JP2011106925A - Gas flow measuring instrument of internal combustion engine - Google Patents

Gas flow measuring instrument of internal combustion engine Download PDF

Info

Publication number
JP2011106925A
JP2011106925A JP2009261163A JP2009261163A JP2011106925A JP 2011106925 A JP2011106925 A JP 2011106925A JP 2009261163 A JP2009261163 A JP 2009261163A JP 2009261163 A JP2009261163 A JP 2009261163A JP 2011106925 A JP2011106925 A JP 2011106925A
Authority
JP
Japan
Prior art keywords
flow rate
value
flow
gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009261163A
Other languages
Japanese (ja)
Other versions
JP5295078B2 (en
Inventor
Takanobu Ichihara
隆信 市原
Kazuhiko Kanetoshi
和彦 兼利
Hiroaki Hoshika
浩昭 星加
Daisuke Terada
大介 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009261163A priority Critical patent/JP5295078B2/en
Publication of JP2011106925A publication Critical patent/JP2011106925A/en
Application granted granted Critical
Publication of JP5295078B2 publication Critical patent/JP5295078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a gas flow measuring instrument of internal combustion engine, capable of improving the precision of gas flow measurements, without being affected by variation of the flow measuring value by turbulent flow and noise, and which is capable of improving the exhaust gas performance and fuel efficiency performance. <P>SOLUTION: The gas flow measuring instrument of the internal combustion engine equipped with a gas flow sensor 13 for detecting the gas flow rate, based on the amount of the heat discharge of a heat generating resistive element 30 calculates a flow rate differential value DQ, by differentiating the flow rate detection value detected by the gas flow sensor 13, and calculates a flow rate correction value Qec, which is obtained by correcting the flow rate detection value with a correction amount, according to the flow rate differential value DQ. Hence, the effect of the temporary flow rate variation due to turbulent flow and noise can be reduced; and even when the flow rate detection value Qes varies, a proper correction corresponding to the back flow amount can be performed, and precision of the flow measurement is improved. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、内燃機関の排気ガスの流量、および吸入空気、その他ガスの流量を計測するガス流量計測装置に関し、特に、ガス流量の脈動により逆流が発生したときの流量計測誤差を低減する補正手段を有するガス流量計測装置に関する。   The present invention relates to an exhaust gas flow rate of an internal combustion engine, and a gas flow rate measuring device that measures the flow rate of intake air and other gases, and in particular, correction means for reducing a flow rate measurement error when a reverse flow occurs due to pulsation of the gas flow rate. The present invention relates to a gas flow rate measuring apparatus.

ディーゼルエンジン等の内燃機関では、排気ガス中のNOx等の低減のため一般に排気ガスの再循環(EGR)を実施している。近年では排気ガス中のNOxやPM(煤)を十分に低減するためにEGRガスの流量、および吸入空気の流量を高精度に制御することが要求されている。   In internal combustion engines such as diesel engines, exhaust gas recirculation (EGR) is generally performed in order to reduce NOx and the like in the exhaust gas. In recent years, in order to sufficiently reduce NOx and PM (soot) in exhaust gas, it is required to control the flow rate of EGR gas and the flow rate of intake air with high accuracy.

また、近年ではガソリンエンジンの燃費向上のためEGRを採用しており、燃費性能と燃焼安定性の両立の要求からEGR流量の制御精度の向上が必要となっている。   In recent years, EGR has been adopted in order to improve the fuel efficiency of gasoline engines, and it is necessary to improve the control accuracy of the EGR flow rate in order to satisfy both fuel efficiency and combustion stability.

このような背景からEGR通路にEGRガスの流量を直接計測するセンサ(排気流量センサ)を配置し、EGRガスの流量を検出して、排気ガスの低減に適した流量となるようEGR弁を制御するEGR制御装置が特許文献1等で提案されている。   From such a background, a sensor (exhaust flow sensor) that directly measures the flow rate of EGR gas is arranged in the EGR passage, detects the flow rate of EGR gas, and controls the EGR valve so that the flow rate is suitable for reducing exhaust gas. An EGR control device that performs this is proposed in Patent Document 1 and the like.

ここで、EGR通路は排気通路と吸気通路とを接続したガス流路であり、当該EGR通路の排気ガスは、排気圧力とインテークマニホールド内圧力(吸気圧力)との差圧に応じて排気側から吸気側へ流れるので、実際にEGR通路を流れる排気ガスの流量(EGR流量)は、排気圧力変動と吸気圧力変動の影響を受けて変動(脈動)する。   Here, the EGR passage is a gas flow path connecting the exhaust passage and the intake passage, and the exhaust gas in the EGR passage is supplied from the exhaust side according to the differential pressure between the exhaust pressure and the intake manifold pressure (intake pressure). Since it flows to the intake side, the flow rate (EGR flow rate) of the exhaust gas that actually flows through the EGR passage fluctuates (pulsates) due to the influence of the exhaust pressure fluctuation and the intake pressure fluctuation.

このため、排気圧力変動と吸気圧力変動が大きくなる運転状態では、脈動により吸気圧力が排気圧力より高くなりEGRガスが排気側に逆流する場合がある。   For this reason, in an operation state in which the exhaust pressure fluctuation and the intake pressure fluctuation become large, the intake pressure may become higher than the exhaust pressure due to pulsation, and the EGR gas may flow backward to the exhaust side.

上記文献等にあるような排気流量センサは、発熱抵抗体(熱線)で構成され、ガス流れによる発熱抵抗体の放熱量を検出することにより、ガスの流量を計測している。   The exhaust flow rate sensor as described in the above-mentioned document and the like is composed of a heating resistor (heat wire), and measures the gas flow rate by detecting the heat radiation amount of the heating resistor due to the gas flow.

熱線式の流量センサは、一般にガスの流れ方向を判別できないため、脈動により排気ガスの逆流が生じると、これを順流として検出するので排気ガスの流量を実際の流量に対し多く検出してしまい流量検出精度が著しく低下する。   Since the hot-wire flow rate sensor generally cannot determine the gas flow direction, if a backflow of exhaust gas occurs due to pulsation, this is detected as a forward flow, and the flow rate of the exhaust gas is detected more than the actual flow rate. Detection accuracy is significantly reduced.

空気流量を計測する流量センサでは、シリコン等の薄膜で形成される発熱抵抗体とその上下流に近接して配置される感温抵抗体を有する構成等により発熱抵抗体周囲の温度分布を高応答に検出して空気の流れ方向を判別するものも実用化されているが、排気ガスの流量を計測する場合には耐熱性の課題から薄膜式センサを適用することが困難であった。   The flow sensor that measures the air flow rate is highly responsive to the temperature distribution around the heating resistor due to the configuration that has a heating resistor formed of a thin film such as silicon and a temperature-sensitive resistor placed close to the upstream and downstream of the heating sensor. However, when the flow rate of exhaust gas is measured, it has been difficult to apply a thin film sensor due to the problem of heat resistance.

特開2006−214275号公報JP 2006-214275 A 特開2008−2833号公報JP 2008-2833 A

上述のように、排気ガスの流量計測には、特許文献1等で熱線式の流量センサを適用するものが提案されているが、脈動による逆流に対しては、応答性が不足し、ガスの流れ方向を検知することができない。したがって、前述のように排気ガスの逆流が生じたときは流量の計測誤差が発生して排気性能が低下してしまうという問題があった。   As described above, the flow rate measurement of exhaust gas has been proposed in Patent Document 1 or the like to apply a hot-wire flow rate sensor, but the responsiveness is insufficient with respect to the reverse flow due to pulsation, The flow direction cannot be detected. Therefore, there has been a problem that when the exhaust gas flows backward as described above, a flow rate measurement error occurs and the exhaust performance deteriorates.

これに対し、熱線式流量センサの逆流を信号処理により検知して補正する方式が特許文献2に開示されている。本文献では、逆流発生時に流量計測値の2階微分値がピークを生じることから、流量計測値の2階微分値が上昇してから、再度2階微分値が上昇するまでの期間を逆流期間として判別し、該逆流期間の流量計測値の極性を反転して計測流量を補正するようにしている。  On the other hand, Patent Document 2 discloses a method of detecting and correcting the backflow of the hot wire type flow sensor by signal processing. In this document, since the second-order differential value of the flow rate measurement value peaks when backflow occurs, the period from when the second-order differential value of the flow rate measurement value increases until the second-order differential value increases again is the backflow period. And the measured flow rate is corrected by inverting the polarity of the flow rate measurement value during the backflow period.

しかしながら、上記特許文献2の技術では、熱線式流量センサの発熱抵抗体周囲の乱流やノイズにより流量計測値が変動すると、流量計測値の2階微分値が変動して逆流期間を誤判定する場合があった。逆流期間を誤判定した場合は、その間の流量計測値の極性を反転するので流量計測誤差が大きくなる。  However, in the technique of Patent Document 2, when the flow rate measurement value fluctuates due to turbulence or noise around the heating resistor of the hot wire flow sensor, the second-order differential value of the flow rate measurement value fluctuates and the backflow period is erroneously determined. There was a case. If the reverse flow period is erroneously determined, the polarity of the flow rate measurement value during that time is reversed, so that the flow rate measurement error increases.

本発明のガス流量計測装置は、内燃機関の排気ガスの流量、および吸入空気、その他ガスの流量を計測するガス流量計測装置に関し、発熱抵抗体で構成される流量センサを備えたガス流量計測装置において、発熱抵抗体周囲の乱流やノイズによる流量計測値の変動があっても、脈動時の逆流による流量計測誤差を低減可能として流量計測精度を向上すること、これによりエンジンの排気ガス性能、燃費性能を向上することを目的とする。   The gas flow rate measuring device of the present invention relates to a gas flow rate measuring device for measuring the flow rate of exhaust gas of an internal combustion engine and the flow rate of intake air and other gases, and the gas flow rate measuring device provided with a flow sensor composed of a heating resistor. Therefore, even if there are fluctuations in the flow measurement value due to turbulent flow and noise around the heating resistor, the flow measurement error can be reduced by reducing the flow measurement error due to the reverse flow during pulsation, thereby improving the exhaust gas performance of the engine, The purpose is to improve fuel efficiency.

上記課題を解決する本発明の内燃機関のガス流量計測装置は、発熱抵抗体の放熱量に基づいてガスの流量を検出するガス流量センサを備えた内燃機関のガス流量計測装置において、ガス流量センサにより検出したガスの流量検出値を微分して流量微分値を算出し、流量微分値に応じた補正量で流量検出値を補正することを特徴としている。   The gas flow rate measuring device for an internal combustion engine of the present invention that solves the above-mentioned problems is a gas flow rate sensor for an internal combustion engine that includes a gas flow rate sensor that detects a gas flow rate based on a heat release amount of a heating resistor. The flow rate detection value of the gas detected by the above is differentiated to calculate a flow rate differential value, and the flow rate detection value is corrected by a correction amount corresponding to the flow rate differential value.

本発明の内燃機関のガス流量計測装置によれば、ガス流量センサにより検出したガスの流量検出値を微分して流量微分値を算出し、流量微分値に応じた補正量で流量検出値を補正するので、乱流やノイズによる一時的な流量変動の影響を軽減させることができる。したがって、流量検出値の変動があった場合でも補正の誤動作がなく、逆流量に応じた適切な補正を行うことができ、流量計測精度を向上させることができる。   According to the gas flow rate measuring apparatus for an internal combustion engine of the present invention, the flow rate detected value of the gas detected by the gas flow rate sensor is differentiated to calculate the flow rate differential value, and the flow rate detected value is corrected by the correction amount corresponding to the flow rate differential value. Therefore, it is possible to reduce the influence of temporary flow rate fluctuations due to turbulence and noise. Therefore, even when the flow rate detection value fluctuates, there is no malfunction of correction, appropriate correction according to the reverse flow rate can be performed, and flow rate measurement accuracy can be improved.

本発明のガス流量計測装置が適用されるエンジンの構成を示す全体図。1 is an overall view showing a configuration of an engine to which a gas flow rate measuring device of the present invention is applied. 本発明のガス流量計測装置のガス流量センサの構成例1と装着状態を示す図。The figure which shows the structural example 1 and the mounting state of the gas flow sensor of the gas flow measuring device of this invention. 従来技術と課題の説明図。Explanatory drawing of a prior art and a subject. 本発明のガス流量計測装置の構成図。The block diagram of the gas flow measuring device of this invention. 本発明のガス流量計測装置の流量補正方式のブロック図。The block diagram of the flow volume correction system of the gas flow measuring device of this invention. 本発明のガス流量計測装置の流量補正方式の処理手順を示す図。The figure which shows the process sequence of the flow volume correction system of the gas flow measuring device of this invention. 本発明の流量補正方式の逆流時の動作を示す図。The figure which shows the operation | movement at the time of the backflow of the flow volume correction system of this invention. 本発明の流量補正方式の順流時の動作を示す図。The figure which shows the operation | movement at the time of the forward flow of the flow volume correction system of this invention. 本発明の流量補正方式による流量計測誤差を示す図。The figure which shows the flow measurement error by the flow volume correction system of this invention. 本発明のガス流量計測装置のガス流量センサの構成例2を示す斜視図。The perspective view which shows the structural example 2 of the gas flow sensor of the gas flow measuring device of this invention. ガス流量センサの構成例2による流量検出特性を示す図。The figure which shows the flow volume detection characteristic by the structural example 2 of a gas flow sensor.

[実施例1]
本発明のガス流量計測装置が適用されるディーゼルエンジンの例を図1に示す。ここで本発明のEGR制御装置が適用されるエンジンは、ディーゼルエンジンに限定されるものではなく、EGRを導入するガソリンエンジンにも適用可能である。
[Example 1]
An example of a diesel engine to which the gas flow rate measuring device of the present invention is applied is shown in FIG. Here, the engine to which the EGR control device of the present invention is applied is not limited to a diesel engine, but can also be applied to a gasoline engine that introduces EGR.

エンジン1が吸入する空気は、エアクリーナ(図示省略)より取り込まれ、ターボチャージャ4のコンプレッサ4Aによって過給される。エンジン1の吸入空気量は、吸気管2に設けられる吸入空気量センサ3によって計測される。   Air taken in by the engine 1 is taken in from an air cleaner (not shown) and is supercharged by the compressor 4A of the turbocharger 4. The intake air amount of the engine 1 is measured by an intake air amount sensor 3 provided in the intake pipe 2.

インタークーラ5は、ターボチャージャ4のコンプレッサ4Aによって過給された空気を冷却する。インタークーラ5によって冷却された空気は、インテークマニホールド8によって各気筒毎に分配され、燃焼室19内に吸入される。吸入空気量はスロットル弁6により制御される。また、必要に応じて吸気管に吸気管圧力センサ7が設けられる。   The intercooler 5 cools the air supercharged by the compressor 4 </ b> A of the turbocharger 4. The air cooled by the intercooler 5 is distributed to each cylinder by the intake manifold 8 and is sucked into the combustion chamber 19. The intake air amount is controlled by the throttle valve 6. Further, an intake pipe pressure sensor 7 is provided in the intake pipe as necessary.

エンジン1には燃焼室19内に燃料を噴射する燃料噴射弁9が取り付けられている。燃料噴射弁9により燃焼室19に噴射された燃料は吸入空気との混合気を生成し、燃焼室19内で燃焼する。   A fuel injection valve 9 for injecting fuel into the combustion chamber 19 is attached to the engine 1. The fuel injected into the combustion chamber 19 by the fuel injection valve 9 generates an air-fuel mixture with intake air and burns in the combustion chamber 19.

燃焼室19より排出する既燃焼ガス(排気ガス)は排気管10へ排出され、ターボチャージャ4のタービン4Bを駆動する。   The already burned gas (exhaust gas) discharged from the combustion chamber 19 is discharged to the exhaust pipe 10 to drive the turbine 4B of the turbocharger 4.

排気管10の途中には、EGR取入口15が形成されている。排気管10を流れる排気ガスの一部(EGRガス)は、EGR取入口15よりEGR管11を通ってEGRクーラ14、EGR制御弁(EGR弁)12へ流れ、EGR取出口16を経てインテークマニホールド8内に還流する。   An EGR inlet 15 is formed in the middle of the exhaust pipe 10. Part of the exhaust gas (EGR gas) flowing through the exhaust pipe 10 flows from the EGR intake port 15 through the EGR pipe 11 to the EGR cooler 14 and the EGR control valve (EGR valve) 12, and then through the EGR intake port 16 to the intake manifold. Reflux in 8.

EGR弁12は、EGRガス流量を調節する。EGR管11内には、EGRガス流量を計測するための排気流量センサ13(ガス流量センサ)が取り付けられている。排気流量センサ13の流量検出信号(電圧)は、流量計測ユニット17に入力される。流量計測ユニット17は、該流量検出信号に対して所定の信号処理を実施することで、排気ガスの質量流量に変換し、エンジンコントロールユニット(ECU)18に出力する。   The EGR valve 12 adjusts the EGR gas flow rate. An exhaust gas flow rate sensor 13 (gas flow rate sensor) for measuring the EGR gas flow rate is attached in the EGR pipe 11. A flow rate detection signal (voltage) of the exhaust flow rate sensor 13 is input to the flow rate measurement unit 17. The flow rate measurement unit 17 performs predetermined signal processing on the flow rate detection signal, thereby converting the flow rate measurement signal into a mass flow rate of the exhaust gas, and outputs it to an engine control unit (ECU) 18.

図2に排気流量センサ13の構成例と取り付け状態を示す。排気流量センサ13は、図2の断面図に示すように、EGR通路11内に配置される発熱抵抗体30の放熱量を検出することによりガス流量を計測する。図2に示す符号31は、ガス温度による流量計測値への影響を補正するための測温抵抗体であり、符号32は、抵抗体の支持部である。   FIG. 2 shows a configuration example and an attached state of the exhaust flow sensor 13. As shown in the cross-sectional view of FIG. 2, the exhaust flow rate sensor 13 measures the gas flow rate by detecting the heat radiation amount of the heating resistor 30 disposed in the EGR passage 11. Reference numeral 31 shown in FIG. 2 is a resistance temperature detector for correcting the influence of the gas temperature on the flow rate measurement value, and reference numeral 32 is a support portion of the resistor.

EGR通路11は、排気通路と吸気通路とを接続したガス流路であり、当該EGR通路11内の排気ガスは、排気圧力とインテークマニホールド内圧力(吸気圧力)との差圧に応じて排気側から吸気側へ流れるので、実際にEGR通路11を流れる排気ガスの流量(EGR流量)は、排気圧力変動と吸気圧力変動の影響を受けて変動(脈動)する。したがって、排気圧力変動と吸気圧力変動が大きくなる運転状態では、脈動により吸気圧力が排気圧力より高くなり、排気(EGR)ガスが排気側に逆流する場合がある。   The EGR passage 11 is a gas flow path connecting an exhaust passage and an intake passage, and the exhaust gas in the EGR passage 11 is exhausted in accordance with a differential pressure between the exhaust pressure and the intake manifold internal pressure (intake pressure). Therefore, the flow rate (EGR flow rate) of the exhaust gas that actually flows through the EGR passage 11 fluctuates (pulsates) due to the influence of the exhaust pressure fluctuation and the intake pressure fluctuation. Therefore, in an operating state where the exhaust pressure fluctuation and the intake pressure fluctuation increase, the intake pressure may become higher than the exhaust pressure due to pulsation, and the exhaust (EGR) gas may flow backward to the exhaust side.

ここで、図2に示す側面図において、排気流量センサ13に対し、排気ガスの排気側から吸気側への流れを順流とし、吸気側から排気側への流れを逆流とする。排気流量センサ13は、ガス流れによる発熱抵抗体(熱線)30の放熱量を検出することにより、ガスの流量を計測している。   Here, in the side view shown in FIG. 2, the flow of the exhaust gas from the exhaust side to the intake side is a forward flow and the flow from the intake side to the exhaust side is a reverse flow with respect to the exhaust flow rate sensor 13. The exhaust flow sensor 13 measures the gas flow rate by detecting the amount of heat released from the heating resistor (heat wire) 30 due to the gas flow.

熱線式流量センサは、一般にガスの流れ方向を判別できないため、脈動により排気ガスの逆流が生じると、これを順流として検出してしまい排気ガスの流量を実際の流量に対し多く検出する。これにより、逆流発生時は流量計測誤差が大きくなる。   Since the hot-wire flow sensor generally cannot determine the gas flow direction, if a backflow of exhaust gas occurs due to pulsation, it detects this as a forward flow and detects the exhaust gas flow rate more than the actual flow rate. Thereby, the flow measurement error becomes large when the backflow occurs.

このような問題に対して、熱線式流量センサの逆流を信号処理により判定して逆流による流量検出値を補正する方式が特許文献2等で開示されている。以下、従来技術における流量センサの補正方式とその課題について、図3により説明する。   In order to solve such a problem, Patent Document 2 discloses a method for correcting the flow rate detection value due to the back flow by determining the back flow of the hot wire type flow sensor by signal processing. The flow sensor correction method and its problems in the prior art will be described below with reference to FIG.

熱線式流量センサでは、排気ガスの脈動により、逆流が生じると図3(a)に示すように逆流が発生する逆流期間で、一点鎖線で示される逆流を、順流として検出する。排気ガスの流れが順流から逆流に転じたとき、および逆流から順流に転じたときは、図3(b)の実線に示すように、流量検出値の微分値が急変し、このとき、図3(c)の実線に示すように、流量検出値の2階微分値のピークを生じる。   In the hot wire type flow sensor, when a back flow occurs due to the pulsation of the exhaust gas, the back flow indicated by the alternate long and short dash line is detected as a forward flow during a back flow period as shown in FIG. When the flow of the exhaust gas changes from the forward flow to the reverse flow, and when the flow changes from the reverse flow to the forward flow, as shown by the solid line in FIG. 3 (b), the differential value of the flow rate detection value changes abruptly. As shown by the solid line in (c), a peak of the second-order differential value of the flow rate detection value is generated.

したがって、特許文献2では、流量検出値の2階微分値が所定の閾値を超えてから、再度2階微分値が閾値を超えるまでの期間Trを逆流期間と判定して、図3(d)に示すように該逆流期間の流量検出値の極性を反転して流量検出値を補正するようにしている。   Therefore, in Patent Document 2, a period Tr from when the second-order differential value of the flow rate detection value exceeds a predetermined threshold to when the second-order differential value exceeds the threshold again is determined as a backflow period, and FIG. As shown in FIG. 5, the polarity of the flow rate detection value in the reverse flow period is inverted to correct the flow rate detection value.

ここで、実際の熱線式流量センサでは、一般に発熱抵抗体周囲の乱流や電気的ノイズにより、順流時においても、図3(a)の破線で示されるように、流量検出値が変動する。このとき、図3(b)の破線で示される流量検出値の微分値が変動し、図3(c)の破線で示す流量検出値の2階微分値が大きく変動する。したがって、2階微分値が閾値を超え、順流時においても逆流期間と誤判定する場合があった。   Here, in an actual hot wire type flow sensor, the flow rate detection value fluctuates as shown by the broken line in FIG. 3 (a) even in forward flow due to turbulent flow and electrical noise around the heating resistor. At this time, the differential value of the flow rate detection value indicated by the broken line in FIG. 3B varies, and the second-order differential value of the flow rate detection value indicated by the broken line in FIG. Therefore, the second-order differential value exceeds the threshold value, and it may be erroneously determined as a backflow period even in forward flow.

順流時において逆流期間を誤判定した場合は、流量計測値の極性を反転して補正するので流量計測誤差が非常に大きくなる。乱流やノイズによる流量検出値の変動が生じたときに、逆流期間を厳密に判定することは困難である。   If the reverse flow period is erroneously determined during forward flow, the flow rate measurement error becomes very large because the polarity of the flow rate measurement value is reversed and corrected. When the flow rate detection value fluctuates due to turbulence or noise, it is difficult to accurately determine the backflow period.

本発明のガス流量計測装置は、発熱抵抗体で構成される流量センサを備えたガス流量計測装置において、乱流やノイズにより流量検出値が変動した場合でも、逆流による計測誤差を低減可能とし、排気ガス性能を向上するものである。   The gas flow rate measuring device of the present invention is a gas flow rate measuring device equipped with a flow sensor composed of a heating resistor, and even if the flow rate detection value fluctuates due to turbulence or noise, it is possible to reduce measurement errors due to backflow, The exhaust gas performance is improved.

以下、本発明のガス流量計測装置について説明する。 図4は、本発明のガス流量計測装置の構成を示す図である。本発明のガス流量計測装置は、前述した排気流量センサ13、および流量計測ユニット17より構成される。流量計測ユニット17は、流量センサ信号(電圧)を取り込む入力回路21、演算器であるCPU22、CPU22のプログラム処理内容が記憶されるROM(読み出し用メモリ)23、演算されたデータを格納するRAM(書き込み用メモリ)24、および演算された流量補正値を出力する出力回路25を有している。流量計測ユニット17には、測温抵抗体31の信号も入力されるが、温度による流量の補正については、その説明を省略する。   Hereinafter, the gas flow measuring device of the present invention will be described. FIG. 4 is a diagram showing the configuration of the gas flow rate measuring device of the present invention. The gas flow rate measuring device of the present invention includes the exhaust flow rate sensor 13 and the flow rate measuring unit 17 described above. The flow rate measurement unit 17 includes an input circuit 21 that captures a flow rate sensor signal (voltage), a CPU 22 that is an arithmetic unit, a ROM (reading memory) 23 that stores program processing contents of the CPU 22, and a RAM (RAM that stores calculated data). A memory for writing) 24, and an output circuit 25 for outputting the calculated flow rate correction value. Although the signal of the resistance temperature detector 31 is also input to the flow rate measurement unit 17, the description of the correction of the flow rate due to temperature is omitted.

図5は、流量計測ユニット17のプログラム処理(信号処理)のブロック図である。流量計測ユニット17は、排気流量センサの流量検出信号(電圧)をCPU22に取り込むためのA/D変喚器40と、流量補正値の計算を実施する条件であるかを判定する補正値計算実施判定部41と、流量検出信号のA/D変換値を微分演算する微分器42と、低域通過フィルタ43と、積分器44で構成される。   FIG. 5 is a block diagram of program processing (signal processing) of the flow rate measurement unit 17. The flow rate measurement unit 17 performs an A / D converter 40 for taking in the flow rate detection signal (voltage) of the exhaust flow rate sensor into the CPU 22 and a correction value calculation for determining whether or not the conditions for calculating the flow rate correction value are satisfied. It comprises a determination unit 41, a differentiator 42 for differentiating the A / D conversion value of the flow rate detection signal, a low-pass filter 43, and an integrator 44.

流量計測ユニット17のプログラム処理の詳細について図6により説明する。ステップS100で、排気流量センサ13の信号(流量検出値Qes)を所定周期tsごとに取り込む。所定周期tsは、サンプリング定理よりセンサ信号の最高周波数の2倍以上のサンプリング周波数fsに対応して、(ts <1/fs)の関係となるように設定される。   Details of the program processing of the flow rate measurement unit 17 will be described with reference to FIG. In step S100, a signal (flow rate detection value Qes) of the exhaust flow rate sensor 13 is taken in every predetermined period ts. The predetermined period ts is set so as to have a relationship of (ts <1 / fs) corresponding to the sampling frequency fs that is twice or more the maximum frequency of the sensor signal according to the sampling theorem.

排気流量センサ13は、流量の検出に一定の応答遅れがあるため、流量検出値Qesに対し、進みフィルタによりセンサの応答遅れを補正した値について、以後の演算処理を実施するようにしても良い。   Since the exhaust flow rate sensor 13 has a certain response delay in detecting the flow rate, the subsequent calculation processing may be performed on the value obtained by correcting the response delay of the sensor by the advance filter with respect to the flow rate detection value Qes. .

ステップS110で、流量補正値の計算を実施する条件であるかを判定する(補正値計算実施判定部41)。逆流による流量検出値の誤差は、脈動の低流量側で発生することから、流量検出値Qesが所定の閾値SL1より小さくなったときから、流量検出値Qesが所定の閾値SL2より大きくなるまでの期間などを補正値の計算期間とする。   In step S110, it is determined whether the condition for calculating the flow rate correction value is satisfied (correction value calculation execution determination unit 41). Since the error in the flow rate detection value due to backflow occurs on the low flow rate side of the pulsation, from when the flow rate detection value Qes becomes smaller than the predetermined threshold SL1, until the flow rate detection value Qes becomes larger than the predetermined threshold SL2. A period or the like is a correction value calculation period.

閾値SL1、SL2は、流量が平均流量に対して相対的に小さい期間を判定するため、流量検出値Qesの加重平均値に所定の係数(SL1=0.8, SL2=0.9など)をかけた値などとする。   The threshold values SL1 and SL2 are values obtained by multiplying the weighted average value of the flow rate detection value Qes by a predetermined coefficient (SL1 = 0.8, SL2 = 0.9, etc.) to determine a period in which the flow rate is relatively small with respect to the average flow rate. And

ステップS110で流量補正値の計算を実施する条件でないと判定されたときは(No)、ステップS120〜ステップS140の補正量の計算を実施せず、ステップS150に移行し、ステップS150で補正なし(流量補正値Qec= Qes)とする。これにより、順流を誤って補正することを防止する。   If it is determined in step S110 that the condition for calculating the flow rate correction value is not satisfied (No), the correction amount calculation in steps S120 to S140 is not performed, the process proceeds to step S150, and no correction is performed in step S150 ( Flow compensation value Qec = Qes). This prevents the forward flow from being corrected by mistake.

ステップS110で流量補正値の計算を実施する条件と判定されたときは(Yes)、ステップS120に移行して、流量検出値Qesの微分値を計算する処理を行う。ここで、一次元での流速微分値dU/dt(∝流量の微分値)と通路流速U(∝流量)の関係は、下記の式(1)で示される。   When it is determined in step S110 that the flow rate correction value is calculated (Yes), the process proceeds to step S120, and the process of calculating the differential value of the flow rate detection value Qes is performed. Here, the relationship between the one-dimensional flow velocity differential value dU / dt (the differential value of the soot flow rate) and the passage flow velocity U (the soot flow rate) is expressed by the following equation (1).

Figure 2011106925
Figure 2011106925

式(1)で、Uはガス流速、ΔPは通路差圧(単位長あたり)、Lは通路長さ、ρはガス密度、Cmは、管摩擦係数(単位長あたり)を示す。式(1)の右辺第1項は、通路差圧に比例する項であり、第2項は、通路の圧損に対応する項である。   In Equation (1), U is a gas flow rate, ΔP is a passage pressure difference (per unit length), L is a passage length, ρ is a gas density, and Cm is a pipe friction coefficient (per unit length). The first term on the right side of Equation (1) is a term proportional to the passage pressure difference, and the second term is a term corresponding to the pressure loss of the passage.

逆流時における流量検出値Qesの微分値の変化について、図7により説明する。ここでは流量センサの応答遅れを考慮しないものとする。図7(b)に示すように、順流から逆流に転ずる直前(t1直前)の流量検出値Qesの微分値DQ1について、式(1)で流速U=0とおくことができるので、微分値DQ1は通路の差圧ΔPに比例する。このときの通路差圧ΔP1は負値であり、逆流方向への差圧となる。次に、順流から逆流に反転した直後(t1直後)の流量検出値Qesの微分値DQ2は、流量センサが逆流を順流として検出するので、微分値DQ1と絶対値が等しく極性が逆となる(DQ2=-DQ1)。したがって、流量センサの応答遅れを無視すると、順流から逆流に転じたときは流量検出値Qesの微分値が不連続に変化し、このときの流量検出値Qesの変化量(DQ2-DQ1)は逆流方向への差圧ΔP1に比例する。   Changes in the differential value of the detected flow rate value Qes during backflow will be described with reference to FIG. Here, the response delay of the flow sensor is not considered. As shown in FIG. 7B, the differential value DQ1 of the flow rate detection value Qes immediately before the transition from the forward flow to the reverse flow (immediately before t1) can be set to the flow velocity U = 0 in the equation (1). Is proportional to the pressure difference ΔP in the passage. The passage differential pressure ΔP1 at this time is a negative value, and is a differential pressure in the reverse flow direction. Next, the differential value DQ2 of the flow rate detection value Qes immediately after reversing from the forward flow to the reverse flow (immediately after t1) detects the reverse flow as the forward flow, so the differential value DQ1 has the same absolute value and the opposite polarity ( DQ2 = -DQ1). Therefore, ignoring the response delay of the flow rate sensor, the differential value of the flow rate detection value Qes changes discontinuously when switching from forward flow to reverse flow, and the amount of change in the flow rate detection value Qes (DQ2-DQ1) at this time is reverse flow Proportional to differential pressure ΔP1 in the direction.

実際の流量センサは応答遅れがあるため、流量センサの応答を一次遅れで近似すると、順流から逆流に転じた直後の流量検出値Qesの微分値の立ち上り速度(矢印の傾き)は、変化量(DQ2-DQ1)に比例する。よって、流量検出値Qesの微分値の立ち上り速度は、逆流方向への差圧ΔP1に比例する。   Since the actual flow rate sensor has a response delay, when the response of the flow rate sensor is approximated by a first-order lag, the rising speed (the slope of the arrow) of the differential value of the flow rate detection value Qes immediately after the transition from the forward flow to the reverse flow is changed ( Proportional to DQ2-DQ1). Therefore, the rising speed of the differential value of the flow rate detection value Qes is proportional to the differential pressure ΔP1 in the reverse flow direction.

発明者らの鋭意研究の結果、脈動により順流から逆流に転じたときの逆流方向への通路差圧は、逆流量と高い相関を持つことがわかった。また、前述のように逆流方向への通路差圧は流量検出値Qesの微分値の立ち上り速度に比例することから、流量検出値Qesの微分値の立ち上り速度と逆流量とは相関を持つと考えられる。このことから、本発明のガス流量計測装置では、流量検出値Qesの微分値の立ち上り速度と相関のあるパラメータにより流量検出値Qesを補正するように構成した。   As a result of intensive studies by the inventors, it has been found that the passage pressure difference in the reverse flow direction when the flow changes from the forward flow to the reverse flow due to pulsation has a high correlation with the reverse flow rate. As mentioned above, the passage differential pressure in the reverse flow direction is proportional to the rising speed of the differential value of the flow rate detection value Qes, so it is considered that the rising speed of the differential value of the flow rate detection value Qes has a correlation with the reverse flow rate. It is done. Therefore, the gas flow rate measuring device of the present invention is configured to correct the flow rate detection value Qes with a parameter having a correlation with the rising speed of the differential value of the flow rate detection value Qes.

ここで、流量検出値Qesの微分値の立ち上り速度は、前述した特許文献2における流量検出値の2階微分とほぼ同様の物理的意味を持つが、前述したように特許文献2では、流量検出値の2階微分値を所定の閾値と比較することにより逆流期間を判定しているので、乱流やノイズによる流量検出値の変動があった場合に、2階微分値が変動し、逆流期間を正しく判定することが困難であった。そして、逆流期間を誤判定したときは、順流を逆流として補正してしまうので、流量補正値に大きな誤差を生じてしまう。   Here, the rising speed of the differential value of the flow rate detection value Qes has substantially the same physical meaning as the second-order differentiation of the flow rate detection value in Patent Document 2 described above. Since the backflow period is determined by comparing the second-order differential value of the value with a predetermined threshold, the second-order differential value fluctuates when the flow rate detection value fluctuates due to turbulence or noise, and the backflow period It was difficult to determine correctly. When the reverse flow period is erroneously determined, the forward flow is corrected as the reverse flow, which causes a large error in the flow rate correction value.

これに対し、本発明のガス流量計測装置では、流量の微分値の単発的な変化により逆流期間を判定して補正するのではなく、流量の微分値により連続的に補正量の算出を行なうので(流量微分値に応じた補正量で流量検出値を補正するので)、乱流やノイズによる一時的な流量変動の影響が軽減されること、および流量の変動分の影響を軽減する処理により流量検出値の変動があっても逆流による誤差を低減できる。   On the other hand, in the gas flow measuring device of the present invention, the correction amount is continuously calculated by the differential value of the flow rate, rather than determining and correcting the backflow period by a single change of the differential value of the flow rate. (Because the flow rate detection value is corrected with the correction amount according to the flow rate differential value) The effect of temporary flow rate fluctuations due to turbulence and noise is reduced, and the flow rate is reduced by processing that reduces the effect of flow rate fluctuations. Even if the detected value fluctuates, errors due to backflow can be reduced.

以下、本発明のガス流量計測装置における流量補正方式について詳細に説明する。
図6のステップS130では、流量検出値Qesの微分値(流量微分値)に低域通過フィルタをかけてなまし値を算出する。低域通過フィルタは、流量検出値Qesのサンプリング周期ごとに、以下の式(2)に示す加重平均等を用いて流量微分値のなまし値を算出する。
Hereinafter, the flow rate correction method in the gas flow rate measuring device of the present invention will be described in detail.
In step S130 of FIG. 6, a smoothed value is calculated by applying a low-pass filter to the differential value (flow rate differential value) of the flow rate detection value Qes. The low-pass filter calculates the smoothed value of the flow differential value using a weighted average or the like shown in the following equation (2) for each sampling period of the flow rate detection value Qes.

DQF[n]=KLP×(DQ[n]−DQF[n−1])+DQF[n−1] …(2)
上記の式(2)で、DQ[n]は流量微分値、DQF[n]は今回のフィルタ計算値、DQF[n−1]は前回のフィルタ計算値、KLPはフィルタ係数を示す。
DQF [n] = KLP × (DQ [n] −DQF [n−1]) + DQF [n−1] (2)
In the above equation (2), DQ [n] is the flow differential value, DQF [n] is the current filter calculation value, DQF [n−1] is the previous filter calculation value, and KLP is the filter coefficient.

次に、ステップS140では、流量検出値Qesのサンプリング周期ごとに、低域通過フィルタ後の流量微分値である、流量微分値のなまし値DQFを積分して、流量補正値Qecを算出する。ここで、流量微分値のなまし値DQFの積分は、ステップS110で流量補正値Qecの計算を実施する条件となる直前の流量検出値Qesを初期値とし、流量補正値Qecの計算を実施する条件となってから流量補正値Qecの計算を実施する条件が不成立となるまで、下記の式(3)により、流量微分値のなまし値DQFの積分を実施する。   Next, in step S140, the flow rate correction value Qec is calculated by integrating the smoothed value DQF of the flow rate differential value, which is the flow rate differential value after the low-pass filter, for each sampling period of the flow rate detection value Qes. Here, the integration of the smoothed value DQF of the flow rate differential value is performed by setting the flow rate correction value Qec immediately before being the condition for calculating the flow rate correction value Qec in step S110 as an initial value. Integration of the smoothed value DQF of the flow rate differential value is performed by the following equation (3) until the condition for calculating the flow rate correction value Qec is not satisfied after the condition is satisfied.

Qec[n]= Qec[n−1]+DQF[n] …(3)
上記の式(3)で、DQF[n]はフィルタ計算値、Qec[n]は流量補正値、Qec[n−1]は前回の流量補正値である。
Qec [n] = Qec [n−1] + DQF [n] (3)
In the above equation (3), DQF [n] is a filter calculation value, Qec [n] is a flow rate correction value, and Qec [n−1] is a previous flow rate correction value.

そして、ステップS160では、流量補正値Qecを電圧信号等に変換して出力する。   In step S160, the flow rate correction value Qec is converted into a voltage signal or the like and output.

図7(c)に低域通過フィルタ後の流量微分値(なまし値)を示す。図7(c)の点線は、フィルタ処理を行なう前の流量微分値である。低域通過フィルタは、その周波数特性から流量微分値の立ち上り速度に応じて流量微分値の立ち上り速度を補正することができる。すなわち、流量微分値の立ち上り速度が大きくなるにしたがって、流量微分値の減少方向への補正量が大きくなる。これにより、図7(d)に示すように、低域通過フィルタ後の流量微分値を積分して得られる流量補正値Qecは、流量微分値の立ち上り速度が大きくなるにしたがって流量減少方向に補正される。   FIG. 7 (c) shows a flow rate differential value (annealing value) after the low-pass filter. The dotted line in FIG. 7 (c) is the flow rate differential value before performing the filter process. The low-pass filter can correct the rising speed of the flow differential value according to the rising speed of the flow differential value from the frequency characteristic. That is, as the rising speed of the flow rate differential value increases, the correction amount in the decreasing direction of the flow rate differential value increases. Accordingly, as shown in FIG. 7 (d), the flow rate correction value Qec obtained by integrating the flow rate differential value after the low-pass filter is corrected in the flow rate decreasing direction as the rising speed of the flow rate differential value increases. Is done.

本流量補正方式は、乱流やノイズによる流量検出値の変動の影響を軽減し、順流時に流量検出値を誤って補正することを防止できることが特長である。   This flow rate correction method is characterized in that the influence of fluctuations in the detected flow rate due to turbulent flow and noise can be reduced, and that the detected flow rate can be prevented from being erroneously corrected during forward flow.

図8に順流時における本流量補正方式の動作を示す。流量検出値Qesが図8(a)の破線のように変動する場合、流量微分値が図8(b)の破線のように変動する。ここで、乱流やノイズによる流量検出値の変動は一般に高周波であるので、図8(c)の破線で示す流量微分値に低域通過フィルタ処理を行なったものでは、フィルタにより流量微分値の変動が低減される。加えて、図8(d)に示すように、流量補正値Qecは、フィルタ後の流量微分値を積分して算出することから、積分処理により流量微分値の変動の影響がさらに低減される。   FIG. 8 shows the operation of this flow rate correction method during forward flow. When the flow rate detection value Qes fluctuates as shown by the broken line in FIG. 8A, the flow rate differential value fluctuates as shown by the broken line in FIG. 8B. Here, since the fluctuation of the flow rate detection value due to turbulent flow or noise is generally high frequency, when the low-pass filter processing is performed on the flow rate differential value shown by the broken line in FIG. Variability is reduced. In addition, as shown in FIG. 8 (d), the flow rate correction value Qec is calculated by integrating the filtered flow rate differential value, so that the influence of fluctuations in the flow rate differential value is further reduced by the integration process.

すなわち、本流量補正方式では、流量の微分値より連続的に補正量の算出を行なうことによって乱流やノイズによる一時的な流量変動の影響が軽減されることに加えて、流量微分値の低域フィルタ処理および積分処理を実施するので、流量変動の影響をさらに低減できる。これにより、乱流やノイズによる補正の誤動作がなく、逆流量に応じた適切な補正を行なうことができる。   That is, in this flow rate correction method, the effect of temporary flow rate fluctuations due to turbulence and noise is reduced by calculating the correction amount continuously from the differential value of the flow rate. Since the filter processing and the integration processing are performed, the influence of the flow rate fluctuation can be further reduced. Thereby, there is no malfunction of correction due to turbulent flow or noise, and appropriate correction according to the reverse flow rate can be performed.

本流量補正方式により補正を実施したときの流量計測誤差の特性を図9に示す。ここで、平均流量は一定の条件で脈動の振幅を変化させたときの誤差特性を示す。脈動の大きさ(脈動振幅比)は、図9(a)に示すように、実際の流量の最大値と最小値の差Qppと、実際の流量の平均値Qaveとの比率で定義しており(Qpp/Qave)、図9(b)に示すように、脈動振幅比が200%を超えると逆流を生じる。   FIG. 9 shows the characteristics of the flow rate measurement error when correction is performed by this flow rate correction method. Here, the average flow rate indicates an error characteristic when the amplitude of pulsation is changed under a constant condition. The magnitude of the pulsation (pulsation amplitude ratio) is defined by the ratio of the difference Qpp between the maximum and minimum values of the actual flow rate and the average value Qave of the actual flow rate, as shown in Fig. 9 (a). (Qpp / Qave), as shown in FIG. 9B, when the pulsation amplitude ratio exceeds 200%, a reverse flow is generated.

図9(b)に点線で示すように、逆流に対する補正を実施しないときの流量計測誤差特性は、逆流域(脈動振幅比200%以上)で流量増加方向に大きな誤差を生じている。これに対して、図9(b)に実線で示すように、補正を実施したときの流量計測誤差特性は、逆流域での誤差を大幅に低減することができる。   As shown by the dotted line in FIG. 9B, the flow rate measurement error characteristic when the correction for the backflow is not performed has a large error in the flow rate increasing direction in the backflow region (pulsation amplitude ratio of 200% or more). On the other hand, as shown by the solid line in FIG. 9B, the flow measurement error characteristic when the correction is performed can greatly reduce the error in the reverse flow region.

本流量補正方式は、発熱抵抗体の保護および、脈動、逆流による計測誤差の低減のために、図10に示すような発熱抵抗体30、および測温用抵抗体31をバイパス通路51内に配置するタイプの流量センサにも適用することができる。EGRガスの流量を計測する場合、バイパス通路の入り口52が排気管側に向くように配置される。ここで、バイパス通路の出口53は、EGRガスの流れ方向に対し鉛直方向に開口する。これは、順流をバイパス通路に導入し、逆流をバイパス通路に侵入しにくくして、逆流による計測誤差を低減するためである。   In this flow rate correction method, the heating resistor 30 and the temperature measuring resistor 31 as shown in FIG. 10 are arranged in the bypass passage 51 in order to protect the heating resistor and reduce measurement errors due to pulsation and backflow. The present invention can also be applied to a type of flow sensor. When measuring the flow rate of EGR gas, it is arranged so that the inlet 52 of the bypass passage faces the exhaust pipe side. Here, the outlet 53 of the bypass passage opens in a direction perpendicular to the flow direction of the EGR gas. This is because the forward flow is introduced into the bypass passage, the backward flow is less likely to enter the bypass passage, and measurement errors due to the backward flow are reduced.

このような構成では、図11に示すように逆流の発生する期間で、バイパス通路51に流入する逆流が少なくなる(減衰する)ため、バイパス通路51内で計測される流量検出値(極性は逆)が、メイン通路(EGR通路)の流量に対し減少する。これにより、特許文献2で開示されるような逆流と判定した期間の流量検出値を反転して補正する方式では、逆流量を算出することが困難となる。   In such a configuration, as shown in FIG. 11, since the backflow flowing into the bypass passage 51 is reduced (attenuated) during the period in which the backflow occurs, the detected flow rate value (the polarity is reversed) ) Decreases with respect to the flow rate of the main passage (EGR passage). Thus, in the method of reversing and correcting the flow rate detection value in the period determined as the backflow as disclosed in Patent Document 2, it is difficult to calculate the backflow rate.

順流時のバイパス通路の流速微分値dU/dt(∝流量の微分値)と通路流速U(∝流量)の関係は下記の式(4)で示される。   The relationship between the bypass flow velocity differential value dU / dt (differential value of the soot flow rate) and the passage flow velocity U (soot flow rate) during forward flow is expressed by the following equation (4).

Figure 2011106925
Figure 2011106925

前述した発熱抵抗体30がEGR通路11に配置されるタイプの流量センサと同様に、順流から逆流に転ずる直前(U≒0)の流量微分値DQ1は、逆流方向への通路の差圧に比例する。バイパス通路51を有する流量センサにおいても同様に逆流量は逆流方向へのバイパス通路の差圧と相関がある。   Like the flow rate sensor of the type in which the heating resistor 30 is arranged in the EGR passage 11, the flow rate differential value DQ1 immediately before the transition from the forward flow to the reverse flow (U≈0) is proportional to the differential pressure of the passage in the reverse flow direction. To do. Similarly, in the flow rate sensor having the bypass passage 51, the reverse flow rate is correlated with the differential pressure of the bypass passage in the reverse flow direction.

ここで、順流から逆流に転じる前後では、逆流方向への通路差圧はほぼ等しいとみなすことができ、上記バイパスにより順流から逆流に転じた直後の流量検出値が減衰しても、順流から逆流に転ずる直前の通路差圧を流量微分値の立ち上り速度で検出することができるので、本発明のガス流量計測装置の補正方式を適用することが可能である。   Here, before and after the transition from the forward flow to the reverse flow, the passage pressure difference in the reverse flow direction can be considered to be substantially equal. Since it is possible to detect the passage pressure difference immediately before turning to the flow rate differential value rising speed, it is possible to apply the correction method of the gas flow rate measuring device of the present invention.

流量補正値Qecを算出する手順は、前述した発熱抵抗体30がEGR通路11に配置されるタイプの流量センサでの処理と同様である。   The procedure for calculating the flow rate correction value Qec is the same as the processing in the flow rate sensor of the type in which the heating resistor 30 is disposed in the EGR passage 11 described above.

本発明の内燃機関のガス流量計測装置によれば、ガス流量センサにより検出したガスの流量検出値を微分して流量微分値を算出し、その流量微分値に応じた補正量で流量検出値を補正するので、乱流やノイズによる一時的な流量変動の影響を軽減させることができる。したがって、流量検出値の変動があった場合でも補正の誤動作がなく、逆流量に応じた適切な補正を行うことができ、流量計測精度を向上させることができる。   According to the gas flow rate measuring device for an internal combustion engine of the present invention, the flow rate detection value of the gas detected by the gas flow rate sensor is differentiated to calculate the flow rate differential value, and the flow rate detection value is calculated with a correction amount corresponding to the flow rate differential value. Since the correction is made, it is possible to reduce the influence of temporary flow rate fluctuations due to turbulence and noise. Therefore, even when the flow rate detection value fluctuates, there is no malfunction of correction, appropriate correction according to the reverse flow rate can be performed, and flow rate measurement accuracy can be improved.

本発明の内燃機関のガス流量計測装置によれば、流量微分値に対してフィルタ処理を行い、流量微分値のなまし値を算出し、その流量微分値のなまし値に応じた補正量で流量検出値を補正するので、流量変動の影響をさらに低減できる。   According to the gas flow rate measuring device for an internal combustion engine of the present invention, the flow rate differential value is filtered, the flow rate differential value is smoothed, and the flow rate differential value is corrected according to the flow rate differential value. Since the flow rate detection value is corrected, the influence of the flow rate variation can be further reduced.

本発明の内燃機関のガス流量計測装置によれば、流量微分値のなまし値を積分することによって、前記流量検出値を補正した流量補正値を算出するので、流量変動の影響をさらに低減できる。したがって、乱流やノイズによる流量計測値の変動があっても、逆流の影響を適切に補正可能として流量計測精度を向上できる。したがって、ガス流量を高精度に計測でき、内燃機関の排気ガス性能、燃費性能を向上することができる。   According to the gas flow rate measuring apparatus for an internal combustion engine of the present invention, the flow rate correction value obtained by correcting the flow rate detection value is calculated by integrating the smoothed value of the flow rate differential value, so that the influence of the flow rate fluctuation can be further reduced. . Therefore, even if the flow rate measurement value fluctuates due to turbulent flow or noise, it is possible to appropriately correct the influence of the backflow and improve the flow rate measurement accuracy. Therefore, the gas flow rate can be measured with high accuracy, and the exhaust gas performance and fuel consumption performance of the internal combustion engine can be improved.

なお、本発明は、上述の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、上述の実施例では、EGRガスの流量を計測する流量センサについて記載したが、EGR通路以外の排気管を流れる排気ガスの流量を計測する流量センサにも適用可能である。また、吸入空気量を計測するエアフローセンサに適用しても良い。   In addition, this invention is not limited to the above-mentioned Example, A various change is possible in the range which does not deviate from the meaning of this invention. For example, in the above-described embodiment, the flow sensor that measures the flow rate of EGR gas is described. However, the present invention can be applied to a flow rate sensor that measures the flow rate of exhaust gas flowing through an exhaust pipe other than the EGR passage. Moreover, you may apply to the airflow sensor which measures the amount of intake air.

また、上述の実施例では、流量微分値のなまし値を積分して流量補正値を算出する場合を例に説明したが、流量微分値をそのまま積分して流量補正値を算出してもよい。   In the above-described embodiment, the flow correction value is calculated by integrating the smoothed value of the flow differential value, but the flow correction value may be calculated by integrating the flow differential value as it is. .

本発明のガス流量計測装置は、各種の内燃機関に適用でき、自動車だけでなく船舶用エンジンや建設機用エンジン、半固定発電機用エンジンにも適用可能である。   The gas flow rate measuring device of the present invention can be applied to various internal combustion engines, and can be applied not only to automobiles but also to marine engines, construction machine engines, and semi-fixed generator engines.

11 EGR通路
13 排気流量センサ(ガス流量センサ)
17 流量計測ユニット
18 エンジンコントロールユニット
30 発熱抵抗体
42 微分器
43 低域通過フィルタ
44 積分器
51 バイパス通路
Qes 流量検出値
Qec 流量補正値
DQ 流量微分値
11 EGR passage 13 Exhaust flow sensor (gas flow sensor)
17 Flow measurement unit 18 Engine control unit 30 Heating resistor 42 Differentiator 43 Low-pass filter 44 Integrator 51 Bypass passage Qes Flow rate detection value Qec Flow rate correction value DQ Flow rate differential value

Claims (8)

発熱抵抗体の放熱量に基づいてガスの流量を検出するガス流量センサを備えた内燃機関のガス流量計測装置において、
前記ガス流量センサにより検出したガスの流量検出値を微分して流量微分値を算出し、該流量微分値に応じた補正量で前記流量検出値を補正する流量算出手段を有することを特徴とする内燃機関のガス流量計測装置。
In a gas flow rate measuring apparatus for an internal combustion engine provided with a gas flow rate sensor for detecting a gas flow rate based on a heat radiation amount of a heating resistor,
A flow rate calculation means is provided for differentiating a flow rate detection value of the gas detected by the gas flow rate sensor to calculate a flow rate differential value, and correcting the flow rate detection value with a correction amount corresponding to the flow rate differential value. Gas flow measuring device for internal combustion engine.
前記流量算出手段は、前記ガスの順流から逆流への反転による前記流量微分値の立ち上り時に、前記流量微分値に応じた補正量で前記流量検出値を減少方向に補正することを特徴とする請求項1に記載の内燃機関のガス流量計測装置。   The flow rate calculation means corrects the flow rate detection value in a decreasing direction with a correction amount corresponding to the flow rate differential value when the flow rate differential value rises due to reversal of the gas from forward flow to reverse flow. Item 2. A gas flow rate measuring apparatus for an internal combustion engine according to Item 1. 前記流量算出手段は、前記流量微分値の立ち上り速度が大きいほど、前記流量検出値を減少方向に補正する補正量を大きくすることを特徴とする請求項2に記載の内燃機関のガス流量計測装置。   3. The gas flow rate measuring device for an internal combustion engine according to claim 2, wherein the flow rate calculation means increases the correction amount for correcting the flow rate detection value in the decreasing direction as the rising speed of the flow rate differential value increases. . 前記流量算出手段は、前記流量微分値に対してフィルタ処理を行い、流量微分値のなまし値を算出し、該流量微分値のなまし値に応じた補正量で前記流量検出値を補正することを特徴とする請求項1に記載の内燃機関のガス流量計測装置。   The flow rate calculation means performs a filtering process on the flow rate differential value, calculates a smoothed value of the flow rate differential value, and corrects the flow rate detection value with a correction amount corresponding to the smoothed value of the flow rate differential value. The gas flow rate measuring device for an internal combustion engine according to claim 1, wherein: 前記流量算出手段は、前記流量微分値のなまし値を積分することによって、前記流量検出値を補正した流量補正値を算出することを特徴とする請求項4に記載の内燃機関のガス流量計測装置。   5. The gas flow rate measurement of the internal combustion engine according to claim 4, wherein the flow rate calculation unit calculates a flow rate correction value obtained by correcting the detected flow rate value by integrating the smoothed value of the flow rate differential value. apparatus. 前記流量算出手段は、前記流量検出値が該流量検出値の平均値に対して小さいときに、前記流量検出値を補正することを特徴とする請求項1から請求項5のいずれか一項に記載の内燃機関のガス流量計測装置。   6. The flow rate calculation unit corrects the flow rate detection value when the flow rate detection value is smaller than an average value of the flow rate detection values. 6. A gas flow rate measuring device for an internal combustion engine as described. 前記ガス流量センサは、前記発熱抵抗体を配置するバイパス通路を有することを特徴とする請求項1から請求項6のいずれか一項に記載の内燃機関のガス流量計測装置。   The gas flow rate measurement device for an internal combustion engine according to any one of claims 1 to 6, wherein the gas flow rate sensor has a bypass passage in which the heating resistor is disposed. 前記ガス流量センサは、内燃機関のEGRガス、排気ガス、吸入空気の少なくとも一つのガスの流量を検出することを特徴とする請求項1から請求項7のいずれか一項に記載の内燃機関のガス流量計測装置。   The internal combustion engine according to any one of claims 1 to 7, wherein the gas flow sensor detects a flow rate of at least one of EGR gas, exhaust gas, and intake air of the internal combustion engine. Gas flow measuring device.
JP2009261163A 2009-11-16 2009-11-16 Gas flow measuring device for internal combustion engine Expired - Fee Related JP5295078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261163A JP5295078B2 (en) 2009-11-16 2009-11-16 Gas flow measuring device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261163A JP5295078B2 (en) 2009-11-16 2009-11-16 Gas flow measuring device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011106925A true JP2011106925A (en) 2011-06-02
JP5295078B2 JP5295078B2 (en) 2013-09-18

Family

ID=44230573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261163A Expired - Fee Related JP5295078B2 (en) 2009-11-16 2009-11-16 Gas flow measuring device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5295078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230512A1 (en) * 2019-05-14 2020-11-19 日立オートモティブシステムズ株式会社 Air flow rate meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365388B2 (en) * 2015-04-21 2018-08-01 株式会社デンソー Flow measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729419U (en) * 1993-10-27 1995-06-02 株式会社ユニシアジェックス Engine intake air flow rate detector
JPH10169499A (en) * 1996-12-05 1998-06-23 Hitachi Ltd Engine control method and device
JP2002295292A (en) * 2001-03-30 2002-10-09 Denso Corp Device for controlling fuel injection and apparatus for measuring fluid flow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729419U (en) * 1993-10-27 1995-06-02 株式会社ユニシアジェックス Engine intake air flow rate detector
JPH10169499A (en) * 1996-12-05 1998-06-23 Hitachi Ltd Engine control method and device
JP2002295292A (en) * 2001-03-30 2002-10-09 Denso Corp Device for controlling fuel injection and apparatus for measuring fluid flow

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230512A1 (en) * 2019-05-14 2020-11-19 日立オートモティブシステムズ株式会社 Air flow rate meter
CN113748320A (en) * 2019-05-14 2021-12-03 日立安斯泰莫株式会社 Air flow meter
CN113748320B (en) * 2019-05-14 2024-03-12 日立安斯泰莫株式会社 Air flowmeter

Also Published As

Publication number Publication date
JP5295078B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
RU2432469C2 (en) Device for evaluation of solids quantity accumulated in solids diesel filter
US8656763B2 (en) Failure detection apparatus and failure detection method for a particulate filter
JP4622719B2 (en) PM deposition amount estimation device
JP2008180185A (en) Exhaust gas recirculation control sysyem for engine
JP5668611B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP2011021563A (en) Response sensing device of exhaust gas component concentration sensor
JP2002147279A (en) Intake air quantity computing device and intake air pressure computing device
US8596115B2 (en) Exhaust gas pressure loss calculation device for engine
JPH02163443A (en) Controller for engine equipped with supercharger
JP5403165B2 (en) Flow rate detector
JP4449816B2 (en) EGR gas flow rate detection device and engine control method
JP5988779B2 (en) Control device for variable capacity turbocharger
JP5295078B2 (en) Gas flow measuring device for internal combustion engine
US9448136B2 (en) Sensor control apparatus, sensor control system, and sensor control method
JP5350144B2 (en) Air flow rate calculation device
JP5206601B2 (en) Exhaust gas recirculation control device
JPH05180057A (en) Inflow air amount detecting device for engine
JP4072860B2 (en) Intake air amount detection device for internal combustion engine
JP2006316706A (en) Exhaust gas recirculation device and control method of internal combustion engine
JP2008002833A (en) Device for correcting intake flow rate
JP2004170357A (en) Exhaust gas flow rate measuring device and exhaust gas flow rate measuring method
JP2010169039A (en) Egr flow rate measuring device for internal combustion engine
JP2019100182A (en) Intake air volume measurement device
JP4906815B2 (en) Control device for internal combustion engine
JP4836000B2 (en) Exhaust system sensor steady state determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5295078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees