JP2011107188A - Image forming optical system and electronic imaging device equipped with the same - Google Patents

Image forming optical system and electronic imaging device equipped with the same Download PDF

Info

Publication number
JP2011107188A
JP2011107188A JP2009258982A JP2009258982A JP2011107188A JP 2011107188 A JP2011107188 A JP 2011107188A JP 2009258982 A JP2009258982 A JP 2009258982A JP 2009258982 A JP2009258982 A JP 2009258982A JP 2011107188 A JP2011107188 A JP 2011107188A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
line
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258982A
Other languages
Japanese (ja)
Other versions
JP5474501B2 (en
JP2011107188A5 (en
Inventor
Shinichi Mihara
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2009258982A priority Critical patent/JP5474501B2/en
Publication of JP2011107188A publication Critical patent/JP2011107188A/en
Publication of JP2011107188A5 publication Critical patent/JP2011107188A5/ja
Application granted granted Critical
Publication of JP5474501B2 publication Critical patent/JP5474501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image forming optical system capable of improving the specifications centered on shortening of its whole length and achievement of high zoom ratio, improving the performance coping with increase of the number of pixels (aberration correction), and achieving thin innermost depth zooming. <P>SOLUTION: The image forming optical system includes a group of positive lenses G1, a group of negative lenses G2 movable to change variable power, and a group of rear part lenses GR having positive refractive power always on the whole and composed of three or four groups of sub-lenses having changing distance on optical axis therebetween to change variable power which are arranged in this order from an object side. The group of lenses G1 includes a group of sub-lenses G11 having a configuration constituted by a negative lens component and a prism or a configuration constituted by a prism having negative refractive power and a group of sub-lenses G12 constituted by a junction lens component including a lens LA and a lens LB and a positive lens LC having higher refractive power than that of two lenses LA and LB and having positive refractive power. A junction plane of the lenses LA and LB is aspheric and satisfies the predetermined expression. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、結像光学系及びそれを有する電子撮像装置に関するものである。   The present invention relates to an imaging optical system and an electronic imaging apparatus having the same.

デジタルカメラは高画素数化(高画質化)や小型薄型化において実用レベルを達成し、機能的にも市場的にも銀塩35mmフィルムカメラにとって代わった。そこで、次なる進化の方向の1つとして、光学仕様の向上とともにさらなる高画素数化が強く求められている。光学仕様の向上とは、そのままの小ささ、薄さで、光学系の高変倍比、広角化、大口径比化を指す。   Digital cameras have achieved practical levels in terms of increasing the number of pixels (higher image quality) and reducing the size and thickness, replacing the silver salt 35 mm film camera both functionally and commercially. Therefore, as one of the next evolution directions, there is a strong demand for further increase in the number of pixels as the optical specifications improve. The improvement of the optical specifications means that the optical system has a high zoom ratio, a wide angle, and a large aperture ratio that are small and thin as they are.

これまで、光学系の薄型化に好適であるとして用いられてきた結像光学系として、たとえば、特許文献1、2に記載された結像光学系がある。これらの結像光学系では、最も物体側のレンズ群に光路を折り曲げるための反射光学素子(以下、単に反射光学素子とする)を用いている。また、これらの結像光学系の仕様は、ズーム比が3程度、広角端での半画角が33度前後である。一方では、この反射光学素子を変倍時に移動すると、光学系の光軸が動いてしまう。この結果、ズーム鏡筒が機械的に複雑化してしまう。そこで、特許文献1、2に記載された結像光学系では、最も物体側のレンズ群が固定となっている。   As an imaging optical system that has been used so far as being suitable for reducing the thickness of an optical system, for example, there are imaging optical systems described in Patent Documents 1 and 2. In these imaging optical systems, a reflective optical element (hereinafter simply referred to as a reflective optical element) for bending an optical path is used for the lens group closest to the object side. The specifications of these imaging optical systems are such that the zoom ratio is about 3 and the half angle of view at the wide angle end is about 33 degrees. On the other hand, when the reflecting optical element is moved at the time of zooming, the optical axis of the optical system moves. As a result, the zoom barrel is mechanically complicated. Therefore, in the imaging optical systems described in Patent Documents 1 and 2, the lens group closest to the object side is fixed.

この特許文献1、2に記載された結像光学系は、例えば特許文献3、4に記載されているようなズーム光学系を基本として、第1レンズ群に反射光学素子を挿入する構成としている。このようなズーム光学系は、物体側から順に、正の屈折力を有し変倍時には固定の第1レンズ群と、負の屈折力を有し広角端から望遠端へ変倍する際に像側へ移動する第2レンズ群と、正の屈折力を有し広角端から望遠端へ変倍する際に物体側へ移動する第3レンズ群と、正の屈折力を有する第4レンズ群にて構成されている。   The imaging optical systems described in Patent Documents 1 and 2 are based on a zoom optical system as described in Patent Documents 3 and 4, for example, and have a configuration in which a reflective optical element is inserted into the first lens group. . Such a zoom optical system has, in order from the object side, a first lens unit that has positive refractive power and is fixed at the time of zooming, and an image that has negative refractive power when zooming from the wide-angle end to the telephoto end. A second lens group that moves to the side, a third lens group that has positive refractive power and moves to the object side when zooming from the wide-angle end to the telephoto end, and a fourth lens group that has positive refractive power Configured.

一般的に、最も物体側のレンズ群に反射光学素子を挿入すると、入射瞳位置が深くなりやすくなる。さらに、同時に、第2レンズ群以降の全長が伸びやすくなる。これらのことを近軸配置で解消しようとすると、コマ収差や像面湾曲など軸外収差補正が困難となり、ズーム比の観点では不利となる。   In general, when a reflective optical element is inserted into the lens group closest to the object side, the entrance pupil position tends to be deep. Furthermore, at the same time, the total length after the second lens group is easily extended. If these are to be solved by paraxial arrangement, it will be difficult to correct off-axis aberrations such as coma and curvature of field, which is disadvantageous in terms of zoom ratio.

したがって、最も物体側のレンズ群に反射光学素子を挿入したズーム光学系では、小型を維持しながらズーム比5倍程度を得ることは困難である。因みに、上記特許文献のうち、特許文献1に記載の結像光学系はズーム比5.5倍を超えることを勧めていない。   Therefore, in a zoom optical system in which a reflective optical element is inserted in the lens group closest to the object side, it is difficult to obtain a zoom ratio of about 5 times while maintaining a small size. Incidentally, among the above-mentioned patent documents, the imaging optical system described in Patent document 1 does not recommend that the zoom ratio exceeds 5.5 times.

一方、高倍率に強いズーム方式として、たとえば、特許文献5、6、7に記載されているようなホームビデオカメラに用いられる方式がある。このズーム方式に用いる光学系は、物体側から順に、正の屈折力を有し変倍時には固定の第1レンズ群と、負の屈折力を有し広角端から望遠端へ変倍する際に像側へ移動する第2レンズ群と、正の屈折力を有し変倍時に固定である第3レンズ群と、正の屈折力を有し変倍時および合焦時に光軸上を移動する第4レンズ群にて構成されている。この構成の光学系を基本にして、最も物体側のレンズ群に反射光学素子を挿入して光学系を構成することが考えられる。このような例として、たとえば、特許文献8に記載された光学系などがある。   On the other hand, as a zoom method strong against high magnification, for example, there are methods used for home video cameras as described in Patent Documents 5, 6, and 7. The optical system used in this zoom system is, in order from the object side, a first lens unit that has a positive refractive power and is fixed at the time of zooming, and has a negative refractive power when zooming from the wide angle end to the telephoto end. A second lens group that moves to the image side, a third lens group that has positive refractive power and is fixed at the time of zooming, and a positive refractive power that moves on the optical axis at the time of zooming and focusing. It is composed of a fourth lens group. Based on the optical system having this configuration, it is conceivable to configure the optical system by inserting a reflective optical element into the lens group closest to the object side. As such an example, there is an optical system described in Patent Document 8, for example.

上述したように、最も物体側のレンズ群に反射光学素子を挿入すると、小型を維持しながらの収差補正が困難になる。ズーム比5倍あるいはそれ以上の場合は、特に像面湾曲や望遠側における高次の色収差の補正が困難になる。   As described above, when a reflective optical element is inserted into the lens group closest to the object side, it becomes difficult to correct aberrations while maintaining a small size. When the zoom ratio is 5 times or more, it is difficult to correct high-order chromatic aberrations particularly on the field curvature and the telephoto side.

上述した特許文献8では、第4レンズ群の像側に像面湾曲を補正する機能を有する第5レンズ群を加えることで像面湾曲を良好に補正している。ここで、高次の色収差、つまり色の球面収差、色コマ、倍率色収差の像高に関する高次成分(色の歪曲収差)は、基準波長(たとえばd線・・・587.56nm)に対する高次収差発生源と材料の分散とが複雑に絡んだものが要因となっている。一般的に、これらを補正することは、基準波長に対する収差の補正や近軸色収差の補正を犠牲にすることになる。しかも、全長など小型化するほど補正が困難である。   In Patent Document 8 described above, the curvature of field is favorably corrected by adding a fifth lens group having a function of correcting curvature of field to the image side of the fourth lens group. Here, higher-order chromatic aberration, that is, higher-order components (color distortion aberration) relating to image height of spherical spherical aberration, color coma, and lateral chromatic aberration are higher-order with respect to a reference wavelength (for example, d-line... 587.56 nm). This is caused by a complicated entanglement between the aberration source and material dispersion. In general, correcting these results at the expense of correcting aberrations relative to the reference wavelength and correcting paraxial chromatic aberration. Moreover, the correction becomes more difficult as the overall length becomes smaller.

さらに、広角化を進めると画面周辺部におけるこれらの収差は著しくなる一方である。これを解決する技術手段として、特許文献9、10に記載された光学系がある。   Further, as the angle of view is further advanced, these aberrations at the periphery of the screen become remarkable. As technical means for solving this, there are optical systems described in Patent Documents 9 and 10.

特開2003-302576号公報JP 2003-302576 A 特開2004−264343号公報JP 2004-264343 A 特開平10−62687号公報JP-A-10-62687 特開平11−258507号公報Japanese Patent Laid-Open No. 11-258507 特開昭62−178917号公報Japanese Patent Laid-Open No. 62-178717 特開昭63−29718号公報JP-A-63-29718 特開昭63−123009号公報Japanese Unexamined Patent Publication No. 63-123209 特開2008−83125号公報JP 2008-83125 A 特開2008−108712号公報JP 2008-108712 A 特開2008−191286号公報JP 2008-191286 A

このように、従来の光学系では、光学系の全長の短縮や高ズーム比化を中心とした仕様を向上させつつ、良好な収差補正を行うことは困難である。   As described above, in the conventional optical system, it is difficult to correct aberrations satisfactorily while improving specifications centering on shortening the overall length of the optical system and increasing the zoom ratio.

本発明は、上記に鑑みてなされたものであって、光学系の全長の短縮や高ズーム比化を行なった場合でも、収差が良好に補正された結像光学系、及びこの結像光学系を備えた撮像装置を提供することを目的とする。   The present invention has been made in view of the above, and an imaging optical system in which aberrations are favorably corrected even when the overall length of the optical system is shortened or the zoom ratio is increased, and the imaging optical system An object of the present invention is to provide an imaging apparatus including the above.

上述した課題を解決し、目的を達成するために、本発明の結像光学系は、物体側より順に、正の屈折力を有するレンズ群G1と、負の屈折力を有するレンズ群G2と、全体として常時正の屈折力を有する後部レンズ群GRと、より構成される結像光学系であって、レンズ群G1は、サブレンズ群G11とサブレンズ群G12で構成され、前記レンズ群G2は変倍時に可動であり、前記後部レンズ群GRは、変倍時に相互の光軸上距離が変化する3つ又は4つの副レンズ群からなり、前記サブレンズ群G11は、負の屈折力を有するレンズ成分と光路を折り曲げるためのプリズムとからなる構成、または負の屈折力を有し光路を折り曲げるためのプリズムからなる構成であり、前記サブレンズ群G12は正の屈折力を有し、レンズLAとレンズLBとの接合レンズ成分と、正レンズLCとからなり、前記レンズLAと前記レンズLBとの接合面は非球面であり、前記正レンズLCは、前記レンズLAと前記レンズLBよりも強い屈折力を有し、 以下の条件式(1)を満足することを特徴とする。
0.008<{1/νd(12A)}−{1/νd(12B)} ・・・(1)
ここで、
νd(12A)は前記レンズLAのアッベ数(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、前記レンズLAのd線、C線、F線、g線の屈折率、
νd(12B)は前記レンズLBをのアッベ数(nd(12B)−1)/(nF(12B)−nC(12B))、
nd(12B)、nC(12B)、nF(12B)、ng(12B)は、各々、前記レンズLBのd線、C線、F線、g線の屈折率、
である。
In order to solve the above-described problems and achieve the object, the imaging optical system of the present invention, in order from the object side, a lens group G1 having a positive refractive power, a lens group G2 having a negative refractive power, An imaging optical system composed of a rear lens group GR that always has positive refractive power as a whole, and a lens group G1 is composed of a sub lens group G11 and a sub lens group G12, and the lens group G2 is The rear lens group GR is movable at the time of zooming, and the rear lens group GR is composed of three or four sub lens groups whose mutual optical axis distances change at the time of zooming, and the sub lens group G11 has a negative refractive power. A lens component and a prism for bending the optical path, or a prism having a negative refractive power and a prism for bending the optical path. The sub lens group G12 has a positive refractive power, and the lens LA Lens component and lens LB, positive lens C, the cemented surface between the lens LA and the lens LB is aspheric, and the positive lens LC has a refractive power stronger than that of the lens LA and the lens LB, and the following conditional expression (1 ) Is satisfied.
0.008 <{1 / νd (12A)} − {1 / νd (12B)} (1)
here,
νd (12A) is the Abbe number (nd (12A) −1) / (nF (12A) −nC (12A)) of the lens LA,
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indexes of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
νd (12B) is the Abbe number (nd (12B) −1) / (nF (12B) −nC (12B)) of the lens LB,
nd (12B), nC (12B), nF (12B), and ng (12B) are the refractive indices of the d-line, C-line, F-line, and g-line of the lens LB, respectively.
It is.

また、本発明の電子撮像装置は、上述の結像光学系と、電子撮像素子を有し、光軸方向をz、光軸に垂直な方向をhとする座標軸とし、Rを球面成分の光軸上における曲率半径、Kを円錐定数、A,A,A,A10・・・を非球面係数として、非球面の形状を、以下の式(8)で表すと共に、
z=(h2/R)/{1+[1−(1+K)(h/R)21/2
+A4+A6+A8+A1010 …(8)
偏倚量を下記の式(9)で表した場合、
Δz=z−h/R{1+(1−h2/R21/2} …(9)
以下の条件式(10)を満足することを特徴とする。
12A≧0のとき
-5.0e-2<P(LA)/y10 <0 〈但し、h=2.5a〉 ・・・(10)
ここで、
P(LA)は前記接合面の形状と分散に関するパラメータであって、以下の式で表され、
P(LA)=Δz12A(h)・(1/νd(12A)− 1/νd(12B))
12Aは前記接合面の形状であって、式(8)に従う形状、
Δz12A(h)は前記接合面の偏倚量であって、式(9)に従う偏倚量、
12Aは前記接合面の近軸曲率半径、
aは以下の条件式(11)式に従う量、
a=(y10 )2・ log10γ/ fw ・・・(11)
両空気接触面は球面であってもよく、
10 は前記結像光学系の結像位置近傍に配置された前記電子撮像素子の有効撮像面内(撮像可能な面内)において、中心から最も遠い点までの距離(最大像高)、
fwは前記結像光学系の広角端における全系の焦点距離、
γは結像比(望遠端での全系焦点距離/広角端での全系焦点距離)、
また、各面の面頂を原点とするため、常にz(0)=0、
である。
The electronic image pickup apparatus of the present invention includes the above-described imaging optical system and an electronic image pickup element. The optical axis direction is z, the coordinate axis is h perpendicular to the optical axis, and R is a spherical component light. The radius of curvature on the axis, K is a conic constant, A 4 , A 6 , A 8 , A 10 ... Are aspheric coefficients, and the shape of the aspheric surface is expressed by the following equation (8):
z = (h 2 / R) / {1+ [1- (1 + K) (h / R) 2 ] 1/2 }
+ A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 (8)
When the deviation amount is expressed by the following formula (9),
Δz = z−h 2 / R {1+ (1−h 2 / R 2 ) 1/2 } (9)
The following conditional expression (10) is satisfied.
When R 12A ≧ 0
-5.0e-2 <P (LA) / y 10 <0 < However, h = 2.5a> ··· (10 )
here,
P (LA) is a parameter related to the shape and dispersion of the joint surface, and is represented by the following equation:
P (LA) = Δz 12A (h) ・ (1 / νd (12A) −1 / νd (12B))
z 12A is the shape of the joint surface, the shape according to formula (8),
Δz 12A (h) is the amount of deviation of the joint surface, and the amount of deviation according to equation (9),
R 12A is the paraxial radius of curvature of the joint surface,
a is an amount according to the following conditional expression (11),
a = (y 10 ) 2 · log 10 γ / fw (11)
Both air contact surfaces may be spherical,
y 10 is the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device arranged in the vicinity of the imaging position of the imaging optical system;
fw is the focal length of the entire system at the wide angle end of the imaging optical system,
γ is the imaging ratio (total focal length at the telephoto end / total focal length at the wide angle end),
Also, since the top of each surface is the origin, z (0) = 0 is always set.
It is.

また、本発明の別の電子撮像装置は、上述の結像光学系と、電子撮像素子と、結像光学系を通じて結像した像を電子撮像素子で撮像することによって得られた画像データを加工して像の形状を変化させた画像データとして出力する画像処理手段とを有し、結像光学系が、無限遠物点合焦時に次の条件式(23)を満足することを特徴とする。
0.85<y07/(fw・tanω07w)<0.97 …(23)
ここで、
07は電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたときy07=0.7・y10
ω07wは広角端における撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度、
fwは広角端における結像光学系の全系の焦点距離、
である。
Another electronic imaging apparatus of the present invention processes image data obtained by capturing an image formed through the imaging optical system, the electronic imaging element, and the imaging optical system with the electronic imaging element. And image processing means for outputting the image data with the image shape changed, and the imaging optical system satisfies the following conditional expression (23) when focusing on an object point at infinity: .
0.85 <y 07 / (fw · tan ω 07w ) <0.97 (23)
here,
y 07 The y 07 = 0.7 · y 10 when the distance to the point farthest from the center (maximum image height) was y 10 at effective imaging plane of the electronic imaging device (imaging possible in-plane),
ω 07w is an angle with respect to the optical axis in the object direction corresponding to the image point connecting from the center on the imaging surface at the wide angle end to the position of y 07 ,
fw is the focal length of the entire imaging optical system at the wide-angle end,
It is.

本発明によれば、光学系の全長の短縮や高ズーム比化を行なった場合でも、収差が良好に補正された結像光学系、及びこの結像光学系を備えた撮像装置を実現できる。また、高画素数化にも耐えうるだけの光学性能が確保(収差補正)できるという効果を奏する。   According to the present invention, it is possible to realize an imaging optical system in which aberration is favorably corrected and an imaging apparatus including the imaging optical system even when the overall length of the optical system is shortened or the zoom ratio is increased. In addition, an optical performance sufficient to withstand the increase in the number of pixels can be secured (aberration correction).

本発明の実施例1にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 1 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例1にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 2 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 1 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例2にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 2 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例2にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 6 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 2 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, and (c). Indicates the state at the telephoto end. 本発明の実施例3にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 3 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例3にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 6 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 3 is focused on an object point at infinity, (a) is a wide-angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明の実施例4にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 4 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例4にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 4 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例5にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 5 of the present invention is a cross-sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例5にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 5 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例6にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 6 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例6にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 8 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 6 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例7にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 7 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例7にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 9 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 7 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例8にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 8 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例8にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 8 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例9にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 9 of the present invention is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例9にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 9 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例10にかかるズームレンズの(a)は広角端、(b)は中間、(c)は望遠端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。(A) of the zoom lens according to Example 10 of the present invention is a cross-sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end, (b) at the middle, and (c) at the telephoto end. is there. 実施例10にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 10 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明によるズーム光学系を組み込んだデジタルカメラ40の外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera 40 incorporating the zoom optical system by this invention. デジタルカメラ40の後方斜視図である。2 is a rear perspective view of the digital camera 40. FIG. デジタルカメラ40の光学構成を示す断面図である。2 is a cross-sectional view showing an optical configuration of a digital camera 40. FIG. 本発明のズーム光学系が対物光学系として内蔵された情報処理装置の一例であるパソコン300のカバーを開いた状態の前方斜視図である。1 is a front perspective view of a state in which a cover of a personal computer 300 which is an example of an information processing apparatus in which a zoom optical system of the present invention is built as an objective optical system is opened. FIG. パソコン300の撮影光学系303の断面図である。2 is a cross-sectional view of a photographing optical system 303 of a personal computer 300. FIG. パソコン300の側面図である。2 is a side view of a personal computer 300. FIG. 本発明のズーム光学系が撮影光学系として内蔵された情報処理装置の一例である携帯電話を示す図であり、(a)は携帯電話400の正面図、(b)は側面図、(c)は撮影光学系405の断面図である。1A and 1B are views showing a mobile phone as an example of an information processing apparatus in which the zoom optical system of the present invention is built in as a photographing optical system, where FIG. 1A is a front view of the mobile phone 400, FIG. FIG. 6 is a cross-sectional view of the photographing optical system 405.

以下に、本実施形態の結像光学系をズーム光学系に適用した実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。なお、実施例の説明に先立ち、本実施形態の結像光学系の作用効果について説明する。また、以下の説明では、近軸焦点距離が正の値のレンズを正レンズ、近軸焦点距離が負の値のレンズを負レンズとする。   Hereinafter, an example in which the imaging optical system of the present embodiment is applied to a zoom optical system will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Prior to the description of the examples, the effects of the imaging optical system of the present embodiment will be described. In the following description, a lens having a positive paraxial focal length is defined as a positive lens, and a lens having a negative paraxial focal length is defined as a negative lens.

本実施形態の結像光学系は、物体側より順に、正の屈折力を有するレンズ群G1と、負の屈折力を有するレンズ群G2と、全体として常時正の屈折力を有する後部レンズ群GRと、より構成される結像光学系であって、レンズ群G1は、サブレンズ群G11とサブレンズ群G12で構成され、レンズ群G2は変倍時に可動であり、後部レンズ群GRは、変倍時に相互の光軸上距離が変化する3つ又は4つの副レンズ群からなり、サブレンズ群G11は、負の屈折力を有するレンズ成分と光路を折り曲げるためのプリズムとからなる構成、または負の屈折力を有し光路を折り曲げるためのプリズムからなる構成であり、サブレンズ群G12は正の屈折力を有し、レンズLAとレンズLBとの接合レンズ成分と、正レンズLCとからなり、レンズLAとレンズLBとの接合面は非球面であり、正レンズLCは、レンズLAとレンズLBよりも強い屈折力を有する。   The imaging optical system according to the present embodiment includes, in order from the object side, a lens group G1 having a positive refractive power, a lens group G2 having a negative refractive power, and a rear lens group GR that always has a positive refractive power as a whole. The lens group G1 is composed of a sub lens group G11 and a sub lens group G12, the lens group G2 is movable during zooming, and the rear lens group GR is It consists of three or four sub-lens groups whose mutual optical axis distances change at the time of magnification, and the sub-lens group G11 is composed of a lens component having negative refractive power and a prism for bending the optical path, or negative The sub lens group G12 has a positive refractive power, and includes a cemented lens component of the lens LA and the lens LB, and a positive lens LC. The joint surface between the lens LA and the lens LB is aspheric, The positive lens LC has a refractive power stronger than those of the lens LA and the lens LB.

そして、本実施形態のズーム光学系は、以下の条件(1)を満足することを特徴とする。
0.008<{1/νd(12A)}−{1/νd(12B)} ・・・(1)
ここで、
νd(12A)はレンズLAのアッベ数(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、レンズLAのd線、C線、F線、g線の屈折率、
νd(12B)はレンズLBのアッベ数(nd(12B)−1)/(nF(12B)−nC(12B))、
nd(12B)、nC(12B)、nF(12B)、ng(12B)は、各々、レンズLBのd線、C線、F線、g線の屈折率、
である。
The zoom optical system according to the present embodiment satisfies the following condition (1).
0.008 <{1 / νd (12A)} − {1 / νd (12B)} (1)
here,
νd (12A) is the Abbe number (nd (12A) −1) / (nF (12A) −nC (12A)) of the lens LA,
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indices of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
νd (12B) is the Abbe number (nd (12B) −1) / (nF (12B) −nC (12B)) of the lens LB,
nd (12B), nC (12B), nF (12B), and ng (12B) are the refractive indexes of the d-line, C-line, F-line, and g-line of the lens LB, respectively.
It is.

本実施形態の結像光学系は、高倍率化(高変倍化)と同時に広角化に向いている。ここで、小型化を進めると高次の色収差つまり色の球面収差、色コマ、倍率色収差の像高に関する高次成分(色の歪曲収差)などが発生しやすい。サブレンズ群G12を上述のような3つのレンズ要素にて構成した場合、レンズLAと分散差が大きなレンズLBとを、非球面を介して接合することにより高次の色収差を補正することができる。レンズLAの分散とレンズLBの分散との差が大きいほど、その効果は大きい。
条件式(1)の下限値を下回ると、上述した高次の色収差の補正効果が小さくなる。
The imaging optical system of the present embodiment is suitable for widening the angle at the same time as increasing the magnification (higher magnification). Here, when miniaturization is advanced, higher-order chromatic aberration, that is, color spherical aberration, color coma, higher-order component (color distortion aberration) relating to image height of chromatic aberration of magnification, and the like are likely to occur. When the sub lens group G12 is composed of the three lens elements as described above, high-order chromatic aberration can be corrected by joining the lens LA and the lens LB having a large dispersion difference via an aspherical surface. . The greater the difference between the dispersion of the lens LA and the dispersion of the lens LB, the greater the effect.
When the lower limit value of conditional expression (1) is not reached, the above-described correction effect for higher-order chromatic aberration is reduced.

なお、条件式(1)に代えて、次の条件式(1’)を満足すると、より好ましい。
0.014<{1/νd(12A)}−{1/νd(12B)} ・・・(1’)
さらに、条件式(1)に代えて、次の条件式(1”)を満足すると、より一層好ましい。
0.02<{1/νd(12A)}−{1/νd(12B)} ・・・(1”)
It is more preferable that the following conditional expression (1 ′) is satisfied instead of conditional expression (1).
0.014 <{1 / νd (12A)} − {1 / νd (12B)} (1 ′)
Furthermore, it is more preferable that the following conditional expression (1 ″) is satisfied instead of conditional expression (1).
0.02 <{1 / νd (12A)} − {1 / νd (12B)} (1 ″)

また、接合面にて高次の色収差を補正すると、基準波長に対する各収差が悪化する場合がある。これは、レンズLAとレンズLBの基準波長に対する屈折率の差が大きいのが原因のことが多い。したがって、本実施形態の結像光学系は、以下の条件式(2)を満たすと良い。
|nd(12A) − nd(12B)|≦0.30 …(2)
ここで、
nd(12A)はレンズLAのd線における屈折率、
nd(12B)はレンズLBのd線における屈折率、
である。
Further, when higher-order chromatic aberration is corrected at the joint surface, each aberration with respect to the reference wavelength may be deteriorated. This is often caused by a large difference in refractive index between the lens LA and the lens LB with respect to the reference wavelength. Therefore, the imaging optical system of the present embodiment preferably satisfies the following conditional expression (2).
| Nd (12A) −nd (12B) | ≦ 0.30 (2)
here,
nd (12A) is the refractive index of the lens LA at the d-line,
nd (12B) is the refractive index of the lens LB at the d-line,
It is.

条件式(2)の上限値を上回ると、高次の色収差補正とd線など基準波長の収差補正とが両立しにくくなりやすい。   If the upper limit of conditional expression (2) is exceeded, it will be difficult to achieve both high-order chromatic aberration correction and correction of aberrations at the reference wavelength such as the d-line.

なお、条件式(2)に代えて、次の条件式(2’)を満足すると、より好ましい。
|nd(12A)−nd(12B)|≦0.20 ・・・(2’)
さらに、条件式(2)に代えて、次の条件式(2”)を満足すると、より一層好ましい。
|nd(12A) − nd(12B)|≦0.12 ・・・(2”)
It is more preferable that the following conditional expression (2 ′) is satisfied instead of conditional expression (2).
| Nd (12A) −nd (12B) | ≦ 0.20 (2 ′)
Furthermore, it is more preferable that the following conditional expression (2 ″) is satisfied instead of conditional expression (2).
| Nd (12A) −nd (12B) | ≦ 0.12 (2 ″)

また、本実施形態の結像光学系では、横軸をνd、及び縦軸をndとする直交座標系において、
nd(12A)=a(12A)×νd(12A)+b(12A)(但し、a(12A)=−0.0173)
で表される直線を設定したときに、以下の条件式(3)の範囲の下限値であるときの直線、および上限値であるときの直線で定まる領域と、以下の条件式(4)及び(5)で定まる領域との両方の領域に、レンズLAのnd(12A)とνd(12A)が含まれるようにすると良い。
1.64<b(12A)<2.18 …(3)
1.57<nd(12A)<2.00 …(4)
3<νd(12A)<27 …(5)
ここで、
nd(12A)はレンズLAのd線における屈折率、
νd(12A)はレンズLAのアッベ数(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、レンズLAのd線、C線、F線、g線の屈折率、
である。
In the imaging optical system of the present embodiment, in the orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is nd,
nd (12A) = a (12A) × νd (12A) + b (12A) (however, a (12A) = − 0.0173)
When the straight line represented by the following formula (3) is set, the area defined by the straight line when the lower limit value and the straight line when the upper limit value are satisfied, and the following conditional expression (4) and It is preferable that nd (12A) and νd (12A) of the lens LA are included in both the region determined by (5).
1.64 <b (12A) <2.18 (3)
1.57 <nd (12A) <2.00 (4)
3 <νd (12A) <27 (5)
here,
nd (12A) is the refractive index of the lens LA at the d-line,
νd (12A) is the Abbe number (nd (12A) −1) / (nF (12A) −nC (12A)) of the lens LA,
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indices of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
It is.

高次の色収差補正を効果的に行うため、接合面を非球面とする場合、レンズLAとレンズLBの分散(アッベ数の逆数)の差が大きく、かつ屈折率の差が小さいほど良い。ここで、レンズLBを構成する媒質を極力低分散にしようとすると屈折率が低くなりがちである。したがって、レンズLAを構成する媒質は高分散でできるだけ低屈折率であることが望まれる。   In order to effectively perform higher-order chromatic aberration correction, when the cemented surface is an aspherical surface, it is better that the difference in dispersion (reciprocal of Abbe number) between the lens LA and the lens LB is larger and the difference in refractive index is smaller. Here, if the medium constituting the lens LB is to be made as low dispersion as possible, the refractive index tends to be low. Therefore, it is desirable that the medium constituting the lens LA has a high refractive index and a refractive index as low as possible.

条件式(3)、条件式(4)の上限値を上回ると、両レンズの屈折率差が大きくなり、高次の色収差補正が困難になる。一方、条件式(3)、条件式(4)の下限値を下回ると、逆方向に屈折率差が大きくなり、同様に高次の色収差補正が困難になる。   If the upper limit value of conditional expression (3) or conditional expression (4) is exceeded, the refractive index difference between the two lenses becomes large, and higher-order chromatic aberration correction becomes difficult. On the other hand, if the lower limit value of conditional expressions (3) and (4) is not reached, the refractive index difference increases in the opposite direction, and similarly, higher-order chromatic aberration correction becomes difficult.

また、条件式(5)の上限値を上回ると、これも同様に高次の色収差補正が困難になる。条件式(5)の下限値を下回ると、屈折率を低くすることが困難となる。   If the upper limit value of conditional expression (5) is exceeded, this also makes it difficult to correct higher-order chromatic aberration. If the lower limit of conditional expression (5) is not reached, it will be difficult to lower the refractive index.

なお、条件式(3)に代えて、次の条件式(3’)を満足すると、より好ましい。
1.70<b(12A)<2.12 …(3’)
さらに、条件式(11)に代えて、次の条件式(3”)を満足すると、より一層好ましい。
1.76<b(12A)<2.06 …(3”)
It is more preferable that the following conditional expression (3 ′) is satisfied instead of conditional expression (3).
1.70 <b (12A) <2.12 (3 ′)
Furthermore, it is more preferable that the following conditional expression (3 ″) is satisfied instead of conditional expression (11).
1.76 <b (12A) <2.06 (3 ″)

また、条件式(4)に代えて、次の条件式(4’)を満足するとより好ましい。
1.59<nd(12A)<1.90 …(4’)
さらに、条件式(4)に代えて、次の条件式(4”)を満足すると、より一層好ましい。
1.61<nd(12A)<1.80 …(4”)
It is more preferable that the following conditional expression (4 ′) is satisfied instead of conditional expression (4).
1.59 <nd (12A) <1.90 (4 ')
Furthermore, it is more preferable that the following conditional expression (4 ″) is satisfied instead of conditional expression (4).
1.61 <nd (12A) <1.80 (4 ")

また、条件式(5)に代えて、次の条件式(5’)を満足するとより好ましい。
8<νd(12A)<26 …(5’)
さらに、条件式(5)に代えて、次の条件式(5”)を満足すると、より一層好ましい。
13<νd(12A)<25 …(5”)
It is more preferable that the following conditional expression (5 ′) is satisfied instead of conditional expression (5).
8 <νd (12A) <26 (5 ′)
Furthermore, it is more preferable that the following conditional expression (5 ″) is satisfied instead of conditional expression (5).
13 <νd (12A) <25 (5 ″)

また、本実施形態の結像光学系では、横軸をνd、及び縦軸をθgFとする直交座標系において、
θgF(12A)=α(12A)×νd(12A)+β(12A)(但し、α(12A)=−0.00667)
で表される直線を設定したときに、以下の条件式(6)の範囲の下限値であるときの直線、および上限値であるときの直線で定まる領域と、以下の条件式(5)で定まる領域との両方の領域に、レンズLAのθgF(12A)とνd(12A)が含まれるようにすると良い。
0.7840<β(12A)<0.9000 ・・・(6)
3<νd(12A)<27 ・・・(5)
ここで、
θgF(12A)はレンズLAの部分分散比(ng(12A)−nF(12A))/(nF(12A)−nC(12A))、
νd(12A)はレンズLAのアッベ数、(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、レンズLAのd線、C線、F線、g線の屈折率、
である。
In the imaging optical system of the present embodiment, in the orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is θgF,
θgF (12A) = α (12A) × νd (12A) + β (12A) (where α (12A) = − 0.00667)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (6) and the straight line when the upper limit is set, and the following conditional expression (5) It is preferable that θgF (12A) and νd (12A) of the lens LA are included in both the fixed region and the fixed region.
0.7840 <β (12A) <0.9000 (6)
3 <νd (12A) <27 (5)
here,
θgF (12A) is a partial dispersion ratio of the lens LA (ng (12A) −nF (12A)) / (nF (12A) −nC (12A)),
νd (12A) is the Abbe number of the lens LA, (nd (12A) −1) / (nF (12A) −nC (12A)),
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indices of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
It is.

条件式(6)の上限値を上回る場合、望遠側にて、二次スペクトルによる高次の色収差が補正過剰になりやすい。そのため、望遠側での撮像で得た画像において、画像の鮮鋭さを確保しづらくなる。一方、条件式(6)の下限値を下回る場合、望遠側にて二次スペクトルによる高次の色収差が補正不足になりやすい。そのため、望遠側での撮像で得た画像において、画像の鮮鋭さを確保しづらくなる。   If the upper limit value of conditional expression (6) is exceeded, higher-order chromatic aberration due to the secondary spectrum tends to be overcorrected on the telephoto side. For this reason, it is difficult to ensure the sharpness of an image obtained by imaging on the telephoto side. On the other hand, when the lower limit value of conditional expression (6) is not reached, high-order chromatic aberration due to the secondary spectrum tends to be undercorrected on the telephoto side. For this reason, it is difficult to ensure the sharpness of an image obtained by imaging on the telephoto side.

なお、ここでの二次スペクトルによる高次の色収差とは、g線における球面収差、コマ収差、歪曲収差であって、これらの収差をd線とF線の差が小さくなるように補正したときに、g線において残存している収差である。   The high-order chromatic aberration due to the secondary spectrum here is spherical aberration, coma aberration, and distortion aberration in the g-line, and these aberrations are corrected so that the difference between the d-line and the F-line is small. In addition, this is the aberration remaining in the g-line.

また、条件式(5)の上限値を上回る場合、高次の色収差補正効果が不足しやすくなる。一方、本実施形態の結像光学系では、d線など基準波長の各収差を補正するためにレンズLAを用いている。そのため、条件式(5)の下限値を下回る場合、このレンズLAの空気接触面側の非球面により高次の色収差が発生しやすくなる。この高次の色収差を抑えようとすると、d線など基準波長の各収差が補正不足となりやすい。   If the upper limit of conditional expression (5) is exceeded, the higher-order chromatic aberration correction effect tends to be insufficient. On the other hand, in the imaging optical system of this embodiment, the lens LA is used to correct each aberration of the reference wavelength such as d-line. Therefore, when the lower limit value of conditional expression (5) is not reached, higher-order chromatic aberration is likely to occur due to the aspheric surface on the air contact surface side of the lens LA. If this higher order chromatic aberration is to be suppressed, each aberration of the reference wavelength such as the d-line tends to be undercorrected.

なお、条件式(6)に代えて、次の条件式(6’)を満足すると、より好ましい。
0.7920<β(12A)<0.8800 …(6’)
さらに、条件式(6)に代えて、次の条件式(6”)を満足すると、より一層好ましい。
0.8000<β(12A)<0.8600 …(6”)
It is more preferable that the following conditional expression (6 ′) is satisfied instead of conditional expression (6).
0.7920 <β (12A) <0.8800 (6 ′)
Furthermore, it is more preferable that the following conditional expression (6 ″) is satisfied instead of conditional expression (6).
0.8000 <β (12A) <0.8600 (6 ″)

また、本実施形態の結像光学系では、直交座標(横軸をνd、及び縦軸をθgFとする直交座標)とは異なる、横軸をνd、及び縦軸をθhgとする直交座標系において、
θhg(12A)=αhg(12A)×νd(12A)+βhg(12A)(但し、αhg(12A)=−0.01134)
で表される直線を設定したときに、以下の条件式(7)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(5)で定まる領域との両方の領域に、レンズLAのθhg(12A)とνd(12A)が含まれることが望ましい。
Further, in the imaging optical system of the present embodiment, in the orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is θhg, which is different from the orthogonal coordinates (orthogonal coordinates in which the horizontal axis is νd and the vertical axis is θgF). ,
θhg (12A) = αhg (12A) × νd (12A) + βhg (12A) (where αhg (12A) = − 0.01134)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (7) and the straight line when the upper limit is set, and the following conditional expression (5) It is desirable that θhg (12A) and νd (12A) of the lens LA are included in both the fixed region and the region.

0.8450<βhg(12A)<0.9800 …(7)
3<νd(12A)<27 …(5)
ここで、
θhg(12A)はレンズLAの部分分散比(nh(12A)−ng(12A))/(nF(12A)−nC(12A))、
nh(12A)はレンズLAのh線の屈折率、
である。
0.8450 <βhg (12A) <0.9800 (7)
3 <νd (12A) <27 (5)
here,
θhg (12A) is the partial dispersion ratio (nh (12A) −ng (12A)) / (nF (12A) −nC (12A)) of the lens LA,
nh (12A) is the refractive index of the h-line of the lens LA,
It is.

条件式(7)の上限値を上回る場合、望遠側にて、二次スペクトルによる高次の色収差が補正過剰になりやすい。そのため、望遠側での撮像で得た画像において、画面全体にわたり紫の色フレア、色にじみが発生しやすい。一方、条件式(7)の下限値を下回る場合、望遠側にて、二次スペクトルによる高次の色収差が補正不足になりやすい。そのため、望遠側での撮像で得た画像において、画面全体に亘り紫の色フレア、色にじみが発生しやすい。   When the upper limit value of conditional expression (7) is exceeded, high-order chromatic aberration due to the secondary spectrum tends to be overcorrected on the telephoto side. Therefore, in an image obtained by imaging on the telephoto side, purple color flare and color blur are likely to occur over the entire screen. On the other hand, when the lower limit value of conditional expression (7) is not reached, high-order chromatic aberration due to the secondary spectrum tends to be undercorrected on the telephoto side. Therefore, in an image obtained by imaging on the telephoto side, purple color flare and color blur are likely to occur over the entire screen.

なお、ここでの二次スペクトルによる高次の色収差とは、g線における球面収差、コマ収差、歪曲収差であって、これらの収差をd線とF線の差が小さくなるように補正したときに、h線において残存している収差である。   The high-order chromatic aberration due to the secondary spectrum here is spherical aberration, coma aberration, and distortion aberration in the g-line, and these aberrations are corrected so that the difference between the d-line and the F-line is small. In addition, this is the aberration remaining in the h-line.

なお、条件式(7)に代えて、次の条件式(7’)を満足すると、より好ましい。
0.8550<βhg(12A)<0.9600 …(7’)
さらに、条件式(7)に代えて、次の条件式(7”)を満足すると、より一層好ましい。
0.8650<βhg(12A)<0.9400 …(7”)
It is more preferable that the following conditional expression (7 ′) is satisfied instead of conditional expression (7).
0.8550 <βhg (12A) <0.9600 (7 ′)
Furthermore, it is more preferable that the following conditional expression (7 ″) is satisfied instead of conditional expression (7).
0.8650 <βhg (12A) <0.9400 (7 ″)

また、本実施形態の結像光学系では、レンズLAはメニスカス形状であり、以下の条件(12)を満足することが好ましい。
|(R12AF−R12AR)/(R12AF+R12AR)|<0.2 …(12)
ここで、
R12AFはレンズLAの物体側の光軸上での曲率半径、
R12ARはレンズLAの像側の光軸上での曲率半径、
である。
In the imaging optical system of this embodiment, it is preferable that the lens LA has a meniscus shape and satisfies the following condition (12).
| (R12AF−R12AR) / (R12AF + R12AR) | <0.2 (12)
here,
R12AF is the radius of curvature on the optical axis on the object side of the lens LA,
R12AR is the radius of curvature on the optical axis on the image side of the lens LA,
It is.

レンズLAをメニスカス形状にする利点は、それ自身のパワーを強くせずに一方の面の曲率を強く出来て、収差補正能力を得やすいためである。これは、特に非球面を施して高次の色収差補正を目的とする場合に有効である。   The advantage of the lens LA having a meniscus shape is that the curvature of one surface can be increased without increasing the power of the lens LA, and the aberration correction capability can be easily obtained. This is particularly effective when an aspherical surface is used to correct higher-order chromatic aberration.

しかしながら、条件式(12)を上回るとメニスカス形状が強くなりすぎることを意味し、その場合、色のコマ収差、倍率色の像高に関する高次収差(色の歪曲収差)、色のメリジオナル像面湾曲のいずれかが補正困難になってしまう。一方、条件式(12)の値がゼロ近傍であると、全体的に高次の色収差補正を行ないにくくなる場合がある。   However, if the conditional expression (12) is exceeded, it means that the meniscus shape becomes too strong. In this case, coma aberration of color, higher-order aberration (color distortion aberration) relating to the image height of magnification color, meridional image plane of color Any one of the curvatures becomes difficult to correct. On the other hand, if the value of conditional expression (12) is near zero, it may be difficult to perform high-order chromatic aberration correction as a whole.

そこで、条件式(12)に代えて、次の条件式(12’)を満足すると、より好ましい。
0.005<|(R12AF−R12AR)/(R12AF+R12AR)|<0.2 ・・・(12’)
さらに、条件式(12)や(12’)に代えて、次の条件式(12”)を満足すると、より一層好ましい。
0.01<|(R12AF−R12AR)/(R12AF+R12AR)|<0.1 ・・・(12”)
Therefore, it is more preferable that the following conditional expression (12 ′) is satisfied instead of conditional expression (12).
0.005 <| (R12AF−R12AR) / (R12AF + R12AR) | <0.2 (12 ′)
Furthermore, it is more preferable that the following conditional expression (12 ″) is satisfied instead of conditional expressions (12) and (12 ′).
0.01 <| (R12AF-R12AR) / (R12AF + R12AR) | <0.1 (12 ")

また、本実施形態の結像光学系では、レンズLAとレンズLBの空気接触面も非球面とするのが好ましい。   In the imaging optical system of the present embodiment, it is preferable that the air contact surfaces of the lenses LA and LB are also aspherical surfaces.

また、光学全長の短縮をさらに進めると、各レンズ群の屈折力が強くなる。ここで、径が大きいサブレンズ群G12は、縁肉確保のために厚肉化する必要が出てくる。そこで、本実施形態の結像光学系では、以下の条件式(13)を満足するのが好ましい。
−0.2<f12C/f12B<0.2 ・・・(13)
ここで、
f12BはレンズLBの焦点距離、
f12Cは正レンズLCの焦点距離、
である。
Further, when the optical total length is further shortened, the refractive power of each lens group becomes stronger. Here, it is necessary to increase the thickness of the sub-lens group G12 having a large diameter in order to secure the edge thickness. Therefore, in the imaging optical system of the present embodiment, it is preferable that the following conditional expression (13) is satisfied.
-0.2 <f12C / f12B <0.2 (13)
here,
f12B is the focal length of the lens LB,
f12C is the focal length of the positive lens LC,
It is.

レンズLBについては、レンズLAとの分散差を大きくし、屈折率差を小さくすることが要求され、更に、接合面に非球面を形成することが要求される。このような点を鑑みると、現実的には、レンズLBの屈折率をあまり高められない。条件式(13)の上限値を上回るか、あるいは下限値を下回ると、レンズLBの屈折力が正レンズLCの屈折力に対して相対的に高まるので、サブレンズ群G12が厚くなりやすい。   For the lens LB, it is required to increase the dispersion difference from the lens LA, to reduce the refractive index difference, and to form an aspheric surface on the cemented surface. Considering such a point, in reality, the refractive index of the lens LB cannot be increased so much. If the upper limit value of conditional expression (13) is exceeded or falls below the lower limit value, the refractive power of the lens LB increases relative to the refractive power of the positive lens LC, so that the sub lens group G12 tends to be thick.

また、条件式(13)に代えて、次の条件式(13’)を満足すると、より好ましい。
−0.1<f12C/f12B<0.1 ・・・(13’)
さらに、(13)に代えて、次の条件式(13”)を満足すると、より好ましい。
−0.05<f12C/f12B<0.05 ・・・(13”)
It is more preferable that the following conditional expression (13 ′) is satisfied instead of conditional expression (13).
-0.1 <f12C / f12B <0.1 (13 ')
Furthermore, it is more preferable that the following conditional expression (13 ″) is satisfied instead of (13).
-0.05 <f12C / f12B <0.05 (13 ")

また、本実施形態の結像光学系では、横軸をνd、及び縦軸をndとする直交座標系において、
nd(12C) =a(12C)×νd(12C)+b(12C)(但し、a(12C)=−0.00767)
で表される直線を設定したときに、以下の条件式(14)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(15)で定まる領域との2つの領域に、正レンズLCのnd(12C)及びνd(12C)が含まれることが好ましい。
2.10<b(12C) …(14)
1.70<nd(12C) …(15)
ここで、
νd(12C)は正レンズLCのアッベ数(nd(12C)−1)/(nF(12C)−nC(12C))、
nd(12C)、nC(12C)、nF(12C)は、各々、正レンズLCのd線、C線、F線の屈折率、
である。
In the imaging optical system of the present embodiment, in the orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is nd,
nd (12C) = a (12C) × νd (12C) + b (12C) (where a (12C) = − 0.00767)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (14) and the straight line when the upper limit is set, and the following conditional expression (15) It is preferable that nd (12C) and νd (12C) of the positive lens LC are included in the two regions including the fixed region.
2.10 <b (12C) (14)
1.70 <nd (12C) (15)
here,
νd (12C) is the Abbe number (nd (12C) −1) / (nF (12C) −nC (12C)) of the positive lens LC,
nd (12C), nC (12C), and nF (12C) are the refractive indexes of the d-line, C-line, and F-line of the positive lens LC, respectively.
It is.

条件式(14)の下限値を下回ると、正レンズLCの曲率が強くなりすぎて厚さが厚くなってしまうこと、高次収差が発生しやすくなってしまうこと、光学系の全長の短縮が困難になってしまうこと、の何れかが生ずる。一方、b(12C)が大きくなることについては問題がない。なお、νd(12C)が大きくなるとnd(12C)は小さくなってもよい。   If the lower limit value of the conditional expression (14) is not reached, the curvature of the positive lens LC becomes too strong and the thickness becomes thick, high-order aberrations are likely to occur, and the total length of the optical system is shortened. One of the difficulties will occur. On the other hand, there is no problem with increasing b (12C). Note that nd (12C) may decrease as νd (12C) increases.

条件式(15)の下限値を下回ると、条件式(14)の下限値を下回らない場合であっても、条件式(14)で説明した問題が発生しやすくなってしまう。   If the lower limit value of conditional expression (15) is not reached, the problem described in conditional expression (14) is likely to occur even if the lower limit value of conditional expression (14) is not exceeded.

なお、条件式(14)に代えて、次の条件式(14’)を満足すると、より好ましい。
2.15<b(12C) ・・・(14’)
さらに、条件式(14)に代えて、次の条件式(14”)を満足すると、より一層好ましい。
2.18<b(12C) ・・・(14”)
It is more preferable that the following conditional expression (14 ′) is satisfied instead of conditional expression (14).
2.15 <b (12C) (14 ')
Furthermore, it is more preferable that the following conditional expression (14 ″) is satisfied instead of conditional expression (14).
2.18 <b (12C) (14 ")

また、条件式(15)に代えて、次の条件式(15’)を満足すると、より好ましい。
1.75<nd(12C) ・・・(15’)
さらに、条件式(15)に代えて、次の条件式(15”)を満足すると、より一層好ましい。
1.80<nd(12C) ・・・(15”)
It is more preferable that the following conditional expression (15 ′) is satisfied instead of conditional expression (15).
1.75 <nd (12C) (15 ')
Furthermore, it is more preferable that the following conditional expression (15 ″) is satisfied instead of conditional expression (15).
1.80 <nd (12C) (15 ")

また、本実施形態の結像光学系では、サブレンズ群G11において、負の屈折力を有するレンズ成分、または負の屈折力を有し光路を折り曲げるためのプリズムは、負の屈折力を有する素子であって、以下の条件式(16)を満足することが好ましい。
0.017<{1/νd(11)}−{1/νd(12C)}<0.052 ・・・(16)
ここで、
νd(11)は負の屈折力を有する素子のアッベ数(nd(11)−1)/(nF(11)−nC(11))、
νd(12C)は正レンズLCのアッベ数(nd(12C)−1)/(nF(12C)−nC(12C))、
nd(11)、nC(11)、nF(11)は、各々、負の屈折力を有する素子のd線、C線、F線の屈折率、
nd(12C)、nC(12C)、nF(12C)は、各々、正レンズLCのd線、C線、F線の屈折率、
である。
In the imaging optical system of the present embodiment, in the sub lens group G11, the lens component having negative refractive power or the prism having negative refractive power for bending the optical path is an element having negative refractive power. And it is preferable that the following conditional expression (16) is satisfied.
0.017 <{1 / νd (11)} − {1 / νd (12C)} <0.052 (16)
here,
νd (11) is the Abbe number (nd (11) −1) / (nF (11) −nC (11)) of the element having negative refractive power,
νd (12C) is the Abbe number (nd (12C) −1) / (nF (12C) −nC (12C)) of the positive lens LC,
nd (11), nC (11), and nF (11) are the refractive indexes of d-line, C-line, and F-line of the element having negative refractive power,
nd (12C), nC (12C), and nF (12C) are the refractive indexes of the d-line, C-line, and F-line of the positive lens LC, respectively.
It is.

条件式(16)は、サブレンズ群G12で発生する一次の色収差をサブレンズ群G11で補正するための条件を示している。条件式(16)を満足することで、レンズ群G1全体としての一次の色収差(軸上色収差、倍率色収差)が補正出来る条件式(16)の下限値を下回ると、一次の色収差(軸上色収差、倍率色収差)をズーム全域において良好に補正することが困難となる。条件式(16)の上限値を上回ると、特に倍率色収差が補正過剰となり、ズーム全域において良好に補正することが困難となる。   Conditional expression (16) indicates a condition for correcting primary chromatic aberration generated in the sub lens group G12 by the sub lens group G11. When the conditional expression (16) is satisfied, the primary chromatic aberration (axial chromatic aberration, lateral chromatic aberration) as a whole of the lens group G1 can be corrected. , Lateral chromatic aberration) is difficult to correct well over the entire zoom range. If the upper limit value of conditional expression (16) is exceeded, particularly the lateral chromatic aberration will be overcorrected, and it will be difficult to satisfactorily correct over the entire zoom range.

なお、条件式(16)に代えて、次の条件式(16’)を満足すると、より好ましい。
0.020<{1/νd(11)}−{1/νd(12C)}<0.045 …(16’)
さらに、条件式(16)に代えて、次の条件式(16”)を満足すると、より一層好ましい。
0.023<{1/νd(11)}−{1/νd(12C)}<0.038 …(16”)
It is more preferable that the following conditional expression (16 ′) is satisfied instead of conditional expression (16).
0.020 <{1 / νd (11)} − {1 / νd (12C)} <0.045 (16 ′)
Furthermore, it is more preferable that the following conditional expression (16 ″) is satisfied instead of conditional expression (16).
0.023 <{1 / νd (11)} − {1 / νd (12C)} <0.038 (16 ″)

また、レンズLAを構成する媒質は高分散である。このため、軸上色収差や近軸的な倍率色収差など一次の色収差を補正する上で負の屈折力は大きいほうが一般的には好ましい。   The medium constituting the lens LA is highly dispersed. For this reason, in order to correct primary chromatic aberration such as axial chromatic aberration and paraxial lateral chromatic aberration, it is generally preferable that the negative refractive power is large.

また、本実施形態の結像光学系は、以下の条件式(17)を満足するのが好ましい。
−0.2<fw/f12A<0.2 ・・・(17)
ここで、
fwは結像光学系の広角端における全系の焦点距離、
f12AはレンズLAの空気中における焦点距離、
である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies the following conditional expression (17).
-0.2 <fw / f12A <0.2 (17)
here,
fw is the focal length of the entire system at the wide angle end of the imaging optical system,
f12A is the focal length of the lens LA in the air,
It is.

本実施形態の結像光学系では、負の屈折力はサブレンズ群G11に多く負担させて、レンズLAについては、正の屈折力を弱めることはしない(負の屈折力をあまり負担させない)方が好ましい。   In the imaging optical system of the present embodiment, the negative refracting power is largely borne by the sub-lens group G11, and the positive refracting power is not weakened for the lens LA (the negative refracting power is not borne so much). Is preferred.

条件式(17)の下限値を下回ると、負の屈折力が上昇する。これにより、軸上色収差や近軸的な倍率色収差が補正過剰になりやすくなること、又はサブレンズ群G11の屈折力が弱まることが生ずる。このため、入射瞳位置が深くなってプリズムの小型化が難しくなる。条件式(17)の上限値を上回ると、正の屈折力が上昇する。これにより、軸上色収差や近軸的な倍率色収差が、サブレンズ群G11によっても補正しきれなくなる。   If the lower limit of conditional expression (17) is not reached, the negative refractive power increases. As a result, the axial chromatic aberration and the paraxial lateral chromatic aberration are likely to be overcorrected, or the refractive power of the sub lens group G11 is weakened. For this reason, the entrance pupil position becomes deep and it becomes difficult to reduce the size of the prism. If the upper limit of conditional expression (17) is exceeded, the positive refractive power will increase. As a result, axial chromatic aberration and paraxial lateral chromatic aberration cannot be corrected by the sub lens group G11.

なお、条件式(17)に代えて、次の条件式(17’)を満足すると、より好ましい。
−0.1<fw/f12A<0.1 ・・・(17’)
さらに、条件式(17)に代えて、次の条件式(17”)を満足すると、より一層好ましい。
−0.05<fw/f12A<0.05 ・・・(17”)
It is more preferable that the following conditional expression (17 ′) is satisfied instead of conditional expression (17).
-0.1 <fw / f12A <0.1 (17 ')
Furthermore, it is more preferable that the following conditional expression (17 ″) is satisfied instead of conditional expression (17).
-0.05 <fw / f12A <0.05 (17 ")

また、本実施形態の結像光学系では、レンズLAとレンズLBとの接合レンズ成分は、そのいずれかの面が正レンズLCと接合されていることがより好ましい。なお、以下の実施例では、この3つのレンズ要素のうち、レンズLCが最も像側に配されているが、正レンズLCを最も物体側に配してもよい。   In the imaging optical system of the present embodiment, it is more preferable that one of the surfaces of the cemented lens component of the lens LA and the lens LB is cemented with the positive lens LC. In the following embodiments, among these three lens elements, the lens LC is disposed closest to the image side, but the positive lens LC may be disposed closest to the object side.

また、本実施形態の結像光学系は、以下の条件式(18a)と(18b)の少なくとも一方を満足することが好ましい。
−7.0<f11/Dp<−1.5 ・・・(18a)
1.2<f12/Dp<5.0 ・・・(18b)
ここで、
f11はサブレンズ群G11の焦点距離、
f12はサブレンズ群G12の焦点距離、
Dpはプリズムの入射面から射出面までの光軸に沿った空気換算距離、
である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies at least one of the following conditional expressions (18a) and (18b).
-7.0 <f11 / Dp <-1.5 (18a)
1.2 <f12 / Dp <5.0 (18b)
here,
f11 is the focal length of the sub lens group G11,
f12 is the focal length of the sub lens group G12,
Dp is the air equivalent distance along the optical axis from the entrance surface to the exit surface of the prism,
It is.

結像光学系、特にズーム光学系を肥大化せずに広角化するには、入射瞳位置をできるだけ浅くするのが良い。また、光路を折り曲げるためには、一定以上のプリズム光路長が必要である。プリズム光路長対して焦点距離f11あるいは焦点距離f12が十分小さくないと、第1レンズ群全体が肥大化しやすい。   In order to widen the imaging optical system, particularly the zoom optical system without enlarging, it is preferable to make the entrance pupil position as shallow as possible. Further, in order to bend the optical path, a prism optical path length of a certain length or more is necessary. If the focal length f11 or the focal length f12 is not sufficiently small with respect to the prism optical path length, the entire first lens group tends to be enlarged.

条件式(18a)、(18b’)の上限値を上回ると、第1レンズ群全体が肥大化しやすくなる。一方、条件式(18a)、(18b’)の下限値を下回ると、特に望遠端における高次の色収差が発生しやすくなる。   If the upper limit value of conditional expressions (18a) and (18b ') is exceeded, the entire first lens group tends to be enlarged. On the other hand, if the lower limit value of conditional expressions (18a) and (18b ′) is not reached, high-order chromatic aberration is likely to occur particularly at the telephoto end.

なお、条件式(18a)に代えて、次の条件式(18a’)を満足すると、より好ましい。
−6.0<f11/Dp<−2.0 ・・・(18a’)
さらに、条件式(18a)に代えて、次の条件式(18a”)を満足すると、より一層好ましい。
−5.0<f11/Dp<−2.5 ・・・(18a”)
It is more preferable that the following conditional expression (18a ′) is satisfied instead of conditional expression (18a).
−6.0 <f11 / Dp <−2.0 (18a ′)
Furthermore, it is more preferable that the following conditional expression (18a ″) is satisfied instead of conditional expression (18a).
-5.0 <f11 / Dp <-2.5 (18a ")

なお、条件式(18b)に代えて、次の条件式(18b’)を満足すると、より好ましい。
1.5<f12/Dp<4.0 ・・・(18b’)
さらに、条件式(18a)に代えて、次の条件式(18b”)を満足すると、より一層好ましい。
1.8<f12/Dp<3.0 ・・・(18b”)
It is more preferable that the following conditional expression (18b ′) is satisfied instead of conditional expression (18b).
1.5 <f12 / Dp <4.0 (18b ')
Furthermore, it is more preferable that the following conditional expression (18b ″) is satisfied instead of conditional expression (18a).
1.8 <f12 / Dp <3.0 (18b ")

また、本実施形態の結像光学系は、以下の条件式(19)を満足すると好ましい。
−2.0<(R11F+R11R)/(R11F−R11R)<2.0 ・・・(19)
ここで、
R11Fはサブレンズ群G11の最も物体側の面の光軸上での曲率半径、
R11Rはサブレンズ群G11の最も像側の面の光軸上での曲率半径、
である。
Moreover, it is preferable that the imaging optical system of the present embodiment satisfies the following conditional expression (19).
-2.0 <(R11F + R11R) / (R11F-R11R) <2.0 (19)
here,
R11F is the radius of curvature on the optical axis of the most object side surface of the sub lens group G11,
R11R is a radius of curvature on the optical axis of the surface closest to the image side of the sub lens group G11,
It is.

条件式(19)を満足すると、ズーム全域に亘り非点収差やコマ収差の補正をより良くすることができる。条件式(19)の上限値を上回ると、非点収差やコマ収差の補正が不足しやすくなる。一方、条件式(19)の下限値を下回ると、樽型の歪曲収差が大きくなりやすい。   When the conditional expression (19) is satisfied, astigmatism and coma can be corrected better over the entire zoom range. If the upper limit of conditional expression (19) is exceeded, correction of astigmatism and coma will tend to be insufficient. On the other hand, if the lower limit of conditional expression (19) is not reached, barrel distortion tends to increase.

なお、条件式(19)に代えて、次の条件式(19’)を満足すると、より好ましい。
−1.5<(R11F+R11R)/(R11F−R11R)<1.0 ・・・(19’)
さらに、条件式(19)に代えて、次の条件式(19”)を満足すると、より一層好ましい。
−1.2<(R11F+R11R)/(R11F−R11R)<0.5 ・・・(19”)
It is more preferable that the following conditional expression (19 ′) is satisfied instead of conditional expression (19).
-1.5 <(R11F + R11R) / (R11F-R11R) <1.0 (19 ')
Furthermore, it is more preferable that the following conditional expression (19 ″) is satisfied instead of conditional expression (19).
-1.2 <(R11F + R11R) / (R11F-R11R) <0.5 (19 ")

また、本実施形態の結像光学系は、以下の条件式(20)を満足することが好ましい。
−1.0<f2/f1<−0.20 ・・・(20)
ここで、
f1は正レンズ群G1の焦点距離、
f2は負レンズ群G2の焦点距離、
である。
Moreover, it is preferable that the imaging optical system of this embodiment satisfies the following conditional expression (20).
-1.0 <f2 / f1 <-0.20 (20)
here,
f1 is the focal length of the positive lens group G1,
f2 is the focal length of the negative lens group G2,
It is.

条件式(20)を満足すると、ズーム全域に亘り非点収差やコマ収差の補正をより良くすることができる。   When the conditional expression (20) is satisfied, astigmatism and coma can be corrected better over the entire zoom range.

なお、条件式(20)に代えて、次の条件式(20’)を満足すると、より好ましい。
−0.8<f2/f1<−0.25 ・・・(20’)
さらに、条件式(20)に代えて、次の条件式(20”)を満足すると、より一層好ましい。
−0.6<f2/f1<−0.35 ・・・(20”)
It is more preferable that the following conditional expression (20 ′) is satisfied instead of conditional expression (20).
-0.8 <f2 / f1 <-0.25 (20 ')
Furthermore, it is more preferable that the following conditional expression (20 ″) is satisfied instead of conditional expression (20).
-0.6 <f2 / f1 <-0.35 (20 ")

また、本実施形態の結像光学系では、レンズ群G2は、物体側から順に、負レンズ成分と、負レンズ成分と、正レンズ成分と配置することが良い。特に、最初の負レンズ成分は、屈折率1.85以上の単レンズとするのが良い。さらに、最初の負レンズ成分の屈折率は1.90以上であるならばなお良い。   In the imaging optical system of the present embodiment, the lens group G2 is preferably arranged in order from the object side, a negative lens component, a negative lens component, and a positive lens component. In particular, the first negative lens component is preferably a single lens having a refractive index of 1.85 or more. Furthermore, it is better if the refractive index of the first negative lens component is 1.90 or more.

また、レンズ群G2において、2番目の負レンズ成分は、いずれかの空気接触面が非球面であるのが好ましい。そして、2番目の負レンズ成分では、接合面が非球面であるとさらに良い。また、正レンズ成分はアッベ数が24以下の単レンズとするのがよい。さらに、正レンズ成分のアッベ数が21以下ならばなお良い。   In the lens group G2, it is preferable that any air contact surface of the second negative lens component is aspheric. In the second negative lens component, it is further preferable that the cemented surface is an aspheric surface. The positive lens component is preferably a single lens having an Abbe number of 24 or less. Furthermore, it is even better if the Abbe number of the positive lens component is 21 or less.

後部レンズ群GRは、物体側から順に、正の屈折力を有しするレンズ群G3と、正の屈折力を有するレンズ群G4と、正の屈折力を有する最終レンズ群G6より構成することが好ましい。ここで、レンズ群G3は、開口絞りの近傍にて変倍時に固定であるのが良い。また、レンズ群G4は、変倍時に光軸上を可動であるのが良い。また、最終レンズ群G6は、変倍時に光軸上を可動であるのが良い。   The rear lens group GR may be composed of a lens group G3 having a positive refractive power, a lens group G4 having a positive refractive power, and a final lens group G6 having a positive refractive power in order from the object side. preferable. Here, the lens group G3 is preferably fixed at the time of zooming in the vicinity of the aperture stop. The lens group G4 is preferably movable on the optical axis at the time of zooming. The final lens group G6 is preferably movable on the optical axis during zooming.

なお、レンズ群G4とレンズ群G6の間にレンズ群G5を配置しても良い。この場合、レンズ群G5は、変倍時に、レンズ群G4やレンズ群G6と相対的間隔が変化するのが好ましい。また、レンズ群G5を配した場合は、最終レンズ群G6を変倍時に固定とした構成とすることが良い。   The lens group G5 may be arranged between the lens group G4 and the lens group G6. In this case, it is preferable that the relative distance between the lens group G5 and the lens group G4 or the lens group G6 changes during zooming. When the lens group G5 is arranged, it is preferable that the final lens group G6 is fixed at the time of zooming.

また、レンズ群G3は、単レンズで構成するのが好ましい。また、レンズ群G4は、正レンズ2枚と負レンズ1枚又は2枚で構成するのが好ましい。また、レンズ群G5は負レンズ1枚で構成するのが好ましい。また、最終レンズ群G6は正レンズ1枚もしくはそれに負レンズ1枚を加えた構成とするのが良い。また、フォーカスはレンズ群G4の全体もしくはその一部(最も像側のレンズ成分)か又はレンズ群G5を用いて行なうのが良い。   The lens group G3 is preferably composed of a single lens. The lens group G4 is preferably composed of two positive lenses and one or two negative lenses. The lens group G5 is preferably composed of one negative lens. The final lens group G6 may have a configuration in which one positive lens or one negative lens is added thereto. Focusing may be performed using the entire lens group G4 or a part thereof (lens component closest to the image side) or the lens group G5.

ここで、サブレンズ群G12の製造方法について説明する。まず、レンズLBもしくは正レンズLCの一方の光学面にレンズLAとなる液状樹脂を接触させる。また、サブレンズ群G12をレンズLB、レンズLA、正レンズLCからなる3枚接合とする場合は、その後、もう一方のレンズの光学面で液状樹脂を挟みこむ。そして、たとえば紫外線などのエネルギーを与えることでレンズLAとなる液状樹脂を硬化させる。このような工程によりサブレンズ群G12を製造できる。   Here, a manufacturing method of the sub lens group G12 will be described. First, a liquid resin to be the lens LA is brought into contact with one optical surface of the lens LB or the positive lens LC. When the sub-lens group G12 is a three-lens cemented lens consisting of the lens LB, the lens LA, and the positive lens LC, then a liquid resin is sandwiched between the optical surfaces of the other lens. Then, for example, by applying energy such as ultraviolet rays, the liquid resin that becomes the lens LA is cured. The sub lens group G12 can be manufactured by such a process.

この製法により、面形状、肉厚、偏心といった製造精度を向上させることもできる。この方法は、レンズ要素を薄くしたり、接合面を非球面化したりするのには極めて有効な方法である。また、レンズLBもしくは正レンズLCにはあらかじめコーティングなど表面処理がなされていてもかまわない。   By this manufacturing method, it is possible to improve manufacturing accuracy such as surface shape, thickness, and eccentricity. This method is extremely effective for thinning the lens element and making the cemented surface aspherical. The lens LB or the positive lens LC may be subjected to a surface treatment such as coating in advance.

また、レンズLBもしくは正レンズLCの表面にレンズLAとしてガラスを密着硬化させてもよい。レンズLA、レンズLB、正レンズLCのいずれもガラスであれば、膨張係数差による熱ひずみも少なく品質が安定しやすい。なおこの場合、レンズLA用の材料の特性としては、レンズLB、正レンズLCを構成する材料よりも融点、転移点の低いことが必要である。   Further, glass may be adhered and cured as the lens LA on the surface of the lens LB or the positive lens LC. If any of the lens LA, the lens LB, and the positive lens LC is glass, the quality is easily stabilized with little thermal distortion due to the difference in expansion coefficient. In this case, the characteristics of the material for the lens LA need to have a lower melting point and transition point than the materials constituting the lens LB and the positive lens LC.

また、本実施形態の電子撮像装置は、上記の結像光学系と、電子撮像素子を有し、光軸方向をz、光軸に垂直な方向をhとする座標軸とし、Rを球面成分の光軸上における曲率半径、Kを円錐定数、A,A,A,A10・・・を非球面係数として、非球面の形状を、以下の式(8)で表すと共に、
z=(h2/R)/{1+[1−(1+K)(h/R)21/2
+A4+A6+A8+A1010 …(8)
偏倚量を下記の式(9)で表した場合、
Δz=z−h/R{1+(1−h2/R21/2} …(9)
以下の条件式(10)を満足することが好ましい。
The electronic imaging apparatus of the present embodiment includes the above-described imaging optical system and an electronic imaging device, and the coordinate axis is z with the optical axis direction z and the direction perpendicular to the optical axis h, and R is a spherical component. The radius of curvature on the optical axis, K is a conic constant, A 4 , A 6 , A 8 , A 10 ... Are aspheric coefficients, and the shape of the aspheric surface is expressed by the following equation (8):
z = (h 2 / R) / {1+ [1- (1 + K) (h / R) 2 ] 1/2 }
+ A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 (8)
When the deviation amount is expressed by the following formula (9),
Δz = z−h 2 / R {1+ (1−h 2 / R 2 ) 1/2 } (9)
It is preferable that the following conditional expression (10) is satisfied.

12A≧0のとき
-5.0e-2<P(LA)/y10 <0 〈但し、h=2.5a〉 ・・・(10)
ここで、
P(LA)は接合面の形状と分散に関するパラメータであって、以下の式で表され、
P(LA)=Δz12A(h)・(1/νd(12A)− 1/νd(12B))
12Aは接合面の形状であって、式(8)に従う形状、
Δz12A(h)は接合面の偏倚量であって、式(9)に従う偏倚量、
12Aは接合面の近軸曲率半径、
aは以下の条件式(11)式に従う量、
a=(y10 )2・ log10γ/ fw ・・・(11)
両空気接触面は球面であってもよく、
10 は結像光学系の結像位置近傍に配置された電子撮像素子の有効撮像面内(撮像可能な面内)において、中心から最も遠い点までの距離(最大像高)、
fwは結像光学系の広角端における全系の焦点距離、
γは結像比(望遠端での全系焦点距離/広角端での全系焦点距離)、
また、各面の面頂を原点とするため、常にz(0)=0、
である。
When R 12A ≧ 0
-5.0e-2 <P (LA) / y 10 <0 < However, h = 2.5a> ··· (10 )
here,
P (LA) is a parameter related to the shape and dispersion of the joint surface, and is represented by the following equation:
P (LA) = Δz 12A (h) ・ (1 / νd (12A) −1 / νd (12B))
z 12A is the shape of the joint surface, the shape according to equation (8),
Δz 12A (h) is the amount of deviation of the joint surface, and the amount of deviation according to equation (9),
R 12A is the paraxial radius of curvature of the joint surface,
a is an amount according to the following conditional expression (11),
a = (y 10 ) 2 · log 10 γ / fw (11)
Both air contact surfaces may be spherical,
y 10 is the distance (maximum image height) from the center to the farthest point in the effective imaging plane (within the imaging plane) of the electronic imaging device arranged in the vicinity of the imaging position of the imaging optical system;
fw is the focal length of the entire system at the wide angle end of the imaging optical system,
γ is the imaging ratio (total focal length at the telephoto end / total focal length at the wide angle end),
Also, since the top of each surface is the origin, z (0) = 0 is always set.
It is.

条件式(10)の上限値を上回ると、特に望遠側において、球面収差、コマ収差を補正しながら高次の色収差、つまり色の球面収差、色コマ、倍率色収差の像高に関する高次成分(色の歪曲収差)を補正することが困難となる。一方、条件(10)の下限値を下回ると、これらの高次の色収差の補正が過剰となるか、d線など基準となる波長に対する収差が悪化しやすい。   If the upper limit of conditional expression (10) is exceeded, especially on the telephoto side, higher-order components relating to the image height of higher-order chromatic aberrations, that is, color spherical aberration, color coma, and lateral chromatic aberration, while correcting spherical aberration and coma aberration ( It becomes difficult to correct color distortion. On the other hand, if the lower limit of the condition (10) is not reached, correction of these higher-order chromatic aberrations becomes excessive, or aberrations with respect to a reference wavelength such as d-line are likely to deteriorate.

なお、条件式(10)に代えて、次の条件式(10’)を満足すると、より好ましい。
-2.0e-2<P(LA)/y10<0 〈但し、h=2.5a〉 ・・・(10’)
さらに、条件式(10)に代えて、次の条件式(10”)を満足すると、より一層好ましい。
-1.0e-2<P(LA)/y10<0 〈但し、h=2.5a〉 ・・・(10”)
It is more preferable that the following conditional expression (10 ′) is satisfied instead of conditional expression (10).
-2.0e-2 <P (LA) / y 10 <0 (where h = 2.5a) (10 ')
Furthermore, it is more preferable that the following conditional expression (10 ″) is satisfied instead of conditional expression (10).
-1.0e-2 <P (LA) / y 10 <0 (where h = 2.5a) (10 ")

また、広い画角に亘ってコマ収差や非点収差を補正すると、広角側にて強い樽型の歪曲収差が発生する。逆に、樽型の歪曲収差を補正すると、画角の大きな部分において、コマ収差や非点収差が悪化する。そこで、以下、樽型歪曲収差の発生を積極的に利用して、より広画角を実現する方法について述べる。これを用いると、これまで述べてきた各条件式(1)〜(20)を満足しやすくなる。   Further, when coma and astigmatism are corrected over a wide field angle, strong barrel distortion occurs on the wide angle side. On the other hand, when barrel distortion is corrected, coma and astigmatism worsen in a portion with a large angle of view. Therefore, a method for realizing a wider angle of view by actively utilizing the occurrence of barrel distortion will be described below. If this is used, it will become easy to satisfy each conditional expression (1)-(20) described so far.

まず、ここで無限遠物体を歪曲収差がない光学系で結像したとする。この場合、結像した像に歪曲がないので、
f=y/tanω ・・・(21)
が成立する。
ここで、
yは像点の光軸からの高さ、
fは結像系の焦点距離、
ωは撮像面上の中心からyの位置に結ぶ像点に対応する物点方向の光軸に対する角度、である。
First, suppose that an object at infinity is imaged by an optical system without distortion. In this case, since the image formed has no distortion,
f = y / tan ω (21)
Is established.
here,
y is the height of the image point from the optical axis,
f is the focal length of the imaging system,
ω is an angle with respect to the optical axis in the object direction corresponding to the image point connected from the center on the imaging surface to the position y.

一方、光学系に樽型の歪曲収差がある場合は、
f>y/tanω ・・・(22)
となる。
つまり、fとyとを一定の値とするならば、ωは大きな値となる。
そこで、電子撮像装置には、特に広角端近傍の焦点距離において、意図的に大きな樽型の歪曲収差を有した光学系を用いるのが良い。この場合、歪曲収差を補正しなくて済む分だけ、光学系の広画角化が達成できる。
On the other hand, if the optical system has barrel distortion,
f> y / tan ω (22)
It becomes.
That is, if f and y are constant values, ω is a large value.
Therefore, it is preferable to use an optical system that intentionally has a large barrel distortion, particularly at a focal length near the wide-angle end, for the electronic imaging device. In this case, it is possible to achieve a wider angle of view of the optical system as much as it is not necessary to correct distortion.

ただし、物体の像は、樽型の歪曲収差を有した状態で電子撮像素子上に結像する。そこで、電子撮像装置では、電子撮像素子で得られた画像データを、画像処理で加工するようにしている。この加工では、樽型の歪曲収差を補正するように、画像データ(画像の形状)を変化させる。このようにすれば、最終的に得られた画像データは、物体とほぼ相似の形状を持つ画像データとなる。よって、この画像データに基づいて、物体の画像をCRTやプリンターに出力すればよい。   However, the image of the object is formed on the electronic image pickup device in a state having barrel-shaped distortion. Therefore, in the electronic imaging device, image data obtained by the electronic imaging element is processed by image processing. In this processing, the image data (image shape) is changed so as to correct the barrel distortion. In this way, the finally obtained image data is image data having a shape substantially similar to the object. Therefore, an object image may be output to a CRT or printer based on the image data.

そこで、本実施形態の電子撮像装置は、上述の結像光学系と、電子撮像素子と、結像光学系を通じて結像した像を電子撮像素子で撮像することによって得られた画像データを加工して像の形状を変化させた画像データとして出力する画像処理手段とを有し、結像光学系が、無限遠物点合焦時に次の条件式(23)を満足することを特徴とする。   Therefore, the electronic imaging apparatus of the present embodiment processes the image data obtained by capturing an image formed through the imaging optical system, the electronic imaging element, and the imaging optical system with the electronic imaging element. And image processing means for outputting as image data with the image shape changed, and the imaging optical system satisfies the following conditional expression (23) when focusing on an object point at infinity.

0.85<y07/(fw・tanω07w)<0.97 …(23)
ここで、
07は電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたときy07=0.7・y10として表され、
ω07wは広角端における撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度、
fwは結像光学系の広角端における全系の焦点距離、
である。
0.85 <y 07 / (fw · tan ω 07w ) <0.97 (23)
here,
y 07 is expressed as y07 = 0.7 · y10 when the y10 distance (maximum image height) to a point farthest from the center in the effective image pickup plane of the electronic imaging device (imaging possible in-plane),
ω 07w is an angle with respect to the optical axis in the object direction corresponding to the image point connecting from the center on the imaging surface at the wide angle end to the position of y 07 ,
fw is the focal length of the entire system at the wide-angle end of the imaging optical system,
It is.

条件式(23)はズーム広角端における樽型歪曲の度合いを規定したものである。条件式(23)を満足すれば、光学系を肥大化させずに、広い画角の情報を取り込むことが可能となる。なお、樽型に歪んだ像は撮像素子にて光電変換されて、樽型に歪んだ画像データとなる。   Conditional expression (23) defines the degree of barrel distortion at the zoom wide-angle end. If the conditional expression (23) is satisfied, it becomes possible to capture information with a wide angle of view without enlarging the optical system. Note that an image distorted in a barrel shape is photoelectrically converted by an image sensor to become image data distorted in a barrel shape.

樽型に歪んだ画像データは、電子撮像装置の信号処理系である画像処理手段にて、電気的に、像の形状変化に相当する加工が施される。このようにすれば、最終的に画像処理手段から出力された画像データを表示装置にて再生したとき、歪曲が補正されて被写体形状にほぼ相似した画像が得られる。   The image data distorted into a barrel shape is electrically processed by an image processing means, which is a signal processing system of an electronic imaging device, corresponding to a change in the shape of the image. In this way, when the image data finally output from the image processing means is reproduced on the display device, the distortion is corrected and an image substantially similar to the subject shape is obtained.

ここで、条件式(23)の上限値を上回る場合であって、特に、上限値が1に近い値をとると、歪曲収差が光学的に良く補正された画像が得られる。そのため、画像処理手段で行う補正が小さくてすむ。この場合、光学系の小型化を維持しながら、光学系を広画角化することが困難となる。   Here, when the upper limit value of conditional expression (23) is exceeded, and particularly when the upper limit value is close to 1, an image in which distortion is optically corrected is obtained. Therefore, the correction performed by the image processing means can be small. In this case, it is difficult to widen the angle of view of the optical system while maintaining the miniaturization of the optical system.

一方、条件式(23)の下限値を下回ると、光学系の歪曲収差による画像歪みを画像処理手段で補正した場合、画角周辺部の放射方向への引き伸ばし率が高くなりすぎる。その結果、撮像で得た画像において、画像周辺部の鮮鋭度の劣化が目立つようになってしまう。   On the other hand, below the lower limit value of the conditional expression (23), when image distortion due to distortion of the optical system is corrected by the image processing means, the stretching ratio in the radial direction around the angle of view becomes too high. As a result, in the image obtained by imaging, the sharpness degradation at the periphery of the image becomes conspicuous.

このように、条件式(23)を満足することにより、光学系の小型化と広角化(歪曲込みの垂直方向の画角を38°以上にする)とが可能となる。   Thus, by satisfying conditional expression (23), it is possible to reduce the size and widen the angle of the optical system (make the vertical angle of view of distortion more than 38 °).

なお、条件式(23)に代えて、次の条件式(23’)を満足すると、より好ましい。
0.88<y07/(fw・tanω07w)<0.96…(23’)
さらに、条件式(23)に代えて、次の条件式(23”)を満足すると、より一層好ましい。
0.90<y07/(fw・tanω07w)<0.95…(23”)
It is more preferable that the following conditional expression (23 ′) is satisfied instead of conditional expression (23).
0.88 <y 07 / (fw · tan ω 07w ) <0.96 (23 ′)
Furthermore, it is more preferable that the following conditional expression (23 ″) is satisfied instead of conditional expression (23).
0.90 <y 07 / (fw · tan ω 07w ) <0.95 (23 ″)

以上説明したように、本実施形態では、高ズーム比、広い画角など高い光学仕様性能を有するズームレンズを搭載しながらも、奥行き方向が極めて薄く、歪曲が少なく高画質な撮影が可能である電子撮像装置を提供することが可能となる。   As described above, in the present embodiment, a zoom lens having high optical specifications such as a high zoom ratio and a wide angle of view is mounted, but the depth direction is extremely thin, and there is little distortion and high-quality shooting is possible. An electronic imaging device can be provided.

次に、本発明の実施例1にかかるズームレンズについて説明する。図1は本発明の実施例1にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 1 of the present invention will be described. FIGS. 1A and 1B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to the first embodiment of the present invention when focusing on an object point at infinity. FIG. 1A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図2は実施例1にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。また、FIYは像高を示している。なお、収差図における記号は、後述の実施例においても共通である。   FIG. 2 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 1 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end. FIY represents the image height. The symbols in the aberration diagrams are the same in the examples described later.

実施例1のズームレンズは、図1に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、を有している。なお、以下全ての実施例において、レンズ断面図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面を示している。   As shown in FIG. 1, the zoom lens of Example 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group having a positive refractive power. G6. In all the following examples, in the lens cross-sectional views, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側より順に、像面側に凸面を向けた負メニスカスレンズL1と、プリズムL2と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL3と物体側に凸面を向けた正メニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface directed toward the image surface side, a prism L2, a meniscus lens L3 having a paraxial radius of curvature and a convex surface facing the object side, and an object surface. It is composed of a cemented lens of a positive meniscus lens L4 having a convex surface on the side and a biconvex positive lens L5, and has a positive refractive power as a whole.

メニスカスレンズL3はレンズLB、正メニスカスレンズL4はレンズLA、両凸正レンズL5はレンズLCに対応する。   The meniscus lens L3 corresponds to the lens LB, the positive meniscus lens L4 corresponds to the lens LA, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、両凹負レンズL7と、両凸正レンズL8と、で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a biconcave negative lens L7, and a biconvex positive lens L8. Have power.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL9で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L9 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側より順に、両凸正レンズL10と像面側に凸面を向けた負メニスカスレンズL11と像面側に凸面を向けた正メニスカスレンズL12との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L10, a negative meniscus lens L11 having a convex surface facing the image surface, and a positive meniscus lens L12 having a convex surface facing the image surface. And has a positive refractive power as a whole.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL13で構成されており、全体で負の屈折力を有している。   The fifth lens group G5 includes a negative meniscus lens L13 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第6レンズ群G6は、物体側より順に、両凸正レンズL14と、像面側に凸面を向けた負メニスカスレンズL15とで構成されており、全体で正の屈折力を有している。   The sixth lens group G6 includes, in order from the object side, a biconvex positive lens L14 and a negative meniscus lens L15 having a convex surface directed toward the image surface side. The sixth lens group G6 has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、物体側へ移動する。第6レンズ群は固定している。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the object side. The sixth lens group is fixed.

非球面は、第1レンズ群G1の負メニスカスレンズL1の物体側の両面と、メニスカスレンズL3の両面と、第2レンズ群G2の両凹負レンズL7の両面と、第4レンズ群G4の両凸正レンズL10の物体側の面と、正メニスカスレンズL12の像面側の面と、第6レンズ群G6の負メニスカスレンズL15物体側の面との9面に設けられている。   The aspheric surfaces are both the object-side both surfaces of the negative meniscus lens L1 of the first lens group G1, both surfaces of the meniscus lens L3, both surfaces of the biconcave negative lens L7 of the second lens group G2, and both of the fourth lens group G4. It is provided on nine surfaces including the object-side surface of the convex positive lens L10, the image-side surface of the positive meniscus lens L12, and the negative-side meniscus lens L15 of the sixth lens group G6.

次に、本発明の実施例2にかかるズームレンズについて説明する。図3は本発明の実施例2にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 2 of the present invention will be described. FIGS. 3A and 3B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to the second embodiment of the present invention when focusing on an object point at infinity, where FIG. 3A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図4は実施例2にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 4 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 2 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例2のズームレンズは、図3に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、を有している。   As shown in FIG. 3, the zoom lens of Example 2 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group having a positive refractive power. G6.

第1レンズ群G1は、物体側より順に、像面側に凸面を向けた負メニスカスレンズL1と、プリズムL2と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL3と物体側に凸面を向けた正メニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface directed toward the image surface side, a prism L2, a meniscus lens L3 having a paraxial radius of curvature and a convex surface facing the object side, and an object surface. It is composed of a cemented lens of a positive meniscus lens L4 having a convex surface on the side and a biconvex positive lens L5, and has a positive refractive power as a whole.

メニスカスレンズL3はレンズLB、正メニスカスレンズL4はレンズLA、両凸正レンズL5はレンズLCに対応する。   The meniscus lens L3 corresponds to the lens LB, the positive meniscus lens L4 corresponds to the lens LA, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、両凹負レンズL7と、両凸正レンズL8と、で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a biconcave negative lens L7, and a biconvex positive lens L8. Have power.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL9で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L9 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、両凸正レンズL10と像面側に凸面を向けた負メニスカスレンズL11と像面側に凸面を向けた正メニスカスレンズL12との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which includes a biconvex positive lens L10, a negative meniscus lens L11 having a convex surface directed toward the image surface, and a positive meniscus lens L12 having a convex surface directed toward the image surface. Has positive refractive power.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL13で構成されており、全体で負の屈折力を有している。   The fifth lens group G5 includes a negative meniscus lens L13 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第6レンズ群G6は、両凸正レンズL14と、像面側に凸面を向けた負メニスカスレンズL15とで構成されており、全体で正の屈折力を有している。   The sixth lens group G6 includes a biconvex positive lens L14 and a negative meniscus lens L15 having a convex surface directed toward the image surface side, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、物体側へ移動する。第6レンズ群は固定している。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the object side. The sixth lens group is fixed.

非球面は、第1レンズ群G1の負メニスカスレンズL1の物体側の両面と、メニスカスレンズL3の両面と、第2レンズ群G2の両凹負レンズL7の両面と、第4レンズ群G4の両凸正レンズL10の物体側の面と、正メニスカスレンズL12の像面側の面と、第6レンズ群G6の負メニスカスレンズL15物体側の面との9面に設けられている。   The aspheric surfaces are both the object-side both surfaces of the negative meniscus lens L1 of the first lens group G1, both surfaces of the meniscus lens L3, both surfaces of the biconcave negative lens L7 of the second lens group G2, and both of the fourth lens group G4. It is provided on nine surfaces including the object-side surface of the convex positive lens L10, the image-side surface of the positive meniscus lens L12, and the negative-side meniscus lens L15 of the sixth lens group G6.

次に、本発明の実施例3にかかるズームレンズについて説明する。図5は本発明の実施例3にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 3 of the present invention will be described. FIGS. 5A and 5B are cross-sectional views along the optical axis showing an optical configuration when focusing on an object point at infinity of a zoom lens according to Example 3 of the present invention, where FIG. 5A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図6は実施例3にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 6 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 3 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例3のズームレンズは、図5に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 5, the zoom lens of Example 3 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、像面側に凸面を向けた負メニスカスレンズL1と、プリズムL2と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL3と物体側に凸面を向けた負メニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L1 having a convex surface directed toward the image surface side, a prism L2, a meniscus lens L3 having a paraxial radius of curvature and a convex surface facing the object side, and an object surface. It is composed of a cemented lens of a negative meniscus lens L4 having a convex surface on the side and a biconvex positive lens L5, and has a positive refractive power as a whole.

メニスカスレンズL3はレンズLB、負メニスカスレンズL4はレンズLA、両凸正レンズL5はレンズLCに対応する。   The meniscus lens L3 corresponds to the lens LB, the negative meniscus lens L4 corresponds to the lens LA, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、両凹負レンズL7と、両凸正レンズL8と、で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a biconcave negative lens L7, and a biconvex positive lens L8. Have power.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL9で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L9 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL10と物体側に凸面を向けた負メニスカスレンズL11と両凸正レンズL12との接合レンズと、物体側に凸面を向けた負メニスカスレンズL13で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L10 having a convex surface directed toward the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, and a biconvex positive lens L12, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L13 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L14 having a convex surface directed toward the image surface side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1のメニスカスレンズL3の両面と、第2レンズ群G2の両凹負レンズL7の両面と、第4レンズ群G4の正メニスカスレンズL10の物体側の面と、両凸正レンズL12の像面側の面との6面に設けられている。   The aspheric surfaces include both surfaces of the meniscus lens L3 of the first lens group G1, both surfaces of the biconcave negative lens L7 of the second lens group G2, the object side surface of the positive meniscus lens L10 of the fourth lens group G4, and both. The convex positive lens L12 is provided on six surfaces with the image side surface.

次に、本発明の実施例4にかかるズームレンズについて説明する。図7は本発明の実施例4にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 4 of the present invention will be described. FIGS. 7A and 7B are cross-sectional views along the optical axis showing the optical configuration when focusing on an object point at infinity of a zoom lens according to Example 4 of the present invention, where FIG. 7A is a wide angle end, and FIG. (C) is a sectional view at the telephoto end.

図8は実施例4にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 8 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 4 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例4のズームレンズは、図7に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 7, the zoom lens of Example 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、両凹負レンズL1と、プリズムL2と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL3と物体側に凸面を向けた正メニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a biconcave negative lens L1, a prism L2, a meniscus lens L3 having a paraxial radius of curvature with the same convex surface facing the object side, and a positive surface facing the convex side toward the object side. It is composed of a cemented lens of a meniscus lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

メニスカスレンズL3はレンズLB、正メニスカスレンズL4はレンズLA、両凸正レンズL5はレンズLCに対応する。   The meniscus lens L3 corresponds to the lens LB, the positive meniscus lens L4 corresponds to the lens LA, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、像面側に凸面を向けた正メニスカスレンズL7と両凹負レンズL8との接合レンズと、両凸正レンズL9とで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a cemented lens of a positive meniscus lens L7 having a convex surface directed toward the image side and a biconcave negative lens L8, It consists of a convex positive lens L9 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL10で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L10 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11と物体側に凸面を向けた負メニスカスレンズL12と両凸正レンズL13との接合レンズと、物体側に凸面を向けた負メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L14 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL15で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L15 having a convex surface directed toward the image side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1のメニスカスレンズL3の両面と、第2レンズ群G2の正メニスカスレンズL7の両面と、両凹負レンズL8の像面側の面と、第4レンズ群G4の正メニスカスレンズL11の物体側の面と、両凸正レンズL13の像面側の面との7面に設けられている。   The aspheric surfaces include both surfaces of the meniscus lens L3 of the first lens group G1, both surfaces of the positive meniscus lens L7 of the second lens group G2, the image side surface of the biconcave negative lens L8, and the fourth lens group G4. It is provided on seven surfaces, that is, the object-side surface of the positive meniscus lens L11 and the image-side surface of the biconvex positive lens L13.

次に、本発明の実施例5にかかるズームレンズについて説明する。図9は本発明の実施例5にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 5 of the present invention will be described. 9A and 9B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 5 of the present invention when focusing on an object point at infinity, where FIG. 9A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図10は実施例5にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 10 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 5 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例5のズームレンズは、図9に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 9, the zoom lens of Example 5 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、両凹負レンズL1と、プリズムL2と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL3と物体側に凸面を向けた負メニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a biconcave negative lens L1, a prism L2, a meniscus lens L3 having a paraxial radius of curvature with the same convex surface facing the object side, and a negative surface facing the convex side toward the object side. It is composed of a cemented lens of a meniscus lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

メニスカスレンズL3はレンズLB、負メニスカスレンズL4はレンズLA、両凸正レンズL5はレンズLCに対応する。   The meniscus lens L3 corresponds to the lens LB, the negative meniscus lens L4 corresponds to the lens LA, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、像面側に凸面を向けた正メニスカスレンズL7と両凹負レンズL8との接合レンズと、両凸正レンズL9とで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a cemented lens of a positive meniscus lens L7 having a convex surface directed toward the image side and a biconcave negative lens L8, It consists of a convex positive lens L9 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL10で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L10 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11と物体側に凸面を向けた負メニスカスレンズL12と両凸正レンズL13との接合レンズと、物体側に凸面を向けた負メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L14 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL15で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L15 having a convex surface directed toward the image side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1のメニスカスレンズL3の両面と、第2レンズ群G2の正メニスカスレンズL7の両面と、両凹負レンズL8の像面側の面と、第4レンズ群G4の正メニスカスレンズL11の物体側の面と、両凸正レンズL13の像面側の面との7面に設けられている。   The aspheric surfaces include both surfaces of the meniscus lens L3 of the first lens group G1, both surfaces of the positive meniscus lens L7 of the second lens group G2, the image side surface of the biconcave negative lens L8, and the fourth lens group G4. It is provided on seven surfaces, that is, the object-side surface of the positive meniscus lens L11 and the image-side surface of the biconvex positive lens L13.

次に、本発明の実施例6にかかるズームレンズについて説明する。図11は本発明の実施例6にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 6 of the present invention will be described. 11A and 11B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 6 of the present invention when focusing on an object point at infinity. FIG. 11A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図12は実施例6にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 12 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 6 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例6のズームレンズは、図11に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 11, the zoom lens of Example 6 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、両凹負レンズL1と、プリズムL2と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL3と物体側に凸面を向けた負メニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a biconcave negative lens L1, a prism L2, a meniscus lens L3 having a paraxial radius of curvature with the same convex surface facing the object side, and a negative surface facing the convex side toward the object side. It is composed of a cemented lens of a meniscus lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

メニスカスレンズL3はレンズLB、負メニスカスレンズL4はレンズLA、両凸正レンズL5はレンズLCに対応する。   The meniscus lens L3 corresponds to the lens LB, the negative meniscus lens L4 corresponds to the lens LA, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、像面側に凸面を向けた正メニスカスレンズL7と両凹負レンズL8との接合レンズと、両凸正レンズL9とで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a cemented lens of a positive meniscus lens L7 having a convex surface directed toward the image side and a biconcave negative lens L8, It consists of a convex positive lens L9 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL10で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L10 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11と物体側に凸面を向けた負メニスカスレンズL12と両凸正レンズL13との接合レンズと、物体側に凸面を向けた負メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L14 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL15で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L15 having a convex surface directed toward the image side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1のメニスカスレンズL3の両面と、第2レンズ群G2の正メニスカスレンズL7の両面と、両凹負レンズL8の像面側の面と、第4レンズ群G4の正メニスカスレンズL11の物体側の面と、両凸正レンズL13の像面側の面との7面に設けられている。   The aspheric surfaces include both surfaces of the meniscus lens L3 of the first lens group G1, both surfaces of the positive meniscus lens L7 of the second lens group G2, the image side surface of the biconcave negative lens L8, and the fourth lens group G4. It is provided on seven surfaces, that is, the object-side surface of the positive meniscus lens L11 and the image-side surface of the biconvex positive lens L13.

次に、本発明の実施例7にかかるズームレンズについて説明する。図13は本発明の実施例7にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 7 of the present invention will be described. FIGS. 13A and 13B are cross-sectional views along the optical axis showing the optical configuration when focusing on an object point at infinity of a zoom lens according to Example 7 of the present invention. FIG. 13A is a wide-angle end, and FIG. 13B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図14は実施例7にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 14 is a diagram showing spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 7 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例7のズームレンズは、図13に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 13, the zoom lens according to the seventh embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、両凹負レンズL1と、プリズムL2と、物体側に凸面を向けた負メニスカスレンズL3と物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 has, in order from the object side, a biconcave negative lens L1, a prism L2, a negative meniscus lens L3 with a convex surface facing the object side, and a paraxial radius of curvature that is equal on both surfaces with the convex surface facing the object side. It is composed of a cemented lens of a meniscus lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

負メニスカスレンズL3はレンズLA、メニスカスレンズL4はレンズLB、両凸正レンズL5はレンズLCに対応する。   The negative meniscus lens L3 corresponds to the lens LA, the meniscus lens L4 corresponds to the lens LB, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、像面側に凸面を向けた正メニスカスレンズL7と両凹負レンズL8との接合レンズと、両凸正レンズL9とで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a cemented lens of a positive meniscus lens L7 having a convex surface directed toward the image side and a biconcave negative lens L8, It consists of a convex positive lens L9 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL10で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L10 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11と物体側に凸面を向けた負メニスカスレンズL12と両凸正レンズL13との接合レンズと、物体側に凸面を向けた負メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L14 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL15で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L15 having a convex surface directed toward the image side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1の負メニスカスレンズL3の両面と、第2レンズ群G2の正メニスカスレンズL7の両面と、両凹負レンズL8の像面側の面と、第4レンズ群G4の正メニスカスレンズL11の物体側の面と、両凸正レンズL13の像面側の面との7面に設けられている。   The aspheric surfaces include both surfaces of the negative meniscus lens L3 of the first lens group G1, both surfaces of the positive meniscus lens L7 of the second lens group G2, the image side surface of the biconcave negative lens L8, and the fourth lens group G4. Of the positive meniscus lens L11 on the object side and the image side surface of the biconvex positive lens L13.

次に、本発明の実施例8にかかるズームレンズについて説明する。図15は本発明の実施例8にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 8 of the present invention will be described. 15A and 15B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 8 of the present invention when focusing on an object point at infinity, where FIG. 15A is a wide angle end, and FIG. 15B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図16は実施例8にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 16 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 8 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例8のズームレンズは、図15に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 15, the zoom lens of Example 8 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、両凹負レンズL1と、プリズムL2と、物体側に凸面を向けた負メニスカスレンズL3と物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL4と両凸正レンズL5との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 has, in order from the object side, a biconcave negative lens L1, a prism L2, a negative meniscus lens L3 with a convex surface facing the object side, and a paraxial radius of curvature that is equal on both surfaces with the convex surface facing the object side. It is composed of a cemented lens of a meniscus lens L4 and a biconvex positive lens L5, and has a positive refractive power as a whole.

負メニスカスレンズL3はレンズLA、メニスカスレンズL4はレンズLB、両凸正レンズL5はレンズLCに対応する。   The negative meniscus lens L3 corresponds to the lens LA, the meniscus lens L4 corresponds to the lens LB, and the biconvex positive lens L5 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL6と、像面側に凸面を向けた正メニスカスレンズL7と両凹負レンズL8との接合レンズと、両凸正レンズL9とで構成されており、全体で負の屈折力を有している。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface directed toward the object side, a cemented lens of a positive meniscus lens L7 having a convex surface directed toward the image side and a biconcave negative lens L8, It consists of a convex positive lens L9 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL10で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L10 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL11と物体側に凸面を向けた負メニスカスレンズL12と両凸正レンズL13との接合レンズと、物体側に凸面を向けた負メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a biconvex positive lens L13, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L14 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL15で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L15 having a convex surface directed toward the image side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1の負メニスカスレンズL3の両面と、第2レンズ群G2の正メニスカスレンズL7の両面と、両凹負レンズL8の像面側の面と、第4レンズ群G4の正メニスカスレンズL11の物体側の面と、両凸正レンズL13の像面側の面との7面に設けられている。   The aspheric surfaces include both surfaces of the negative meniscus lens L3 of the first lens group G1, both surfaces of the positive meniscus lens L7 of the second lens group G2, the image side surface of the biconcave negative lens L8, and the fourth lens group G4. Of the positive meniscus lens L11 on the object side and the image side surface of the biconvex positive lens L13.

次に、本発明の実施例9にかかるズームレンズについて説明する。図17は本発明の実施例9にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 9 of the present invention will be described. FIGS. 17A and 17B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 9 of the present invention when focusing on an object point at infinity, where FIG. 17A is a wide-angle end, and FIG. (C) is a sectional view at the telephoto end.

図18は実施例9にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 18 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 9 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例9のズームレンズは、図17に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 17, the zoom lens of Example 9 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、物体側に凹面を向けた平凹負レンズL1と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL2と物体側に凸面を向けた負メニスカスレンズL3と両凸正レンズL4との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a plano-concave negative lens L1 having a concave surface directed toward the object side, a meniscus lens L2 having a paraxial radius of curvature and a convex surface facing the object side, and a convex surface facing the object side. This is composed of a cemented lens of a negative meniscus lens L3 and a biconvex positive lens L4, and has a positive refractive power as a whole.

メニスカスレンズL2はレンズLB、負メニスカスレンズL3はレンズLA、両凸正レンズL4はレンズLCに対応する。   The meniscus lens L2 corresponds to the lens LB, the negative meniscus lens L3 corresponds to the lens LA, and the biconvex positive lens L4 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL5と、像面側に凸面を向けた正メニスカスレンズL6と両凹負レンズL7との接合レンズと、両凸正レンズL8とで構成されており、全体で負の屈折力を有している。   The second lens group G2, in order from the object side, includes a negative meniscus lens L5 having a convex surface facing the object side, a cemented lens of a positive meniscus lens L6 having a convex surface facing the image surface side, and a biconcave negative lens L7, It consists of a convex positive lens L8 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL9で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L9 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL10と物体側に凸面を向けた負メニスカスレンズL11と両凸正レンズL12との接合レンズと、物体側に凸面を向けた負メニスカスレンズL13で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens of a positive meniscus lens L10 having a convex surface directed toward the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, and a biconvex positive lens L12, and a negative lens having a convex surface directed toward the object side. It is composed of a meniscus lens L13 and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L14 having a convex surface directed toward the image surface side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1のメニスカスレンズL2の両面と、第2レンズ群G2の正メニスカスレンズL6の両面と、両凹負レンズL7の像面側の面と、第4レンズ群G4の正メニスカスレンズL10の物体側の面と、両凸正レンズL12の像面側の面との7面に設けられている。   The aspheric surfaces include both surfaces of the meniscus lens L2 of the first lens group G1, both surfaces of the positive meniscus lens L6 of the second lens group G2, the image side surface of the biconcave negative lens L7, and the fourth lens group G4. It is provided on seven surfaces including the object side surface of the positive meniscus lens L10 and the image surface side surface of the biconvex positive lens L12.

次に、本発明の実施例10にかかるズームレンズについて説明する。図19は本発明の実施例10にかかるズームレンズの無限遠物点合焦時の光学構成を示す光軸に沿う断面図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での断面図である。   Next, a zoom lens according to embodiment 10 of the present invention will be described. 19A and 19B are cross-sectional views along the optical axis showing the optical configuration of the zoom lens according to Example 10 of the present invention when focusing on an object point at infinity. FIG. 19A is a wide-angle end, and FIG. 19B is an intermediate focal length state. (C) is a sectional view at the telephoto end.

図20は実施例10にかかるズームレンズの無限遠物点合焦時における球面収差(SA)、非点収差(AS)、歪曲収差(DT)、倍率色収差(CC)を示す図であり、(a)は広角端、(b)は中間焦点距離状態、(c)は望遠端での状態を示している。   FIG. 20 is a diagram illustrating spherical aberration (SA), astigmatism (AS), distortion (DT), and lateral chromatic aberration (CC) when the zoom lens according to Example 10 is focused on an object point at infinity. a) shows the wide-angle end, (b) shows the intermediate focal length state, and (c) shows the state at the telephoto end.

実施例10のズームレンズは、図19に示すように、物体側より順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有している。   As shown in FIG. 19, the zoom lens of Example 10 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. A third lens group G3 having an aperture stop S, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側より順に、物体側に凹面を向けた平凹負レンズL1と、物体側に凸面を向けた両面が等しい近軸曲率半径のメニスカスレンズL2と物体側に凸面を向けた正メニスカスレンズL3と両凸正レンズL4との接合レンズで構成されており、全体で正の屈折力を有している。   The first lens group G1 includes, in order from the object side, a plano-concave negative lens L1 having a concave surface directed toward the object side, a meniscus lens L2 having a paraxial radius of curvature and a convex surface facing the object side, and a convex surface facing the object side. It is composed of a cemented lens of a directed positive meniscus lens L3 and a biconvex positive lens L4, and has a positive refractive power as a whole.

メニスカスレンズL2はレンズLB、正メニスカスレンズL3はレンズLA、両凸正レンズL4はレンズLCに対応する。   The meniscus lens L2 corresponds to the lens LB, the positive meniscus lens L3 corresponds to the lens LA, and the biconvex positive lens L4 corresponds to the lens LC.

第2レンズ群G2は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL5と、像面側に凸面を向けた正メニスカスレンズL6と両凹負レンズL7との接合レンズと、両凸正レンズL8とで構成されており、全体で負の屈折力を有している。   The second lens group G2, in order from the object side, includes a negative meniscus lens L5 having a convex surface facing the object side, a cemented lens of a positive meniscus lens L6 having a convex surface facing the image surface side, and a biconcave negative lens L7, It consists of a convex positive lens L8 and has a negative refractive power as a whole.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL9で構成されており、全体で正の屈折力を有している。   The third lens group G3 includes a positive meniscus lens L9 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

第4レンズ群G4は、物体側より順に、物体側に凸面を向けた正メニスカスレンズL10と物体側に凸面を向けた負メニスカスレンズL11と両凸正レンズL12との接合レンズと、物体側に凸面を向けた負メニスカスレンズL13で構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes, in order from the object side, a cemented lens of a positive meniscus lens L10 having a convex surface directed toward the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, and a biconvex positive lens L12; The lens is composed of a negative meniscus lens L13 having a convex surface and has a positive refractive power as a whole.

第5レンズ群G5は、像面側に凸面を向けた正メニスカスレンズL14で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L14 having a convex surface directed toward the image surface side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定している。第2レンズ群G2は、像面側へ移動する。第3レンズ群G3は固定している。第4レンズ群G4は物体側へ移動する。第5レンズ群は、像面側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed. The second lens group G2 moves to the image plane side. The third lens group G3 is fixed. The fourth lens group G4 moves to the object side. The fifth lens group moves to the image plane side.

非球面は、第1レンズ群G1の平凹レンズL1の物体側の面と、メニスカスレンズL2の両面と、第2レンズ群G2の正メニスカスレンズL6の両面と、両凹負レンズL7の像面側の面と、第4レンズ群G4の正メニスカスレンズL10の物体側の面と、両凸正レンズL12の像面側の面との8面に設けられている。   The aspheric surfaces are the object side surface of the plano-concave lens L1 of the first lens group G1, the both surfaces of the meniscus lens L2, the both surfaces of the positive meniscus lens L6 of the second lens group G2, and the image surface side of the biconcave negative lens L7. , The object side surface of the positive meniscus lens L10 of the fourth lens group G4, and the image surface side surface of the biconvex positive lens L12.

次に、上記各実施例のズームレンズを構成する光学部材の数値データを掲げる。なお、各実施例の数値データにおいて、r1、r2、…は各レンズ面の曲率半径、d1、d2、…は各レンズの肉厚または空気間隔、nd1、nd2、…は各レンズのd線での屈折率、νd1、νd2、…は各レンズのアッべ数、Fno.はFナンバー、fは全系焦点距離、D0は物体から第1面までの距離をそれぞれ表している。また、*は非球面を示している。   Next, numerical data of optical members constituting the zoom lens of each of the above embodiments will be listed. In the numerical data of each embodiment, r1, r2,... Are the curvature radii of the lens surfaces, d1, d2,... Are the thickness or air spacing of each lens, and nd1, nd2,. Are the Abbe number of each lens, Fno. Is the F number, f is the focal length of the entire system, and D0 is the distance from the object to the first surface. * Indicates an aspherical surface.

また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をK、非球面係数をA4、A6、A8、A10としたとき、次の式(I)で表される。
z=(y2/r)/[1+{1−(1+K)(y/r)21/2
+A4y4+A6y6+A8y8+A10y10 …(I)
また、Eは10のべき乗を表している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
The aspherical shape is expressed by the following equation (I) where z is the optical axis direction, y is the direction perpendicular to the optical axis, K is the conic coefficient, and A4, A6, A8, and A10 are the aspheric coefficients. expressed.
z = (y 2 / r) / [1+ {1− (1 + K) (y / r) 2 } 1/2 ]
+ A4y 4 + A6y 6 + A8y 8 + A10y 10 (I)
E represents a power of 10. The symbols of these specification values are common to the numerical data of the examples described later.

数値実施例1単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1* -23.1017 1.0000 2.00170 20.60 7.060
2* 26.0696 0.2000 1. 6.839
3 ∞ 9.0000 1.90366 31.32 6.821
4 ∞ 0.2000 1. 5.972
5* 8.6455 0.7000 1.62263 58.16 5.657
6* 8.6455 0.1000 1.63387 23.38 5.437
7 9.8255 3.6000 1.80400 46.57 5.407
8 -35.3936 可変 1. 5.800
9 105.1397 0.5000 1.88300 40.76 4.055
10 4.6866 2.2000 1. 3.314
11* -37.5922 0.6000 1.53071 55.69 3.331
12* 10.3668 0.1500 1. 3.325
13 16.2868 1.4000 1.92286 20.88 3.332
14 -27.3863 可変 1. 3.300
15 10.7387 1.1000 1.58313 59.38 2.110
16 74.7889 0.7000 1. 1.983
17(絞り) ∞ 可変 1. 1.836
18* 17.3631 1.3000 1.51633 64.14 2.500
19 -7.6843 0.5000 1.92286 20.88 2.607
20 -20.5309 3.0000 1.51633 64.14 2.753
21* -4.6271 可変 1. 3.171
22 20.7946 0.6000 1.77250 49.60 2.766
23 5.1201 可変 1. 2.648
24 18.5961 3.5000 1.58313 59.38 4.500
25 -7.6484 0.1500 1. 3.461
26* -8.7703 0.5000 1.94595 17.98 3.429
27 -40.8400 可変 1. 3.544
28 ∞ 0.8000 1.51633 64.14 3.712
29 ∞ 0.4183 1. 3.790
像面 ∞

非球面データ

第1面
K=3.4754,A2=0.0000E+00,A4=-5.9279E-04,A6=2.0632E-05,A8=-2.9000E-07,
A10=1.6426E-09

第2面
K=-38.0304,A2=0.0000E+00,A4=-8.1404E-04,A6=2.3408E-05,A8=-3.2523E-07,
A10=1.8870E-09

第5面
K=0.,A2=0.0000E+00,A4=-5.7522E-04,A6=6.5608E-07,A8=9.5316E-09,A10=-6.2795E-10

第6面
K=0.,A2=0.0000E+00,A4=-3.2034E-04,A6=-1.1273E-06,A8=0.0000E+00,A10=0.0000E+00

第11面
K=7.6678,A2=0.0000E+00,A4=-1.5985E-03,A6=3.1052E-04,A8=-1.2776E-05,
A10=1.7129E-07

第12面
K=-7.7645,A2=0.0000E+00,A4=-1.7938E-03,A6=2.9956E-04,A8=-1.6778E-05,
A10=2.3416E-07

第18面
K=1.1999,A2=0.0000E+00,A4=-1.7312E-03,A6=2.6534E-05,A8=-1.3626E-05,
A10=6.1110E-07

第21面
K=0.,A2=0.0000E+00,A4=1.0770E-03,A6=2.3738E-05,A8=-3.2983E-06,A10=1.9693E-07

第26面
K=0.,A2=0.0000E+00,A4=7.2771E-04,A6=-1.0901E-05,A8=0.0000E+00,A10=0.0000E+00


〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L8,L11 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L15 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.001700 1.988000 2.036520 2.067256 2.095660
L3 1.622630 1.619350 1.630050 1.635825 1.640600
L4 1.633870 1.626381 1.653490 1.671610 1.688826
L9,L14 1.583126 1.580139 1.589960 1.595296 1.599721
L10,L12 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.882997 1.876560 1.898221 1.910495 1.920919
L5 1.804000 1.798815 1.816080 1.825698 1.833800
L13 1.772499 1.767798 1.783374 1.791971 1.799174
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.34386 11.21979 24.97954
Fナンバー 3.9331 4.5025 4.9000
画角(ω) 39.3° 18.6° 8.8°
像高 3.84
レンズ全長 53.6484 53.6425 53.6461
BF 0.41833 0.42177 0.42393

d8 0.48471 4.95994 8.87147
d14 9.00633 4.56928 0.61356
d17 5.10335 3.04547 0.99799
d21 3.86501 3.06904 0.88130
d23 1.99942 4.80580 9.08665
d27 0.97120 0.97120 0.97120

ズームレンズ群データ

群 始面 焦点距離
1 1 12.72559
2 9 -7.50268
3 15 21.36822
4 18 9.30253
5 22 -8.94217
6 24 40.37491
Numerical example 1 unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 * -23.1017 1.0000 2.00170 20.60 7.060
2 * 26.0696 0.2000 1. 6.839
3 ∞ 9.0000 1.90366 31.32 6.821
4 ∞ 0.2000 1. 5.972
5 * 8.6455 0.7000 1.62263 58.16 5.657
6 * 8.6455 0.1000 1.63387 23.38 5.437
7 9.8255 3.6000 1.80400 46.57 5.407
8 -35.3936 Variable 1. 5.800
9 105.1397 0.5000 1.88300 40.76 4.055
10 4.6866 2.2000 1. 3.314
11 * -37.5922 0.6000 1.53071 55.69 3.331
12 * 10.3668 0.1500 1. 3.325
13 16.2868 1.4000 1.92286 20.88 3.332
14 -27.3863 Variable 1. 3.300
15 10.7387 1.1000 1.58313 59.38 2.110
16 74.7889 0.7000 1. 1.983
17 (Aperture) ∞ Variable 1.1.836
18 * 17.3631 1.3000 1.51633 64.14 2.500
19 -7.6843 0.5000 1.92286 20.88 2.607
20 -20.5309 3.0000 1.51633 64.14 2.753
21 * -4.6271 Variable 1. 3.171
22 20.7946 0.6000 1.77250 49.60 2.766
23 5.1201 Variable 1. 2.648
24 18.5961 3.5000 1.58313 59.38 4.500
25 -7.6484 0.1500 1. 3.461
26 * -8.7703 0.5000 1.94595 17.98 3.429
27 -40.8400 Variable 1.3.544
28 ∞ 0.8000 1.51633 64.14 3.712
29 ∞ 0.4183 1. 3.790
Image plane ∞

Aspheric data

First side
K = 3.4754, A2 = 0.0000E + 00, A4 = -5.9279E-04, A6 = 2.0632E-05, A8 = -2.9000E-07,
A10 = 1.6426E-09

Second side
K = -38.0304, A2 = 0.0000E + 00, A4 = -8.1404E-04, A6 = 2.3408E-05, A8 = -3.2523E-07,
A10 = 1.8870E-09

5th page
K = 0., A2 = 0.0000E + 00, A4 = -5.7522E-04, A6 = 6.5608E-07, A8 = 9.5316E-09, A10 = -6.2795E-10

6th page
K = 0., A2 = 0.0000E + 00, A4 = -3.2034E-04, A6 = -1.1273E-06, A8 = 0.0000E + 00, A10 = 0.0000E + 00

11th page
K = 7.6678, A2 = 0.0000E + 00, A4 = -1.5985E-03, A6 = 3.1052E-04, A8 = -1.2776E-05,
A10 = 1.7129E-07

12th page
K = -7.7645, A2 = 0.0000E + 00, A4 = -1.7938E-03, A6 = 2.9956E-04, A8 = -1.6778E-05,
A10 = 2.3416E-07

18th page
K = 1.1999, A2 = 0.0000E + 00, A4 = -1.7312E-03, A6 = 2.6534E-05, A8 = -1.3626E-05,
A10 = 6.1110E-07

21st page
K = 0., A2 = 0.0000E + 00, A4 = 1.0770E-03, A6 = 2.3738E-05, A8 = -3.2983E-06, A10 = 1.9693E-07

26th page
K = 0., A2 = 0.0000E + 00, A4 = 7.2771E-04, A6 = -1.0901E-05, A8 = 0.0000E + 00, A10 = 0.0000E + 00


[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L8, L11 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L15 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.001700 1.988000 2.036520 2.067256 2.095660
L3 1.622630 1.619350 1.630050 1.635825 1.640600
L4 1.633870 1.626381 1.653490 1.671610 1.688826
L9, L14 1.583126 1.580139 1.589960 1.595296 1.599721
L10, L12 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.882997 1.876560 1.898221 1.910495 1.920919
L5 1.804000 1.798815 1.816080 1.825698 1.833800
L13 1.772499 1.767798 1.783374 1.791971 1.799174
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 5.34386 11.21979 24.97954
F number 3.9331 4.5025 4.9000
Angle of view (ω) 39.3 ° 18.6 ° 8.8 °
Statue height 3.84
Total lens length 53.6484 53.6425 53.6461
BF 0.41833 0.42177 0.42393

d8 0.48471 4.95994 8.87147
d14 9.00633 4.56928 0.61356
d17 5.10335 3.04547 0.99799
d21 3.86501 3.06904 0.88130
d23 1.99942 4.80580 9.08665
d27 0.97120 0.97120 0.97120

Zoom lens group data

Group Start surface Focal length
1 1 12.72559
2 9 -7.50268
3 15 21.36822
4 18 9.30253
5 22 -8.94217
6 24 40.37491

数値実施例2
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1* -39.2317 0.9000 2.14352 17.77 6.871
2* 24.0979 0.3000 1. 6.781
3 ∞ 9.0000 1.90366 31.32 6.755
4 ∞ 0.2000 1. 5.880
5* 10.8957 0.7000 1.62263 58.16 5.618
6* 10.8957 0.1000 1.63387 23.38 5.441
7 11.6532 3.3000 2.04300 39.00 5.389
8 -66.8690 可変 1. 5.800
9 57.1700 0.5000 1.88300 40.76 4.132
10 4.6302 2.2000 1. 3.356
11* -50.1165 0.6000 1.53071 55.69 3.367
12* 9.3682 0.1500 1. 3.345
13 14.7763 1.4000 1.92286 20.88 3.349
14 -39.2602 可変 1. 3.300
15 9.1823 1.1000 1.58313 59.38 2.076
16 42.5604 0.7000 1. 1.942
17(絞り) ∞ 可変 1. 1.806
18* 14.0594 2.3000 1.51633 64.14 2.500
19 -6.5863 0.5000 1.92286 20.88 2.700
20 -13.9631 2.0000 1.51633 64.14 2.851
21* -4.6097 可変 1. 3.081
22 22.1884 0.6000 1.77250 49.60 2.689
23 4.8260 可変 1. 2.566
24 13.5579 3.5000 1.58313 59.38 4.500
25 -7.5087 0.1500 1. 3.361
26* -8.1618 0.5000 1.94595 17.98 3.328
27 -43.1062 可変 1. 3.449
28 ∞ 0.8000 1.51633 64.14 3.716
29 ∞ 0.3955 1. 3.800
像面 ∞

非球面データ

第1面
K=3.4846,A2=0.0000E+00,A4=-3.9038E-04,A6=4.6235E-06,A8=-7.5045E-09,
A10=-2.5553E-10

第2面
K=-38.3983,A2=0.0000E+00,A4=-3.5255E-04,A6=2.2842E-06,A8=3.6081E-08,
A10=-5.6451E-10

第5面
K=0.,A2=0.0000E+00,A4=-3.8508E-04C,A6=1.4302E-06C,A8=-2.4767E-08C,
A10=1.3250E-10C

第6面
K=0.,A2=0.0000E+00,A4=-2.8022E-04,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第11面
K=7.1019,A2=0.0000E+00,A4=-1.5985E-03,A6=3.1052E-04,A8-1.2776E-05,
A10=1.7129E-07

第12面
K=-5.7696,A2=0.0000E+00,A4=-1.7938E-03,A6=2.9956E-04,A8=-1.6778E-05,
A10=2.3416E-07

第18面
K=1.7967,A2=0.0000E+00,A4=-1.7312E-03,A6=2.6534E-05,A8=-1.3626E-05,
A10=6.1110E-07

第21面
K=0.,A2=0.0000E+00,A4=1.0770E-03,A6=2.3738E-05,A8=-3.2983E-06,A10=1.9693E-07

第26面
K=0.,A2=0.0000E+00,A4=7.2771E-04,A6=-1.0901E-05,A8=0.0000E+00,A10=0.0000E+00


〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L5 2.042998 2.035064 2.061804 2.076930 2.089691
L8,L11 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L15 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.143520 2.125601 2.189954 2.232324 2.273184
L3 1.622630 1.619350 1.630050 1.635825 1.640600
L4 1.633870 1.626381 1.653490 1.671610 1.688826
L9,L14 1.583126 1.580139 1.589960 1.595296 1.599721
L10,L12 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.882997 1.876560 1.898221 1.910495 1.920919
L13 1.772499 1.767798 1.783374 1.791971 1.799174
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.29892 11.03507 24.94713
Fナンバー 4.0311 4.5921 4.9000
画角(ω) 39.7° 18.9° 8.8°
像高 3.84
レンズ全長 52.9651 52.9670 52.9672
BF 0.39546 0.39965 0.40153

d8 0.45099 4.99087 9.12474

d14 9.11621 4.58000 0.44259
d17 5.07142 2.92911 0.96911
d21 3.03853 2.57253 0.79003
d23 1.88362 4.48595 8.23032
d27 1.50888 1.50888 1.50888

ズームレンズ群データ

群 始面 焦点距離
1 1 13.24761
2 9 -7.14663
3 15 19.83766
4 18 8.96115
5 22 -8.10578
6 24 33.55409
Numerical example 2
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 * -39.2317 0.9000 2.14352 17.77 6.871
2 * 24.0979 0.3000 1. 6.781
3 ∞ 9.0000 1.90366 31.32 6.755
4 ∞ 0.2000 1. 5.880
5 * 10.8957 0.7000 1.62263 58.16 5.618
6 * 10.8957 0.1000 1.63387 23.38 5.441
7 11.6532 3.3000 2.04300 39.00 5.389
8 -66.8690 Variable 1. 5.800
9 57.1700 0.5000 1.88300 40.76 4.132
10 4.6302 2.2000 1. 3.356
11 * -50.1165 0.6000 1.53071 55.69 3.367
12 * 9.3682 0.1500 1. 3.345
13 14.7763 1.4000 1.92286 20.88 3.349
14 -39.2602 Variable 1. 3.300
15 9.1823 1.1000 1.58313 59.38 2.076
16 42.5604 0.7000 1. 1.942
17 (Aperture) ∞ Variable 1. 1.806
18 * 14.0594 2.3000 1.51633 64.14 2.500
19 -6.5863 0.5000 1.92286 20.88 2.700
20 -13.9631 2.0000 1.51633 64.14 2.851
21 * -4.6097 Variable 1.3.081
22 22.1884 0.6000 1.77250 49.60 2.689
23 4.8260 Variable 1. 2.566
24 13.5579 3.5000 1.58313 59.38 4.500
25 -7.5087 0.1500 1. 3.361
26 * -8.1618 0.5000 1.94595 17.98 3.328
27 -43.1062 Variable 1. 3.449
28 ∞ 0.8000 1.51633 64.14 3.716
29 ∞ 0.3955 1. 3.800
Image plane ∞

Aspheric data

First side
K = 3.4846, A2 = 0.0000E + 00, A4 = -3.9038E-04, A6 = 4.6235E-06, A8 = -7.5045E-09,
A10 = -2.5553E-10

Second side
K = -38.3983, A2 = 0.0000E + 00, A4 = -3.5255E-04, A6 = 2.2842E-06, A8 = 3.6081E-08,
A10 = -5.6451E-10

5th page
K = 0., A2 = 0.0000E + 00, A4 = -3.8508E-04C, A6 = 1.4302E-06C, A8 = -2.4767E-08C,
A10 = 1.3250E-10C

6th page
K = 0., A2 = 0.0000E + 00, A4 = -2.8022E-04, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

11th page
K = 7.1019, A2 = 0.0000E + 00, A4 = -1.5985E-03, A6 = 3.1052E-04, A8-1.2776E-05,
A10 = 1.7129E-07

12th page
K = -5.7696, A2 = 0.0000E + 00, A4 = -1.7938E-03, A6 = 2.9956E-04, A8 = -1.6778E-05,
A10 = 2.3416E-07

18th page
K = 1.7967, A2 = 0.0000E + 00, A4 = -1.7312E-03, A6 = 2.6534E-05, A8 = -1.3626E-05,
A10 = 6.1110E-07

21st page
K = 0., A2 = 0.0000E + 00, A4 = 1.0770E-03, A6 = 2.3738E-05, A8 = -3.2983E-06, A10 = 1.9693E-07

26th page
K = 0., A2 = 0.0000E + 00, A4 = 7.2771E-04, A6 = -1.0901E-05, A8 = 0.0000E + 00, A10 = 0.0000E + 00


[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L5 2.042998 2.035064 2.061804 2.076930 2.089691
L8, L11 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L15 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.143520 2.125601 2.189954 2.232324 2.273184
L3 1.622630 1.619350 1.630050 1.635825 1.640600
L4 1.633870 1.626381 1.653490 1.671610 1.688826
L9, L14 1.583126 1.580139 1.589960 1.595296 1.599721
L10, L12 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.882997 1.876560 1.898221 1.910495 1.920919
L13 1.772499 1.767798 1.783374 1.791971 1.799174
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 5.29892 11.03507 24.94713
F number 4.0311 4.5921 4.9000
Angle of view (ω) 39.7 ° 18.9 ° 8.8 °
Statue height 3.84
Total lens length 52.9651 52.9670 52.9672
BF 0.39546 0.39965 0.40153

d8 0.45099 4.99087 9.12474

d14 9.11621 4.58000 0.44259
d17 5.07142 2.92911 0.96911
d21 3.03853 2.57253 0.79003
d23 1.88362 4.48595 8.23032
d27 1.50888 1.50888 1.50888

Zoom lens group data

Group Start surface Focal length
1 1 13.24761
2 9 -7.14663
3 15 19.83766
4 18 8.96115
5 22 -8.10578
6 24 33.55409

数値実施例3
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -24.1340 0.9000 2.14352 17.77 7.190
2 -2376.1293 0.3000 1. 6.981
3 ∞ 9.0000 1.90366 31.32 6.909
4 ∞ 0.2000 1. 5.828
5* 22.7484 0.7000 1.62263 58.16 5.637
6* 22.7484 0.1000 1.63387 23.38 5.496
7 19.5587 2.8000 2.04300 39.00 5.431
8 -30.8633 可変 1. 6.000
9 27.4572 0.5000 1.88300 40.76 4.076
10 4.7842 2.2000 1. 3.336
11* -24.7275 0.6000 1.53071 55.69 3.286
12* 8.2465 0.1500 1. 3.323
13 14.9711 1.4000 1.92286 20.88 3.340
14 -48.9274 可変 1. 3.300
15 9.8959 1.1000 1.58313 59.38 2.387
16 54.1188 0.7000 1. 2.274
17(絞り) ∞ 可変 1. 2.152
18* 6.2036 2.3000 1.51633 64.14 2.500
19 41.7714 0.5000 1.92286 20.88 2.481
20 15.4280 2.0000 1.51633 64.14 2.468
21* -8.5392 2.0000 1. 2.500
22 7.6059 0.6000 1.92286 20.88 2.231
23 3.3325 可変 1. 2.041
24 -17.7275 2.0000 1.51633 64.14 2.674
25 -6.1460 可変 1. 3.095
26 ∞ 0.8000 1.51633 64.14 3.690
27 ∞ 0.3582 1. 3.783
像面 ∞

非球面データ

第5面
K=0.,A2=0.0000E+00,A4=-8.3256E-05C,A6=-1.9253E-07C,A8=4.1689E-09C,
A10=-6.5280E-11C

第6面
K=0.,A2=0.0000E+00,A4=-1.6762E-04,A6=1.4206E-06,A8=9.7071E-09,A10=0.0000E+00

第11面
K=11.1840,A2=0.0000E+00,A4=-5.1423E-03,A6=5.3508E-04,A8=-2.4137E-05,
A10=3.2978E-07

第12面
K=-7.0810,A2=0.0000E+00,A4=-4.4078E-03,A6=5.4122E-04,A8=-3.0268E-05,
A10=5.9254E-07

第18面
K=1.3089,A2=0.0000E+00,A4=-1.5976E-03,A6=-1.2896E-05,A8=-3.7016E-06,
A10=-2.3647E-07

第21面
K=0.,A2=0.0000E+00,A4=9.4448E-04,A6=-3.1513E-05,A8=7.4093E-07,
A10=-3.1342E-07


〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L5 2.042998 2.035064 2.061804 2.076930 2.089691
L8,L11,L13 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L1 2.143520 2.125601 2.189954 2.232324 2.273184
L3 1.622630 1.619350 1.630050 1.635825 1.640600
L4 1.633870 1.626381 1.653490 1.671610 1.688826
L9 1.583126 1.580139 1.589960 1.595296 1.599721
L10,L12,L14 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.882997 1.876560 1.898221 1.910495 1.920919
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.08242 10.97327 24.94649
Fナンバー 3.5080 4.5933 4.9000
画角(ω) 40.7° 19.4° 8.6°
像高 3.84
レンズ全長 51.5086 51.5146 51.5082
BF 0.35823 0.35780 0.35743

d8 0.37488 4.86329 10.09749
d14 10.12325 5.64334 0.40065
d17 4.81397 1.87960 0.98099
d23 2.50181 6.72046 7.69320
d25 2.48644 1.20007 1.12842

ズームレンズ群データ

群 始面 焦点距離
1 1 17.47975
2 9 -6.62251
3 15 20.57948
4 18 20.60626
5 24 17.20794
Numerical Example 3
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -24.1340 0.9000 2.14352 17.77 7.190
2 -2376.1293 0.3000 1. 6.981
3 ∞ 9.0000 1.90366 31.32 6.909
4 ∞ 0.2000 1. 5.828
5 * 22.7484 0.7000 1.62263 58.16 5.637
6 * 22.7484 0.1000 1.63387 23.38 5.496
7 19.5587 2.8000 2.04300 39.00 5.431
8 -30.8633 Variable 1. 6.000
9 27.4572 0.5000 1.88300 40.76 4.076
10 4.7842 2.2000 1. 3.336
11 * -24.7275 0.6000 1.53071 55.69 3.286
12 * 8.2465 0.1500 1. 3.323
13 14.9711 1.4000 1.92286 20.88 3.340
14 -48.9274 Variable 1. 3.300
15 9.8959 1.1000 1.58313 59.38 2.387
16 54.1188 0.7000 1. 2.274
17 (Aperture) ∞ Variable 1. 2.152
18 * 6.2036 2.3000 1.51633 64.14 2.500
19 41.7714 0.5000 1.92286 20.88 2.481
20 15.4280 2.0000 1.51633 64.14 2.468
21 * -8.5392 2.0000 1. 2.500
22 7.6059 0.6000 1.92286 20.88 2.231
23 3.3325 Variable 1.2.041
24 -17.7275 2.0000 1.51633 64.14 2.674
25 -6.1460 Variable 1.3.095
26 ∞ 0.8000 1.51633 64.14 3.690
27 ∞ 0.3582 1. 3.783
Image plane ∞

Aspheric data

5th page
K = 0., A2 = 0.0000E + 00, A4 = -8.3256E-05C, A6 = -1.9253E-07C, A8 = 4.1689E-09C,
A10 = -6.5280E-11C

6th page
K = 0., A2 = 0.0000E + 00, A4 = -1.6762E-04, A6 = 1.4206E-06, A8 = 9.7071E-09, A10 = 0.0000E + 00

11th page
K = 11.1840, A2 = 0.0000E + 00, A4 = -5.1423E-03, A6 = 5.3508E-04, A8 = -2.4137E-05,
A10 = 3.2978E-07

12th page
K = -7.0810, A2 = 0.0000E + 00, A4 = -4.4078E-03, A6 = 5.4122E-04, A8 = -3.0268E-05,
A10 = 5.9254E-07

18th page
K = 1.3089, A2 = 0.0000E + 00, A4 = -1.5976E-03, A6 = -1.2896E-05, A8 = -3.7016E-06,
A10 = -2.3647E-07

21st page
K = 0., A2 = 0.0000E + 00, A4 = 9.4448E-04, A6 = -3.1513E-05, A8 = 7.4093E-07,
A10 = -3.1342E-07


[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L5 2.042998 2.035064 2.061804 2.076930 2.089691
L8, L11, L13 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L1 2.143520 2.125601 2.189954 2.232324 2.273184
L3 1.622630 1.619350 1.630050 1.635825 1.640600
L4 1.633870 1.626381 1.653490 1.671610 1.688826
L9 1.583126 1.580139 1.589960 1.595296 1.599721
L10, L12, L14 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 1.882997 1.876560 1.898221 1.910495 1.920919
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 5.08242 10.97327 24.94649
F number 3.5080 4.5933 4.9000
Angle of view (ω) 40.7 ° 19.4 ° 8.6 °
Statue height 3.84
Total lens length 51.5086 51.5146 51.5082
BF 0.35823 0.35780 0.35743

d8 0.37488 4.86329 10.09749
d14 10.12325 5.64334 0.40065
d17 4.81397 1.87960 0.98099
d23 2.50181 6.72046 7.69320
d25 2.48644 1.20007 1.12842

Zoom lens group data

Group Start surface Focal length
1 1 17.47975
2 9 -6.62251
3 15 20.57948
4 18 20.60626
5 24 17.20794

数値実施例4
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -25.2776 0.9000 2.14352 17.77 7.172
2 140.8599 0.3000 1. 6.926
3 ∞ 9.0000 1.90366 31.32 6.901
4 ∞ 0.2000 1. 5.989
5* 19.7018 0.1000 1.63387 23.38 5.802
6* 19.7018 0.1000 1.52540 51.81 5.769
7 19.9306 2.8000 2.04300 39.00 5.743
8 -31.7706 可変 1. 6.000
9 16.1350 0.5000 2.00330 28.27 4.152
10 5.1646 2.2000 1. 3.464
11* -24.9572 0.5000 1.63387 23.38 3.385
12* -9.7161 0.6000 1.53071 55.69 3.390
13* 7.3900 0.1500 1. 3.356
14 16.9324 1.4000 1.94595 17.98 3.358
15 -75.5631 可変 1. 3.300
16 10.6370 1.1000 1.58313 59.38 2.410
17 78.5572 0.7000 1. 2.300
18(絞り) ∞ 可変 1. 2.177
19* 5.9963 1.7000 1.51633 64.14 2.500
20 37.5781 0.5000 1.92286 20.88 2.478
21 16.4862 1.7000 1.51633 64.14 2.471
22* -7.4804 2.0000 1. 2.500
23 9.1028 0.6000 1.92286 20.88 2.148
24 3.2845 可変 1. 1.964
25 -21.6106 2.0000 1.51633 64.14 2.646
26 -6.4581 可変 1. 3.060
27 ∞ 0.8000 1.51633 64.14 3.676
28 ∞ 0.4127 1. 3.772
像面 ∞

非球面データ

第5面
K=0.,A2=0.0000E+00,A4=-1.1398E-04,A6=1.0286E-06,A8=-1.6852E-08,A10=-5.3734E-11

第6面
K=0.,A2=0.0000E+00,A4=-1.3394E-04,A6=6.8098E-06,A8=-1.1926E-07,A10=0.0000E+00

第11面
K=11.1871,A2=0.0000E+00,A4=-4.4314E-03,A6=3.2325E-04,A8=-1.2760E-05,
A10=1.7849E-07

第12面
K=0.,A2=0.0000E+00,A4=-1.5918E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第13面
K=-7.1276,A2=0.0000E+00,A4=-3.4501E-03,A6=3.5835E-04,A8=-1.7460E-05,
A10=3.2167E-07

第19面
K=1.2581,A2=0.0000E+00,A4=-2.0146E-03,A6=-3.7410E-05,A8=-4.6237E-06,
A10=-4.2009E-07

第22面
K=0.,A2=0.0000E+00,A4=6.8047E-04,A6=-3.7821E-05,A8=-4.4646E-06,A10=-4.1274E-10


〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L5 2.042998 2.035064 2.061804 2.076930 2.089691
L12,L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L9 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.143520 2.125601 2.189954 2.232324 2.273184
L3,L7 1.633870 1.626381 1.653490 1.671610 1.688826
L4 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11,L13,L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.05214 11.04644 24.92867
Fナンバー 3.4279 4.5499 4.9000
画角(ω) 40.9° 19.3° 8.6°
像高 3.84
レンズ全長 50.9043 50.9099 50.9040
BF 0.41274 0.41531 0.41260

d8 0.38354 4.92101 10.13134
d15 10.15777 5.62913 0.40953
d18 4.97638 1.92237 0.97818
d24 2.53447 6.97103 8.11146
d26 2.58940 1.20108 1.01091

ズームレンズ群データ

群 始面 焦点距離
1 1 17.56599
2 9 -6.75771
3 16 20.97306
4 19 20.51238
5 25 17.07118
Numerical Example 4
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -25.2776 0.9000 2.14352 17.77 7.172
2 140.8599 0.3000 1. 6.926
3 ∞ 9.0000 1.90366 31.32 6.901
4 ∞ 0.2000 1. 5.989
5 * 19.7018 0.1000 1.63387 23.38 5.802
6 * 19.7018 0.1000 1.52540 51.81 5.769
7 19.9306 2.8000 2.04300 39.00 5.743
8 -31.7706 Variable 1. 6.000
9 16.1350 0.5000 2.00330 28.27 4.152
10 5.1646 2.2000 1. 3.464
11 * -24.9572 0.5000 1.63387 23.38 3.385
12 * -9.7161 0.6000 1.53071 55.69 3.390
13 * 7.3900 0.1500 1. 3.356
14 16.9324 1.4000 1.94595 17.98 3.358
15 -75.5631 Variable 1. 3.300
16 10.6370 1.1000 1.58313 59.38 2.410
17 78.5572 0.7000 1. 2.300
18 (Aperture) ∞ Variable 1. 2.177
19 * 5.9963 1.7000 1.51633 64.14 2.500
20 37.5781 0.5000 1.92286 20.88 2.478
21 16.4862 1.7000 1.51633 64.14 2.471
22 * -7.4804 2.0000 1. 2.500
23 9.1028 0.6000 1.92286 20.88 2.148
24 3.2845 Variable 1. 1.964
25 -21.6106 2.0000 1.51633 64.14 2.646
26 -6.4581 Variable 1.3.060
27 ∞ 0.8000 1.51633 64.14 3.676
28 ∞ 0.4127 1. 3.772
Image plane ∞

Aspheric data

5th page
K = 0., A2 = 0.0000E + 00, A4 = -1.1398E-04, A6 = 1.0286E-06, A8 = -1.6852E-08, A10 = -5.3734E-11

6th page
K = 0., A2 = 0.0000E + 00, A4 = -1.3394E-04, A6 = 6.8098E-06, A8 = -1.1926E-07, A10 = 0.0000E + 00

11th page
K = 11.1871, A2 = 0.0000E + 00, A4 = -4.4314E-03, A6 = 3.2325E-04, A8 = -1.2760E-05,
A10 = 1.7849E-07

12th page
K = 0., A2 = 0.0000E + 00, A4 = -1.5918E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

13th page
K = -7.1276, A2 = 0.0000E + 00, A4 = -3.4501E-03, A6 = 3.5835E-04, A8 = -1.7460E-05,
A10 = 3.2167E-07

19th page
K = 1.2581, A2 = 0.0000E + 00, A4 = -2.0146E-03, A6 = -3.7410E-05, A8 = -4.6237E-06,
A10 = -4.2009E-07

22nd page
K = 0., A2 = 0.0000E + 00, A4 = 6.8047E-04, A6 = -3.7821E-05, A8 = -4.4646E-06, A10 = -4.1274E-10


[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L5 2.042998 2.035064 2.061804 2.076930 2.089691
L12, L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L9 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.143520 2.125601 2.189954 2.232324 2.273184
L3, L7 1.633870 1.626381 1.653490 1.671610 1.688826
L4 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11, L13, L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 5.05214 11.04644 24.92867
F number 3.4279 4.5499 4.9000
Angle of view (ω) 40.9 ° 19.3 ° 8.6 °
Statue height 3.84
Total lens length 50.9043 50.9099 50.9040
BF 0.41274 0.41531 0.41260

d8 0.38354 4.92101 10.13134
d15 10.15777 5.62913 0.40953
d18 4.97638 1.92237 0.97818
d24 2.53447 6.97103 8.11146
d26 2.58940 1.20108 1.01091

Zoom lens group data

Group Start surface Focal length
1 1 17.56599
2 9 -6.75771
3 16 20.97306
4 19 20.51238
5 25 17.07118

数値実施例5
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -24.0161 0.9000 1.92286 20.88 7.367
2 71.8718 0.4000 1. 7.002
3 ∞ 9.0000 1.90366 31.32 6.990
4 ∞ 0.2000 1. 6.043
5* 18.2267 0.1000 1.52540 51.81 5.833
6* 18.2267 0.1000 1.63387 23.38 5.796
7 17.3785 2.8000 1.95000 45.00 5.756
8 -30.2272 可変 1. 6.000
9 15.2624 0.5000 2.00330 28.27 4.126
10 4.8034 2.2000 1. 3.396
11* -27.1895 0.4000 1.63387 23.38 3.338
12* -10.5757 0.6000 1.53071 55.69 3.344
13* 7.5166 0.1500 1. 3.348
14 16.1243 1.4000 1.94595 17.98 3.355
15 -66.9992 可変 1. 3.300
16 10.6258 1.1000 1.58313 59.38 2.416
17 73.4652 0.7000 1. 2.306
18(絞り) ∞ 可変 1. 2.183
19* 5.8985 1.7000 1.51633 64.14 2.500
20 57.8696 0.5000 1.92286 20.88 2.485
21 18.9994 1.7000 1.51633 64.14 2.477
22* -8.0235 2.0000 1. 2.500
23 8.3424 0.6000 1.92286 20.88 2.171
24 3.2785 可変 1. 1.983
25 -21.2563 2.0000 1.51633 64.14 2.642
26 -6.5589 可変 1. 3.057
27 ∞ 0.8000 1.51633 64.14 3.680
28 ∞ 0.3960 1. 3.776
像面 ∞

非球面データ

第5面
K=0.,A2=0.0000E+00,A4=-1.1810E-04,A6=7.7125E-07,A8=-1.4451E-08,A10=-6.9315E-11

第6面
K=0.,A2=0.0000E+00,A4=1.5645E-05,A6=-4.7693E-06,A8=9.1402E-08,A10=0.0000E+00

第11面
K=11.1830,A2=0.0000E+00,A4=-4.3378E-03,A6=3.1719E-04,A8=-1.2327E-05,
A10=1.4663E-07

第12面
K=0.,A2=0.0000E+00,A4=-1.3412E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第13面
K=-7.1916,A2=0.0000E+00,A4=-3.5856E-03,A6=3.5939E-04,A8=-1.7998E-05,
A10=3.3293E-07

第19面
K=1.2242,A2=0.0000E+00,A4=-1.8726E-03,A6=-4.5068E-05,A8=-2.8538E-06,
A10=-4.6905E-07

第22面
K=0.,A2=0.0000E+00,A4=7.4097E-04,A6=-3.6817E-05,A8=-3.2193E-06,A10=-6.8353E-08


〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L5 1.949998 1.943644 1.964752 1.976299 1.985797
L1,L12,L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L9 1.945950 1.931230 1.983830 2.018254 2.051060
L4,L7 1.633870 1.626381 1.653490 1.671610 1.688826
L3 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11,L13,L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 4.97629 11.00758 24.94226
Fナンバー 3.4028 4.5237 4.9000
画角(ω) 41.3° 19.2° 8.6°
像高 3.84
レンズ全長 50.9963 51.0005 50.9961
BF 0.39602 0.39843 0.39577

d8 0.37342 4.98707 10.15120
d15 10.16274 5.55427 0.38477
d18 5.03273 1.96300 0.96631
d24 2.52931 7.04670 8.29133
d26 2.65204 1.20105 0.95674

ズームレンズ群データ

群 始面 焦点距離
1 1 17.58175
2 9 -6.70047
3 16 21.16699
4 19 19.98144
5 25 17.55831
Numerical Example 5
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -24.0161 0.9000 1.92286 20.88 7.367
2 71.8718 0.4000 1. 7.002
3 ∞ 9.0000 1.90366 31.32 6.990
4 ∞ 0.2000 1. 6.043
5 * 18.2267 0.1000 1.52540 51.81 5.833
6 * 18.2267 0.1000 1.63387 23.38 5.796
7 17.3785 2.8000 1.95000 45.00 5.756
8 -30.2272 Variable 1. 6.000
9 15.2624 0.5000 2.00330 28.27 4.126
10 4.8034 2.2000 1. 3.396
11 * -27.1895 0.4000 1.63387 23.38 3.338
12 * -10.5757 0.6000 1.53071 55.69 3.344
13 * 7.5166 0.1500 1. 3.348
14 16.1243 1.4000 1.94595 17.98 3.355
15 -66.9992 Variable 1. 3.300
16 10.6258 1.1000 1.58313 59.38 2.416
17 73.4652 0.7000 1. 2.306
18 (Aperture) ∞ Variable 1. 2.183
19 * 5.8985 1.7000 1.51633 64.14 2.500
20 57.8696 0.5000 1.92286 20.88 2.485
21 18.9994 1.7000 1.51633 64.14 2.477
22 * -8.0235 2.0000 1. 2.500
23 8.3424 0.6000 1.92286 20.88 2.171
24 3.2785 Variable 1.1.983
25 -21.2563 2.0000 1.51633 64.14 2.642
26 -6.5589 Variable 1.3.057
27 ∞ 0.8000 1.51633 64.14 3.680
28 ∞ 0.3960 1. 3.776
Image plane ∞

Aspheric data

5th page
K = 0., A2 = 0.0000E + 00, A4 = -1.1810E-04, A6 = 7.7125E-07, A8 = -1.4451E-08, A10 = -6.9315E-11

6th page
K = 0., A2 = 0.0000E + 00, A4 = 1.5645E-05, A6 = -4.7693E-06, A8 = 9.1402E-08, A10 = 0.0000E + 00

11th page
K = 11.1830, A2 = 0.0000E + 00, A4 = -4.3378E-03, A6 = 3.1719E-04, A8 = -1.2327E-05,
A10 = 1.4663E-07

12th page
K = 0., A2 = 0.0000E + 00, A4 = -1.3412E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

13th page
K = -7.1916, A2 = 0.0000E + 00, A4 = -3.5856E-03, A6 = 3.5939E-04, A8 = -1.7998E-05,
A10 = 3.3293E-07

19th page
K = 1.2242, A2 = 0.0000E + 00, A4 = -1.8726E-03, A6 = -4.5068E-05, A8 = -2.8538E-06,
A10 = -4.6905E-07

22nd page
K = 0., A2 = 0.0000E + 00, A4 = 7.4097E-04, A6 = -3.6817E-05, A8 = -3.2193E-06, A10 = -6.8353E-08


[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L5 1.949998 1.943644 1.964752 1.976299 1.985797
L1, L12, L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L9 1.945950 1.931230 1.983830 2.018254 2.051060
L4, L7 1.633870 1.626381 1.653490 1.671610 1.688826
L3 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11, L13, L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 4.97629 11.00758 24.94226
F number 3.4028 4.5237 4.9000
Angle of view (ω) 41.3 ° 19.2 ° 8.6 °
Statue height 3.84
Total lens length 50.9963 51.0005 50.9961
BF 0.39602 0.39843 0.39577

d8 0.37342 4.98707 10.15120
d15 10.16274 5.55427 0.38477
d18 5.03273 1.96300 0.96631
d24 2.52931 7.04670 8.29133
d26 2.65204 1.20105 0.95674

Zoom lens group data

Group Start surface Focal length
1 1 17.58175
2 9 -6.70047
3 16 21.16699
4 19 19.98144
5 25 17.55831

数値実施例6
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -23.3757 0.9000 1.94595 17.98 7.285
2 84.8547 0.4000 1. 6.954
3 ∞ 9.0000 1.90366 31.32 6.932
4 ∞ 0.2000 1. 6.014
5* 17.0728 0.1000 1.52540 51.81 5.803
6* 17.0728 0.1000 1.71003 14.57 5.756
7 16.8871 2.8000 1.88300 40.76 5.730
8 -27.2755 可変 1. 6.000
9 14.6645 0.5000 2.00330 28.27 4.094
10 4.7985 2.2000 1. 3.380
11* -25.3874 0.4000 1.63387 23.38 3.321
12* -9.7409 0.6000 1.53071 55.69 3.328
13* 7.3518 0.1500 1. 3.343
14 16.2128 1.4000 1.94595 17.98 3.350
15 -58.6514 可変 1. 3.300
16 10.8161 1.1000 1.58313 59.38 2.434
17 95.6995 0.7000 1. 2.326
18(絞り) ∞ 可変 1. 2.200
19* 5.9101 1.7000 1.51633 64.14 2.500
20 65.8927 0.5000 1.92286 20.88 2.483
21 18.7160 1.7000 1.51633 64.14 2.476
22* -7.8879 2.0000 1. 2.500
23 8.5878 0.6000 1.92286 20.88 2.163
24 3.2787 可変 1. 1.976
25 -22.9858 2.0000 1.51633 64.14 2.641
26 -6.6530 可変 1. 3.053
27 ∞ 0.8000 1.51633 64.14 3.679
28 ∞ 0.3836 1. 3.775
像面 ∞

非球面データ

第5面
K=0.,A2=0.0000E+00,A4=-1.4695E-04,A6=1.3098E-06,A8=-2.1927E-08,A10=-2.1494E-11

第6面
K=0.,A2=0.0000E+00,A4=5.8394E-05,A6=-4.1736E-06,A8=6.5023E-08,A10=0.0000E+00

第11面
K=11.1734,A2=0.0000E+00,A4=-4.4898E-03,A6=3.2889E-04,A8=-1.2870E-05,
A10=1.4449E-07

第12面
K=0.,A2=0.0000E+00,A4=-1.2337E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第13面
K=-7.2230,A2=0.0000E+00,A4=-3.6734E-03,A6=3.7115E-04,A8=-1.8987E-05,
A10=3.6281E-07

第19面
K=1.2117,A2=0.0000E+00,A4=-1.8647E-03,A6=-4.9542E-05,A8=-2.6821E-06,
A10=-4.7015E-07

第22面
K=0.,A2=0.0000E+00,A4=7.0905E-04,A6=-3.3360E-05,A8=-4.6162E-06,A10=2.4628E-08


〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.710030 1.696030 1.744770 1.779970 1.816000
L12,L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L1,L9 1.945950 1.931230 1.983830 2.018254 2.051060
L7 1.633870 1.626381 1.653490 1.671610 1.688826
L3 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11,L13,L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L5 1.882997 1.876560 1.898221 1.910495 1.920919
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.04661 11.08155 24.94347
Fナンバー 3.4041 4.5179 4.9000
画角(ω) 40.9° 19.1° 8.6°
像高 3.84
レンズ全長 51.0136 51.0166 51.0136
BF 0.38359 0.38523 0.38331

d8 0.36579 4.97423 10.15721
d15 10.17915 5.57352 0.38765
d18 5.06895 1.97756 0.96059
d24 2.51521 7.05534 8.34028
d26 2.65094 1.20072 0.93452

ズームレンズ群データ

群 始面 焦点距離
1 1 17.69730
2 9 -6.797627
3 16 20.81258
4 19 21.02805
5 25 17.40799
Numerical Example 6
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -23.3757 0.9000 1.94595 17.98 7.285
2 84.8547 0.4000 1. 6.954
3 ∞ 9.0000 1.90366 31.32 6.932
4 ∞ 0.2000 1. 6.014
5 * 17.0728 0.1000 1.52540 51.81 5.803
6 * 17.0728 0.1000 1.71003 14.57 5.756
7 16.8871 2.8000 1.88300 40.76 5.730
8 -27.2755 Variable 1. 6.000
9 14.6645 0.5000 2.00330 28.27 4.094
10 4.7985 2.2000 1. 3.380
11 * -25.3874 0.4000 1.63387 23.38 3.321
12 * -9.7409 0.6000 1.53071 55.69 3.328
13 * 7.3518 0.1500 1. 3.343
14 16.2128 1.4000 1.94595 17.98 3.350
15 -58.6514 Variable 1. 3.300
16 10.8161 1.1000 1.58313 59.38 2.434
17 95.6995 0.7000 1. 2.326
18 (Aperture) ∞ Variable 1. 2.200
19 * 5.9101 1.7000 1.51633 64.14 2.500
20 65.8927 0.5000 1.92286 20.88 2.483
21 18.7160 1.7000 1.51633 64.14 2.476
22 * -7.8879 2.0000 1. 2.500
23 8.5878 0.6000 1.92286 20.88 2.163
24 3.2787 Variable 1. 1.976
25 -22.9858 2.0000 1.51633 64.14 2.641
26 -6.6530 Variable 1.3.053
27 ∞ 0.8000 1.51633 64.14 3.679
28 ∞ 0.3836 1. 3.775
Image plane ∞

Aspheric data

5th page
K = 0., A2 = 0.0000E + 00, A4 = -1.4695E-04, A6 = 1.3098E-06, A8 = -2.1927E-08, A10 = -2.1494E-11

6th page
K = 0., A2 = 0.0000E + 00, A4 = 5.8394E-05, A6 = -4.1736E-06, A8 = 6.5023E-08, A10 = 0.0000E + 00

11th page
K = 11.1734, A2 = 0.0000E + 00, A4 = -4.4898E-03, A6 = 3.2889E-04, A8 = -1.2870E-05,
A10 = 1.4449E-07

12th page
K = 0., A2 = 0.0000E + 00, A4 = -1.2337E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

13th page
K = -7.2230, A2 = 0.0000E + 00, A4 = -3.6734E-03, A6 = 3.7115E-04, A8 = -1.8987E-05,
A10 = 3.6281E-07

19th page
K = 1.2117, A2 = 0.0000E + 00, A4 = -1.8647E-03, A6 = -4.9542E-05, A8 = -2.6821E-06,
A10 = -4.7015E-07

22nd page
K = 0., A2 = 0.0000E + 00, A4 = 7.0905E-04, A6 = -3.3360E-05, A8 = -4.6162E-06, A10 = 2.4628E-08


[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.710030 1.696030 1.744770 1.779970 1.816000
L12, L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L1, L9 1.945950 1.931230 1.983830 2.018254 2.051060
L7 1.633870 1.626381 1.653490 1.671610 1.688826
L3 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11, L13, L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L5 1.882997 1.876560 1.898221 1.910495 1.920919
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 5.04661 11.08155 24.94347
F number 3.4041 4.5179 4.9000
Angle of view (ω) 40.9 ° 19.1 ° 8.6 °
Statue height 3.84
Total lens length 51.0136 51.0166 51.0136
BF 0.38359 0.38523 0.38331

d8 0.36579 4.97423 10.15721
d15 10.17915 5.57352 0.38765
d18 5.06895 1.97756 0.96059
d24 2.51521 7.05534 8.34028
d26 2.65094 1.20072 0.93452

Zoom lens group data

Group Start surface Focal length
1 1 17.69730
2 9 -6.797627
3 16 20.81258
4 19 21.02805
5 25 17.40799

数値実施例7
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -23.4377 0.9000 1.94595 17.98 7.322
2 81.4672 0.4000 1. 6.988
3 ∞ 9.0000 1.90366 31.32 6.969
4 ∞ 0.2000 1. 6.067
5* 17.2749 0.1000 1.63296 24.01 5.859
6* 16.7231 0.1000 1.52540 51.81 5.827
7 16.7231 2.8000 1.88300 40.76 5.783
8 -27.0000 可変 1. 6.000
9 13.9441 0.5000 2.00330 28.27 4.104
10 4.7752 2.2000 1. 3.385
11* -24.5090 0.4000 1.63387 23.38 3.329
12* -9.3321 0.6000 1.53071 55.69 3.335
13* 7.2604 0.1500 1. 3.345
14 16.4205 1.4000 1.94595 17.98 3.351
15 -58.9161 可変 1. 3.300
16 10.7440 1.1000 1.58313 59.38 2.435
17 84.9118 0.7000 1. 2.326
18(絞り) ∞ 可変 1. 2.201
19* 5.9190 1.7000 1.51633 64.14 2.500
20 66.5374 0.5000 1.92286 20.88 2.479
21 18.8377 1.7000 1.51633 64.14 2.473
22* -7.7451 2.0000 1. 2.500
23 8.5763 0.6000 1.92286 20.88 2.163
24 3.2792 可変 1. 1.976
25 -22.3385 2.0000 1.51633 64.14 2.636
26 -6.6348 可変 1. 3.050
27 ∞ 0.8000 1.51633 64.14 3.679
28 ∞ 0.3817 1. 3.775
像面 ∞

非球面データ

第5面
K=0.,A2=0.0000E+00,A4=-1.5870E-04,A6=2.0905E-06,A8=-3.4245E-08,A10=-9.9027E-12

第6面
K=0.,A2=0.0000E+00,A4=-3.1458E-04,A6=1.2980E-05,A8=-2.0246E-07,A10=0.0000E+00

第11面
K=11.1779,A2=0.0000E+00,A4=-4.6473E-03,A6=3.4226E-04,A8=-1.3589E-05,
A10=1.6103E-07

第12面
K=0.,A2=0.0000E+00,A4=-1.2575E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第13面
K=-7.2520,A2=0.0000E+00,A4=-3.7894E-03,A6=3.8502E-04,A8=-1.9746E-05,
A10=3.8046E-07

第19面
K=1.2011,A2=0.0000E+00,A4=-1.8891E-03,A6=-4.8956E-05,A8=-2.8297E-06,
A10=-4.5909E-07

第22面
K=0.,A2=0.0000E+00,A4=7.1796E-04,A6=-3.5605E-05,A8=-4.5559E-06,A10=3.2112E-08

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.632960 1.625570 1.651930 1.668330 1.683330
L12,L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L1,L9 1.945950 1.931230 1.983830 2.018254 2.051060
L7 1.633870 1.626381 1.653490 1.671610 1.688826
L4 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11,L13,L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L5 1.882997 1.876560 1.898221 1.910495 1.920919
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.02062 11.07651 24.94716
Fナンバー 3.3829 4.4928 4.9000
画角(ω) 41.1° 19.1° 8.6°
像高 3.84
レンズ全長 51.0287 51.0329 51.0287
BF 0.38168 0.38428 0.38145

d8 0.36779 5.01068 10.15732
d15 10.17813 5.54058 0.38850
d18 5.09964 2.01938 0.95327
d24 2.50462 7.02681 8.38674
d26 2.64689 1.20112 0.91145

ズームレンズ群データ

群 始面 焦点距離
1 1 17.71096
2 9 -6.78996
3 16 20.97935
4 19 20.44512
5 25 17.51942
Numerical Example 7
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -23.4377 0.9000 1.94595 17.98 7.322
2 81.4672 0.4000 1. 6.988
3 ∞ 9.0000 1.90366 31.32 6.969
4 ∞ 0.2000 1. 6.067
5 * 17.2749 0.1000 1.63296 24.01 5.859
6 * 16.7231 0.1000 1.52540 51.81 5.827
7 16.7231 2.8000 1.88300 40.76 5.783
8 -27.0000 Variable 1. 6.000
9 13.9441 0.5000 2.00330 28.27 4.104
10 4.7752 2.2000 1. 3.385
11 * -24.5090 0.4000 1.63387 23.38 3.329
12 * -9.3321 0.6000 1.53071 55.69 3.335
13 * 7.2604 0.1500 1. 3.345
14 16.4205 1.4000 1.94595 17.98 3.351
15 -58.9161 Variable 1. 3.300
16 10.7440 1.1000 1.58313 59.38 2.435
17 84.9118 0.7000 1. 2.326
18 (Aperture) ∞ Variable 1. 2.201
19 * 5.9190 1.7000 1.51633 64.14 2.500
20 66.5374 0.5000 1.92286 20.88 2.479
21 18.8377 1.7000 1.51633 64.14 2.473
22 * -7.7451 2.0000 1. 2.500
23 8.5763 0.6000 1.92286 20.88 2.163
24 3.2792 Variable 1. 1.976
25 -22.3385 2.0000 1.51633 64.14 2.636
26 -6.6348 Variable 1.3.050
27 ∞ 0.8000 1.51633 64.14 3.679
28 ∞ 0.3817 1. 3.775
Image plane ∞

Aspheric data

5th page
K = 0., A2 = 0.0000E + 00, A4 = -1.5870E-04, A6 = 2.0905E-06, A8 = -3.4245E-08, A10 = -9.9027E-12

6th page
K = 0., A2 = 0.0000E + 00, A4 = -3.1458E-04, A6 = 1.2980E-05, A8 = -2.0246E-07, A10 = 0.0000E + 00

11th page
K = 11.1779, A2 = 0.0000E + 00, A4 = -4.6473E-03, A6 = 3.4226E-04, A8 = -1.3589E-05,
A10 = 1.6103E-07

12th page
K = 0., A2 = 0.0000E + 00, A4 = -1.2575E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

13th page
K = -7.2520, A2 = 0.0000E + 00, A4 = -3.7894E-03, A6 = 3.8502E-04, A8 = -1.9746E-05,
A10 = 3.8046E-07

19th page
K = 1.2011, A2 = 0.0000E + 00, A4 = -1.8891E-03, A6 = -4.8956E-05, A8 = -2.8297E-06,
A10 = -4.5909E-07

22nd page
K = 0., A2 = 0.0000E + 00, A4 = 7.1796E-04, A6 = -3.5605E-05, A8 = -4.5559E-06, A10 = 3.2112E-08

[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.632960 1.625570 1.651930 1.668330 1.683330
L12, L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L1, L9 1.945950 1.931230 1.983830 2.018254 2.051060
L7 1.633870 1.626381 1.653490 1.671610 1.688826
L4 1.525400 1.522390 1.532540 1.538280 1.543119
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11, L13, L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L5 1.882997 1.876560 1.898221 1.910495 1.920919
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium telephoto focal length 5.02062 11.07651 24.94716
F number 3.3829 4.4928 4.9000
Angle of view (ω) 41.1 ° 19.1 ° 8.6 °
Statue height 3.84
Total lens length 51.0287 51.0329 51.0287
BF 0.38168 0.38428 0.38145

d8 0.36779 5.01068 10.15732
d15 10.17813 5.54058 0.38850
d18 5.09964 2.01938 0.95327
d24 2.50462 7.02681 8.38674
d26 2.64689 1.20112 0.91145

Zoom lens group data

Group Start surface Focal length
1 1 17.71096
2 9 -6.78996
3 16 20.97935
4 19 20.44512
5 25 17.51942

数値実施例8
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -23.4667 0.9000 1.94595 17.98 7.321
2 80.6971 0.3500 1. 6.986
3 ∞ 9.0000 1.90366 31.32 6.977
4 ∞ 0.2000 1. 6.076
5* 17.1339 0.1500 1.63387 23.38 5.866
6* 16.7103 0.0500 1.58000 35.00 5.838
7 16.7103 2.8000 1.88300 40.76 5.790
8 -27.1458 可変 1. 6.000
9 13.9226 0.5000 2.00330 28.27 4.106
10 4.7618 2.2000 1. 3.383
11* -24.2645 0.4000 1.63387 23.38 3.328
12* -9.2821 0.6000 1.53071 55.69 3.334
13* 7.2557 0.1500 1. 3.345
14 16.3270 1.4000 1.94595 17.98 3.351
15 -58.6532 可変 1. 3.300
16 10.6582 1.1000 1.58313 59.38 2.431
17 80.2581 0.7000 1. 2.322
16(絞り) ∞ 可変 1. 2.197
19* 5.9249 1.7000 1.51633 64.14 2.500
20 68.6920 0.5000 1.92286 20.88 2.478
21 18.8540 1.7000 1.51633 64.14 2.472
22* -7.7898 2.0000 1. 2.500
23 8.5085 0.6000 1.92286 20.88 2.168
24 3.2902 可変 1. 1.981
25 -22.1529 2.0000 1.51633 64.14 2.638
26 -6.6495 可変 1. 3.052
27 ∞ 0.8000 1.51633 64.14 3.678
28 ∞ 0.3868 1. 3.774
像面 ∞

非球面データ

第5面
K=0.,A2=0.0000E+00,A4=-1.4251E-04,A6=1.3104E-06,A8=-2.0887E-08,A10=-3.5286E-11

第6面
K=0.,A2=0.0000E+00,A4=-4.4141E-04,A6=1.7378E-05,A8=-2.7015E-07,A10=0.0000E+00

第11面
K=11.1762,A2=0.0000E+00,A4=-4.6082E-03,A6=3.4239E-04,A8=-1.3648E-05,
A10=1.5952E-07

第12面
K=0.,A2=0.0000E+0,A4=-1.1857E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第13面
K=-7.2564,A2=0.0000E+00,A4=-3.7624E-03,A6=3.8534E-04,A8=-1.9964E-05,
A10=3.8809E-07

第19面
K=1.1998,A2=0.0000E+00,A4=-1.8770E-03,A6=-4.9644E-05,A8=-2.5314E-06,
A10=-4.7091E-07

第22面
K=0.,A2=0.0000E+00,A4=7.2029E-04,A6=-3.8256E-05,A8=-3.8962E-06,A10=-8.2870E-09

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.579998 1.575173 1.591743 1.601549 1.610112
L12,L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L1,L9 1.945950 1.931230 1.983830 2.018254 2.051060
L3,L7 1.633870 1.626381 1.653490 1.671610 1.688826
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11,L13,L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L5 1.882997 1.876560 1.898221 1.910495 1.920919
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

各種データ
ズーム比
広角 中間 望遠
焦点距離 5.01884 11.08327 24.94868
Fナンバー 3.3852 4.4910 4.9000
画角(ω) 41.1° 19.1° 8.6°
像高 3.84
レンズ全長 50.9920 50.9954 50.9920
BF 0.38683 0.38895 0.38662

d8 0.36665 5.02402 10.15860
d15 10.18122 5.52736 0.38918
d18 5.10507 2.02817 0.95258
d24 2.50682 7.02601 8.39691
d26 2.64545 1.20094 0.90812

ズームレンズ群データ

群 始面 焦点距離
1 1 17.74685
2 9 -6.78050
3 16 20.95456
4 19 20.38098
5 25 17.62771
Numerical Example 8
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -23.4667 0.9000 1.94595 17.98 7.321
2 80.6971 0.3500 1. 6.986
3 ∞ 9.0000 1.90366 31.32 6.977
4 ∞ 0.2000 1. 6.076
5 * 17.1339 0.1500 1.63387 23.38 5.866
6 * 16.7103 0.0500 1.58000 35.00 5.838
7 16.7103 2.8000 1.88300 40.76 5.790
8 -27.1458 Variable 1. 6.000
9 13.9226 0.5000 2.00330 28.27 4.106
10 4.7618 2.2000 1. 3.383
11 * -24.2645 0.4000 1.63387 23.38 3.328
12 * -9.2821 0.6000 1.53071 55.69 3.334
13 * 7.2557 0.1500 1. 3.345
14 16.3270 1.4000 1.94595 17.98 3.351
15 -58.6532 Variable 1. 3.300
16 10.6582 1.1000 1.58313 59.38 2.431
17 80.2581 0.7000 1. 2.322
16 (Aperture) ∞ Variable 1. 2.197
19 * 5.9249 1.7000 1.51633 64.14 2.500
20 68.6920 0.5000 1.92286 20.88 2.478
21 18.8540 1.7000 1.51633 64.14 2.472
22 * -7.7898 2.0000 1. 2.500
23 8.5085 0.6000 1.92286 20.88 2.168
24 3.2902 Variable 1.1.981
25 -22.1529 2.0000 1.51633 64.14 2.638
26 -6.6495 Variable 1.3.052
27 ∞ 0.8000 1.51633 64.14 3.678
28 ∞ 0.3868 1. 3.774
Image plane ∞

Aspheric data

5th page
K = 0., A2 = 0.0000E + 00, A4 = -1.4251E-04, A6 = 1.3104E-06, A8 = -2.0887E-08, A10 = -3.5286E-11

6th page
K = 0., A2 = 0.0000E + 00, A4 = -4.4141E-04, A6 = 1.7378E-05, A8 = -2.7015E-07, A10 = 0.0000E + 00

11th page
K = 11.1762, A2 = 0.0000E + 00, A4 = -4.6082E-03, A6 = 3.4239E-04, A8 = -1.3648E-05,
A10 = 1.5952E-07

12th page
K = 0., A2 = 0.0000E + 0, A4 = -1.1857E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

13th page
K = -7.2564, A2 = 0.0000E + 00, A4 = -3.7624E-03, A6 = 3.8534E-04, A8 = -1.9964E-05,
A10 = 3.8809E-07

19th page
K = 1.1998, A2 = 0.0000E + 00, A4 = -1.8770E-03, A6 = -4.9644E-05, A8 = -2.5314E-06,
A10 = -4.7091E-07

22nd page
K = 0., A2 = 0.0000E + 00, A4 = 7.2029E-04, A6 = -3.8256E-05, A8 = -3.8962E-06, A10 = -8.2870E-09

[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L4 1.579998 1.575173 1.591743 1.601549 1.610112
L12, L14 1.922860 1.910380 1.954570 1.982810 2.009190
L8 1.530710 1.527870 1.537400 1.542740 1.547272
L1, L9 1.945950 1.931230 1.983830 2.018254 2.051060
L3, L7 1.633870 1.626381 1.653490 1.671610 1.688826
L10 1.583126 1.580139 1.589960 1.595296 1.599721
L11, L13, L15 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L5 1.882997 1.876560 1.898221 1.910495 1.920919
L6 2.003300 1.993011 2.028497 2.049714 2.068441
L2 1.903660 1.895260 1.924120 1.941280 1.956430

Various data zoom ratios
Wide angle Medium Telephoto focal length 5.01884 11.08327 24.94868
F number 3.3852 4.4910 4.9000
Angle of view (ω) 41.1 ° 19.1 ° 8.6 °
Statue height 3.84
Total lens length 50.9920 50.9954 50.9920
BF 0.38683 0.38895 0.38662

d8 0.36665 5.02402 10.15860
d15 10.18122 5.52736 0.38918
d18 5.10507 2.02817 0.95258
d24 2.50682 7.02601 8.39691
d26 2.64545 1.20094 0.90812

Zoom lens group data

Group Start surface Focal length
1 1 17.74685
2 9 -6.78050
3 16 20.95456
4 19 20.38098
5 25 17.62771

数値実施例9
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1 -20.7092 9.0000 1.92286 20.88 7.671
2 ∞ 0.2000 1. 6.593
3* 17.9221 0.8000 1.69400 56.29 6.349
4* 17.9221 0.0800 1.71003 14.57 6.158
5 16.9240 2.8000 1.88300 40.76 6.113
6 -27.9800 可変 1. 6.000
7 14.6389 0.5000 2.00330 28.27 4.297
8 4.3931 2.4000 1. 3.430
9* -35.1107 0.4000 1.63387 23.38 3.397
10* -13.8276 0.6000 1.53071 55.69 3.404
11* 8.8432 0.1500 1. 3.437
12 16.1136 1.2000 1.94595 17.98 3.448
13 -81.1831 可変 1. 3.400
14 10.2369 1.1000 1.58313 59.38 2.354
15 55.7367 0.7000 1. 2.237
16(絞り) ∞ 可変 1. 2.111
17* 5.9628 1.7000 1.51633 64.14 2.700
18 116.4435 0.5000 1.92286 20.88 2.685
19 21.7359 1.7000 1.51633 64.14 2.678
20* -9.2709 2.0000 1. 2.700
21 6.8485 0.6000 1.92286 20.88 2.350
22 3.2762 可変 1. 2.121
23 -24.4406 2.0000 1.51633 64.14 2.715
24 -6.8903 可変 1. 3.109
25 ∞ 0.8000 1.51633 64.14 3.695
26 ∞ 0.3860 1. 3.784
像面 ∞

非球面データ

第3面
K=0.,A2=0.0000E+00,A4=-8.5221E-05,A6=-2.0140E-07,A8=3.1539E-09,A10=-4.6336E-11

第4面
K=0.,A2=0.0000E+00,A4=-5.0509E-05,A6=-6.7452E-08,A8=9.4814E-09,A10=0.0000E+00

第9面
K=11.1750,A2=0.0000E+00,A4=-2.5516E-03,A6=1.7765E-04,A8=-5.3872E-06,
A10=3.6485E-09

第10面
K=0.,A2=0.0000E+00,A4=-1.2073E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第11面
K=-7.2615,A2=0.0000E+00,A4=-2.3804E-03,A6=1.9213E-04,A8=-9.2092E-06,
A10=1.0294E-07

第17面
K=1.1912,A2=0.0000E+00,A4=-1.7017E-03,A6=-3.1240E-05,A8=-4.4849E-06,
A10=-3.2694E-07

第20面
K=0.,A2=0.0000E+00,A4=4.5207E-04,A6=9.1159E-06,A8=-8.6314E-06,A10=1.6114E-07

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.710030 1.696030 1.744770 1.779970 1.816000
L1,L11,L13 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L8 1.945950 1.931230 1.983830 2.018254 2.051060
L2 1.694000 1.690240 1.702570 1.709300 1.714890
L6 1.633870 1.626381 1.653490 1.671610 1.688826
L9 1.583126 1.580139 1.589960 1.595296 1.599721
L10,L12,L14 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L4 1.882997 1.876560 1.898221 1.910495 1.920919
L5 2.003300 1.993011 2.028497 2.049714 2.068441

各種データ
ズーム比
広角 中間 望遠
焦点距離 4.97593 11.06734 24.96023
Fナンバー 3.4104 4.4910 4.9000
画角(ω) 41.3° 19.1° 8.6°
像高 3.84
レンズ全長 50.4897 50.4917 50.4896
BF 0.38603 0.38786 0.38581

d6 0.37129 5.12147 10.17372
d13 10.19280 5.44303 0.39024
d16 5.07082 2.06238 0.96234
d22 2.52631 7.04611 8.44334
d24 2.71243 1.20084 0.90415

ズームレンズ群データ

群 始面 焦点距離
1 1 18.61461
2 7 -6.62863
3 14 21.31509
4 17 19.18332
5 23 17.88992
Numerical Example 9
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 -20.7092 9.0000 1.92286 20.88 7.671
2 ∞ 0.2000 1. 6.593
3 * 17.9221 0.8000 1.69400 56.29 6.349
4 * 17.9221 0.0800 1.71003 14.57 6.158
5 16.9240 2.8000 1.88300 40.76 6.113
6 -27.9800 Variable 1. 6.000
7 14.6389 0.5000 2.00330 28.27 4.297
8 4.3931 2.4000 1. 3.430
9 * -35.1107 0.4000 1.63387 23.38 3.397
10 * -13.8276 0.6000 1.53071 55.69 3.404
11 * 8.8432 0.1500 1. 3.437
12 16.1136 1.2000 1.94595 17.98 3.448
13 -81.1831 Variable 1. 3.400
14 10.2369 1.1000 1.58313 59.38 2.354
15 55.7367 0.7000 1. 2.237
16 (Aperture) ∞ Variable 1. 2.111
17 * 5.9628 1.7000 1.51633 64.14 2.700
18 116.4435 0.5000 1.92286 20.88 2.685
19 21.7359 1.7000 1.51633 64.14 2.678
20 * -9.2709 2.0000 1. 2.700
21 6.8485 0.6000 1.92286 20.88 2.350
22 3.2762 Variable 1. 2.121
23 -24.4406 2.0000 1.51633 64.14 2.715
24 -6.8903 Variable 1. 3.109
25 ∞ 0.8000 1.51633 64.14 3.695
26 ∞ 0.3860 1. 3.784
Image plane ∞

Aspheric data

Third side
K = 0., A2 = 0.0000E + 00, A4 = -8.5221E-05, A6 = -2.0140E-07, A8 = 3.1539E-09, A10 = -4.6336E-11

4th page
K = 0., A2 = 0.0000E + 00, A4 = -5.0509E-05, A6 = -6.7452E-08, A8 = 9.4814E-09, A10 = 0.0000E + 00

9th page
K = 11.1750, A2 = 0.0000E + 00, A4 = -2.5516E-03, A6 = 1.7765E-04, A8 = -5.3872E-06,
A10 = 3.6485E-09

10th page
K = 0., A2 = 0.0000E + 00, A4 = -1.2073E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

11th page
K = -7.2615, A2 = 0.0000E + 00, A4 = -2.3804E-03, A6 = 1.9213E-04, A8 = -9.2092E-06,
A10 = 1.0294E-07

17th page
K = 1.1912, A2 = 0.0000E + 00, A4 = -1.7017E-03, A6 = -3.1240E-05, A8 = -4.4849E-06,
A10 = -3.2694E-07

20th page
K = 0., A2 = 0.0000E + 00, A4 = 4.5207E-04, A6 = 9.1159E-06, A8 = -8.6314E-06, A10 = 1.6114E-07

[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L3 1.710030 1.696030 1.744770 1.779970 1.816000
L1, L11, L13 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L8 1.945950 1.931230 1.983830 2.018254 2.051060
L2 1.694000 1.690240 1.702570 1.709300 1.714890
L6 1.633870 1.626381 1.653490 1.671610 1.688826
L9 1.583126 1.580139 1.589960 1.595296 1.599721
L10, L12, L14 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L4 1.882997 1.876560 1.898221 1.910495 1.920919
L5 2.003300 1.993011 2.028497 2.049714 2.068441

Various data zoom ratios
Wide angle intermediate telephoto focal length 4.97593 11.06734 24.96023
F number 3.4104 4.4910 4.9000
Angle of view (ω) 41.3 ° 19.1 ° 8.6 °
Statue height 3.84
Total lens length 50.4897 50.4917 50.4896
BF 0.38603 0.38786 0.38581

d6 0.37129 5.12147 10.17372
d13 10.19280 5.44303 0.39024
d16 5.07082 2.06238 0.96234
d22 2.52631 7.04611 8.44334
d24 2.71243 1.20084 0.90415

Zoom lens group data

Group Start surface Focal length
1 1 18.61461
2 7 -6.62863
3 14 21.31509
4 17 19.18332
5 23 17.88992

数値実施例10
単位 mm

面データ
面番号 r d nd νd ER
物面 ∞ ∞
1* -16.1754 8.3000 2.00170 20.60 7.105
2 ∞ 0.2000 1. 6.328
3* 13.9396 0.1000 1.52540 51.81 6.117
4* 13.9396 0.1000 1.63387 23.38 6.085
5 15.0306 2.8000 1.88300 40.76 6.042
6 -27.7536 可変 1. 6.000
7 13.4386 0.5000 2.00330 28.27 4.252
8 4.3351 2.2000 1. 3.399
9* -30.9908 0.4000 1.63387 23.38 3.385
10* -12.1774 0.6000 1.53071 55.69 3.394
11* 8.2943 0.1500 1. 3.444
12 15.2698 1.4000 1.94595 17.98 3.459
13 -89.7401 可変 1. 3.400
14 10.8205 1.1000 1.58313 59.38 2.396
15 83.3768 0.7000 1. 2.285
16(絞り) ∞ 可変 1. 2.158
17* 5.6897 1.7000 1.51633 64.14 2.700
18 215.4615 0.5000 1.92286 20.88 2.671
19 23.1532 1.7000 1.51633 64.14 2.656
20* -10.9886 2.0000 1. 2.700
21 6.9464 0.6000 1.92286 20.88 2.356
22 3.3641 可変 1. 2.138
23 -23.5756 2.0000 1.51633 64.14 2.740
24 -6.9022 可変 1. 3.128
25 ∞ 0.8000 1.51633 64.14 3.702
26 ∞ 0.3961 1. 3.787
像面 ∞

第1面
K=0.,A2=0.0000E+00,A4=1.0724E-04,A6=-9.3315E-07,A8=2.3779E-09,A10=2.6778E-11

第3面
K=0.,A2=0.0000E+00,A4=-2.3898E-04,A6=1.1874E-06,A8=-1.1149E-08,A10=-9.9118E-11

第4面
K=0.,A2=0.0000E+00,A4=-1.7842E-04,A6=-1.8721E-06,A8=5.7740E-08,A10=0.0000E+00

第9面
K=11.1826,A2=0.0000E+00,A4=-3.4223E-03,A6=2.5437E-04,A8=-7.7472E-06,
A10=-6.4844E-09

第10面
K=0.,A2=0.0000E+00,A4=-1.1875E-03,A6=0.0000E+00,A8=0.0000E+00,A10=0.0000E+00

第11面
K=-7.2589,A2=0.0000E+00,A4=-3.1286E-03,A6=2.8894E-04,A8=-1.4054E-05,
A10=1.8299E-07

第17面
K=1.1562,A2=0.0000E+00,A4=-1.5559E-03,A6=-1.7830E-05,A8=-4.2795E-06,
A10=-3.1002E-07

第20面
K=0.,A2=0.0000E+00,A4=7.7365E-04,A6=2.4786E-05,A8=-6.1740E-06,A10=5.6251E-08

〔硝材屈折率テーブル〕・・・ 本実施例にて使用した媒質の波長別屈折率一覧
GLA 587.56 656.27 486.13 435.84 404.66
L11,L13 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L8 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.001700 1.988000 2.036520 2.067256 2.095660
L3,L6 1.633870 1.626381 1.653490 1.671610 1.688826
L2 1.525400 1.522390 1.532540 1.538280 1.543119
L9 1.583126 1.580139 1.589960 1.595296 1.599721
L10,L12,L14 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L4 1.882997 1.876560 1.898221 1.910495 1.920919
L5 2.003300 1.993011 2.028497 2.049714 2.068441

各種データ
ズーム比
広角 中間 望遠
焦点距離 4.88482 11.09271 24.93563
Fナンバー 3.3987 4.5262 4.9000
画角(ω) 41.9° 19.1° 8.6°
像高 3.84
レンズ全長 49.2684 49.2713 49.2684
BF 0.39612 0.39728 0.39599

d6 0.37488 5.16073 10.18976
d13 10.19313 5.40950 0.37815
d16 5.09429 1.91960 0.99138
d22 2.58678 7.33366 8.63562
d24 2.77318 1.20049 0.82747

ズームレンズ群データ

群 始面 焦点距離
1 1 17.70933
2 7 -6.59440
3 14 21.20498
4 17 19.57743
5 23 18.15999
Numerical Example 10
Unit mm

Surface data surface number rd nd νd ER
Object ∞ ∞
1 * -16.1754 8.3000 2.00170 20.60 7.105
2 ∞ 0.2000 1. 6.328
3 * 13.9396 0.1000 1.52540 51.81 6.117
4 * 13.9396 0.1000 1.63387 23.38 6.085
5 15.0306 2.8000 1.88300 40.76 6.042
6 -27.7536 Variable 1. 6.000
7 13.4386 0.5000 2.00330 28.27 4.252
8 4.3351 2.2000 1. 3.399
9 * -30.9908 0.4000 1.63387 23.38 3.385
10 * -12.1774 0.6000 1.53071 55.69 3.394
11 * 8.2943 0.1500 1. 3.444
12 15.2698 1.4000 1.94595 17.98 3.459
13 -89.7401 Variable 1. 3.400
14 10.8205 1.1000 1.58313 59.38 2.396
15 83.3768 0.7000 1. 2.285
16 (Aperture) ∞ Variable 1. 2.158
17 * 5.6897 1.7000 1.51633 64.14 2.700
18 215.4615 0.5000 1.92286 20.88 2.671
19 23.1532 1.7000 1.51633 64.14 2.656
20 * -10.9886 2.0000 1. 2.700
21 6.9464 0.6000 1.92286 20.88 2.356
22 3.3641 Variable 1. 2.138
23 -23.5756 2.0000 1.51633 64.14 2.740
24 -6.9022 Variable 1. 3.128
25 ∞ 0.8000 1.51633 64.14 3.702
26 ∞ 0.3961 1. 3.787
Image plane ∞

First side
K = 0., A2 = 0.0000E + 00, A4 = 1.0724E-04, A6 = -9.3315E-07, A8 = 2.3779E-09, A10 = 2.6778E-11

Third side
K = 0., A2 = 0.0000E + 00, A4 = -2.3898E-04, A6 = 1.1874E-06, A8 = -1.1149E-08, A10 = -9.9118E-11

4th page
K = 0., A2 = 0.0000E + 00, A4 = -1.7842E-04, A6 = -1.8721E-06, A8 = 5.7740E-08, A10 = 0.0000E + 00

9th page
K = 11.1826, A2 = 0.0000E + 00, A4 = -3.4223E-03, A6 = 2.5437E-04, A8 = -7.7472E-06,
A10 = -6.4844E-09

10th page
K = 0., A2 = 0.0000E + 00, A4 = -1.1875E-03, A6 = 0.0000E + 00, A8 = 0.0000E + 00, A10 = 0.0000E + 00

11th page
K = -7.2589, A2 = 0.0000E + 00, A4 = -3.1286E-03, A6 = 2.8894E-04, A8 = -1.4054E-05,
A10 = 1.8299E-07

17th page
K = 1.1562, A2 = 0.0000E + 00, A4 = -1.5559E-03, A6 = -1.7830E-05, A8 = -4.2795E-06,
A10 = -3.1002E-07

20th page
K = 0., A2 = 0.0000E + 00, A4 = 7.7365E-04, A6 = 2.4786E-05, A8 = -6.1740E-06, A10 = 5.6251E-08

[Glass Material Refractive Index Table] ... Refractive index list by wavelength of medium used in this example
GLA 587.56 656.27 486.13 435.84 404.66
L11, L13 1.922860 1.910380 1.954570 1.982810 2.009190
L7 1.530710 1.527870 1.537400 1.542740 1.547272
L8 1.945950 1.931230 1.983830 2.018254 2.051060
L1 2.001700 1.988000 2.036520 2.067256 2.095660
L3, L6 1.633870 1.626381 1.653490 1.671610 1.688826
L2 1.525400 1.522390 1.532540 1.538280 1.543119
L9 1.583126 1.580139 1.589960 1.595296 1.599721
L10, L12, L14 1.516330 1.513855 1.521905 1.526213 1.529768
CG 1.516330 1.513855 1.521905 1.526213 1.529768
L4 1.882997 1.876560 1.898221 1.910495 1.920919
L5 2.003300 1.993011 2.028497 2.049714 2.068441

Various data zoom ratios
Wide angle Medium telephoto focal length 4.88482 11.09271 24.93563
F number 3.3987 4.5262 4.9000
Angle of view (ω) 41.9 ° 19.1 ° 8.6 °
Statue height 3.84
Total lens length 49.2684 49.2713 49.2684
BF 0.39612 0.39728 0.39599

d6 0.37488 5.16073 10.18976
d13 10.19313 5.40950 0.37815
d16 5.09429 1.91960 0.99138
d22 2.58678 7.33366 8.63562
d24 2.77318 1.20049 0.82747

Zoom lens group data

Group Start surface Focal length
1 1 17.70933
2 7 -6.59440
3 14 21.20498
4 17 19.57743
5 23 18.15999

次に、各実施例における条件式の値を掲げる。

実施例1 実施例2 実施例3
fw 5.344 5.299 5.082
y10 3.84 3.84 3.84
γ 4.674 4.708 4.909
(1) {1/νd(12A)}−{1/νd(12B)} 0.02558 0.02558 0.02558
(2) nd(12A) − nd(12B) 0.01124 0.01124 0.01124
(3) b(12A) 2.03834 2.03834 2.03834
(4) nd(12A) 1.63387 1.63387 1.63387
(5) νd(12A) 23.38 23.38 23.38
θgF(12A) 0.6684 0.6684 0.6684
(6) β(12A) 0.8243 0.8243 0.8243
(7) θhg(12A) 0.6351 0.6351 0.6351
βhg(12A) 0.9002 0.9002 0.9002
nd(12B) 1.62263 1.62263 1.62263
a 1.8479 1.8723 2.0049
h(=2.5a) 4.6198 4.6807 5.0123
R12A 8.6455 10.8957 22.7484
Δz12A(h) -0.15687 -0.13450 -0.07940
P(LA) -4.0127e-3 -3.4405e-3 -2.0311e-3
(12) (R12AF+R12AR)/(R12AF−R12AR) -0.06388 -0.03359 0.07539
(13) f12C/f12B 0.02219 0.01370 3.818e-3
(14) b(12C) 2.16119 2.34213 2.34213
(15) nd(12C) 1.80400 2.04300 2.04300
νd(12C) 46.57 39.00 39.00
(16) {1/νd(11)}−{1/νd(12C)} 0.02707 0.03063 0.03063
(17) fw/f12A 0.04860 0.02106 -0.02281
Dp 4.7277 4.7277 4.7277
(18a) f11/Dp -2.5603 -2.7406 -4.5108
(18b) f12/Dp 1.9620 2.0125 2.6578
(19) (R11F+R11R)/(R11F−R11R) -0.06036 0.23897 -1.0205
(20) f2/f1 -0.58957 -0.53947 -0.37887
y07 2.688 2.688 2.688
tanω07 0.52814 0.53168 0.57255
(23) y07/(fw・tanω07w) 0.9524 0.9541 0.9238


実施例4 実施例5 実施例6
fw 5.052 4.976 5.047
y10 3.84 3.84 3.84
γ 4.934 5.012 4.942
(1) {1/νd(12A)}−{1/νd(12B)} 0.02347 0.02347 0.04933
(2)nd(12A) − nd(12B) 0.10847 0.10847 0.18463
(3) b(12A) 2.03834 2.03834 1.96209
(4) nd(12A) 1.63387 1.63387 1.71003
(5) νd(12A) 23.38 23.38 14.57
θgF(12A) 0.6684 0.6684 0.7222
(6) β(12A) 0.8243 0.8243 0.8194
(7) θhg(12A) 0.6351 0.6351 0.7392
βhg(12A) 0.9002 0.9002 0.9044
nd(12B) 1.52540 1.52540 1.52540
a 2.0233 2.0744 2.0273
h(=2.5a) 5.0583 5.1860 5.0683
R12A 19.7018 18.2267 17.0728
Δz12A(h) -0.02473 -0.03364 -0.00390
P(LA) -0.5804e-3 -0.7895e-3 -0.1924e-3
(12) (R12AF+R12AR)/(R12AF−R12AR) 0.00000 0.02382 0.00547
(13) f12C/f12B 4.254e-3 6.514e-4 7.558e-4
(14) b(12C) 2.34213 2.29515 2.19563
(15) nd(12C) 2.04300 1.95000 1.88300
νd(12C) 39.00 45.00 40.76
(16) {1/νd(11)}−{1/νd(12C)} 0.03063 0.02567 0.03108
(17) fw/f12A 0.00032 -0.00806 -0.00179
Dp 4.7277 4.7277 4.7277
(18a) f11/Dp -3.9528 -4.1073 -4.0182
(18b) f12/Dp 2.5517 2.5858 2.5953
(19) (R11F+R11R)/(R11F−R11R) -0.69570 -0.49908 -0.56804
f2/f1 -0.38470 -0.38110 -0.38410
(20)y07 2.688 2.688 2.688
tanω07 0.57574 0.58410 0.57615
(23) y07/(fw・tanω07w) 0.9241 0.9248 0.9244

実施例7 実施例8 実施例9 実施例10
fw 5.021 5.019 4.976 4.885
y10 3.84 3.84 3.84 3.84
γ 4.969 4.971 5.016 5.105
(1) {1/νd(12A)}−{1/νd(12B)}
0.02235 0.01420 0.05087 0.02347
(2) nd(12A) − nd(12B) 0.10756 0.05387 0.01603 0.10847
(3) b(12A) 2.04833 2.03834 1.96209 2.03834
(4) nd(12A) 1.63296 1.63387 1.71003 1.63387
(5) νd(12A) 24.01 23.38 14.57 23.38
θgF(12A) 0.6222 0.6684 0.7222 0.6684
(6) β(12A) 0.7823 0.8243 0.8194 0.8243
(7) θhg(12A) 0.5690 0.6351 0.7392 0.6351
βhg(12A) 0.8413 0.9002 0.9044 0.9002
nd(12B) 1.52540 1.58000 1.69400 1.52540
a 2.0448 2.0461 2.0754 2.1371
h(=2.5a) 5.1120 5.1153 5.1885 5.3428
R12A 16.7231 16.7103 17.9221 13.9396
Δz12A(h) -0.07761 -0.11754 -0.03294 -0.15059
P(LA) -1.7346e-3 -1.6691e-3 -1.6757e-3 -3.5343e-3
(12) (R12AF+R12AR)/(R12AF−R12AR)
0.01623 0.01252 0.02864 -0.03766

(13) f12C/f12B 7.802e-4 4.604e-4 8.712e-3 1.061e-3
(14) b(12C) 2.19563 2.19563 2.19563 2.19563
(15) nd(12C) 1.88300 1.88300 1.88300 1.88300
νd(12C) 40.76 40.76 40.76 40.76
(16) {1/νd(11)}−{1/νd(12C)}
0.03108 0.03108 0.02336 0.02401
(17) fw/f12A -0.00564 -0.00406 -0.01124 0.01670
Dp 4.7277 4.7277 4.6805 4.1465
(18a) f11/Dp -4.0530 -4.0481 -4.7944 -3.8944
(18b) f12/Dp 2.5929 2.5887 2.7318 2.6602
(19) (R11F+R11R)/(R11F−R11R)
-0.55316 -0.54943 *** ***
(20) f2/f1 -0.38338 -0.38207 -0.35610 -0.37237
07 2.688 2.688 2.688 2.688
tanω07 0.57926 0.57944 0.58562 0.59175
(23) y07/(fw・tanω07w) 0.9242 0.9243 0.9224 0.9299
Next, the values of the conditional expressions in each example are listed.

Example 1 Example 2 Example 3
fw 5.344 5.299 5.082
y10 3.84 3.84 3.84
γ 4.674 4.708 4.909
(1) {1 / νd (12A)} − {1 / νd (12B)} 0.02558 0.02558 0.02558
(2) nd (12A) − nd (12B) 0.01124 0.01124 0.01124
(3) b (12A) 2.03834 2.03834 2.03834
(4) nd (12A) 1.63387 1.63387 1.63387
(5) νd (12A) 23.38 23.38 23.38
θgF (12A) 0.6684 0.6684 0.6684
(6) β (12A) 0.8243 0.8243 0.8243
(7) θhg (12A) 0.6351 0.6351 0.6351
βhg (12A) 0.9002 0.9002 0.9002
nd (12B) 1.62263 1.62263 1.62263
a 1.8479 1.8723 2.0049
h (= 2.5a) 4.6198 4.6807 5.0123
R12A 8.6455 10.8957 22.7484
Δz12A (h) -0.15687 -0.13450 -0.07940
P (LA) -4.0127e-3 -3.4405e-3 -2.0311e-3
(12) (R12AF + R12AR) / (R12AF−R12AR) -0.06388 -0.03359 0.07539
(13) f12C / f12B 0.02219 0.01370 3.818e-3
(14) b (12C) 2.16119 2.34213 2.34213
(15) nd (12C) 1.80400 2.04300 2.04300
νd (12C) 46.57 39.00 39.00
(16) {1 / νd (11)} − {1 / νd (12C)} 0.02707 0.03063 0.03063
(17) fw / f12A 0.04860 0.02106 -0.02281
Dp 4.7277 4.7277 4.7277
(18a) f11 / Dp -2.5603 -2.7406 -4.5108
(18b) f12 / Dp 1.9620 2.0125 2.6578
(19) (R11F + R11R) / (R11F-R11R) -0.06036 0.23897 -1.0205
(20) f2 / f1 -0.58957 -0.53947 -0.37887
y07 2.688 2.688 2.688
tanω 07 0.52814 0.53168 0.57255
(23) y 07 / (fw · tanω 07w ) 0.9524 0.9541 0.9238


Example 4 Example 5 Example 6
fw 5.052 4.976 5.047
y10 3.84 3.84 3.84
γ 4.934 5.012 4.942
(1) {1 / νd (12A)} − {1 / νd (12B)} 0.02347 0.02347 0.04933
(2) nd (12A) − nd (12B) 0.10847 0.10847 0.18463
(3) b (12A) 2.03834 2.03834 1.96209
(4) nd (12A) 1.63387 1.63387 1.71003
(5) νd (12A) 23.38 23.38 14.57
θgF (12A) 0.6684 0.6684 0.7222
(6) β (12A) 0.8243 0.8243 0.8194
(7) θhg (12A) 0.6351 0.6351 0.7392
βhg (12A) 0.9002 0.9002 0.9044
nd (12B) 1.52540 1.52540 1.52540
a 2.0233 2.0744 2.0273
h (= 2.5a) 5.0583 5.1860 5.0683
R12A 19.7018 18.2267 17.0728
Δz12A (h) -0.02473 -0.03364 -0.00390
P (LA) -0.5804e-3 -0.7895e-3 -0.1924e-3
(12) (R12AF + R12AR) / (R12AF-R12AR) 0.00000 0.02382 0.00547
(13) f12C / f12B 4.254e-3 6.514e-4 7.558e-4
(14) b (12C) 2.34213 2.29515 2.19563
(15) nd (12C) 2.04300 1.95000 1.88300
νd (12C) 39.00 45.00 40.76
(16) {1 / νd (11)} − {1 / νd (12C)} 0.03063 0.02567 0.03108
(17) fw / f12A 0.00032 -0.00806 -0.00179
Dp 4.7277 4.7277 4.7277
(18a) f11 / Dp -3.9528 -4.1073 -4.0182
(18b) f12 / Dp 2.5517 2.5858 2.5953
(19) (R11F + R11R) / (R11F−R11R) -0.69570 -0.49908 -0.56804
f2 / f1 -0.38470 -0.38110 -0.38410
(20) y 07 2.688 2.688 2.688
tanω 07 0.57574 0.58410 0.57615
(23) y 07 / (fw · tanω 07w ) 0.9241 0.9248 0.9244

Example 7 Example 8 Example 9 Example 10
fw 5.021 5.019 4.976 4.885
y10 3.84 3.84 3.84 3.84
γ 4.969 4.971 5.016 5.105
(1) {1 / νd (12A)}-{1 / νd (12B)}
0.02235 0.01420 0.05087 0.02347
(2) nd (12A) − nd (12B) 0.10756 0.05387 0.01603 0.10847
(3) b (12A) 2.04833 2.03834 1.96209 2.03834
(4) nd (12A) 1.63296 1.63387 1.71003 1.63387
(5) νd (12A) 24.01 23.38 14.57 23.38
θgF (12A) 0.6222 0.6684 0.7222 0.6684
(6) β (12A) 0.7823 0.8243 0.8194 0.8243
(7) θhg (12A) 0.5690 0.6351 0.7392 0.6351
βhg (12A) 0.8413 0.9002 0.9044 0.9002
nd (12B) 1.52540 1.58000 1.69400 1.52540
a 2.0448 2.0461 2.0754 2.1371
h (= 2.5a) 5.1120 5.1153 5.1885 5.3428
R12A 16.7231 16.7103 17.9221 13.9396
Δz12A (h) -0.07761 -0.11754 -0.03294 -0.15059
P (LA) -1.7346e-3 -1.6691e-3 -1.6757e-3 -3.5343e-3
(12) (R12AF + R12AR) / (R12AF-R12AR)
0.01623 0.01252 0.02864 -0.03766

(13) f12C / f12B 7.802e-4 4.604e-4 8.712e-3 1.061e-3
(14) b (12C) 2.19563 2.19563 2.19563 2.19563
(15) nd (12C) 1.88300 1.88300 1.88300 1.88300
νd (12C) 40.76 40.76 40.76 40.76
(16) {1 / νd (11)}-{1 / νd (12C)}
0.03108 0.03108 0.02336 0.02401
(17) fw / f12A -0.00564 -0.00406 -0.01124 0.01670
Dp 4.7277 4.7277 4.6805 4.1465
(18a) f11 / Dp -4.0530 -4.0481 -4.7944 -3.8944
(18b) f12 / Dp 2.5929 2.5887 2.7318 2.6602
(19) (R11F + R11R) / (R11F-R11R)
-0.55316 -0.54943 *********
(20) f2 / f1 -0.38338 -0.38207 -0.35610 -0.37237
y 07 2.688 2.688 2.688 2.688
tanω 07 0.57926 0.57944 0.58562 0.59175
(23) y 07 / (fw · tanω 07w ) 0.9242 0.9243 0.9224 0.9299

さて、以上のような本発明の結像光学系は、物体の像をCCDやCMOSなどの電子撮像素子で撮影する撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、携帯端末、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。   The imaging optical system of the present invention as described above is a photographing apparatus for photographing an image of an object with an electronic image sensor such as a CCD or a CMOS, especially a digital camera, a video camera, a personal computer or an example of an information processing apparatus, a telephone. It can be used for portable terminals, especially mobile phones that are convenient to carry. The embodiment is illustrated below.

図21〜図23に本発明による結像光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図21はデジタルカメラ40の外観を示す前方斜視図、図22は同後方斜視図、図23はデジタルカメラ40の光学構成を示す断面図である。   FIG. 21 to FIG. 23 show conceptual diagrams of a configuration in which the imaging optical system according to the present invention is incorporated in a photographing optical system 41 of a digital camera. 21 is a front perspective view showing the appearance of the digital camera 40, FIG. 22 is a rear perspective view thereof, and FIG. 23 is a cross-sectional view showing an optical configuration of the digital camera 40.

デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47等を含む。そして、撮影者が、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズ48を通して撮影が行われる。   In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, and the like. Then, when the photographer presses the shutter 45 disposed on the upper part of the camera 40, photographing is performed through the photographing optical system 41, for example, the zoom lens 48 of the first embodiment in conjunction therewith.

撮影光学系41によって形成された物体像は、CCD49の撮像面上に形成される。このCCD49で受光された物体像は、画像処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この画像処理手段51にはメモリ等が配置され、撮影された電子画像を記録することもできる。なお、このメモリは画像処理手段51と別体に設けてもよいし、フレキシブルディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。   The object image formed by the photographing optical system 41 is formed on the image pickup surface of the CCD 49. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the image processing means 51. Further, the image processing means 51 is provided with a memory or the like, and can record a captured electronic image. This memory may be provided separately from the image processing means 51, or may be configured to perform recording and writing electronically using a flexible disk, memory card, MO, or the like.

さらに、ファインダー用光路44上には、ファインダー用対物光学系53が配置されている。このファインダー用対物光学系53は、カバーレンズ54、第1プリズム10、開口絞り2、第2プリズム20、フォーカス用レンズ66からなる。このファインダー用対物光学系53によって、結像面67上に物体像が形成される。この物体像は、像正立部材であるポロプリズム55の視野枠57上に形成される。このポロプリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a cover lens 54, a first prism 10, an aperture stop 2, a second prism 20, and a focusing lens 66. An object image is formed on the imaging surface 67 by the finder objective optical system 53. This object image is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. Behind the Porro prism 55, an eyepiece optical system 59 for guiding the image formed into an erect image to the observer eyeball E is disposed.

このように構成されたデジタルカメラ40によれば、撮影光学系41の構成枚数を少なくした小型化・薄型化のズームレンズを有する電子撮像装置が実現できる。なお、本発明は、上述した沈胴式のデジタルカメラに限られず、屈曲光学系を採用する折り曲げ式のデジタルカメラにも適用できる。   According to the digital camera 40 configured as described above, an electronic imaging device having a compact and thin zoom lens in which the number of components of the photographing optical system 41 is reduced can be realized. The present invention is not limited to the above-described retractable digital camera, but can also be applied to a folding digital camera that employs a bending optical system.

次に、本発明の結像光学系が対物光学系として内蔵された情報処理装置の一例であるパソコンを図24〜図26に示す。図24はパソコン300のカバーを開いた状態の前方斜視図、図15はパソコン300の撮影光学系303の断面図、図26は図14の側面図である。図24〜図26に示されるように、パソコン300は、キーボード301と、情報処理手段や記録手段と、モニター302と、撮影光学系303とを有している。   Next, a personal computer which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as an objective optical system is shown in FIGS. 24 is a front perspective view of the personal computer 300 with the cover open, FIG. 15 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 26 is a side view of FIG. As shown in FIGS. 24 to 26, the personal computer 300 includes a keyboard 301, information processing means and recording means, a monitor 302, and a photographing optical system 303.

ここで、キーボード301は、外部から操作者が情報を入力するためのものである。情報処理手段や記録手段は、図示を省略している。モニター302は、情報を操作者に表示するためのものである。撮影光学系303は、操作者自身や周辺の像を撮影するためのものである。モニター302は、液晶表示素子やCRTディスプレイ等であってよい。液晶表示素子としては、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子がある。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Here, the keyboard 301 is for an operator to input information from the outside. The information processing means and recording means are not shown. The monitor 302 is for displaying information to the operator. The photographing optical system 303 is for photographing an image of the operator himself or a surrounding area. The monitor 302 may be a liquid crystal display element, a CRT display, or the like. Examples of the liquid crystal display element include a transmissive liquid crystal display element that illuminates from the back with a backlight (not shown), and a reflective liquid crystal display element that reflects and displays light from the front. Further, in the drawing, the photographing optical system 303 is built in the upper right of the monitor 302. However, the imaging optical system 303 is not limited to the place, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、例えば実施例1のズームレンズからなる対物光学系100と、像を受光する電子撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographing optical system 303 includes, on the photographing optical path 304, the objective optical system 100 including, for example, the zoom lens according to the first embodiment, and the electronic imaging element chip 162 that receives an image. These are built in the personal computer 300.

鏡枠の先端には、対物光学系100を保護するためのカバーガラス102が配置されている。
電子撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力される。そして、最終的に、物体像は電子画像としてモニター302に表示される。図24には、その一例として、操作者が撮影した画像305が示されている。また、この画像305は、処理手段を介し、遠隔地から通信相手のパソコンに表示されることも可能である。遠隔地への画像伝達は、インターネットや電話を利用する。
A cover glass 102 for protecting the objective optical system 100 is disposed at the tip of the mirror frame.
The object image received by the electronic image sensor chip 162 is input to the processing means of the personal computer 300 via the terminal 166. Finally, the object image is displayed on the monitor 302 as an electronic image. FIG. 24 shows an image 305 taken by the operator as an example. The image 305 can also be displayed on a communication partner's personal computer from a remote location via the processing means. The Internet and telephone are used for image transmission to remote places.

次に、本発明の結像光学系が撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話を図27に示す。図27(a)は携帯電話400の正面図、図27(b)は側面図、図27(c)は撮影光学系405の断面図である。図27(a)〜(c)に示されるように、携帯電話400は、マイク部401と、スピーカ部402と、入力ダイアル403と、モニター404と、撮影光学系405と、アンテナ406と、処理手段とを有している。   Next, FIG. 27 shows a telephone which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as a photographing optical system, particularly a portable telephone which is convenient to carry. 27A is a front view of the mobile phone 400, FIG. 27B is a side view, and FIG. 27C is a cross-sectional view of the photographing optical system 405. As shown in FIGS. 27A to 27C, the mobile phone 400 includes a microphone unit 401, a speaker unit 402, an input dial 403, a monitor 404, a photographing optical system 405, an antenna 406, and processing. Means.

ここで、マイク部401は、操作者の声を情報として入力するためのものである。スピーカ部402は、通話相手の声を出力するためのものである。入力ダイアル403は、操作者が情報を入力するためのものである。モニター404は、操作者自身や通話相手等の撮影像や、電話番号等の情報を表示するためのものである。アンテナ406は、通信電波の送信と受信を行うためのものである。処理手段(不図示)は、画像情報や通信情報、入力信号等の処理を行ためのものである。   Here, the microphone unit 401 is for inputting an operator's voice as information. The speaker unit 402 is for outputting the voice of the other party. An input dial 403 is used by an operator to input information. The monitor 404 is for displaying information such as a photographed image of the operator himself or the other party, a telephone number, and the like. The antenna 406 is for transmitting and receiving communication radio waves. The processing means (not shown) is for processing image information, communication information, input signals, and the like.

ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置は、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配された対物光学系100と、物体像を受光する電子撮像素子チップ162とを有している。対物光学系100としては、例えば実施例1のズームレンズが用いられる。これらは、携帯電話400に内蔵されている。   Here, the monitor 404 is a liquid crystal display element. In the drawing, the arrangement positions of the respective components are not particularly limited to these. The photographing optical system 405 includes the objective optical system 100 disposed on the photographing optical path 407 and an electronic image sensor chip 162 that receives an object image. As the objective optical system 100, for example, the zoom lens of Example 1 is used. These are built in the mobile phone 400.

鏡枠の先端には、対物光学系100を保護するためのカバーガラス102が配置されている。
電子撮影素子チップ162で受光された物体像は、端子166を介して、図示していない画像処理手段に入力される。そして、最終的に物体像は、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、処理手段には信号処理機能が含まれている。通信相手に画像を送信する場合、この機能により、電子撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する。
A cover glass 102 for protecting the objective optical system 100 is disposed at the tip of the mirror frame.
The object image received by the electronic imaging element chip 162 is input to an image processing unit (not shown) via the terminal 166. Finally, the object image is displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. The processing means includes a signal processing function. When transmitting an image to a communication partner, this function converts information on the object image received by the electronic image sensor chip 162 into a signal that can be transmitted.

なお、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。   The present invention can take various modifications without departing from the spirit of the present invention.

以上のように、本発明に係る結像光学系及びそれを有する電子撮像装置は、結像光学系の高変倍率化、薄型化、及び、高性能化、並びに、電子撮像装置の薄型化に有用である。   As described above, the imaging optical system and the electronic imaging apparatus having the imaging optical system according to the present invention are capable of increasing the magnification ratio, reducing the thickness, improving the performance of the imaging optical system, and reducing the thickness of the electronic imaging apparatus. Useful.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
L1〜L15 各レンズ
LPF ローパスフィルタ
CG カバーガラス
I 撮像面
E 観察者の眼球
40 デジタルカメラ
41 撮影光学系
42 撮影用光路
43 ファインダー光学系
44 ファインダー用光路
45 シャッター
46 フラッシュ
47 液晶表示モニター
48 ズームレンズ
49 CCD
50 撮像面
51 処理手段
53 ファインダー用対物光学系
55 ポロプリズム
57 視野枠
59 接眼光学系
66 フォーカス用レンズ
67 結像面
100 対物光学系
102 カバーガラス
162 電子撮像素子チップ
166 端子
300 パソコン
301 キーボード
302 モニター
303 撮影光学系
304 撮影光路
305 画像
400 携帯電話
401 マイク部
402 スピーカ部
403 入力ダイアル
404 モニター
405 撮影光学系
406 アンテナ
407 撮影光路
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group L1 to L15 Each lens LPF Low pass filter CG Cover glass I Imaging surface E Observer's eye 40 Digital camera 41 Shooting optics System 42 Optical path for photographing 43 Viewfinder optical system 44 Optical path for viewfinder 45 Shutter 46 Flash 47 LCD monitor 48 Zoom lens 49 CCD
DESCRIPTION OF SYMBOLS 50 Imaging surface 51 Processing means 53 Finder objective optical system 55 Porro prism 57 Field frame 59 Eyepiece optical system 66 Focusing lens 67 Imaging surface 100 Objective optical system 102 Cover glass 162 Electronic imaging device chip 166 Terminal 300 Personal computer 301 Keyboard 302 Monitor 303 Imaging Optical System 304 Imaging Optical Path 305 Image 400 Mobile Phone 401 Microphone Unit 402 Speaker Unit 403 Input Dial 404 Monitor 405 Imaging Optical System 406 Antenna 407 Imaging Optical Path

Claims (15)

物体側より順に、正の屈折力を有するレンズ群G1と、負の屈折力を有するレンズ群G2と、全体として常時正の屈折力を有する後部レンズ群GRと、より構成される結像光学系であって、
前記レンズ群G1は、サブレンズ群G11とサブレンズ群G12で構成され、
前記レンズ群G2は変倍時に可動であり、
前記後部レンズ群GRは、変倍時に相互の光軸上距離が変化する3つ又は4つの副レンズ群からなり、
前記サブレンズ群G11は、負の屈折力を有するレンズ成分と光路を折り曲げるためのプリズムとからなる構成、または負の屈折力を有し光路を折り曲げるためのプリズムからなる構成であり、
前記サブレンズ群G12は正の屈折力を有し、レンズLAとレンズLBとの接合レンズ成分と、正レンズLCとからなり、
前記レンズLAと前記レンズLBとの接合面は非球面であり、
前記正レンズLCは、前記レンズLAと前記レンズLBよりも強い屈折力を有し、
以下の条件式(1)を満足することを特徴とする結像光学系。
0.008<{1/νd(12A)}−{1/νd(12B)} ・・・(1)
ここで、
νd(12A)は前記レンズLAのアッベ数(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、前記レンズLAのd線、C線、F線、g線の屈折率、
νd(12B)は前記レンズLBのアッベ数(nd(12B)−1)/(nF(12B)−nC(12B))、
nd(12B)、nC(12B)、nF(12B)、ng(12B)は、各々、前記レンズLBのd線、C線、F線、g線の屈折率、
である。
An imaging optical system including, in order from the object side, a lens group G1 having a positive refractive power, a lens group G2 having a negative refractive power, and a rear lens group GR having a positive refractive power as a whole as a whole. Because
The lens group G1 includes a sub lens group G11 and a sub lens group G12.
The lens group G2 is movable at the time of zooming,
The rear lens group GR is composed of three or four sub lens groups whose mutual optical axis distances change upon zooming,
The sub-lens group G11 is composed of a lens component having negative refracting power and a prism for bending the optical path, or composed of prisms having negative refracting power and bending the optical path,
The sub lens group G12 has a positive refractive power, and includes a cemented lens component of the lens LA and the lens LB, and a positive lens LC.
The joint surface between the lens LA and the lens LB is aspheric,
The positive lens LC has a stronger refractive power than the lens LA and the lens LB,
An imaging optical system characterized by satisfying the following conditional expression (1):
0.008 <{1 / νd (12A)} − {1 / νd (12B)} (1)
here,
νd (12A) is the Abbe number (nd (12A) −1) / (nF (12A) −nC (12A)) of the lens LA,
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indexes of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
νd (12B) is the Abbe number (nd (12B) −1) / (nF (12B) −nC (12B)) of the lens LB,
nd (12B), nC (12B), nF (12B), and ng (12B) are the refractive indices of the d-line, C-line, F-line, and g-line of the lens LB, respectively.
It is.
以下の条件を満足することを特徴とする請求項1に記載の結像光学系。
|nd(12A)−nd(12B)|≦0.30 …(2)
ここで、
nd(12A)は前記レンズLAのd線における屈折率、
nd(12B)は前記レンズLBのd線における屈折率、
である。
The imaging optical system according to claim 1, wherein the following condition is satisfied.
| Nd (12A) −nd (12B) | ≦ 0.30 (2)
here,
nd (12A) is the refractive index of the lens LA at the d-line,
nd (12B) is the refractive index of the lens LB at the d-line,
It is.
横軸をνd、及び縦軸をndとする直交座標系において、
nd(12A)=a(12A)×νd(12A)+b(12A)(但し、a(12A)=−0.0173)
で表される直線を設定したときに、以下の条件式(3)の範囲の下限値であるときの直線、および上限値であるときの直線で定まる領域と、以下の条件式(4)及び(5)で定まる領域との両方の領域に、前記レンズLAのnd(12A)とνd(12A)が含まれることを特徴とする請求項1又は2に記載の結像光学系。
1.64<b(12A)<2.18 …(3)
1.57<nd(12A)<2.00 …(4)
3<νd(12A)<27 …(5)
ここで、
nd(12A)は前記レンズLAのd線における屈折率、
νd(12A)は前記レンズLAのアッベ数(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、前記レンズLAのd線、C線、F線、g線の屈折率、
である。
In an orthogonal coordinate system with the horizontal axis νd and the vertical axis nd,
nd (12A) = a (12A) × νd (12A) + b (12A) (however, a (12A) = − 0.0173)
When the straight line represented by the following formula (3) is set, the area defined by the straight line when the lower limit value and the straight line when the upper limit value are satisfied, and the following conditional expression (4) and 3. The imaging optical system according to claim 1, wherein nd (12A) and νd (12A) of the lens LA are included in both of the regions determined by (5).
1.64 <b (12A) <2.18 (3)
1.57 <nd (12A) <2.00 (4)
3 <νd (12A) <27 (5)
here,
nd (12A) is the refractive index of the lens LA at the d-line,
νd (12A) is the Abbe number (nd (12A) −1) / (nF (12A) −nC (12A)) of the lens LA,
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indexes of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
It is.
横軸をνd、及び縦軸をθgFとする直交座標系において、
θgF(12A)=α(12A)×νd(12A)+β(12A)(但し、α(12A)=−0.00667)
で表される直線を設定したときに、以下の条件式(6)の範囲の下限値であるときの直線、および上限値であるときの直線で定まる領域と、以下の条件式(5)で定まる領域との両方の領域に、前記レンズLAのθgF(12A)とνd(12A)が含まれることを特徴とする請求項3に記載の結像光学系。
0.7840<β(12A)<0.9000 ・・・(6)
3<νd(12A)<27 ・・・(5)
ここで、
θgF(12A)は前記レンズLAの部分分散比(ng(12A)−nF(12A))/(nF(12A)−nC(12A))、
νd(12A)は前記レンズLAのアッベ数、(nd(12A)−1)/(nF(12A)−nC(12A))、
nd(12A)、nC(12A)、nF(12A)、ng(12A)は、各々、前記レンズLAのd線、C線、F線、g線の屈折率、
である。
In an orthogonal coordinate system in which the horizontal axis is νd and the vertical axis is θgF,
θgF (12A) = α (12A) × νd (12A) + β (12A) (where α (12A) = − 0.00667)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (6) and the straight line when the upper limit is set, and the following conditional expression (5) The imaging optical system according to claim 3, wherein θgF (12A) and νd (12A) of the lens LA are included in both the fixed region and the region.
0.7840 <β (12A) <0.9000 (6)
3 <νd (12A) <27 (5)
here,
θgF (12A) is the partial dispersion ratio (ng (12A) −nF (12A)) / (nF (12A) −nC (12A)) of the lens LA,
νd (12A) is the Abbe number of the lens LA, (nd (12A) −1) / (nF (12A) −nC (12A)),
nd (12A), nC (12A), nF (12A), and ng (12A) are the refractive indexes of the d-line, C-line, F-line, and g-line of the lens LA, respectively.
It is.
前記直交座標(横軸をνd、及び縦軸をθgFとする直交座標)とは異なる、横軸をνd、及び縦軸をθhgとする直交座標系において、
θhg(12A)=αhg(12A)×νd(12A)+βhg(12A)(但し、αhg(12A)=−0.01134)
で表される直線を設定したときに、以下の条件式(7)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(5)で定まる領域との両方の領域に、前記レンズLAのθhg(12A)とνd(12A)が含まれることを特徴とする請求項4に記載の結像光学系。
0.8450<βhg(12A)<0.9800 …(7)
3<νd(12A)<27 …(5)
ここで、
θhg(12A)は前記レンズLAの部分分散比(nh(12A)−ng(12A))/(nF(12A)−nC(12A))、
nh(12A)は前記レンズLAのh線の屈折率、
である。
Different from the orthogonal coordinates (orthogonal coordinates where the horizontal axis is νd and the vertical axis is θgF), the orthogonal coordinate system where the horizontal axis is νd and the vertical axis is θhg,
θhg (12A) = αhg (12A) × νd (12A) + βhg (12A) (where αhg (12A) = − 0.01134)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (7) and the straight line when the upper limit is set, and the following conditional expression (5) The imaging optical system according to claim 4, wherein θhg (12A) and νd (12A) of the lens LA are included in both the fixed region and the region.
0.8450 <βhg (12A) <0.9800 (7)
3 <νd (12A) <27 (5)
here,
θhg (12A) is a partial dispersion ratio (nh (12A) −ng (12A)) / (nF (12A) −nC (12A)) of the lens LA,
nh (12A) is the refractive index of h-line of the lens LA,
It is.
前記レンズLAはメニスカス形状であり、
以下の条件(12)を満足することを特徴とする請求項1〜5のいずれか一項に記載の結像光学系。
|(R12AF−R12AR)/(R12AF+R12AR)|<0.2 …(12)
ここで、
R12AFは前記レンズLAの物体側の光軸上での曲率半径、
R12ARは前記レンズLAの像側の光軸上での曲率半径、
である。
The lens LA has a meniscus shape,
The imaging optical system according to claim 1, wherein the following condition (12) is satisfied.
| (R12AF−R12AR) / (R12AF + R12AR) | <0.2 (12)
here,
R12AF is the radius of curvature on the optical axis on the object side of the lens LA,
R12AR is the radius of curvature on the optical axis on the image side of the lens LA,
It is.
以下の条件を満足することを特徴とする請求項1〜6のいずれか一項に記載の結像光学系。
−0.2<f12C/f12B<0.2 ・・・(13)
ここで、
f12Bは前記レンズLBの焦点距離、
f12Cは前記正レンズLCの焦点距離、
である。
The imaging optical system according to claim 1, wherein the following condition is satisfied.
-0.2 <f12C / f12B <0.2 (13)
here,
f12B is the focal length of the lens LB;
f12C is the focal length of the positive lens LC,
It is.
横軸をνd、及び縦軸をndとする直交座標系において、
nd(12C) =a(12C)×νd(12C)+b(12C)(但し、a(12C)=−0.00767)
で表される直線を設定したときに、以下の条件式(14)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(15)で定まる領域との2つの領域に、前記正レンズLCのnd(12C)及びνd(12C)が含まれることを特徴とする請求項7に記載の結像光学系。
2.10 < b(12C) …(14)
1.70 < nd(12C) …(15)
ここで、
νd(12C)は前記正レンズLCのアッベ数(nd(12C)−1)/(nF(12C)−nC(12C))、
nd(12C)、nC(12C)、nF(12C)は、各々、前記正レンズLCのd線、C線、F線の屈折率、
である。
In an orthogonal coordinate system with the horizontal axis νd and the vertical axis nd,
nd (12C) = a (12C) × νd (12C) + b (12C) (where a (12C) = − 0.00767)
When the straight line represented by is set, the region defined by the straight line when the range is the lower limit of the range of the following conditional expression (14) and the straight line when the upper limit is set, and the following conditional expression (15) The imaging optical system according to claim 7, wherein nd (12C) and νd (12C) of the positive lens LC are included in two regions including a fixed region.
2.10 <b (12C) (14)
1.70 <nd (12C) (15)
here,
νd (12C) is the Abbe number (nd (12C) −1) / (nF (12C) −nC (12C)) of the positive lens LC,
nd (12C), nC (12C), and nF (12C) are refractive indexes of the d-line, C-line, and F-line of the positive lens LC, respectively.
It is.
前記サブレンズ群G11において、前記負の屈折力を有するレンズ成分、または前記負の屈折力を有し光路を折り曲げるためのプリズムは、負の屈折力を有する素子であって、
以下の条件式(16)を満足することを特徴とする請求項7〜8のいずれか一項に記載の結像光学系。
0.017<{1/νd(11)}−{1/νd(12C)}<0.052 ・・・(16)
ここで、
νd(11)は前記屈折力を有する素子のアッベ数(nd(11)−1)/(nF(11)−nC(11))、
νd(12C)は前記正レンズLCのアッベ数(nd(12C)−1)/(nF(12C)−nC(12C))、
nd(11)、nC(11)、nF(11)は、各々、前記負の屈折力を有する素子のd線、C線、F線の屈折率、
nd(12C)、nC(12C)、nF(12C)は、各々、前記正レンズLCのd線、C線、F線の屈折率、
である。
In the sub lens group G11, the lens component having the negative refractive power or the prism for bending the optical path having the negative refractive power is an element having a negative refractive power,
The imaging optical system according to claim 7, wherein the following conditional expression (16) is satisfied.
0.017 <{1 / νd (11)} − {1 / νd (12C)} <0.052 (16)
here,
νd (11) is the Abbe number (nd (11) −1) / (nF (11) −nC (11)) of the element having the refractive power,
νd (12C) is the Abbe number (nd (12C) −1) / (nF (12C) −nC (12C)) of the positive lens LC,
nd (11), nC (11), and nF (11) are the refractive indices of the d-line, C-line, and F-line of the element having negative refractive power,
nd (12C), nC (12C), and nF (12C) are refractive indexes of the d-line, C-line, and F-line of the positive lens LC, respectively.
It is.
以下の条件式(17)を満足することを特徴とする請求項1〜9のいずれか一項に記載の結像光学系。
−0.2<fw/f12A<0.2 ・・・(17)
ここで、
fwは前記結像光学系の広角端における全系の焦点距離、
f12Aは前記レンズLAの空気中における焦点距離、
である。
The imaging optical system according to claim 1, wherein the following conditional expression (17) is satisfied.
-0.2 <fw / f12A <0.2 (17)
here,
fw is the focal length of the entire system at the wide angle end of the imaging optical system,
f12A is the focal length of the lens LA in the air,
It is.
以下の条件式(18a)と条件式(18b)の少なくとも一方を満足することを特徴とする請求項1〜10のいずれか一項に記載の結像光学系。
−7.0<f11/Dp<−1.5 ・・・(18a)
1.2<f12/Dp<5.0 ・・・(18b)
ここで、
f11は前記サブレンズ群G11の焦点距離、
f12は前記サブレンズ群G12の焦点距離、
Dpは前記プリズムの入射面から射出面までの光軸に沿った空気換算距離、
である。
The imaging optical system according to claim 1, wherein at least one of the following conditional expression (18a) and conditional expression (18b) is satisfied.
-7.0 <f11 / Dp <-1.5 (18a)
1.2 <f12 / Dp <5.0 (18b)
here,
f11 is the focal length of the sub lens group G11,
f12 is the focal length of the sub lens group G12,
Dp is the air equivalent distance along the optical axis from the entrance surface to the exit surface of the prism,
It is.
以下の条件を満足することを特徴とする請求項1〜11のいずれか一項に記載の結像光学系。
−2.0<(R11F+R11R)/(R11F−R11R)<2.0 ・・・(19)
ここで、
R11Fは前記サブレンズ群G11の最も物体側の面の光軸上での曲率半径、
R11Rは前記サブレンズ群G11の最も像側の面の光軸上での曲率半径、
である。
The imaging optical system according to claim 1, wherein the following condition is satisfied.
-2.0 <(R11F + R11R) / (R11F-R11R) <2.0 (19)
here,
R11F is a radius of curvature on the optical axis of the surface closest to the object side of the sub lens group G11,
R11R is a radius of curvature on the optical axis of the surface closest to the image side of the sub lens group G11,
It is.
以下の条件を満足することを特徴とする請求項1〜12のいずれか一項に記載の結像光学系。
−1.0<f2/f1<−0.20 ・・・(20)
ここで、
f1は前記正レンズ群G1の焦点距離、
f2は前記負レンズ群G2の焦点距離、
である。
The imaging optical system according to claim 1, wherein the following condition is satisfied.
-1.0 <f2 / f1 <-0.20 (20)
here,
f1 is the focal length of the positive lens group G1,
f2 is the focal length of the negative lens group G2,
It is.
請求項1〜13のいずれか一項に記載の結像光学系と、電子撮像素子を有し、
光軸方向をz、光軸に垂直な方向をhとする座標軸とし、Rを球面成分の光軸上における曲率半径、Kを円錐定数、A,A,A,A10・・・を非球面係数として、非球面の形状を、以下の式(8)で表すと共に、
z=(h2/R)/{1+[1−(1+K)(h/R)21/2
+A4+A6+A8+A1010 …(8)
偏倚量を下記の式(9)で表した場合、
Δz=z−h/R{1+(1−h2/R21/2} …(9)
以下の条件式(10)を満足することを特徴とする電子撮像装置。
12A≧0のとき
-5.0e-2<P(LA)/y10 <0 〈但し、h=2.5a〉 ・・・(10)
ここで、
P(LA)は前記接合面の形状と分散に関するパラメータであって、以下の式で表され、
P(LA)=Δz12A(h)・(1/νd(12A)− 1/νd(12B))
12Aは前記接合面の形状であって、式(8)に従う形状、
Δz12A(h)は前記接合面の偏倚量であって、式(9)に従う偏倚量、
12Aは前記接合面の近軸曲率半径、
aは以下の条件式(11)式に従う量、
a=(y10 )2・ log10γ/ fw ・・・(11)
両空気接触面は球面であってもよく、
10 は前記結像光学系の結像位置近傍に配置された前記電子撮像素子の有効撮像面内(撮像可能な面内)において、中心から最も遠い点までの距離(最大像高)、
fwは前記結像光学系の広角端における全系の焦点距離、
γは結像比(望遠端での全系焦点距離/広角端での全系焦点距離)、
また、各面の面頂を原点とするため、常にz(0)=0、
である。
The imaging optical system according to any one of claims 1 to 13 and an electronic imaging device,
An optical axis direction is z, a coordinate axis with h being a direction perpendicular to the optical axis, R is a radius of curvature of the spherical component on the optical axis, K is a conic constant, A 4 , A 6 , A 8 , A 10. As the aspheric coefficient, the shape of the aspheric surface is expressed by the following equation (8), and
z = (h 2 / R) / {1+ [1- (1 + K) (h / R) 2 ] 1/2 }
+ A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 (8)
When the deviation amount is expressed by the following formula (9),
Δz = z−h 2 / R {1+ (1−h 2 / R 2 ) 1/2 } (9)
An electronic imaging device characterized by satisfying the following conditional expression (10):
When R 12A ≧ 0
-5.0e-2 <P (LA) / y 10 <0 < However, h = 2.5a> ··· (10 )
here,
P (LA) is a parameter related to the shape and dispersion of the joint surface, and is represented by the following equation:
P (LA) = Δz 12A (h) ・ (1 / νd (12A) −1 / νd (12B))
z 12A is the shape of the joint surface, the shape according to formula (8),
Δz 12A (h) is the amount of deviation of the joint surface, and the amount of deviation according to equation (9),
R 12A is the paraxial radius of curvature of the joint surface,
a is an amount according to the following conditional expression (11),
a = (y 10 ) 2 · log 10 γ / fw (11)
Both air contact surfaces may be spherical,
y 10 is the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device arranged in the vicinity of the imaging position of the imaging optical system;
fw is the focal length of the entire system at the wide angle end of the imaging optical system,
γ is the imaging ratio (total focal length at the telephoto end / total focal length at the wide angle end),
Also, since the top of each surface is the origin, z (0) = 0 is always set.
It is.
請求項1〜14のいずれか一項に記載の結像光学系と、電子撮像素子と、前記結像光学系を通じて結像した像を前記電子撮像素子で撮像することによって得られた画像データを加工して像の形状を変化させた画像データとして出力する画像処理手段とを有し、前記結像光学系が、無限遠物点合焦時に次の条件式(23)を満足することを特徴とする電子撮像装置。
0.85<y07/(fw・tanω07w)<0.97 …(23)
ここで、
07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたときy07=0.7・y10
ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度、
fwは広角端における前記結像光学系の全系の焦点距離、
である。
The imaging optical system according to any one of claims 1 to 14, an electronic imaging device, and image data obtained by imaging an image formed through the imaging optical system with the electronic imaging device. And image processing means for outputting image data obtained by processing and changing the shape of the image, and the imaging optical system satisfies the following conditional expression (23) when focusing on an object point at infinity: An electronic imaging device.
0.85 <y 07 / (fw · tan ω 07w ) <0.97 (23)
here,
y 07 The y 07 = 0.7 · y 10 when the effective image pickup plane of the electronic imaging device the distance to the farthest point from the center in (imageable plane) (maximum image height) was y 10,
ω 07w is an angle with respect to the optical axis in the object direction corresponding to the image point connecting from the center on the imaging surface at the wide angle end to the position of y 07 ,
fw is the focal length of the entire system of the imaging optical system at the wide-angle end,
It is.
JP2009258982A 2009-11-12 2009-11-12 Imaging optical system and electronic imaging apparatus having the same Active JP5474501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258982A JP5474501B2 (en) 2009-11-12 2009-11-12 Imaging optical system and electronic imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258982A JP5474501B2 (en) 2009-11-12 2009-11-12 Imaging optical system and electronic imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2011107188A true JP2011107188A (en) 2011-06-02
JP2011107188A5 JP2011107188A5 (en) 2012-11-29
JP5474501B2 JP5474501B2 (en) 2014-04-16

Family

ID=44230777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258982A Active JP5474501B2 (en) 2009-11-12 2009-11-12 Imaging optical system and electronic imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5474501B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173024A1 (en) * 2011-06-14 2012-12-20 コニカミノルタアドバンストレイヤー株式会社 Zoom lens and imaging device
JP2013178431A (en) * 2012-02-29 2013-09-09 Nikon Corp Variable power optical system, optical device having the variable power optical system, and method for manufacturing variable power optical system
JP2017076041A (en) * 2015-10-14 2017-04-20 キヤノン株式会社 Optical system and imaging apparatus including the same
WO2019049371A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2019049372A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
CN114994876A (en) * 2022-05-27 2022-09-02 莆田学院 Wide-spectrum day and night dual-purpose monitoring fisheye lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094135A (en) * 2005-09-29 2007-04-12 Konica Minolta Opto Inc Zoom lens
JP2008191306A (en) * 2007-02-02 2008-08-21 Olympus Imaging Corp Imaging optical system and electronic imaging apparatus having the same
JP2009069794A (en) * 2007-08-21 2009-04-02 Olympus Imaging Corp Image-forming optical system and electronic imaging apparatus including the same
WO2009133736A1 (en) * 2008-04-30 2009-11-05 オリンパスイメージング株式会社 Image forming optical system and electronic image pickup device provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094135A (en) * 2005-09-29 2007-04-12 Konica Minolta Opto Inc Zoom lens
JP2008191306A (en) * 2007-02-02 2008-08-21 Olympus Imaging Corp Imaging optical system and electronic imaging apparatus having the same
JP2009069794A (en) * 2007-08-21 2009-04-02 Olympus Imaging Corp Image-forming optical system and electronic imaging apparatus including the same
WO2009133736A1 (en) * 2008-04-30 2009-11-05 オリンパスイメージング株式会社 Image forming optical system and electronic image pickup device provided with the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012173024A1 (en) * 2011-06-14 2015-02-23 コニカミノルタ株式会社 Zoom lens and imaging device
WO2012173024A1 (en) * 2011-06-14 2012-12-20 コニカミノルタアドバンストレイヤー株式会社 Zoom lens and imaging device
JP2013178431A (en) * 2012-02-29 2013-09-09 Nikon Corp Variable power optical system, optical device having the variable power optical system, and method for manufacturing variable power optical system
US10649184B2 (en) 2015-10-14 2020-05-12 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
JP2017076041A (en) * 2015-10-14 2017-04-20 キヤノン株式会社 Optical system and imaging apparatus including the same
CN106597647A (en) * 2015-10-14 2017-04-26 佳能株式会社 Optical system and image pickup apparatus including the same
CN106597647B (en) * 2015-10-14 2020-05-19 佳能株式会社 Optical system and imaging apparatus including the same
WO2019049372A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2019049371A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
JPWO2019049372A1 (en) * 2017-09-11 2020-10-01 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
JPWO2019049371A1 (en) * 2017-09-11 2020-10-01 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
JP2022024121A (en) * 2017-09-11 2022-02-08 株式会社ニコン Zoom optical system, optical device, and method of manufacturing zoom optical system
CN114994876A (en) * 2022-05-27 2022-09-02 莆田学院 Wide-spectrum day and night dual-purpose monitoring fisheye lens
CN114994876B (en) * 2022-05-27 2023-09-26 莆田学院 Wide-spectrum day and night dual-purpose monitoring fisheye lens

Also Published As

Publication number Publication date
JP5474501B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5275718B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5084312B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5209367B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5048353B2 (en) Imaging optical system and electronic imaging apparatus having the same
WO2009133736A1 (en) Image forming optical system and electronic image pickup device provided with the same
JP5350937B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5432472B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2009169082A (en) Image-forming optical system and electronic imaging device therewith
JP5426896B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2008191291A (en) Imaging optical system and electronic imaging apparatus having the same
JP5319191B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2010008505A (en) Imaging optical system and electronic imaging device including the same
JP2009047986A (en) Imaging optical system and electronic imaging apparatus having the same
JP2009069794A (en) Image-forming optical system and electronic imaging apparatus including the same
JP5084311B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2009047988A (en) Imaging optical system and electronic imaging apparatus having the same
JP2009265553A (en) Imaging optical system and electronic imaging apparatus having the same
WO2009157234A1 (en) Optical image forming system and electronic imaging device having the same
JP2010026293A (en) Image forming optical system and electronic imaging apparatus having the same
JP5474501B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2008191306A (en) Imaging optical system and electronic imaging apparatus having the same
JP5497981B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
US7403340B2 (en) Zoom optical system and electronic imaging apparatus using the same
JP2008191308A (en) Imaging optical system and electronic imaging apparatus having the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R151 Written notification of patent or utility model registration

Ref document number: 5474501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250