JP2011108368A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011108368A
JP2011108368A JP2009258952A JP2009258952A JP2011108368A JP 2011108368 A JP2011108368 A JP 2011108368A JP 2009258952 A JP2009258952 A JP 2009258952A JP 2009258952 A JP2009258952 A JP 2009258952A JP 2011108368 A JP2011108368 A JP 2011108368A
Authority
JP
Japan
Prior art keywords
opening
sub
secondary battery
nonaqueous electrolyte
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258952A
Other languages
Japanese (ja)
Other versions
JP4987944B2 (en
Inventor
Kazuya Sakashita
和也 坂下
Naoto Nishimura
直人 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009258952A priority Critical patent/JP4987944B2/en
Priority to US12/917,972 priority patent/US8752573B2/en
Priority to CN201410130668.8A priority patent/CN103915599B/en
Priority to CN201010541810.XA priority patent/CN102055010B/en
Publication of JP2011108368A publication Critical patent/JP2011108368A/en
Application granted granted Critical
Publication of JP4987944B2 publication Critical patent/JP4987944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with a nonaqueous electrolyte injection function capable of simply replenishing nonaqueous electrolyte under a low-humidity environment. <P>SOLUTION: The nonaqueous electrolyte secondary battery is provided with: a housing body 101 equipped with a housing 102 for housing a power generating part 107 equipped with a positive electrode 103, a negative electrode 104, a separator 105, and the nonaqueous electrolyte 106, an opening 108 communicated with the housing 102, and a sub housing 109 communicated with the housing 102 through the opening 108 for housing nonaqueous electrolyte 111 for replenishment; and a plug 110 so structured to be free in attachment and detachment to and from the opening 108 from outside the housing body 101. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池に関し、特に、非水電解質を補充することができる非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery that can be supplemented with a non-aqueous electrolyte.

リチウムイオン二次電池などの非水電解質二次電池は、高電圧、高エネルギ密度を有し、且つ貯蔵性、耐漏洩性などの信頼性に優れている。このため、非水電解質二次電池は、携帯電話やノートパソコン等の小型の電源として既に実用化されており、さらに自動車用途や電力貯蔵用途などの中・大型用途においても、適用が試みられている。   A non-aqueous electrolyte secondary battery such as a lithium ion secondary battery has a high voltage and a high energy density, and is excellent in reliability such as storability and leakage resistance. For this reason, non-aqueous electrolyte secondary batteries have already been put into practical use as small power sources for mobile phones and laptop computers, and are also being applied to medium and large applications such as automotive applications and power storage applications. Yes.

リチウムイオン二次電池の正極活物質としては、二硫化チタン、五酸化バナジウムおよび三酸化モリブデンをはじめとしてリチウムコバルト複合酸化物、リチウムニッケル複合酸化物およびスピネル型リチウムマンガン酸化物等の一般式LixMO2(ただし、Mは一種以上の遷移金属)で表される種々の化合物が挙げられる。 Examples of the positive electrode active material of the lithium ion secondary battery include general formulas LixMO 2 such as titanium disulfide, vanadium pentoxide and molybdenum trioxide, lithium cobalt composite oxide, lithium nickel composite oxide and spinel type lithium manganese oxide. (Wherein M is one or more transition metals).

リチウムイオン二次電池の負極活物質としては、金属リチウムやリチウムを含む合金をはじめとしてリチウムの吸蔵・放出が可能な炭素材料等の種々のものが挙げられる。特に、炭素材料を使用すると、サイクル寿命の長い電池が得られ、かつ安全性が高いという利点がある。   Examples of the negative electrode active material of the lithium ion secondary battery include various materials such as metallic lithium and alloys containing lithium, and carbon materials capable of occluding and releasing lithium. In particular, when a carbon material is used, there is an advantage that a battery having a long cycle life can be obtained and safety is high.

リチウムイオン二次電池の非水電解質には、一般にエチレンカーボネートやプロピレンカーボネートなどの高誘電率の溶媒とジエチルカーボネートなどの低粘度溶媒との混合系溶媒に、LiPF6やLiBF4等の支持塩を溶解させた電解液が使用されている。 For non-aqueous electrolytes of lithium ion secondary batteries, a mixed solvent of a high dielectric constant solvent such as ethylene carbonate or propylene carbonate and a low viscosity solvent such as diethyl carbonate is generally added to a supporting salt such as LiPF 6 or LiBF 4. A dissolved electrolyte is used.

これまでリチウムイオン二次電池は、密閉式であって充放電サイクル寿命も長い為、所定の回数使用し、その放電容量が著しく低下した場合には、電池の寿命が尽きたと判断し、これを廃棄処分にしている。そして、廃棄処分にされたリチウムイオン二次電池は、リサイクルするために回収され、利用可能な材料は抽出されて再利用されている。   Until now, lithium ion secondary batteries are hermetically sealed and have a long charge / discharge cycle life, so if they are used a predetermined number of times and their discharge capacity is significantly reduced, it is determined that the battery life has been exhausted. Disposal. The discarded lithium ion secondary battery is collected for recycling, and usable materials are extracted and reused.

しかしながら、電池を構成する材料の100%を再利用するのは難しく、寿命の尽きた電池の有効な利用方法の創出が求められている。また、上述のような中・大型用途のリチウムイオン二次電池の場合、10〜20年単位の寿命と数千〜数万サイクルの充放電サイクル寿命が必要とされる場合があるが、このような長寿命を従来の電池構成で可能にするのは困難である。   However, it is difficult to reuse 100% of the material constituting the battery, and there is a demand for the creation of an effective method of using the battery whose life has expired. In addition, in the case of the above-described medium / large-sized lithium ion secondary batteries, a life of 10 to 20 years and a charge / discharge cycle life of several thousand to several tens of thousands of cycles may be required. It is difficult to achieve a long service life with a conventional battery configuration.

これらに対応して、例えば、特許文献1では、充放電サイクルの繰り返しにより放電容量が低下したリチウムイオン二次電池に新しい非水電解質を補充することによって放電容量を回復させるべく、電池容器に注入口栓を設けたリチウムイオン二次電池が提案されている。   Corresponding to these, for example, in Patent Document 1, in order to recover the discharge capacity by replenishing a new non-aqueous electrolyte in a lithium ion secondary battery whose discharge capacity has decreased due to repeated charge and discharge cycles, A lithium ion secondary battery provided with an inlet plug has been proposed.

特開2001−210309号公報JP 2001-210309 A

しかしながら、非水電解質は低湿度環境下で取り扱う必要があり、たとえば、湿度管理されたグローブボックス等の設備内で再注液する必要がある。このため、一般的に、リチウムイオン二次電池に非水電解質を補充するにあたって、上記設備内にリチウムイオン二次電池を移動させる必要があり、操作が煩雑になるという問題がある。   However, it is necessary to handle the nonaqueous electrolyte in a low humidity environment, and for example, it is necessary to re-inject the liquid in equipment such as a glove box whose humidity is controlled. For this reason, in general, when replenishing a lithium ion secondary battery with a nonaqueous electrolyte, it is necessary to move the lithium ion secondary battery into the facility, and there is a problem that the operation becomes complicated.

これまでの携帯やパーソナルコンピュータに用いられる小型のリチウムイオン二次電池に比べ、中・大型で長寿命化を目指す電力貯蔵用や自動車用などのリチウムイオン二次電池においては、液枯れによる容量保持率の低下は大きな問題であり、無視できない。   Lithium ion secondary batteries for power storage and automobiles that aim for longer and longer life compared to small lithium ion secondary batteries used for conventional mobile phones and personal computers retain capacity due to liquid drainage. The decline in rate is a big problem and cannot be ignored.

また、電力貯蔵用途や自動車用途に用いられるリチウムイオン二次電池は大型であるため、グローブボックス等の設備内での作業が困難な場合、あるいは、グローブボックス内への搬入が困難な場合がある。このため、低湿度環境下での中・大型リチウムイオン二次電池への非水電解質の注液が困難になるという問題がある。   In addition, since lithium ion secondary batteries used for power storage and automotive applications are large, it may be difficult to work in equipment such as a glove box or may be difficult to carry into the glove box. . For this reason, there is a problem that it becomes difficult to inject the non-aqueous electrolyte into the middle / large-sized lithium ion secondary battery in a low humidity environment.

そこで、本発明の目的は、簡便に、非水電解質を低湿度環境下で補充することができる非水電解質二次電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that can easily replenish the non-aqueous electrolyte in a low humidity environment.

本発明は、正極、負極、セパレータ、および非水電解質を有する発電部を収容する収容室、収容室と連通する開口部、および開口部を介して収容室と連通し、補充用の非水電解質を収容するための副収容室を有する収容体と、収容体の外側から開口部への着脱が自在となるように構成されている栓体と、を備える非水電解質二次電池である。   The present invention relates to a replenishment non-aqueous electrolyte that communicates with a storage chamber that houses a positive electrode, a negative electrode, a separator, and a power generation unit having a non-aqueous electrolyte, an opening that communicates with the storage chamber, and the opening. It is a nonaqueous electrolyte secondary battery provided with the storage body which has a sub-accommodating chamber for storing, and the plug body comprised so that attachment or detachment to the opening part can be freely performed from the outer side of a storage body.

上記非水電解質二次電池は、副収容室を区画する収容体の部分に、副収容室と収容体の外部とを連通させる副開口部が形成されており、栓体の一部が開口部に着脱自在に嵌合され、栓体の他の一部が副開口部を貫通して収容体の外側に露出していることが好ましい。   In the non-aqueous electrolyte secondary battery, a sub-opening for communicating the sub-accommodating chamber and the outside of the accommodating body is formed in a portion of the accommodating body that divides the sub-accommodating chamber, and a part of the plug is opened. It is preferable that the other part of the plug body is exposed to the outside of the container through the sub-opening.

また、本発明の非水電解質二次電池において、開口部と副開口部が対向することが好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the opening and the sub-opening face each other.

また、本発明の非水電解質二次電池において、開口部を区画する収容体の部分と栓体とが螺着していることが好ましく、さらに、副開口部を区画する収容体の部分と栓体とが螺着していることが好ましい。   Further, in the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the portion of the container that defines the opening and the plug are screwed, and further, the portion of the container that defines the sub-opening and the plug. It is preferable that the body is screwed.

また、本発明の非水電解質二次電池において、副収容室を区画する収容体の部分に、収容体の外側から副収容室に補充用の非水電解質を注入するための補給部が形成されていることが好ましい。   Further, in the nonaqueous electrolyte secondary battery of the present invention, a replenishment portion for injecting a nonaqueous electrolyte for replenishment into the sub-accommodating chamber from the outside of the accommodating body is formed in a portion of the accommodating body that divides the sub-accommodating chamber. It is preferable.

また、本発明の非水電解質二次電池において、補給部は、副収容室と連通して副収容室と収容体の外側とを連通させる補給口部と、補給口部に着脱自在に嵌合する補給口用栓体とを有することが好ましい。   Further, in the nonaqueous electrolyte secondary battery of the present invention, the replenishment portion is detachably fitted to the replenishment port portion, which communicates with the sub-accommodation chamber and communicates the sub-accommodation chamber and the outside of the container. It is preferable to have a plug for a replenishing port.

また、本発明の非水電解質二次電池において、補給口部を区画する収容体の部分と補給用栓体とが螺着していることが好ましい。   Moreover, in the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the portion of the container that defines the replenishing port and the replenishing plug are screwed together.

本発明によれば、簡便に、非水電解質二次電池に対して、非水電解質を低湿度環境下で補充することができる。   According to the present invention, the nonaqueous electrolyte can be easily supplemented to the nonaqueous electrolyte secondary battery in a low humidity environment.

したがって、たとえば、非水電解質二次電池を使用する電気自動車(HEV、EVなど)の車検時に、簡便に非水電解質を低湿度環境下で補充できるため、車検工場での電池の再生利用が可能となる。また、たとえば、太陽光発電や風力発電における蓄電システムで使用される非水電解質二次電池について、該非水電解質二次電池を工場内に回収することなく、現地での再生利用が可能となる。さらには、非水電解質を補充するにあたって、グローブボックスやドライルームといった特殊な設備や装置を使用する必要がなく、車検工場、太陽光発電場および風力発電場において、施工業者などが通常使用する冶具、工具などで作業を行うことができる。   Therefore, for example, when an electric vehicle using a non-aqueous electrolyte secondary battery (HEV, EV, etc.) is inspected, the non-aqueous electrolyte can be easily replenished in a low-humidity environment, so the battery can be recycled at the inspection factory. It becomes. In addition, for example, a nonaqueous electrolyte secondary battery used in a power storage system in solar power generation or wind power generation can be recycled locally without collecting the nonaqueous electrolyte secondary battery in a factory. Furthermore, when replenishing non-aqueous electrolyte, there is no need to use special equipment or equipment such as glove boxes or dry rooms, and jigs that are usually used by contractors in car inspection factories, solar power plants and wind power plants. Work with tools, etc.

実施の形態に係る非水電解質二次電池の断面図である。It is sectional drawing of the nonaqueous electrolyte secondary battery which concerns on embodiment. 栓体が備えるシール部材の形状を説明するための図である。It is a figure for demonstrating the shape of the sealing member with which a stopper is provided. 図1の非水電解質二次電池を製造する工程を示す図である。It is a figure which shows the process of manufacturing the nonaqueous electrolyte secondary battery of FIG. 実施の形態に係る非水電解質二次電池における補充用非水電解質の注入動作を説明するための図である。It is a figure for demonstrating the injection | pouring operation | movement of the nonaqueous electrolyte for replenishment in the nonaqueous electrolyte secondary battery which concerns on embodiment. 補給部を備える非水電解質二次電池の断面図である。It is sectional drawing of a nonaqueous electrolyte secondary battery provided with a replenishment part.

以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一または対応する部分について同一の符号を付し、その説明は繰り返さないことにする。本実施の形態では、積層角型のリチウムイオン二次電池を用いる。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated. In this embodiment mode, a stacked rectangular lithium ion secondary battery is used.

<非水電解質二次電池の構成>
図1は、本実施の形態に係る非水電解質二次電池の断面図である。
<Configuration of non-aqueous electrolyte secondary battery>
FIG. 1 is a cross-sectional view of the nonaqueous electrolyte secondary battery according to the present embodiment.

図1において、非水電解質二次電池であるリチウムイオン二次電池100は、筐体としての収容体101を備える。収容体101内には、収容室102、該収容室102と連通する開口部108、該開口部108を介して収容室102と連通する副収容室109が区画されている。収容室102と副収容室109とを連通させる開口部108は栓体110によって閉塞されており、収容室102から隔絶された副収容室109には、補充用の非水電解質111が収容されている。   In FIG. 1, a lithium ion secondary battery 100 that is a nonaqueous electrolyte secondary battery includes a container 101 as a housing. In the container 101, a storage chamber 102, an opening 108 that communicates with the storage chamber 102, and a sub-accommodation chamber 109 that communicates with the storage chamber 102 through the opening 108 are partitioned. The opening 108 that allows the storage chamber 102 and the sub-accommodation chamber 109 to communicate with each other is closed by a plug 110, and a supplementary nonaqueous electrolyte 111 is accommodated in the sub-accommodation chamber 109 that is isolated from the storage chamber 102. Yes.

上述の収容室102には、正極103、セパレータ104および負極105がこの順に複数積層されて収容され、非水電解質106が充填されている。なお、正極103、セパレータ104、負極105および非水電解質106は発電部107を形成する。   A plurality of positive electrodes 103, separators 104, and negative electrodes 105 are stacked and stored in this order in the storage chamber 102, and are filled with a nonaqueous electrolyte 106. The positive electrode 103, the separator 104, the negative electrode 105, and the nonaqueous electrolyte 106 form a power generation unit 107.

各正極103および各負極105は、それぞれ、収容室102内の不図示の正極集電リードおよび負極集電リードに接続されている。正極集電リードおよび負極集電リードのそれぞれの一部は収容体101の外側に突出するように形成されており、この突出する部分がそれぞれリチウムイオン二次電池の正極端子および負極端子となる。   Each positive electrode 103 and each negative electrode 105 are respectively connected to a positive current collector lead and a negative current collector lead (not shown) in the storage chamber 102. A part of each of the positive electrode current collecting lead and the negative electrode current collecting lead is formed so as to protrude to the outside of the housing body 101, and the protruding portions serve as a positive electrode terminal and a negative electrode terminal of the lithium ion secondary battery, respectively.

正極103は、正極活物質材料が集電体表面に形成された構成を有する。正極活物質材料としては、リチウムイオン二次電池で一般的に用いられる、リチウムと遷移金属との複合酸化物を使用することができる。リチウムと遷移金属との複合酸化物の型として、スピネル型、NASICON型及びオリビン型等がある。なかでも、オリビン型構造を有するLiMPO4(ただし、Xは正の数、Mは1種以上の遷移金属である。)で表されるリチウム遷移金属酸化物は、リチウムイオン二次電池の充電時の熱安定性が高い。このため、本実施の形態において、安全性を特に高くする必要がある大容量のリチウムイオン二次電池を用いる場合には、正極103の材料として、オリビン型構造を有する化合物を用いることが好ましい。さらに具体的には、非水電解質の分解が少なく、安定性の高いリン酸鉄リチウムを用いることが好ましい。 The positive electrode 103 has a configuration in which a positive electrode active material is formed on the current collector surface. As the positive electrode active material, a composite oxide of lithium and a transition metal, which is generally used in a lithium ion secondary battery, can be used. Examples of the complex oxide type of lithium and transition metal include spinel type, NASICON type, and olivine type. Among these, a lithium transition metal oxide represented by Li x MPO 4 having an olivine structure (where X is a positive number and M is one or more transition metals) is a lithium ion secondary battery. High thermal stability during charging. Therefore, in this embodiment, when a large-capacity lithium ion secondary battery that needs to have particularly high safety is used, it is preferable to use a compound having an olivine structure as the material of the positive electrode 103. More specifically, it is preferable to use lithium iron phosphate that is less decomposed and has high stability.

セパレータ104は、正極103と負極105とを隔離して内部短絡を防止するとともに、電解液である非電解質を保持して正負極間のイオン伝導性を保つ役割をもつ。セパレータ104の材料としては、ポリエチレン、ポリプロリレンなどのポリオレフィン系の微多孔膜を用いることができる。   The separator 104 separates the positive electrode 103 and the negative electrode 105 to prevent an internal short circuit, and retains a non-electrolyte that is an electrolytic solution to maintain ionic conductivity between the positive and negative electrodes. As a material for the separator 104, a polyolefin microporous film such as polyethylene or polypropylene can be used.

負極105は、負極活物質材料が集電体表面に形成された構成を有する。負極活物質材料としては、リチウムイオン二次電池で一般的に用いられる材料を用いることができる。とくに、可逆性に優れたグラファイトなどの炭素系材料を用いることが好ましい。   The negative electrode 105 has a configuration in which a negative electrode active material is formed on the current collector surface. As the negative electrode active material, a material generally used in lithium ion secondary batteries can be used. In particular, it is preferable to use a carbon-based material such as graphite having excellent reversibility.

非水電解質106,111は、リチウムイオン導電体である非水系の有機溶媒とリチウム塩からなる電解液であり、たとえば、エチレンカーボネート、ジエチルカーボネートなどにLiPF6を溶解させたものを用いることができる。なお、電解液は粘度を有していてもよい。 The nonaqueous electrolytes 106 and 111 are electrolytic solutions made of a lithium ion conductor and a nonaqueous organic solvent and a lithium salt. For example, a solution obtained by dissolving LiPF 6 in ethylene carbonate, diethyl carbonate, or the like can be used. . The electrolytic solution may have a viscosity.

上述の開口部108を閉塞する栓体110は、収容体101の外側から開口部108への着脱が自在となるような構成であれば良い。たとえば、図1に示すように、栓体110の一部である軸部110aが開口部108を閉塞し、栓体110の他の一部である頭部110bが収容体101の外側に露出するように構成することができる。この場合、栓体110の頭部110bを図中上方に移動させることによって栓体110を開口部108から容易に取り外すことができ、取り外した栓体110を図中下方に移動させることにより開口部108に容易に挿入することができる。   The plug 110 that closes the opening 108 may be configured so that it can be attached to and detached from the opening 108 from the outside of the container 101. For example, as shown in FIG. 1, the shaft portion 110 a that is a part of the plug body 110 closes the opening 108, and the head portion 110 b that is another part of the plug body 110 is exposed to the outside of the container body 101. It can be constituted as follows. In this case, the plug 110 can be easily removed from the opening 108 by moving the head 110b of the plug 110 upward in the drawing, and the opening 110 can be removed by moving the removed plug 110 downward in the drawing. 108 can be easily inserted.

また、図1のように頭部110bを収容体101の外部に露出する場合、収容体101の副収容室109を区画する部分に、副開口部112を形成する必要があるが、副開口部112と開口部108とが対向していることが好ましい。たとえば、副開口部112が副収容室109を区画する収容体101の側面にあって副開口部112と開口部108とが対向しない場合には栓体110の形状が複雑になり、好ましくない。   In addition, when the head 110b is exposed to the outside of the container 101 as shown in FIG. 1, it is necessary to form the sub-opening 112 in a portion that defines the sub-accommodating chamber 109 of the container 101. 112 and the opening 108 are preferably opposed to each other. For example, when the sub-opening 112 is on the side surface of the container 101 that defines the sub-accommodating chamber 109 and the sub-opening 112 and the opening 108 do not face each other, the shape of the plug 110 becomes complicated, which is not preferable.

開口部108を区画する収容体101の部分(以下、「開口壁部」という。)の形状および開口壁部と連結する栓体110の部分の形状は特に制限されず、収容室102を副収容室109から隔絶できるように連結する形状であればよい。たとえば、図1に示すように、開口壁部および栓体110のそれぞれの互いに接する位置に、螺旋形状の溝が形成されていることが好ましい。開口壁部および栓体110がそれぞれ螺旋形状の溝を有していることにより、互いに螺着することができ、収容室102を副収容室109から容易に隔絶することができる。また、開口壁部および栓体110は、螺旋形状の溝のかわりに斜めの溝を有していても良く、互いに着脱可能に密接に嵌合する形状であればよい。   The shape of the portion of the container 101 that partitions the opening 108 (hereinafter referred to as “opening wall portion”) and the shape of the plug 110 that is connected to the opening wall are not particularly limited, and the storage chamber 102 is sub-accommodated. Any shape may be used as long as it can be isolated from the chamber 109. For example, as shown in FIG. 1, it is preferable that a spiral groove is formed at a position where the opening wall portion and the plug 110 are in contact with each other. Since the opening wall portion and the plug body 110 each have a spiral groove, they can be screwed together, and the storage chamber 102 can be easily isolated from the sub storage chamber 109. Moreover, the opening wall part and the plug body 110 may have an oblique groove instead of the spiral groove, and may have any shape as long as they can be detachably fitted to each other.

また、栓体110の一部が副開口部112を貫通して収容体101の外側に露出する場合にも、副開口部112を区画する収容体101の部分(以下、「副開口壁部」という。)の形状および副開口壁部と連結する栓体110の部分の形状は特に制限されず、副収容室109を外部から隔絶できるように連結する形状であればよい。たとえば、図1に示すように、副開口壁部および栓体110のそれぞれの互いに接する位置に、螺旋形状の溝が形成されていることにより、互いに螺着することができ、副収容室109を外部から容易に隔絶することができる。また、副開口壁部は、螺旋形状の溝のかわりに斜めの溝を有していても良く、互いに密接に着脱可能に嵌合する形状であればよい。   Further, even when a part of the plug 110 penetrates the sub opening 112 and is exposed to the outside of the container 101, the portion of the container 101 that divides the sub opening 112 (hereinafter referred to as “sub opening wall”). The shape of the plug body 110 connected to the auxiliary opening wall portion is not particularly limited as long as the auxiliary housing chamber 109 can be isolated from the outside. For example, as shown in FIG. 1, spiral grooves are formed at positions where the auxiliary opening wall portion and the plug 110 are in contact with each other, so that they can be screwed together, It can be easily isolated from the outside. Moreover, the sub opening wall part may have a slanting groove | channel instead of a spiral groove | channel, and should just be a shape which mutually fits so that attachment or detachment is possible.

また、この場合、リチウムイオン二次電池100において、副収容室109の気密性を高めるために、栓体110と副開口部112との隙間を埋めるためのシール部材を備えることが好ましい。たとえば、図2(a)および(b)に示すように、栓体110の頭部110bと軸部110aとが連結する部分に、O−リング形状または矩形状のシール部材200を備えることができる。また、収容体101の外面側の表面であって副開口部112の近傍にシール部材を備えてもよい。なお、リチウムイオン二次電池100において、栓体110と開口部108との隙間を埋めるためのシール部材200を備えても良い。   In this case, the lithium ion secondary battery 100 is preferably provided with a seal member for filling the gap between the plug 110 and the sub opening 112 in order to improve the airtightness of the sub housing chamber 109. For example, as shown in FIGS. 2A and 2B, an O-ring-shaped or rectangular seal member 200 can be provided at a portion where the head portion 110b and the shaft portion 110a of the plug body 110 are connected. . Further, a sealing member may be provided on the outer surface side of the container 101 and in the vicinity of the sub opening 112. Note that the lithium ion secondary battery 100 may include a seal member 200 for filling a gap between the plug 110 and the opening 108.

シール部材200としては、有機電解液に耐える材料、例えばポリプロピレン(PP)、ポリエチレン(PE)、PPとPEの共重合体、スチレンブタジエンゴム、エチレンプロピレンジエンモノマー、ブチルゴム、シリコンゴム、フッ素樹脂含有ゴム、ポリテトラフルオロエチレン製テフロン(登録商標)シールテープ等が好ましい。   As the sealing member 200, a material that can withstand an organic electrolyte, such as polypropylene (PP), polyethylene (PE), a copolymer of PP and PE, styrene butadiene rubber, ethylene propylene diene monomer, butyl rubber, silicon rubber, rubber containing fluororesin Teflon (registered trademark) seal tape made of polytetrafluoroethylene is preferable.

ここで、収容体101は、開口部108および/または副開口部112が形成される各面の面積を8cm2以上とすることが好ましい。収容体101の開口部108および/または副開口部112が形成される各面の面積が8cm2未満の場合、開口部108、副開口部112および栓体110を非常に小さくしなければならず、コストの面でも、注入動作の作業性の面からも好ましくない。また、開口部108および/または副開口部112が形成される面の面積が8cm2未満の場合、収容体101が充分な強度を保てないことも考えられる。開口部108および/または副開口部112が形成される面の面積を10cm2以上とすることがさらに好ましい。 Here, it is preferable that the container 101 has an area of each surface on which the opening 108 and / or the sub-opening 112 are formed be 8 cm 2 or more. When the area of each surface where the opening 108 and / or the sub-opening 112 of the container 101 is formed is less than 8 cm 2 , the opening 108, the sub-opening 112 and the plug 110 must be very small. This is not preferable from the viewpoint of cost and workability of the injection operation. Further, when the area of the surface on which the opening 108 and / or the sub-opening 112 is formed is less than 8 cm 2, it is conceivable that the container 101 cannot maintain sufficient strength. More preferably, the area of the surface on which the opening 108 and / or the sub-opening 112 is formed is 10 cm 2 or more.

より具体的には、本実施の形態のように、収容体101が角型の場合、収容体101の開口部108および/または副開口部112が形成される面のそれぞれの両辺が、少なくとも1cm以上であることが好ましい。また、収容体101が円筒型の場合、収容体101の開口部108および/または副開口部112が形成される面のそれぞれの直径が、少なくとも1cm以上であることが好ましい。また、収容体101の材料は特に限定されず、たとえば、鉄、鉄にニッケルメッキを施したもの、ステンレススチール、アルミニウムを用いることができる。   More specifically, as in the present embodiment, when the container 101 is square, each side of the surface on which the opening 108 and / or the sub-opening 112 of the container 101 is formed is at least 1 cm. The above is preferable. Moreover, when the container 101 is cylindrical, it is preferable that each diameter of the surface in which the opening part 108 and / or the subopening 112 of the container 101 are formed is at least 1 cm or more. The material of the container 101 is not particularly limited, and for example, iron, iron-plated nickel, stainless steel, or aluminum can be used.

開口部108および/または副開口部112と栓体110が互いに羅着する場合、開口部108および/または副開口部112を形成する部分の収容体101の部材の厚さ、すなわち、開口壁部および/または副開口壁部の厚さは1.5mm以上であることが好ましい。開口壁部および/または副開口壁部の厚みが1.5mm未満の場合、開口部108および/または副開口部112に対して螺子形状の栓体110が確実に螺着されることができず、収容室102の気密状態、副収容室109の気密状態を保つことができないおそれがある。   When the opening 108 and / or the sub-opening 112 and the plug 110 are attached to each other, the thickness of the member of the container 101 that forms the opening 108 and / or the sub-opening 112, that is, the opening wall And / or the thickness of the sub-opening wall is preferably 1.5 mm or more. When the thickness of the opening wall and / or the sub-opening wall is less than 1.5 mm, the screw-shaped plug body 110 cannot be reliably screwed to the opening 108 and / or the sub-opening 112. There is a possibility that the airtight state of the storage chamber 102 and the airtight state of the sub storage chamber 109 cannot be maintained.

ここで、通常、リチウムイオン二次電池においては、過充電時や高温状態において、電池内圧が上昇した場合、電池の爆発等の危険を避けるために、電池内圧を開放するための安全弁が設けられている。このため、リチウムイオン二次電池100が安全弁を備えている場合に、安全弁が作動するまでに栓体110が開口部108から外れないようにする必要がある。したがって、安全弁を設けた場合には、開口部108を閉塞する栓体110の耐圧が安全弁の動作圧以上となるように構成する。なお、ここでの耐圧とは、栓体110が開口部108からはずれない圧力を言う。   Here, in general, a lithium ion secondary battery is provided with a safety valve for releasing the battery internal pressure in order to avoid dangers such as battery explosion when the battery internal pressure rises during overcharge or in a high temperature state. ing. For this reason, when the lithium ion secondary battery 100 includes a safety valve, it is necessary to prevent the plug 110 from being detached from the opening 108 before the safety valve is activated. Therefore, when the safety valve is provided, the stopper 110 that closes the opening 108 is configured such that the pressure resistance of the stopper 110 is equal to or higher than the operating pressure of the safety valve. The pressure resistance here refers to a pressure at which the plug 110 does not come off from the opening 108.

<非水電解質二次電池の作製>
次に、上述のリチウムイオン二次電池100の作製方法の一例について説明する。
<Preparation of nonaqueous electrolyte secondary battery>
Next, an example of a method for manufacturing the above-described lithium ion secondary battery 100 will be described.

図3(a)〜(c)は、図1の非水電解質二次電池を製造する工程の一例を示す図である。   3A to 3C are diagrams illustrating an example of a process for manufacturing the nonaqueous electrolyte secondary battery in FIG.

まず、図3(a)に示すように、収容室102に発電部107を収容した収容体101が準備される。このときの収容体101には、開口部108および副開口部112のほかに、副収容室109に補充用非水電解質を注入するための注入部300が形成されている。   First, as shown in FIG. 3A, a container 101 that contains a power generation unit 107 in a storage chamber 102 is prepared. In addition to the opening 108 and the sub-opening 112, the container 101 at this time is formed with an injection part 300 for injecting the supplementary nonaqueous electrolyte into the sub-accommodating chamber 109.

収容室102への発電部107の収容方法は、一般的な積層型リチウムイオン二次電池の製造方法に従うことができる。具体的には、まず、正極103、セパレータ104、および負極105がこの順で積層された積層体が、底面が開放された収容室102に収容される。ここでの底面とは、収容室102を区画する収容体101の部分であって、図1のリチウムイオン二次電池100の最下面のことをいう。そして、収容室102に収容された各正極103および各負極105は、それぞれ不図示の正極集電リードおよび負極集電リードを介して正極端子および負極端子に接続される。この正極端子および負極端子は、収容室102の底面を構成する部材に、該部材を貫通するように設けられており、該部材と底面が開放された収容体101とがレーザ溶接されることによって収容室102が形成される。   The method for accommodating the power generation unit 107 in the accommodation chamber 102 can follow a general method for manufacturing a laminated lithium ion secondary battery. Specifically, first, a laminated body in which the positive electrode 103, the separator 104, and the negative electrode 105 are laminated in this order is accommodated in the accommodating chamber 102 having an open bottom surface. Here, the bottom surface is a portion of the housing body 101 that partitions the housing chamber 102 and refers to the lowermost surface of the lithium ion secondary battery 100 in FIG. Each positive electrode 103 and each negative electrode 105 accommodated in the accommodating chamber 102 are connected to a positive electrode terminal and a negative electrode terminal via a positive current collector lead and a negative current collector lead (not shown), respectively. The positive electrode terminal and the negative electrode terminal are provided in a member constituting the bottom surface of the storage chamber 102 so as to penetrate the member, and the member 101 and the container 101 whose bottom surface is opened are laser-welded. A storage chamber 102 is formed.

この収容方法により、底面に正極端子および負極端子を有する収容室102を区画する収容体101が形成される。その後、非水電解質106が、副開口部112および開口部108を介して収容室102内に注入されることにより、図3(a)に示されるような、発電部107を収容した収容室102と空の副収容室109とを有する収容体101が作製される。   By this housing method, the housing body 101 that partitions the housing chamber 102 having the positive electrode terminal and the negative electrode terminal on the bottom surface is formed. Thereafter, the non-aqueous electrolyte 106 is injected into the accommodation chamber 102 through the sub-opening 112 and the opening 108, whereby the accommodation chamber 102 containing the power generation unit 107 as shown in FIG. And an empty sub-accommodating chamber 109 are produced.

次に、図3(b)に示すように、栓体110を図中上方から下方に回転させながら移動させることにより、栓体110を副開口壁部に嵌合させるとともに開口壁部に嵌合させる。これにより、開口部108が閉塞されて収容室102は副収容室109から隔絶される。そして、注入部300から補充用の非水電解質111を副収容室109内に注入する。   Next, as shown in FIG. 3B, by moving the plug body 110 while rotating from the upper side to the lower side in the figure, the plug body 110 is fitted to the sub-opening wall part and fitted to the opening wall part. Let As a result, the opening 108 is closed and the storage chamber 102 is isolated from the sub-storage chamber 109. Then, the nonaqueous electrolyte 111 for replenishment is injected from the injection unit 300 into the sub-accommodating chamber 109.

次に、図3(c)に示すように、注入部300をレーザ封止する。これにより、副収容室109が外部から隔絶され、図1のリチウムイオン二次電池100が製造される。   Next, as shown in FIG. 3C, the injection part 300 is laser-sealed. Thereby, the sub-accommodating chamber 109 is isolated from the outside, and the lithium ion secondary battery 100 of FIG. 1 is manufactured.

<非水電解質二次電池の補充用非水電解質の注入動作>
次に、上述のリチウムイオン二次電池100を用いた補充用非水電解質の注入動作について説明する。
<Injection operation of nonaqueous electrolyte for replenishment of nonaqueous electrolyte secondary battery>
Next, the replenishment nonaqueous electrolyte injection operation using the lithium ion secondary battery 100 will be described.

まず、図1に示すリチウムイオン二次電池100において、栓体110を図中上方向に回転させながら移動させて、図4に示すように、開口部108を開放する。開口部108が開放されることによって、副収容室109に収納されていた非水電解質111が収容室102へと移動することができる。このとき、図1に示すように、開口壁部と栓体110とが螺着している場合、徐々に開口部108を開放していくことができるため、非水電解質111の収容室102への移動が円滑になる。なお、図4には非水電解質を図示していない。   First, in the lithium ion secondary battery 100 shown in FIG. 1, the plug 110 is moved while rotating upward in the drawing, and the opening 108 is opened as shown in FIG. By opening the opening 108, the non-aqueous electrolyte 111 stored in the sub storage chamber 109 can move to the storage chamber 102. At this time, as shown in FIG. 1, when the opening wall and the plug 110 are screwed together, the opening 108 can be gradually opened. Move smoothly. FIG. 4 does not show the nonaqueous electrolyte.

そして、非水電解質111の発電部107への補充が完了したら、栓体110を図中下方向に回転させながら移動させて、開口部108を閉塞する。以上の動作により、非水電解質111を外部環境にさらすことなく、発電部107に補充することができる。   When the replenishment of the non-aqueous electrolyte 111 to the power generation unit 107 is completed, the plug 110 is moved while rotating downward in the figure to close the opening 108. With the above operation, the power generation unit 107 can be replenished without exposing the nonaqueous electrolyte 111 to the external environment.

以上説明したように、本実施の形態によれば、外部から隔絶された副収容室109に予め収容しておいた非水電解質111を、外部環境にさらすことなく、すなわち、低湿度環境下で、開口部108を経て収容室102へと注入することができる。なお、収容室102と副収容室109とを隔絶する構成、および副収容室109と外部とを隔絶する構成は簡素であり、コストの上昇、フットプリントの増加等の問題はない。   As described above, according to the present embodiment, the nonaqueous electrolyte 111 previously stored in the sub-accommodating chamber 109 isolated from the outside is not exposed to the external environment, that is, in a low humidity environment. It is possible to inject into the accommodation chamber 102 through the opening 108. Note that the configuration for isolating the storage chamber 102 from the sub-accommodation chamber 109 and the configuration for isolating the sub-storage chamber 109 from the outside are simple, and there are no problems such as an increase in cost and an increase in footprint.

また、副収容室109に収容しておく非水電解質111の量は、一回の補充分量でも良く、数回の補充分量でも良い。数回の補充分量が収容される場合には、一回分の非水電解質が注入されるのに必要な時間等を予め測定しておき、補充時の開口部108の開放時間を測定する等の必要がある。   The amount of the nonaqueous electrolyte 111 stored in the sub-accommodating chamber 109 may be a single replenishment amount or a few replenishment amount. When a replenishment amount of several times is accommodated, the time required for injecting one nonaqueous electrolyte is measured in advance, and the opening time of the opening 108 at the time of replenishment is measured, etc. There is a need.

また、副収容室109は複数あっても良い。例えば、図1のリチウムイオン二次電池100において、収容体101が、副開口部112を介して副収容室109と連通するもう一つの副収容室を有していても良い。この場合、栓体110は、開口部108および副開口部112を貫通し、さらにもう一つの副収容室を区画する収容体の部分を貫通して収容体101の外側に露出するように構成することができる。この構成により、開口部108を開放することによって副収容室109内の非水電解質を収容室102へ注入し終えた後であっても、副開口部112を開放することによって、もう一つの副収容室に収容されていた非水電解質を、副開口部112、副収容室109および開口部108をこの順に介して収容室102へ注入することができる。   Further, there may be a plurality of sub-accommodating chambers 109. For example, in the lithium ion secondary battery 100 of FIG. 1, the container 101 may have another sub-accommodating chamber that communicates with the sub-accommodating chamber 109 via the sub-opening 112. In this case, the plug 110 is configured to pass through the opening 108 and the sub-opening 112 and further pass through a portion of the container that defines another sub-accommodating chamber and be exposed to the outside of the container 101. be able to. With this configuration, even after the nonaqueous electrolyte in the sub-accommodating chamber 109 has been injected into the accommodating chamber 102 by opening the opening 108, another sub-acoustic is opened by opening the sub-opening 112. The non-aqueous electrolyte stored in the storage chamber can be injected into the storage chamber 102 through the sub opening 112, the sub storage chamber 109, and the opening 108 in this order.

また、本実施の形態に係るリチウムイオン二次電池100は、副収容室109に補充用の非水電解質を注入するための補給部を備えても良い。以下に、図5を用いてその一例を示す。   In addition, the lithium ion secondary battery 100 according to the present embodiment may include a replenishment unit for injecting a nonaqueous electrolyte for replenishment into the sub-accommodating chamber 109. Below, an example is shown using FIG.

図5は、補給部を備える非水電解質二次電池の断面図である。
図5に示すように、補給部400は、副収容室109と収容体101の外側とを連通するように、副収容室109を区画する収容体101の部分に形成された補給口部401と、該補給口部401を着脱自在に閉塞する補給口用栓体402とを有することができる。この構成により、副収容室109内に、補充用の非水電解質を注入することができるため、リチウムイオン二次電池100の寿命を延ばすことができる。ただし、補給部400は図5の構成に限られず、副収容室109への非水電解質の補給を可能とする構成であればよい。
FIG. 5 is a cross-sectional view of a nonaqueous electrolyte secondary battery including a replenishing unit.
As shown in FIG. 5, the replenishing unit 400 includes a replenishing port 401 formed in a portion of the container 101 that divides the sub-accommodating chamber 109 so that the sub-accommodating chamber 109 communicates with the outside of the container 101. The replenishing port plug body 402 can be detachably closed. With this configuration, a supplementary nonaqueous electrolyte can be injected into the sub-accommodating chamber 109, so that the life of the lithium ion secondary battery 100 can be extended. However, the replenishing unit 400 is not limited to the configuration shown in FIG.

副収容室を有していない一般的な非水電解質二次電池においては、新たに非水電解質を外部から補充するという概念がなく、非水電解質が減少する所謂液枯れによって放電容量が低下したときに、非水電解質を外部から補充することができなかった。また、電池製造は、露点温度−40℃以下、水分量0.013%以下という環境下で行う必要があり、非水電解質を補充する際にも、低湿度環境が必要となるが、一般的な非水電解質二次電池はもちろん、特許文献1に開示されるリチウムイオン二次電池の構成であっても、これを満足させることができなかった。   In general non-aqueous electrolyte secondary batteries that do not have a sub-accommodating chamber, there is no concept of newly replenishing the non-aqueous electrolyte from the outside, and the discharge capacity is reduced due to so-called liquid withering that the non-aqueous electrolyte decreases. Sometimes, the nonaqueous electrolyte could not be replenished from the outside. In addition, the battery must be manufactured in an environment with a dew point temperature of −40 ° C. or lower and a moisture content of 0.013% or lower. A low humidity environment is also required when replenishing a nonaqueous electrolyte. Not only the non-aqueous electrolyte secondary battery but also the configuration of the lithium ion secondary battery disclosed in Patent Document 1 could not satisfy this.

これに対して、図5に示すようなリチウムイオン二次電池であれば、副収容室109内に予め非水電解質を収容しておくことができるため、副収容室109への外部からの非水電解質の注入の際に、外部環境に影響されずに、電池の内部の環境を維持しながら注入作業を行うことができる。したがって、たとえば、リチウムイオン二次電池100の製造時に副収容室109に収納しておいた非水電解質の収容室102への注入作業のみならず、副収容室109への2度目以降の非水電解質の注入作業においても、低湿度環境下での補充が可能となる。   On the other hand, in the case of a lithium ion secondary battery as shown in FIG. 5, the non-aqueous electrolyte can be stored in advance in the sub-accommodating chamber 109. When the water electrolyte is injected, the injection operation can be performed while maintaining the internal environment of the battery without being affected by the external environment. Therefore, for example, not only the operation of injecting the non-aqueous electrolyte stored in the secondary storage chamber 109 into the storage chamber 102 when the lithium ion secondary battery 100 is manufactured, but also the second or subsequent non-water electrolyte into the secondary storage chamber 109. Even in the electrolyte injection operation, replenishment in a low humidity environment is possible.

以上の本実施の形態において、角型のリチウムイオン二次電池を用いて説明したが、本発明に用いられる非水電解質二次電池は、上述した角型に限られない。例えば、本実施の形態においては、補充用非水電解質を注入するための開口部108が、正極103、負極105およびセパレータ104からなる積層体のエッジ方向に対向している場合を説明したが、積層体のエッジ方向が図1中の横方向に向いていても良い。また、正極103、負極105およびセパレータ104は、巻回されていても良く、円筒型の非水電解質二次電池を用いても良い。   In the above embodiment, the prismatic lithium ion secondary battery has been described. However, the nonaqueous electrolyte secondary battery used in the present invention is not limited to the prismatic shape described above. For example, in the present embodiment, the case has been described in which the opening 108 for injecting the nonaqueous electrolyte for replenishment is opposed to the edge direction of the laminate composed of the positive electrode 103, the negative electrode 105, and the separator 104. The edge direction of the laminated body may face the lateral direction in FIG. The positive electrode 103, the negative electrode 105, and the separator 104 may be wound, or a cylindrical nonaqueous electrolyte secondary battery may be used.

ただし、図1に示すように、開口部108が、積層体および巻回体のエッジ部分と対向しているほうが、開口部108から注液される補充用非水電解質の浸透しやすくなるという点で好ましい。また、開口部108を形成するのに適した平らな部分を多く有するという点で、円筒型の非水電解質二次電池よりも、角型の非水電解質二次電池のほうが好ましい。   However, as shown in FIG. 1, it is easier for the replenishing nonaqueous electrolyte to be injected from the opening 108 to permeate when the opening 108 faces the edge portion of the laminated body and the wound body. Is preferable. In addition, a rectangular nonaqueous electrolyte secondary battery is preferable to a cylindrical nonaqueous electrolyte secondary battery in that it has many flat portions suitable for forming the opening 108.

<非水電解質二次電池の作製>
1.正極の作製
活物質であるLiFePO490重量部、導電材であるアセチレンブラック5重量部および結着剤であるポリフッ化ビニリデン5重量部を混合し、溶媒としてのN−メチル−2−ピロリドンを適宜加えて各材料を分散させてスラリーを調製した。このスラリーを、厚さ20μmのアルミニウム集電体の両面に均一に塗布して乾燥させた。そして、乾燥させたアルミニウム集電体をロールプレスで圧縮し、縦140mm×横250mmに切断することにより板状の正極103を32枚作製した。正極103の厚さは230μmであった。そして、それぞれの正極103にアルミニウム集電リードを溶接した。
<Preparation of nonaqueous electrolyte secondary battery>
1. Preparation of positive electrode 90 parts by weight of LiFePO 4 as an active material, 5 parts by weight of acetylene black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone as a solvent is appropriately added. In addition, each material was dispersed to prepare a slurry. This slurry was uniformly applied on both sides of an aluminum current collector having a thickness of 20 μm and dried. Then, the dried aluminum current collector was compressed with a roll press and cut into a length of 140 mm and a width of 250 mm to produce 32 plate-like positive electrodes 103. The thickness of the positive electrode 103 was 230 μm. Then, an aluminum current collector lead was welded to each positive electrode 103.

2.負極の作製
活物質である天然黒鉛90重量部および結着剤であるポリフッ化ビニリデン10重量部を混合し、溶媒としてのN−メチル−2−ピロリドンを適宜加えて各材料を分散させてスラリーを調製した。このスラリーを、厚さ16μmの銅集電体にの両面に均一に塗布して乾燥させた。そして、乾燥させた銅集電体をロールプレスで圧縮し、縦142mm×横255mmに切断することにより板状の負極105を33枚作製した。負極105の厚さは146μmであった。そして、それぞれの負極105にニッケル集電リードを溶接した。
2. Preparation of Negative Electrode 90 parts by weight of natural graphite as an active material and 10 parts by weight of polyvinylidene fluoride as a binder are mixed, and N-methyl-2-pyrrolidone as a solvent is added as appropriate to disperse each material to prepare a slurry. Prepared. This slurry was uniformly applied to both sides of a 16 μm thick copper current collector and dried. Then, the dried copper current collector was compressed with a roll press and cut into a length of 142 mm and a width of 255 mm to produce 33 plate-like negative electrodes 105. The thickness of the negative electrode 105 was 146 μm. A nickel current collector lead was welded to each negative electrode 105.

3.セパレータの作製
厚さ25ミクロンの微多孔性ポリエチレンフィルムを、縦145mm×横255mmに切断してセパレータ104を64枚作製した。
3. Production of Separator A microporous polyethylene film having a thickness of 25 microns was cut into a length of 145 mm and a width of 255 mm to produce 64 separators 104.

4.非水電解質の作製
エチレンカーボネートとジエチルカーボネートを、容積比30:70となるように混合し、この混合液にLiPF6の濃度が1mol/LとなるようにLiPF6を溶解させた非水電解質106を250ml調製した。
4). Preparation of ethylene carbonate and diethyl carbonate in the nonaqueous electrolyte, and mixed in a volumetric ratio of 30:70, the non-aqueous concentration of LiPF 6 to the mixture obtained by dissolving LiPF 6 as a 1 mol / L electrolyte 106 250 ml was prepared.

5.リチウムイオン二次電池100の作製
作製した正極103、セパレータ104、負極105のそれぞれ全てをこの順に、かつ最外層が負極105となるように積層された積層体を、底面が開放された収容室102に収容させた。そして、上述の従来の収容方法に従って、収容室102の底面を構成する部材と収容体101とをレーザ溶接させることによって、底面に正極端子および負極端子を有する収容室102を区画する収容体101を形成した。その後、200mlの非水電解質106を、副開口部112および開口部108を介して収容室102内に注入して、図3(a)に示されるような、発電部107を収容した収容室102と空の副収容室109とを有する収容体101を作製した。
5. Production of Lithium Ion Secondary Battery 100 A stacked body in which all of the produced positive electrode 103, separator 104, and negative electrode 105 are laminated in this order and the outermost layer becomes the negative electrode 105 is formed in a storage chamber 102 having a bottom open. Housed. Then, according to the above-described conventional accommodation method, the container 101 that partitions the accommodation chamber 102 having the positive electrode terminal and the negative electrode terminal on the bottom surface is formed by laser welding the member constituting the bottom surface of the accommodation chamber 102 and the accommodation body 101. Formed. Thereafter, 200 ml of the non-aqueous electrolyte 106 is injected into the accommodation chamber 102 through the sub-opening 112 and the opening 108, and the accommodation chamber 102 containing the power generation unit 107 as shown in FIG. And an empty sub-accommodating chamber 109 were produced.

次いで、図3(b)に示すように、副開口部112および開口部108に栓体110を嵌合して収容室102を副収容室109から隔絶した後、注入部300を介して副収容室109に、上述のようにして作製した非水電解質106を非水電解質111として30ml注入した。その後、注入部300をレーザ封止することによって副収容室109を収容体101の外側から隔絶した。   Next, as shown in FIG. 3 (b), the stopper 110 is fitted into the sub opening 112 and the opening 108 to isolate the storage chamber 102 from the sub storage chamber 109, and then the sub storage through the injection portion 300. 30 ml of the nonaqueous electrolyte 106 produced as described above was injected into the chamber 109 as the nonaqueous electrolyte 111. Thereafter, the sub-accommodating chamber 109 was isolated from the outside of the accommodating body 101 by laser-sealing the injection part 300.

上述のようにして作製したリチウムイオン二次電池100において、箱形状の収容体101の外形寸法は縦20mm×横150mm×高さ320mmであった。収容体101の上面、すなわち副開口部112が形成された面の寸法は、縦20mm×横150mmであり、栓体109の軸部の直径は直径は3mmであった。また、収容体101の上面の厚さは0.5mmであり、上面に補強板を積層して上面部分の厚さが1.0mmとなるように調節した。また、収容室102と副収容室109とを隔絶する部分、すなわち、開口部108が形成された面の寸法は、縦20mm×横150mmであり、厚さが1.5mmであった。   In the lithium ion secondary battery 100 manufactured as described above, the outer dimensions of the box-shaped container 101 were 20 mm long × 150 mm wide × 320 mm high. The size of the upper surface of the container 101, that is, the surface on which the sub-opening 112 is formed is 20 mm long × 150 mm wide, and the diameter of the shaft portion of the plug 109 is 3 mm. Further, the thickness of the upper surface of the container 101 was 0.5 mm, and a reinforcing plate was laminated on the upper surface, and the thickness of the upper surface portion was adjusted to 1.0 mm. Further, the dimensions of the portion separating the storage chamber 102 and the sub-storage chamber 109, that is, the surface on which the opening 108 was formed were 20 mm long × 150 mm wide and 1.5 mm thick.

6.初期の電池性能
作製したリチウムイオン二次電池100の初期電池性能を測定したところ、公称電圧は3.2Vであり、内部抵抗は3mΩであった。また、雰囲気温度25℃の条件下で、10A/3.8Vの定電流/定電圧で6時間充電し、10Aで2.25Vまで放電した際の放電容量は50Ahであった。
6). Initial Battery Performance When the initial battery performance of the manufactured lithium ion secondary battery 100 was measured, the nominal voltage was 3.2 V and the internal resistance was 3 mΩ. In addition, the discharge capacity was 50 Ah when charged at a constant current / constant voltage of 10 A / 3.8 V for 6 hours under a condition of an ambient temperature of 25 ° C. and discharged to 2.25 V at 10 A.

<充放電サイクル試験>
作製したリチウムイオン二次電池100を用い、雰囲気温度25℃の条件下で、上記放電容量測定の際の充放電条件と同様の条件下にてサイクル試験をおこなった。サイクル数が1500回のときに、放電容量が初期放電容量の70%を下回った。
<Charge / discharge cycle test>
Using the manufactured lithium ion secondary battery 100, a cycle test was performed under the same conditions as the charge / discharge conditions in the above-described discharge capacity measurement under the condition of an ambient temperature of 25 ° C. When the number of cycles was 1500, the discharge capacity was less than 70% of the initial discharge capacity.

<非水電解質の補充>
1.補充動作
放電容量が初期放電容量の70%を下回ったリチウムイオン二次電池100において、栓体110を移動させることにより開口部108を開放し、副収容室109に収容されていた30mlの非水電解質111を開口部108を介して収容室102内へ注入した。これにより、発電部107に30mlの非水電解質111が補充された。補充完了後、栓体110を元の位置に戻して開口部108を閉塞した。
<Replenishment of non-aqueous electrolyte>
1. Replenishment operation In the lithium ion secondary battery 100 whose discharge capacity is less than 70% of the initial discharge capacity, the opening 108 is opened by moving the plug 110, and 30 ml of non-water stored in the sub-accommodating chamber 109 is opened. The electrolyte 111 was injected into the accommodation chamber 102 through the opening 108. As a result, the power generation unit 107 was supplemented with 30 ml of the nonaqueous electrolyte 111. After completion of refilling, the stopper 110 was returned to the original position to close the opening 108.

2.補充後の電池性能
上述のようにして非水電解質を補充したリチウムイオン二次電池100を常温で24時間放置した後、25℃の雰囲気温度で、上記放電容量測定の際の充放電条件と同様の条件のサイクル試験を2回おこなった。そして、リチウムイオン二次電池20の放電容量を上記の方法で測定したところ、補充後の放電容量は47Ahで、1サイクル目の94%にまで回復していることがわかった。
2. Battery performance after replenishment After the lithium ion secondary battery 100 supplemented with the nonaqueous electrolyte as described above is allowed to stand at room temperature for 24 hours, it is the same as the charge / discharge conditions at the time of measuring the discharge capacity at an ambient temperature of 25 ° C. The cycle test under the above conditions was performed twice. And when the discharge capacity of the lithium ion secondary battery 20 was measured by the above method, it was found that the discharge capacity after replenishment was 47 Ah, and it was recovered to 94% in the first cycle.

また、補充する補充用非水電解質の量を10mlとして上述と同様の検討を行ったところ、初期放電容量50Ahに対して、補充後の放電容量は44.9Ahで、1サイクル目の89.8%にまで回復していることが分かった。   Further, when the amount of the replenishing non-aqueous electrolyte to be replenished was 10 ml and the same examination as described above was performed, the discharge capacity after replenishment was 44.9 Ah with respect to the initial discharge capacity 50 Ah, and 89.8 in the first cycle. It turned out that it has recovered to%.

また、補充する補充用非水電解質の量を50mlとして上述と同様の検討を行ったところ、初期放電容量50Ahに対して、補充後の放電容量は48.1Ahで、1サイクル目の96.2%にまで回復していることが分かった。   Further, when the amount of the replenishing nonaqueous electrolyte to be replenished was 50 ml and the same examination as described above was performed, the discharge capacity after replenishment was 48.1 Ah with respect to the initial discharge capacity 50 Ah, and 96.2 in the first cycle. It turned out that it has recovered to%.

また、長尺状の正負極とセパレータを合わせて巻回した円筒型電池でも同じ効果が得られた。   In addition, the same effect was obtained with a cylindrical battery in which a long positive and negative electrode and a separator were wound together.

以上の結果より、放電容量が初期放電容量の70%以下にまで低下したリチウムイオン二次電池に、初期の非水電解質量(200ml)の5〜25%の量の非水電解質を補充することによって、放電容量を89.8%以上にまで回復させることができ、結果として、リチウムイオン二次電池の寿命を延ばすことができた。   Based on the above results, a lithium ion secondary battery whose discharge capacity is reduced to 70% or less of the initial discharge capacity is supplemented with a nonaqueous electrolyte in an amount of 5 to 25% of the initial nonaqueous electrolytic mass (200 ml). As a result, the discharge capacity was recovered to 89.8% or more, and as a result, the life of the lithium ion secondary battery could be extended.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、グローブボックス内への移動が困難な中・大型の非水電解質二次電池に対する非水電解質の補充に好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for replenishing a non-aqueous electrolyte for a medium / large non-aqueous electrolyte secondary battery that is difficult to move into a glove box.

100 リチウムイオン二次電池、101 収容体、102 収容室、103 正極、104 セパレータ、105 負極、106 非水電解質、107 発電部、108 開口部、109 副収容室、110 栓体、110a 軸部、110b 頭部、111 補充用非水電解質、202 シール部材、300 注入部、400 補給部、401 補給口部、402 補給口用栓体。   100 Lithium ion secondary battery, 101 container, 102 container, 103 positive electrode, 104 separator, 105 negative electrode, 106 nonaqueous electrolyte, 107 power generation unit, 108 opening, 109 sub-accommodation chamber, 110 plug, 110a shaft, 110b head, 111 non-aqueous electrolyte for replenishment, 202 seal member, 300 injection part, 400 replenishment part, 401 replenishment port part, 402 plug for replenishment port.

Claims (8)

正極、負極、セパレータ、および非水電解質を有する発電部を収容する収容室、前記収容室と連通する開口部、および前記開口部を介して前記収容室と連通し、補充用の非水電解質を収容するための副収容室を有する収容体と、
前記収容体の外側から前記開口部への着脱が自在となるように構成されている栓体と、を備える非水電解質二次電池。
A positive chamber, a negative electrode, a separator, and a storage chamber for storing a power generation unit having a non-aqueous electrolyte, an opening communicating with the storage chamber, and a communication with the storage chamber via the opening, and a replenishing non-aqueous electrolyte A container having a sub-accommodating chamber for accommodating;
A non-aqueous electrolyte secondary battery comprising: a plug configured to be freely attached to and detached from the opening from the outside of the container.
前記副収容室を区画する前記収容体の部分に、前記副収容室と前記収容体の外部とを連通させる副開口部が形成されており、
前記栓体の一部が前記開口部に着脱自在に嵌合され、前記栓体の他の一部が前記副開口部を貫通して前記収容体の外側に露出している、請求項1に記載の非水電解質二次電池。
A sub-opening that communicates the sub-accommodating chamber and the outside of the accommodating body is formed in the portion of the accommodating body that defines the sub-accommodating chamber,
2. The plug according to claim 1, wherein a part of the plug is detachably fitted to the opening, and the other part of the plug penetrates the sub-opening and is exposed to the outside of the container. The nonaqueous electrolyte secondary battery as described.
前記開口部と前記副開口部が対向する、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the opening and the sub-opening are opposed to each other. 前記開口部を区画する前記収容体の部分と前記栓体とが螺着している、請求項1から3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein a portion of the container that defines the opening and the stopper are screwed together. 前記副開口部を区画する前記収容体の部分と前記栓体とが螺着している、請求項2から4のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 2 to 4, wherein a portion of the container that defines the sub-opening and the plug are screwed together. 前記副収容室を区画する前記収容体の部分に、前記収容体の外側から前記副収容室に補充用の非水電解質を注入するための補給部が形成されている、請求項1から5のいずれかに記載の非水電解質二次電池。   The replenishment part for inject | pouring the nonaqueous electrolyte for replenishment into the said sub accommodating chamber from the outer side of the said accommodating body is formed in the part of the said container which divides the said sub accommodating chamber. The nonaqueous electrolyte secondary battery according to any one of the above. 前記補給部は、前記副収容室と連通して前記副収容室と前記収容体の外側とを連通させる補給口部と、前記補給口部に着脱自在に嵌合する補給口用栓体とを有する請求項6に記載の非水電解質二次電池。   The replenishing portion includes a replenishing port portion that communicates with the sub-accommodating chamber to communicate the sub-accommodating chamber and the outside of the container, and a replenishing port plug body that is detachably fitted to the replenishing port portion. The nonaqueous electrolyte secondary battery according to claim 6. 前記補給口部を区画する前記収容体の部分と前記補給用栓体とが螺着している、請求項7に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 7, wherein a portion of the container that defines the replenishing port and the replenishing plug are screwed together.
JP2009258952A 2009-11-06 2009-11-12 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4987944B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009258952A JP4987944B2 (en) 2009-11-12 2009-11-12 Nonaqueous electrolyte secondary battery
US12/917,972 US8752573B2 (en) 2009-11-06 2010-11-02 Non-aqueous electrolyte secondary battery with filling function, and non-aqueous electrolyte secondary battery and non-aqueous electrolyte filling device used therefor
CN201410130668.8A CN103915599B (en) 2009-11-06 2010-11-08 Non-aqueous electrolyte secondary battery with filling function
CN201010541810.XA CN102055010B (en) 2009-11-06 2010-11-08 Non-aqueous electrolyte secondary battery with filling function, and non-aqueous electrolyte secondary battery and non-aqueous electrolyte filling device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258952A JP4987944B2 (en) 2009-11-12 2009-11-12 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011108368A true JP2011108368A (en) 2011-06-02
JP4987944B2 JP4987944B2 (en) 2012-08-01

Family

ID=44231646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258952A Expired - Fee Related JP4987944B2 (en) 2009-11-06 2009-11-12 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4987944B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165614A (en) * 2010-02-15 2011-08-25 Sharp Corp Lithium ion secondary battery, and manufacturing method thereof
JP2014135253A (en) * 2013-01-11 2014-07-24 Gs Yuasa Corp Electricity storage element and electricity storage element pack
JP2016004781A (en) * 2015-05-22 2016-01-12 株式会社豊田自動織機 Power storage device and secondary battery
EP3379634A4 (en) * 2016-06-14 2019-01-16 LG Chem, Ltd. Battery system with improved lifetime property and method for operating battery system
KR20220111238A (en) * 2018-09-27 2022-08-09 재단법인대구경북과학기술원 A battery having an easily reusable structure and a reuse method of the battery
US11588203B2 (en) 2019-11-27 2023-02-21 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290455A (en) * 1988-09-27 1990-03-29 Hitachi Maxell Ltd Cylindrical sealed battery
JPH11149937A (en) * 1997-11-13 1999-06-02 Toyota Motor Corp Closed secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290455A (en) * 1988-09-27 1990-03-29 Hitachi Maxell Ltd Cylindrical sealed battery
JPH11149937A (en) * 1997-11-13 1999-06-02 Toyota Motor Corp Closed secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165614A (en) * 2010-02-15 2011-08-25 Sharp Corp Lithium ion secondary battery, and manufacturing method thereof
JP2014135253A (en) * 2013-01-11 2014-07-24 Gs Yuasa Corp Electricity storage element and electricity storage element pack
JP2016004781A (en) * 2015-05-22 2016-01-12 株式会社豊田自動織機 Power storage device and secondary battery
EP3379634A4 (en) * 2016-06-14 2019-01-16 LG Chem, Ltd. Battery system with improved lifetime property and method for operating battery system
US10916820B2 (en) 2016-06-14 2021-02-09 Lg Chem, Ltd. Battery system with improved lifetime property and method for operating battery system
KR20220111238A (en) * 2018-09-27 2022-08-09 재단법인대구경북과학기술원 A battery having an easily reusable structure and a reuse method of the battery
KR102499863B1 (en) 2018-09-27 2023-02-16 재단법인대구경북과학기술원 A battery having an easily reusable structure and a reuse method of the battery
US11588203B2 (en) 2019-11-27 2023-02-21 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4987944B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP6469725B2 (en) Galvanic element and manufacturing method thereof
US8752573B2 (en) Non-aqueous electrolyte secondary battery with filling function, and non-aqueous electrolyte secondary battery and non-aqueous electrolyte filling device used therefor
JP5346839B2 (en) Lithium ion secondary battery
JP4987944B2 (en) Nonaqueous electrolyte secondary battery
JP5396185B2 (en) Lithium ion secondary battery
CN105340120A (en) Lithium battery
JP5083838B2 (en) Nonaqueous electrolyte secondary battery with nonaqueous electrolyte injection function, and nonaqueous electrolyte secondary battery and nonaqueous electrolyte injection device used therefor
KR102232176B1 (en) Method for producing non-aqueous electrolyte secondary battery
US9748544B2 (en) Separator for alkali metal ion battery
KR101776519B1 (en) Method for sorting reusable nonaqueous electrolyte secondary battery
JP6427744B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN104508876A (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueous electrolyte secondary battery
KR20130031772A (en) Lithium ion secondary battery
CN104577182A (en) Nonaqueous electrolyte secondary battery
JP2015230761A (en) Method for manufacturing secondary battery
JP2013084483A (en) Secondary battery and manufacturing method of the same
US20200279695A1 (en) Water based hybrid lithium ion capacitor battery having a water-in-salt electrolyte
JP2020126734A (en) Secondary battery and manufacturing method thereof
KR20170019349A (en) Sodium ion secondary battery
JP2001210309A (en) Nonaqueous electrolyte secondary battery and its using method
KR20230167411A (en) Electrolyte for lithium batteries
JP2022515440A (en) High energy density molten lithium-sulfur and lithium-selenium batteries with solid electrolytes
CN107112572B (en) Non-aqueous electrolyte secondary battery
KR20200020279A (en) Secondary battery with improved storage characteristics and method for prevnting storage characteristics
JP2010080390A (en) Battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4987944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees