portion that becomes weaker as it moves away from the center to both ends. The orientation is locally strengthened so that the magnetic field orientation in the tile-like cross section of the cavity portion can be made almost radial as a whole.

しかしながら、キャビティの外弧と内弧を形成している磁性コアの対向面全体の磁束密度が一様でなく、対向面間の磁場の不均一により、キャビティ部の瓦状断面における磁場は完全なラジアル配向から外れたものしか得られない。   However, the magnetic flux density of the entire facing surface of the magnetic core forming the outer arc and the inner arc of the cavity is not uniform, and the magnetic field between the facing surfaces is not uniform, so that the magnetic field in the roof section of the cavity is completely Only those that deviate from the radial orientation can be obtained.

勿論、カットアンドトライにより磁性コアの形状に手を加えることで、対向面全体の磁束密度が一様となるようにすることも考えられるが、非常に面倒な作業を伴い、非現実的で実現することは困難である。   Of course, it may be possible to make the magnetic flux density of the entire opposing surface uniform by modifying the shape of the magnetic core by cut-and-try. It is difficult to do.

また、上述した製造方法では、磁気異方性が限られたものしか作ることができない。このため、3次元形状の磁石は、磁気異方性が一定方向のブロックを切断加工して作製するしかなく、非常に高価なものとなってしまう。   Moreover, only the thing with limited magnetic anisotropy can be made with the manufacturing method mentioned above. For this reason, a three-dimensional magnet can only be produced by cutting a block having a certain direction of magnetic anisotropy, which is very expensive.

よって本発明は、上述した従来の状況に鑑み、より優れた容易磁化方向の配向性を有する3次元形状の磁気異方性磁石を容易に製造することができる磁気異方性磁石の製造方法を提供することを課題としている。   Therefore, in view of the above-described conventional situation, the present invention provides a method for manufacturing a magnetic anisotropic magnet that can easily manufacture a three-dimensional magnetic anisotropic magnet having better orientation in the easy magnetization direction. The issue is to provide.

本発明はまた、容易磁化方向の配向性を有する複雑な3次元形状の磁気異方性磁石を安価に製造することができる磁気異方性磁石の製造方法を提供することを課題としている。   Another object of the present invention is to provide a method for producing a magnetic anisotropic magnet capable of producing a complicated three-dimensional magnetic anisotropic magnet having orientation in the easy magnetization direction at low cost.

上記課題を解決するためなされた本発明の磁気異方性磁石の製造方法は、磁石表面の曲面上の一点で、その点での接平面に垂直な直線の方向に磁石粉末の容易磁化方向が配向された磁気異方性磁石の製造方法であって、磁石粉末を平行磁場中で成形して前記磁石粉末の容易磁化方向がプレス方向に配向され、成形面が互いに平行な平面からなる平板成形体を形成し、該平板成形体の前記平面を曲げ成形金型によりプレス成形加工して3次元形状の磁石成形体を形成し、該磁石成形体を着磁して磁気異方性磁石を製造することを特徴とする。   The method of manufacturing a magnetic anisotropic magnet of the present invention, which has been made to solve the above problems, is such that the easy magnetization direction of the magnet powder is at one point on the curved surface of the magnet surface and in the direction of a straight line perpendicular to the tangential plane at that point. A method for producing an oriented magnetic anisotropy magnet, in which a magnet powder is molded in a parallel magnetic field, the easy magnetization direction of the magnet powder is oriented in the press direction, and the flat surfaces are formed by planes parallel to each other. Forming a three-dimensional magnet molded body by press-molding the flat surface of the flat plate molded body with a bending mold, and magnetizing the magnet molded body to produce a magnetic anisotropic magnet It is characterized by doing.

また、好ましくは、前記磁場中での前記磁石粉末の成形が水平磁場中でのプレス成形であり、前記曲げ成形金型による成形加工がプレス成形加工である。また、前記曲面は1点を中心にした円弧面、又は、らせんが動いて形成した面の一部である。前記磁石成形体が着磁されるとき、事前に焼結されている。   Preferably, the molding of the magnet powder in the magnetic field is press molding in a horizontal magnetic field, and the molding process using the bending mold is a press molding process. The curved surface is a circular arc surface centered on one point or a part of a surface formed by moving a helix. When the magnet compact is magnetized, it is sintered in advance.

本発明の磁気異方性磁石の製造方法によれば、磁場中での磁石粉末の成形では、磁石粉末の容易磁化方向が互いに平行な平面からなる成形面に垂直な直線の方向に配向されるので、成形された平板成型体おいては、磁石粉末の磁化容易方向が成形面に垂直に整列されて固定されている。次の、平板成形体の成形加工では、磁石成形体を形成する曲げ成形金型が、平板成形体の互いに平行な平面を3次元形状に曲げ加工し、成形加工によって、平板成形体の互いに平行な平面間で平行であった磁化容易方向が曲げ方向に傾けられるので、結果として得られる3次元形状の磁石成形体における磁化容易方向は、磁石成形体の表面曲面の法線方向となる。すなわち、磁石表面の曲面上の一点で、その点での接平面に垂直な直線の方向に磁石粉末の容易磁化方向が配向された3次元形状の磁石成形体が得られる。   According to the method for producing a magnetic anisotropic magnet of the present invention, when magnet powder is molded in a magnetic field, the easy magnetization direction of the magnet powder is oriented in the direction of a straight line perpendicular to the molding surface composed of planes parallel to each other. Therefore, in the molded flat plate molded body, the easy magnetization direction of the magnet powder is aligned and fixed perpendicular to the molding surface. Next, in the molding process of the flat molded body, the bending molds forming the magnet molded body bend the planes parallel to each other into a three-dimensional shape, and the flat molded bodies are parallel to each other by the molding process. Since the easy magnetization direction that was parallel between the flat surfaces is tilted in the bending direction, the easy magnetization direction in the resulting three-dimensional magnet molding is the normal direction of the surface curved surface of the magnet molding. That is, a three-dimensional magnet molded body in which the easy magnetization direction of the magnet powder is oriented at one point on the curved surface of the magnet surface in the direction of a straight line perpendicular to the tangent plane at that point is obtained.

したがって、磁場中で3次元形状の磁石成形体を形成する従来にものに比べて、より優れた容易磁化方向の配向性を有する3次元形状の磁気異方性磁石を容易に製造することができる磁気異方性磁石の製造方法を提供することができる。しかも、3次元形状が複雑でも、磁気異方性磁石を安価に製造することができる。   Therefore, it is possible to easily manufacture a three-dimensional magnetic anisotropy magnet having a better orientation in the easy magnetization direction than a conventional one in which a three-dimensional magnet molded body is formed in a magnetic field. A method of manufacturing a magnetic anisotropic magnet can be provided. Moreover, even if the three-dimensional shape is complicated, the magnetic anisotropic magnet can be manufactured at low cost.

本発明の磁気異方性磁石の製造方法の工程を簡略的に示す図である。It is a figure which shows simply the process of the manufacturing method of the magnetic anisotropic magnet of this invention. 図1の工程1において使用する磁場プレス成形機の一例を一部断面で示す部分断面図である。It is a fragmentary sectional view which shows an example of the magnetic field press molding machine used in the process 1 of FIG. 1 in a partial cross section. 図1の工程2において使用する金型の一例を示す断面図である。It is sectional drawing which shows an example of the metal mold | die used in the process 2 of FIG. 永久磁石回転機を示す斜視図である。It is a perspective view which shows a permanent magnet rotary machine. スパイラル型リニアモータを示す縦断面図である。It is a longitudinal section showing a spiral type linear motor. 図5のモータの回転子の一部を示す斜視図である。It is a perspective view which shows a part of rotor of the motor of FIG. 図5及び図6中の磁気異方性磁石の詳細構造を示し、(a)は平面図、(b)は上面図、(c)は斜視図、(d)は右側面図、(e)は下面図、(f)は左側面図である。5 and 6 show the detailed structure of the magnetic anisotropic magnet, wherein (a) is a plan view, (b) is a top view, (c) is a perspective view, (d) is a right side view, and (e). Is a bottom view, and (f) is a left side view. 磁気異方性磁石とその磁化方向を示す図である。It is a figure which shows a magnetic anisotropic magnet and its magnetization direction.

以下、本発明の磁気異方性磁石の製造方法の実施の形態について、図面を参照して説明する。図1は、実施形態の磁気異方性磁石の製造方法の工程を簡略的に示す。   Embodiments of a method for producing a magnetic anisotropic magnet according to the present invention will be described below with reference to the drawings. FIG. 1 schematically shows steps of a method for manufacturing a magnetic anisotropic magnet according to an embodiment.

実施形態の方法によって製造される磁気異方性磁石は、ロータヨークの表面に磁石を貼り付けた表面磁石型のモータに採用されるものであり、磁石表面の円弧面である曲面上の一点で、その点での接平面に垂直な直線であるラジアル方向に磁石粉末の容易磁化方向が配向された断面が瓦状の磁石である。   The magnetic anisotropic magnet manufactured by the method of the embodiment is employed in a surface magnet type motor in which a magnet is attached to the surface of a rotor yoke, and is a point on a curved surface that is an arc surface of the magnet surface. The tile-shaped magnet has a cross section in which the easy magnetization direction of the magnet powder is oriented in the radial direction that is a straight line perpendicular to the tangential plane at that point.

磁気異方性磁石を製造するに当たって、図1に示すように、まず工程1において、磁石粉末10を平行磁場中でプレス成形し、このことによって、磁石粉末の容易磁化方向がプレス方向に配向され、プレス面が互いに平行な平面からなる平板成形体20を形成する。その後、工程2において、平板成形体10の平面を曲げ成形金型によりプレス成形加工し、このことによって、断面が瓦状の磁石成形体30を形成する。磁石成形体30は、最終的に、図示しない着磁装置によって、磁石成形対30おいてラジアル方向に配向された磁石粉末の容易磁化方向に着磁されて磁気異方性磁石が製造される。   In manufacturing the magnetic anisotropic magnet, as shown in FIG. 1, first, in Step 1, the magnet powder 10 is press-molded in a parallel magnetic field, whereby the easy magnetization direction of the magnet powder is oriented in the press direction. Then, the flat plate molded body 20 is formed, the press surfaces of which are parallel to each other. Thereafter, in step 2, the flat surface of the flat plate-shaped body 10 is press-molded by a bending mold, thereby forming a magnet-shaped body 30 having a tile-like cross section. The magnet molded body 30 is finally magnetized in the easy magnetization direction of the magnet powder oriented in the radial direction in the magnet molding pair 30 by a magnetizing device (not shown) to produce a magnetic anisotropic magnet.

磁気異方性磁石が希土類磁石である場合の磁石粉末10について、その作り方を以下に説明する。まず、希土類鉱石から高純度の希土類酸化物を分離精製し、これを溶融塩電解炉で還元して希土類金属を製造する。次に、この希土類金属の他に、鉄、コバルト、その他添加元素を秤量した原料を坩堝に挿入し、真空溶解炉にセットした坩堝に高周波を掛けて原料を溶解する。高温になって均質に合金化した後、溶湯は鋳型に流し込まれてインゴットが作製される。インゴットは何段階かの工程を経て粉砕され、最終的には平均粒径で数ミクロン程度の微粉になる。各粉砕工程は、微粉の酸化を防ぐため、窒素やアルゴンの雰囲気で保護される。   How to make the magnet powder 10 when the magnetic anisotropic magnet is a rare earth magnet will be described below. First, a high-purity rare earth oxide is separated and purified from a rare earth ore and reduced in a molten salt electrolytic furnace to produce a rare earth metal. Next, a raw material obtained by weighing iron, cobalt, and other additive elements in addition to the rare earth metal is inserted into the crucible, and the raw material is melted by applying a high frequency to the crucible set in the vacuum melting furnace. After high temperature and homogeneous alloying, the molten metal is poured into a mold to produce an ingot. The ingot is pulverized through several steps, and finally becomes a fine powder having an average particle size of several microns. Each pulverization step is protected in an atmosphere of nitrogen or argon to prevent oxidation of fine powder.

磁石粉末10の平行磁場中でのプレス成形では、圧縮方向と平行な方向に磁場が加えられながら圧縮成形され、例えば図2に示すような磁場プレス成形機40が使用される。プレス成形機の金型41が形成するキャビティ42内に磁石粉末10が充填され、磁場を通す非磁性材料からなる金型41を通じて磁場発生コイル43が発生する磁場がキャビティ42内の磁石粉末10に加えられる。磁場は、キャビティ42内の磁石粉末10の一粒一粒がプレス成形機40の磁場と同じ方向に、それぞれの磁化容易方向を揃えるように動く。プレス成型された平板成型体20おいては、磁石粉末10の磁化容易方向がプレス方向に平行に整列されて固定されている。   In press molding of the magnetic powder 10 in a parallel magnetic field, compression molding is performed while a magnetic field is applied in a direction parallel to the compression direction. For example, a magnetic field press molding machine 40 as shown in FIG. 2 is used. The magnet powder 10 is filled in the cavity 42 formed by the die 41 of the press molding machine, and the magnetic field generated by the magnetic field generating coil 43 through the die 41 made of a nonmagnetic material that passes the magnetic field is applied to the magnet powder 10 in the cavity 42. Added. The magnetic field moves so that each particle of the magnet powder 10 in the cavity 42 is aligned in the same direction as the magnetic field of the press molding machine 40 and the respective easy magnetization directions. In the press-molded flat plate molded body 20, the magnetization easy direction of the magnet powder 10 is aligned and fixed parallel to the press direction.

磁石粉末10を平行磁場中でプレス成形して形成された平板成形体20は、プレス面が互いに平行な平面からなり、平板成形体20の互いに平行な平面を成形するキャビティ42の対向壁を形成している金型41の対向面も互いに平行な平面となっている。したがって、磁場発生コイル43が発生する磁場は、金型42を通じて平板成形体20の互いに平行な平面を成形するキャビティ42の対向壁間に均一に磁場を形成する。この結果、磁石粉末10の容易磁化方向がプレス方向に配向され、しかも、配向性が平板成形体20の互いに平行な平面間で均一である。   The flat plate molded body 20 formed by press-molding the magnet powder 10 in a parallel magnetic field is formed of planes whose press surfaces are parallel to each other, and forms opposing walls of the cavity 42 that molds the plane parallel to the flat plate molded body 20. The opposing surfaces of the mold 41 are also parallel to each other. Therefore, the magnetic field generated by the magnetic field generating coil 43 uniformly forms a magnetic field between the opposing walls of the cavity 42 that forms the planes parallel to each other of the flat plate molded body 20 through the mold 42. As a result, the easy magnetization direction of the magnet powder 10 is oriented in the pressing direction, and the orientation is uniform between the planes of the flat plate body 20 parallel to each other.

上述した工程2において、平板成形体20のプレス成形加工により、断面が瓦状の磁石成形体を形成する曲げ成形金型は、平板成形体20の板厚を保って平板成形体20の平行な平面を断面瓦状の3次元形状に曲げ加工するための図3に示すような一対の割金型51、52からなる金型50である。金型50によるプレス成形加工によって、平板成形体20の互いに平行な平面間で平行であった磁化容易方向が曲げ方向に傾けられる。なお、金型50によるプレス成形加工では、板厚を保って3次元形状に曲げ加工するには、大径円弧側が伸長し、小径円弧側が収縮するような加工が行われる必要がある。   In the step 2 described above, the bending mold for forming the magnet molded body having a tile-like cross section by the press molding of the flat molded body 20 maintains the plate thickness of the flat molded body 20 and is parallel to the flat molded body 20. This is a mold 50 including a pair of split molds 51 and 52 for bending a plane into a three-dimensional shape having a tile-like cross section as shown in FIG. By the press forming process using the mold 50, the easy magnetization direction that is parallel between the parallel planes of the flat plate molded body 20 is tilted in the bending direction. In the press forming process using the mold 50, in order to bend the sheet into a three-dimensional shape while maintaining the plate thickness, it is necessary to perform a process in which the large-diameter arc side expands and the small-diameter arc side contracts.

結果として得られる断面瓦状の磁石成形体30における磁化容易方向は、磁石成形体30の表面曲面の法線方向となる。すなわち、磁石表面の曲面上の一点で、その点での接平面に垂直な直線の方向に磁石粉末の容易磁化方向が配向された3次元形状の磁石成形体30が得られる。   As a result, the easy magnetization direction in the magnet-shaped body 30 having a tile-shaped cross section is the normal direction of the curved surface of the magnet-shaped body 30. That is, a three-dimensional magnet molded body 30 is obtained in which the easy magnetization direction of the magnet powder is oriented at a point on the curved surface of the magnet surface in a direction perpendicular to the tangential plane at that point.

製造する磁気異方性磁石が焼結磁石である場合、磁石成形体30は、その後、真空焼結炉の中で焼結及び熱処理されて焼結磁石(図示せず)にされた後に、最終的に、着磁装置によって着磁される。着磁によって得られる磁気異方性磁石は、磁石成形体30において配向された磁石粉末の容易磁化方向に着磁されている。   When the magnetic anisotropic magnet to be manufactured is a sintered magnet, the magnet molded body 30 is then sintered and heat-treated in a vacuum sintering furnace to be a sintered magnet (not shown), and finally In particular, it is magnetized by a magnetizing device. The magnetic anisotropic magnet obtained by magnetization is magnetized in the easy magnetization direction of the magnet powder oriented in the magnet compact 30.

なお、磁気異方性磁石が焼結磁石である場合、磁石成形体30はその磁石粉末10が占める体積だけを密度算定用の体積とする真密度で約50%程度であるが、焼結反応が進むにつれて真密度100%まで焼き固まる。このとき、焼結磁石の各寸法は磁石成形体30の70〜80%、体積は約半分に収縮する。したがって、磁石成形体30の成形では、この焼結、熱処理での収縮分を考慮した成形が行われる。   In the case where the magnetic anisotropic magnet is a sintered magnet, the magnet compact 30 has a true density of about 50% in which only the volume occupied by the magnet powder 10 is a volume for density calculation. As it progresses, it hardens to a true density of 100%. At this time, each dimension of the sintered magnet is 70 to 80% of the magnet compact 30 and the volume is reduced to about half. Therefore, in the molding of the magnet molded body 30, molding is performed in consideration of the shrinkage due to the sintering and heat treatment.

磁気異方性磁石が適用される表面磁石型のモータは、効率が高く制御性が良いことから、サーボモータを始めとする制御用モータに用いられている。例えば、ACサーボモータには、図4に示すようなラジアルエアギャップ形の永久磁石回転機60が用いられている。図4に示した永久磁石回転機60は、回転子ヨーク62の表面に、断面瓦状の、いわゆるC形の磁気異方性磁石63を貼り付けた回転子64と、空隙(ギャップ)65を介して配置された複数のスロットを有する固定子ヨークとティース66に巻かれたコイル67からなる固定子68とで構成されている。図4に示す永久磁石回転機の場合、磁気異方性磁石の極数は6、ティースの数は9であり、磁気異方性磁石内の矢印は磁気異方性磁石の磁化の方向を示している。また、コイルはティースに集中巻きで巻かれ、U相V相W相の3相のY結線がなされている。コイルのU+はU相コイルの巻き方向が手前、U−はU相コイルの巻き方向が奥であることを意味している。   A surface magnet type motor to which a magnetic anisotropic magnet is applied is used for a control motor such as a servo motor because of its high efficiency and good controllability. For example, a radial air gap type permanent magnet rotating machine 60 as shown in FIG. 4 is used for the AC servo motor. The permanent magnet rotating machine 60 shown in FIG. 4 includes a rotor 64 in which a so-called C-shaped magnetic anisotropic magnet 63 having a tile-like cross section is attached to the surface of a rotor yoke 62, and a gap (gap) 65. A stator yoke having a plurality of slots arranged therebetween and a stator 68 including a coil 67 wound around a tooth 66. In the case of the permanent magnet rotating machine shown in FIG. 4, the number of poles of the magnetic anisotropic magnet is 6 and the number of teeth is 9, and the arrow in the magnetic anisotropic magnet indicates the direction of magnetization of the magnetic anisotropic magnet. ing. In addition, the coil is wound around the teeth with concentrated winding, and a U-phase V-phase W-phase three-phase Y-connection is made. U + of the coil means that the winding direction of the U-phase coil is in front, and U- means that the winding direction of the U-phase coil is in the back.

磁気異方性磁石が適用される他のモータとしては、回転運動を並進運動に変換するねじの機構と電磁力による動力機構とを一体化することにより、小型軽量、高精度、高推力の各点を同時に備える、例えば特許第3712073号公報に記載されたスパイラル型リニアモータが考えられる。   Other motors to which magnetic anisotropy magnets are applied include a screw mechanism that converts rotational motion into translational motion and a power mechanism that uses electromagnetic force to achieve compact, light weight, high accuracy, and high thrust. For example, a spiral linear motor described in Japanese Patent No. 3712073 is conceivable.

このスパイラル型リニアモータは、図5に縦断面で示すように、中心軸72と当該中心軸の外周に径方向に突出したらせん状部73とを備える回転子74と、回転子74と同ピッチのらせん状の溝を有する中空磁極を備える固定子75とを備え、回転子74の中心軸72を固定子75の中空磁極内とし、回転子74のらせん状部73の軸方向側面と固定子75のらせん状溝の軸方向側面とを対向させ、中空磁極のらせん状の溝内においてらせん状に回転自在とし、回転子74は固定子75に対してらせん状に回転しながら軸方向に直動する。回転子74は、らせん状部73のらせん側面に磁気異方性磁石76を備える。固定子75は、中空磁極のらせん状の両側面に互いにスロットを備え、このスロットに90度位相をずらした2相の巻き線を軸方向に巻回する。なお、図中、77は回転子74の回転軸72を軸受けする直線回転軸受け、78は固定子75が取り付けられたモータフレームである。   As shown in a longitudinal section in FIG. 5, this spiral linear motor includes a rotor 74 having a center shaft 72 and a spiral portion 73 protruding radially on the outer periphery of the center shaft, and the same pitch as the rotor 74. And a stator 75 having a hollow magnetic pole having a helical groove, the central axis 72 of the rotor 74 is within the hollow magnetic pole of the stator 75, and the axial side surface of the helical portion 73 of the rotor 74 and the stator. The spiral groove of 75 is opposed to the axial side surface so that it can rotate freely in the spiral groove of the hollow magnetic pole. Move. The rotor 74 includes a magnetic anisotropic magnet 76 on the spiral side surface of the spiral portion 73. The stator 75 is provided with slots on both sides of the spiral shape of the hollow magnetic pole, and two-phase windings that are shifted in phase by 90 degrees are wound around the slots in the axial direction. In the figure, reference numeral 77 denotes a linear rotary bearing that supports the rotary shaft 72 of the rotor 74, and 78 denotes a motor frame to which the stator 75 is attached.

この構成によるスパイラル型リニアモータでは、らせん状に形成された固定子75の溝内を、同じくらせん状に形成された回転子74のらせん状部73をらせん状に回転しながら、ねじ機構と同様に軸方向に直動する。このスパイラル型リニアモータのトルク及び推力は、回転子74と固定子75の互いに対向する磁極のらせん状側面間で交差する電磁力により発生し、それぞれ独立して制御することができる。   In the spiral type linear motor having this configuration, the spiral portion 73 of the rotor 74 formed in the same spiral shape is spirally rotated in the groove of the stator 75 formed in the spiral shape, similar to the screw mechanism. Directly moves in the axial direction. The torque and thrust of the spiral type linear motor are generated by electromagnetic force that intersects between the spiral side surfaces of the opposing magnetic poles of the rotor 74 and the stator 75, and can be controlled independently.

上述したスパイラル型リニアモータでは、らせん状部73の軸方向側面の形状は、図6に示すように、非常に複雑な3次元形状となっている。すなわち、らせん状部73の軸方向側面は、3次元曲線の一種で、回転しながら回転面に垂直成分のある方向へ上昇する曲線であるらせんが動いて形成した面からなっている。このため、この軸方向側面に所定角度毎に分割して貼り付けた多数の磁気異方性磁石76も、図7に示すように、非常に複雑な3次元形状をなし、軸方向側面の形状に倣った複雑な3次元形状の曲面を有する。なお、図7において、(a)はスパイラル型リニアモータの軸方向側面に貼り付け磁気異方性磁石76の平面図、(b)は上面図、(c)は斜視図、(d)は右側面図、(e)は下面図、(f)は左側面図である。   In the spiral linear motor described above, the shape of the side surface in the axial direction of the spiral portion 73 is a very complicated three-dimensional shape as shown in FIG. That is, the axial side surface of the spiral portion 73 is a kind of a three-dimensional curve, and is formed by a surface formed by moving a helix, which is a curve that rises in a direction having a vertical component to the rotation surface while rotating. For this reason, a large number of magnetic anisotropic magnets 76 divided and attached to the axial side surface at predetermined angles also have a very complicated three-dimensional shape as shown in FIG. And has a complicated three-dimensional curved surface. 7A is a plan view of the magnetic anisotropic magnet 76 attached to the axial side surface of the spiral linear motor, FIG. 7B is a top view, FIG. 7C is a perspective view, and FIG. (E) is a bottom view and (f) is a left side view.

しかしながら、断面瓦状の磁気異方性磁石と同様の製造方法により製造することによって、磁気異方性磁石76はその表面の3次元形状の曲面上の一点で、その点での接平面に垂直な直線の方向に磁石粉末の容易磁化方向が配向されたものが安価に作ることができる。   However, when manufactured by the same manufacturing method as the magnetic anisotropic magnet having a cross-sectional tile shape, the magnetic anisotropic magnet 76 is one point on the curved surface of the three-dimensional shape of the surface and perpendicular to the tangential plane at that point. It is possible to inexpensively produce a magnet powder in which the direction of easy magnetization of the magnet powder is oriented.

なお、上述した実施の形態では、磁石粉末10を水平磁場中でプレス成形して成形体を形成する工程1において、磁石粉末をそのまま成形する乾式について説明したが、磁石粉末を含むスラリーを脱水しながら圧縮成形する湿式を採用してもよい。これ以外に、磁石粉末と樹脂系バインダーを混練した材料から平板成形体(グリーン体)を経て磁石成形体(グリーン体)を形成し、この磁石成形体(グリーン体)からバインダー成分のみを除去し、残った磁石粉末成分を焼結することで磁気異方性焼結磁石を製造するようにしてもよい。この場合、平板成形体を3次元形状の磁石成形体にプレス成形加工する際に、樹脂系バインダーが成形性を高めるのに役立つ。   In the above-described embodiment, the dry method in which the magnet powder 10 is formed by pressing the magnet powder 10 in a horizontal magnetic field to form the compact has been described. However, the slurry containing the magnet powder is dehydrated. However, a wet method of compression molding may be employed. In addition to this, a magnet molded body (green body) is formed from a material obtained by kneading magnet powder and a resin binder through a flat molded body (green body), and only the binder component is removed from the magnet molded body (green body). Alternatively, a magnetic anisotropic sintered magnet may be manufactured by sintering the remaining magnet powder component. In this case, the resin-based binder is useful for improving the moldability when the flat molded body is press-molded into a three-dimensional magnet molded body.

また、本発明の磁気異方性磁石の製造方法は、射出成形時に流動性が確保できる熱可塑性樹脂と磁石粉末を混練したボンド磁石の製造にも適用できる。この場合、平板成形体の形成は、水平磁場中でのプレス成形の代わりに、磁石粉末の容易磁化方向が互いに平行な平面からなる成形面に垂直な直線の方向の磁場中で射出成形することにより行われる。そして、平板成形体を3次元形状の磁石成形体に成形加工する際に、樹脂系バインダーを流動しない程度に軟化させれば、磁石粉末の配向が乱されることなく成形加工が行われる。この場合、樹脂系バインダーが平板成形体を磁石成形体に成形する際の成形性を高めるのに役立つ。   The method for producing a magnetic anisotropic magnet of the present invention can also be applied to the production of a bonded magnet obtained by kneading a thermoplastic resin and magnet powder that can ensure fluidity during injection molding. In this case, instead of press forming in a horizontal magnetic field, the flat plate molded body is formed by injection molding in a magnetic field in a linear direction perpendicular to the molding surface composed of planes parallel to each other in the magnet powder easy magnetization direction. Is done. When the flat molded body is molded into a three-dimensional magnet molded body, if the resin binder is softened to the extent that it does not flow, the molding process is performed without disturbing the orientation of the magnet powder. In this case, the resin-based binder helps to improve the moldability when the flat plate molded body is molded into a magnet molded body.

10 磁石粉末
20 平板成形体
30 磁石成形体
10 Magnet powder 20 Flat plate molded body 30 Magnet molded body

Claims (5)

磁石表面の曲面上の一点で、その点での接平面に垂直な直線の方向に磁石粉末の容易磁化方向が配向された磁気異方性磁石の製造方法であって、
磁石粉末を磁場中で成形して前記磁石粉末の容易磁化方向が互いに平行な平面からなる成形面に垂直な直線の方向に配向された平板成形体を形成し、
該平板成形体の前記平面を曲げ成形金型により成形加工して3次元形状の磁石成形体を形成し、
該磁石成形体を着磁して磁気異方性磁石を製造することを特徴とする磁気異方性磁石の製造方法。
A method for producing a magnetic anisotropic magnet in which the easy magnetization direction of magnet powder is oriented at a point on the curved surface of the magnet surface in a direction perpendicular to the tangential plane at that point,
Forming the magnetic powder in a magnetic field to form a flat molded body in which the easy magnetization directions of the magnetic powder are oriented in the direction of a straight line perpendicular to the molding surface composed of planes parallel to each other,
Forming the flat surface of the flat plate molded body by a bending mold to form a three-dimensional magnet molded body;
A method for producing a magnetic anisotropic magnet, comprising magnetizing the magnet compact to produce a magnetic anisotropic magnet.
前記磁場中での前記磁石粉末の成形が水平磁場中でのプレス成形であり、前記曲げ成形金型による成形加工がプレス成形加工である
ことを特徴とする請求項1記載の磁気異方性磁石の製造方法。
The magnetic anisotropic magnet according to claim 1, wherein the molding of the magnet powder in the magnetic field is press molding in a horizontal magnetic field, and the molding by the bending molding die is press molding. Manufacturing method.
前記曲面が1点を中心にした円弧面である
ことを特徴とする請求項1又は2記載の磁気異方性磁石の製造方法。
The method of manufacturing a magnetic anisotropic magnet according to claim 1, wherein the curved surface is an arc surface centered on one point.
前記曲面はらせんが動いて形成した面の一部である
ことを特徴とする請求項1又は2記載の磁気異方性磁石の製造方法。
The method of manufacturing a magnetic anisotropic magnet according to claim 1, wherein the curved surface is a part of a surface formed by moving a helix.
前記磁石成形体は着磁されるとき、事前に焼結されている
ことを特徴とする請求項1〜4のいずれかに記載の磁気異方性磁石の製造方法。
The method for producing a magnetic anisotropic magnet according to claim 1, wherein the magnet compact is sintered in advance when magnetized.
JP2009265069A 2009-11-20 2009-11-20 Method of manufacturing magnetic anisotropic magnet Withdrawn JP2011109004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265069A JP2011109004A (en) 2009-11-20 2009-11-20 Method of manufacturing magnetic anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265069A JP2011109004A (en) 2009-11-20 2009-11-20 Method of manufacturing magnetic anisotropic magnet

Publications (1)

Publication Number Publication Date
JP2011109004A true JP2011109004A (en) 2011-06-02

Family

ID=44232146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265069A Withdrawn JP2011109004A (en) 2009-11-20 2009-11-20 Method of manufacturing magnetic anisotropic magnet

Country Status (1)

Country Link
JP (1) JP2011109004A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152979A1 (en) * 2015-03-24 2017-08-03 日東電工株式会社 Sintered body for rare earth magnet formation and rare earth sintered magnet
CN107430935A (en) * 2015-03-24 2017-12-01 日东电工株式会社 The manufacture method of rare-earth permanent magnet formation sintered body with nonparallel orientation of easy magnetization axis
WO2018056390A1 (en) * 2016-09-23 2018-03-29 日東電工株式会社 Method for manufacturing sintered body for forming sintered magnet, and method for manufacturing permanent magnet using sintered body for forming sintered magnet
JPWO2017022684A1 (en) * 2015-07-31 2018-05-24 日東電工株式会社 Sintered body for rare earth magnet formation and rare earth sintered magnet
US10867732B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
CN113334531A (en) * 2020-02-18 2021-09-03 湖南航天磁电有限责任公司 Large-central-angle magnetic shoe forming upper die and large-central-angle magnetic shoe forming method
US11239014B2 (en) 2015-03-24 2022-02-01 Nitto Denko Corporation Rare-earth magnet and linear motor using same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276310A (en) * 2015-03-24 2020-06-12 日东电工株式会社 Sintered body for forming rare earth magnet and rare earth sintered magnet
CN107430935A (en) * 2015-03-24 2017-12-01 日东电工株式会社 The manufacture method of rare-earth permanent magnet formation sintered body with nonparallel orientation of easy magnetization axis
JPWO2016152978A1 (en) * 2015-03-24 2018-01-25 日東電工株式会社 Method for producing sintered body for forming rare earth permanent magnet having non-parallel easy axis orientation
US11239014B2 (en) 2015-03-24 2022-02-01 Nitto Denko Corporation Rare-earth magnet and linear motor using same
US20180130581A1 (en) * 2015-03-24 2018-05-10 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
JPWO2016152979A1 (en) * 2015-03-24 2017-08-03 日東電工株式会社 Sintered body for rare earth magnet formation and rare earth sintered magnet
JP2018186274A (en) * 2015-03-24 2018-11-22 日東電工株式会社 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
EP3276645A4 (en) * 2015-03-24 2019-01-02 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US10867732B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet
CN107430935B (en) * 2015-03-24 2020-03-03 日东电工株式会社 Method for producing sintered body for forming rare earth permanent magnet having non-parallel easy magnetization axis orientation
JP2021106271A (en) * 2015-07-31 2021-07-26 日東電工株式会社 Sintered body for forming rare-earth magnet and rare-earth sintered magnet
CN108140461A (en) * 2015-07-31 2018-06-08 日东电工株式会社 Rare earth magnet formation sintered body and rare-earth sintered magnet
JPWO2017022684A1 (en) * 2015-07-31 2018-05-24 日東電工株式会社 Sintered body for rare earth magnet formation and rare earth sintered magnet
JPWO2018056390A1 (en) * 2016-09-23 2019-07-11 日東電工株式会社 Method for producing sintered body for forming sintered magnet and method for producing permanent magnet using sintered body for forming sintered magnet
KR20190058479A (en) * 2016-09-23 2019-05-29 닛토덴코 가부시키가이샤 Method of manufacturing sintered body for sintered magnet and method of manufacturing permanent magnet using sintered body for forming sintered magnet
KR102345075B1 (en) * 2016-09-23 2021-12-29 닛토덴코 가부시키가이샤 Method for manufacturing a sintered body for forming sintered magnets and a method for manufacturing a permanent magnet using the sintered body for forming sintered magnets
WO2018056390A1 (en) * 2016-09-23 2018-03-29 日東電工株式会社 Method for manufacturing sintered body for forming sintered magnet, and method for manufacturing permanent magnet using sintered body for forming sintered magnet
JP7063812B2 (en) 2016-09-23 2022-05-09 日東電工株式会社 A method for manufacturing a sintered body for forming a sintered magnet and a method for manufacturing a permanent magnet using a sintered body for forming a sintered magnet.
CN113334531A (en) * 2020-02-18 2021-09-03 湖南航天磁电有限责任公司 Large-central-angle magnetic shoe forming upper die and large-central-angle magnetic shoe forming method
CN113334531B (en) * 2020-02-18 2024-01-19 湖南航天磁电有限责任公司 Forming upper die of large central angle magnetic shoe and forming method of large central angle magnetic shoe

Similar Documents

Publication Publication Date Title
JP2011109004A (en) Method of manufacturing magnetic anisotropic magnet
JP5963870B2 (en) Permanent magnet manufacturing method and permanent magnet manufacturing apparatus
EP1308970B1 (en) Radial anisotropic sintered magnet production method
JP4096843B2 (en) Motor and manufacturing method thereof
JP2006086319A (en) Ring type sintered magnet
US20120126637A1 (en) Permanent Magnet Rotors and Methods of Manufacturing the Same
EP1548761B1 (en) Method of manufacturing a radial anisotropic ring magnet
US6509667B1 (en) Rotor for a reluctance motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JP2007180368A (en) Method for manufacturing magnetic circuit part
EP3732774B1 (en) Method for manufacturing an electrical machine
JP2005020991A (en) Rotor and manufacturing method therefor
CN110943554A (en) Tile-shaped magnet with halbach array structure effect and manufacturing method
JP2009267221A (en) Method of manufacturing magnet and method of manufacturing motor
JP2009111418A (en) Die, molding machine and method used for manufacturing anisotropic magnet, and magnet manufactured thereby
JP4425682B2 (en) Mold, molding machine, method and magnet obtained for manufacturing anisotropic magnet
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP4890620B2 (en) Mold, magnetic field molding machine, and method for manufacturing permanent magnet
CN110165847B (en) Method for producing radial anisotropic multi-pole solid magnet with different width waveforms
JP4238971B2 (en) Manufacturing method of radial anisotropic sintered magnet
CN106537741A (en) Electric motor and electrical apparatus comprising same
JP4471698B2 (en) Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet
JPH07161512A (en) Production of radial anisotropic rare earth sintered magnet
JP2006180677A (en) Integrated skew magnetic rotor with core, and its manufacturing method
JP2006261236A (en) Mold for molding anisotropy magnet, method of manufacturing anisotropy magnet, anisotropy magnet and motor using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205