JP2006316706A - Exhaust gas recirculation device and control method of internal combustion engine - Google Patents

Exhaust gas recirculation device and control method of internal combustion engine Download PDF

Info

Publication number
JP2006316706A
JP2006316706A JP2005140553A JP2005140553A JP2006316706A JP 2006316706 A JP2006316706 A JP 2006316706A JP 2005140553 A JP2005140553 A JP 2005140553A JP 2005140553 A JP2005140553 A JP 2005140553A JP 2006316706 A JP2006316706 A JP 2006316706A
Authority
JP
Japan
Prior art keywords
oxygen concentration
sensor
egr
flow rate
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140553A
Other languages
Japanese (ja)
Inventor
Takanobu Ichihara
隆信 市原
Kozo Katogi
工三 加藤木
Yoshihiro Sukegawa
義寛 助川
Shiro Yamaoka
士朗 山岡
Hidefumi Iwaki
秀文 岩城
Shinya Igarashi
信弥 五十嵐
Katsuaki Fukatsu
克明 深津
Takashi Kadohiro
崇 角広
Noboru Tokuyasu
昇 徳安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005140553A priority Critical patent/JP2006316706A/en
Publication of JP2006316706A publication Critical patent/JP2006316706A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize an emission of NOx and soot in exhaust gas even when the operation state of an internal combustion engine is varied. <P>SOLUTION: In an exhaust gas recirculation device equipped with an EGR valve and an exhaust oxygen concentration sensor, an EGR gas flow rate sensor comprised of a heating resistance is provided in the recirculation flow passage, an opening of the EGR valve is adjusted in accordance with a detected oxygen concentration of the exhaust oxygen concentration sensor in a predetermined operation state 1, and the opening of the EGR valve is adjusted in accordance with the detected gas flow rate of the EGR gas flow rate sensor in a predetermined operation state 2 wherein the exhaust oxygen concentration is higher as compared with the predetermined operation state 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気の一部を吸気へ還流する内燃機関の排気還流装置の構成及び制御方法に関する。   The present invention relates to a configuration and a control method of an exhaust gas recirculation device for an internal combustion engine that recirculates a part of exhaust gas to intake air.

内燃機関では排出された排気の一部を吸気側に還流させ、混合気の燃焼温度を下げて排気中のNOxを低減する排気還流いわゆるEGR(Exhaust Gas Recirculation) が従来から広く採用されている。   In an internal combustion engine, exhaust gas recirculation (EGR), which recirculates part of the exhaust discharged to the intake side and lowers the combustion temperature of the air-fuel mixture to reduce NOx in the exhaust, has been widely used.

EGRガス流量は排気ガスのNOxやすすの排出量に影響するため、吸気管圧力と新気流量を検出してEGR流量を制御するものや、特許文献1にはEGRガスの還流路に設けたガス流量センサにより直接EGRガス流量を検出して制御するものなどの記載がある。   Since the EGR gas flow rate affects the exhaust amount of NOx and soot in the exhaust gas, the EGR flow rate is controlled by detecting the intake pipe pressure and the fresh air flow rate. There are descriptions such as those in which the EGR gas flow rate is directly detected and controlled by a gas flow rate sensor.

排気ガス中のNOx排出量やすすの排出量はシリンダの全吸入ガス中の酸素濃度に大きく依存することが一般に知られている。ここで一般に吸入ガスの酸素濃度は主にEGRバルブの開度を調整することで全吸入ガスに対するEGRガスの割合(EGR率)を変更することで制御される。   It is generally known that the NOx emission amount and the soot emission amount in the exhaust gas largely depend on the oxygen concentration in the entire intake gas of the cylinder. Here, in general, the oxygen concentration of the intake gas is controlled by changing the ratio (EGR rate) of the EGR gas to the total intake gas mainly by adjusting the opening of the EGR valve.

吸入ガスの酸素濃度を精度良く制御するためのEGRバルブ開度の制御方法が特許文献2等に記載されている。   A method of controlling the EGR valve opening for accurately controlling the oxygen concentration of the intake gas is described in Patent Document 2 and the like.

また、吸入ガスの酸素濃度を精度良く制御するために排気管に酸素濃度センサ(λセンサ)を設け、上記λセンサの出力を目標値とするようにEGRバルブ開度または燃料噴射量,新気量を制御するものが特許文献3等に記載されている。燃料噴射量,新気量を所定の目標値としておけば、排気ガスの酸素濃度により吸入ガスの酸素濃度を求めることができる。   Further, an oxygen concentration sensor (λ sensor) is provided in the exhaust pipe in order to accurately control the oxygen concentration of the intake gas, and the EGR valve opening, fuel injection amount, fresh air is set so that the output of the λ sensor becomes a target value. What controls the amount is described in Patent Document 3 and the like. If the fuel injection amount and the fresh air amount are set as predetermined target values, the oxygen concentration of the intake gas can be obtained from the oxygen concentration of the exhaust gas.

一般には上記特許文献にあるように、吸入ガスの酸素濃度を最適値としたときの排気酸素濃度を目標値として記憶しておき、λセンサで検出される排気酸素濃度が目標値に対し高い場合はEGRバルブ開度を大きくして吸入ガスの酸素濃度を低下させ、λセンサで検出される排気酸素濃度が目標値に対し低い場合はEGRバルブ開度を小さくして吸入ガスの酸素濃度を増加させる。すなわち排気酸素濃度を目標値に合わせるようにEGRバルブ開度等を調整することで排気ガス中のNOxやすすの排出量が少ない吸入ガス酸素濃度となるように制御している。   Generally, as described in the above patent document, when the oxygen concentration of the intake gas is set to the optimum value, the exhaust oxygen concentration is stored as a target value, and the exhaust oxygen concentration detected by the λ sensor is higher than the target value. Increases the EGR valve opening to lower the oxygen concentration of the intake gas. If the exhaust oxygen concentration detected by the λ sensor is lower than the target value, the EGR valve opening is decreased to increase the oxygen concentration of the intake gas. Let That is, by adjusting the EGR valve opening degree or the like so as to match the exhaust oxygen concentration with the target value, control is performed so that the exhaust gas NOx and soot discharge amount becomes a small intake gas oxygen concentration.

特開平6−74100号公報JP-A-6-74100 特開平9−126060号公報JP 9-1206060 A 特開2005−30407号公報Japanese Patent Laying-Open No. 2005-30407

ジルコニア等の固体電解質で構成されるλセンサは大気と排気ガスの酸素濃度差に応じた起電力を発生する特性から排気酸素濃度が低く大気と排気ガスの酸素濃度差が大きい条件では起電力が大きくなり排気酸素濃度の変化に対するλセンサの出力電流の変化が大きいことから酸素濃度検出誤差は少ないが、排気酸素濃度が高く大気と排気ガスの酸素濃度差が小さい条件では、起電力が小さくなり排気酸素濃度の変化に対するλセンサの出力電流の変化量が小さいことから感度が低下する。これによりλセンサの出力電流に対する個々のセンサの回路や素子の特性ばらつきによる出力電流のばらつきの影響が相対的に大きくなる。その結果、酸素濃度の検出ばらつきが増加して検出精度が低下する。   A λ sensor composed of a solid electrolyte such as zirconia generates an electromotive force according to the difference in oxygen concentration between the atmosphere and exhaust gas, and the electromotive force is generated under conditions where the exhaust oxygen concentration is low and the oxygen concentration difference between the atmosphere and exhaust gas is large. Oxygen concentration detection error is small because the change in the output current of the λ sensor with respect to the change in exhaust oxygen concentration is large, but the electromotive force is small under conditions where the exhaust oxygen concentration is high and the oxygen concentration difference between the atmosphere and exhaust gas is small. Since the change amount of the output current of the λ sensor with respect to the change of the exhaust oxygen concentration is small, the sensitivity is lowered. This relatively increases the influence of variations in output current due to variations in the characteristics of individual sensor circuits and elements with respect to the output current of the λ sensor. As a result, the variation in oxygen concentration detection increases and the detection accuracy decreases.

このため上記特許文献3のような、排気管に設けられたλセンサを用いて、吸入ガスの酸素濃度を制御するものでは、排気ガスの酸素濃度が高い運転状態において吸入ガスの酸素濃度の制御精度が低下する。λセンサの検出誤差によりλセンサの検出酸素濃度が実際の酸素濃度より高くなった場合はEGRバルブ開度が最適値に対し大きくなるので酸素不足となりすすの排出量が増加してしまう。またλセンサ検出酸素濃度が実際の酸素濃度より低くなった場合はEGRバルブ開度が最適値に対し小さくなるので酸素過剰となって
NOxの排出量が増加してしまうという問題があった。
For this reason, in the case where the oxygen concentration of the intake gas is controlled using the λ sensor provided in the exhaust pipe as in Patent Document 3, the oxygen concentration of the intake gas is controlled in an operating state where the oxygen concentration of the exhaust gas is high. Accuracy is reduced. When the detected oxygen concentration of the λ sensor becomes higher than the actual oxygen concentration due to the detection error of the λ sensor, the EGR valve opening becomes larger than the optimum value, so that oxygen is insufficient and soot discharge increases. Further, when the detected oxygen concentration of the λ sensor is lower than the actual oxygen concentration, the EGR valve opening becomes smaller than the optimum value, so that there is a problem that the amount of NOx is increased due to excess oxygen.

本発明は、運転状態が変化した場合でもNOxやすすの排出量を最小化することを目的とする。   An object of the present invention is to minimize the discharge amount of NOx soot even when the operating state changes.

上記課題を解決するため本発明の排気ガス還流装置は、内燃機関の排気管から吸気管に排気ガスを導入する還流路と、前記還流路内に取り付けられるEGRバルブと、前記排気管に取り付けられる排気酸素濃度センサと、前記還流路内に取り付けられ発熱抵抗体で構成されるEGRガス流量センサと、前記排気酸素濃度センサの検出酸素濃度に応じて前記EGRバルブの開度を調節する制御手段とを備え、
前記制御手段は所定の第一の運転状態において前記排気酸素濃度センサの検出酸素濃度に応じて前記EGRバルブの開度を調節し、前記所定の第一の運転状態に対し排気酸素濃度が高い所定の第二の運転状態において前記EGRガス流量センサの検出ガス流量に応じて前記EGRバルブの開度を調節するようにした。
In order to solve the above problems, an exhaust gas recirculation device according to the present invention is attached to a recirculation path for introducing exhaust gas from an exhaust pipe of an internal combustion engine to an intake pipe, an EGR valve attached in the recirculation path, and the exhaust pipe. An exhaust gas oxygen concentration sensor, an EGR gas flow sensor mounted in the reflux path and configured by a heating resistor, and a control means for adjusting the opening degree of the EGR valve according to the detected oxygen concentration of the exhaust gas oxygen concentration sensor; With
The control means adjusts the opening degree of the EGR valve in accordance with the detected oxygen concentration of the exhaust oxygen concentration sensor in a predetermined first operating state, and has a predetermined exhaust oxygen concentration higher than that in the predetermined first operating state. In the second operation state, the opening degree of the EGR valve is adjusted according to the gas flow rate detected by the EGR gas flow rate sensor.

以上説明したように、本発明の排気ガス還流装置によれば、内燃機関の運転状態が変動しても、運転状態に応じて最も精度良く吸入ガスの酸素濃度を制御できるセンサを用いてEGRバルブを制御するので、排気ガス中のNOx,すすの排出量を低減することができる。   As described above, according to the exhaust gas recirculation device of the present invention, even if the operating state of the internal combustion engine fluctuates, the EGR valve is used with the sensor that can control the oxygen concentration of the intake gas with the highest accuracy according to the operating state. Therefore, the amount of NOx and soot discharged in the exhaust gas can be reduced.

以下、本発明の実施の形態について図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

次に、本実施形態に係るエンジンシステム構成の代表例について図1を用いて説明する。   Next, a representative example of the engine system configuration according to the present embodiment will be described with reference to FIG.

図1には、本実施形態に係るエンジンシステムの構成図を示しており、ここでは特にディーゼルエンジンの排気還流システムについて述べる。まず、係るディーゼルエンジンシステムにおいては、高圧に加圧された燃料を燃焼室に噴射するインジェクタ5やターボチャージャ6,後処理系7としては排気中に含まれる微粒子状物質を酸化除去するDPFやNOx触媒等が装着されており、CPU,ROM,RAMを含むコンピュータを主体として構成されているECU8によりシステムを制御する。またNOx低減のためにエンジンから排出された排気の一部を吸気へ再循環するEGRシステムにおいては、還流路9の上流にはEGRガス温度を低下させるためのEGRクーラ10が配設されており、冷却されたEGRガスは下流に設けられたEGRバルブ11によって流量の制御がなされている。排気管19には排気ガスの酸素濃度を検出するλセンサ18が設けられる。   FIG. 1 shows a configuration diagram of an engine system according to the present embodiment. Here, an exhaust gas recirculation system for a diesel engine will be described in particular. First, in such a diesel engine system, the injector 5 or turbocharger 6 for injecting fuel pressurized to a high pressure into the combustion chamber, the post-processing system 7 as a DPF or NOx for oxidizing and removing particulate matter contained in the exhaust gas. A catalyst or the like is mounted, and the system is controlled by an ECU 8 mainly composed of a computer including a CPU, a ROM, and a RAM. In an EGR system that recirculates part of the exhaust discharged from the engine to the intake air to reduce NOx, an EGR cooler 10 for lowering the EGR gas temperature is disposed upstream of the reflux path 9. The flow rate of the cooled EGR gas is controlled by the EGR valve 11 provided downstream. The exhaust pipe 19 is provided with a λ sensor 18 for detecting the oxygen concentration of the exhaust gas.

本発明を適用する構成では還流路9内にEGRガスの質量流量を直接計量するEGRガス流量センサ12を設ける。   In the configuration to which the present invention is applied, an EGR gas flow rate sensor 12 that directly measures the mass flow rate of EGR gas is provided in the reflux path 9.

また、吸気管13内のエアクリーナ14の下流に新気量を検出するエアフローセンサ
15を設ける。
In addition, an air flow sensor 15 that detects the amount of fresh air is provided downstream of the air cleaner 14 in the intake pipe 13.

ここで、エアフローセンサ15を設けずに吸気管圧力センサ16,吸気温センサ17を設け、これらのセンサおよびEGRガス流量センサ12の検出値から新気流量を求めるようにしても良い。   Here, the intake pipe pressure sensor 16 and the intake air temperature sensor 17 may be provided without providing the air flow sensor 15, and the fresh air flow rate may be obtained from the detected values of these sensors and the EGR gas flow rate sensor 12.

図2にEGRガス流量センサ12の構成図を示す。流量計量用の発熱抵抗体1と、発熱抵抗体の上流部あるいは下流部に配置された被測定ガス温度を検出する測温抵抗体2の少なくとも2つの抵抗体により流量の計量を実施する。流量検出の原理としては、外部に設けた制御回路3において、電気的に発熱抵抗体1と測温抵抗体2をブリッジ接続することで常に温度差を一定に保持することにより、被測定ガスの温度変化によって生じる発熱抵抗体1の抵抗値変化を排除することにより、その抵抗値変化分を流量変化分のみとすることで流量を算出する。EGRガス流量センサ12はコネクタ4を介して流量に相当する電気信号をECUへ出力し、流量計から入力された電気信号をECU内で流量に変換する。また、本発明は、前記の温度差一定保持により流量を算出する方式だけではなく、発熱体の加熱温度を一定に保持する方式等でもよい。   FIG. 2 shows a configuration diagram of the EGR gas flow rate sensor 12. The flow rate is measured by at least two resistors, the heating resistor 1 for measuring the flow rate and the temperature measuring resistor 2 for detecting the temperature of the gas to be measured, which is arranged upstream or downstream of the heating resistor. The principle of flow rate detection is that the temperature difference is always kept constant by electrically connecting the heating resistor 1 and the resistance temperature detector 2 in the control circuit 3 provided outside, so that the gas to be measured is kept constant. By eliminating the resistance value change of the heating resistor 1 caused by the temperature change, the flow rate is calculated by setting the change in the resistance value as the flow rate change only. The EGR gas flow sensor 12 outputs an electrical signal corresponding to the flow rate to the ECU via the connector 4 and converts the electrical signal input from the flow meter into a flow rate in the ECU. Further, the present invention is not limited to the above-described method for calculating the flow rate by keeping the temperature difference constant, but may be a method for keeping the heating temperature of the heating element constant.

前述したようにNOxやすすの排出量は、吸入ガス中の酸素濃度に依存するが、吸入ガスの酸素濃度を制御するために一般に用いられるλセンサは以下の問題点を有する。   As described above, the discharge amount of NOx and soot depends on the oxygen concentration in the intake gas, but the λ sensor generally used for controlling the oxygen concentration of the intake gas has the following problems.

ジルコニア等の固体電解質で構成されるλセンサは大気と排気ガスの酸素濃度差に応じた起電力を発生する特性から図5に示すように排気酸素濃度が低く大気と排気ガスの酸素濃度差が大きい条件では起電力が大きくなり排気酸素濃度変化に対するλセンサの出力電流変化が大きく酸素濃度検出誤差は少ないが、排気酸素濃度が高く大気と排気ガスの酸素濃度差が小さい条件では、起電力が小さくなり排気酸素濃度変化に対するλセンサの出力電流変化量が小さく感度が低下する。   A λ sensor composed of a solid electrolyte such as zirconia generates an electromotive force according to the difference in oxygen concentration between the atmosphere and the exhaust gas. As shown in FIG. 5, the oxygen concentration difference between the atmosphere and the exhaust gas is low as shown in FIG. Under large conditions, the electromotive force increases, and the change in the output current of the λ sensor with respect to the change in exhaust oxygen concentration is large and the oxygen concentration detection error is small. The amount of change in the output current of the λ sensor with respect to the change in exhaust oxygen concentration is small and the sensitivity is lowered.

実線は代表特性であり、点線は個々のλセンサの出力電流ばらつきを示している。λセンサの出力電流ばらつきは素子や検出回路の特性ばらつきに起因する。   The solid line is the representative characteristic, and the dotted line shows the output current variation of each λ sensor. The variation in the output current of the λ sensor is caused by the variation in the characteristics of the element and the detection circuit.

図からわかるように酸素濃度が高い条件では酸素濃度変化に対する出力電流の変化に対し個々のλセンサの出力電流ばらつきの影響が相対的に大きくなる。その結果、排気ガスの酸素濃度が高い条件では酸素濃度の検出ばらつきが増加して検出精度が低下し、吸入ガスの酸素濃度制御精度が低下するという問題がある。   As can be seen from the figure, under the condition where the oxygen concentration is high, the influence of the output current variation of each λ sensor becomes relatively large with respect to the change of the output current with respect to the change of the oxygen concentration. As a result, when the oxygen concentration of the exhaust gas is high, the detection variation of the oxygen concentration increases, the detection accuracy decreases, and the oxygen concentration control accuracy of the intake gas decreases.

次に、還流路9にEGRガス流量センサ12を設け、EGRガス流量センサ12により検出されたEGRガスの質量流量より吸入ガスの酸素濃度を制御する場合の制御誤差について述べる。   Next, a control error when the EGR gas flow rate sensor 12 is provided in the reflux path 9 and the oxygen concentration of the intake gas is controlled from the mass flow rate of the EGR gas detected by the EGR gas flow rate sensor 12 will be described.

吸入ガスの実酸素濃度DO2は、新気中の酸素量O2aとEGRガス中の酸素量O2eおよび新気量Qa,EGRガス流量Qeから式(1)で表わされる。   The actual oxygen concentration DO2 of the intake gas is expressed by the equation (1) from the oxygen amount O2a in the fresh air, the oxygen amount O2e in the EGR gas, the fresh air amount Qa, and the EGR gas flow rate Qe.

本例ではEGRガス流量センサ12、およびエアフローセンサ15を備えた構成について説明する。   In this example, a configuration including the EGR gas flow sensor 12 and the air flow sensor 15 will be described.

Figure 2006316706
Figure 2006316706

式(1)から定常状態で完全燃焼を仮定したときの吸入ガスの実酸素濃度DO2は、新気中の酸素濃度a,EGR率R,燃料噴射量Qf,理論空燃比kより式(2)で示される。ここでEGR率RはR=Qe/(Qa+Qe)で定義される。   The actual oxygen concentration DO2 of the intake gas when complete combustion is assumed in the steady state from the equation (1) is obtained from the equation (2) from the oxygen concentration a in the fresh air, the EGR rate R, the fuel injection amount Qf, and the theoretical air-fuel ratio k. Indicated by Here, the EGR rate R is defined by R = Qe / (Qa + Qe).

Figure 2006316706
Figure 2006316706

すなわち吸入ガスの酸素濃度は、EGRガス流量センサ12により検出されたEGRガスの質量流量Qeとエアフローセンサ15により検出された新気量Qaおよび燃料噴射量Qfから求めることができるので、これらのセンサ信号から吸入ガスの酸素濃度を制御することが可能である。   That is, the oxygen concentration of the intake gas can be obtained from the mass flow rate Qe of the EGR gas detected by the EGR gas flow rate sensor 12, the fresh air amount Qa detected by the air flow sensor 15, and the fuel injection amount Qf. It is possible to control the oxygen concentration of the intake gas from the signal.

次に、上記のEGRガス流量センサ12,エアフローセンサ15により吸入ガスの酸素濃度を制御する場合の制御誤差を求める。   Next, a control error when the oxygen concentration of the intake gas is controlled by the EGR gas flow sensor 12 and the air flow sensor 15 is obtained.

ここで、発熱抵抗体からの放熱量によりガスの質量流量を検出するEGRガス流量センサ12およびエアフローセンサ15の検出誤差は検出流量に対し所定の割合(比率)で決まる値となる。すなわちEGRガス流量センサの検出流量をQes、検出誤差比率をεeとするとQes=(1+εe)Qeで示される。ここで検出誤差の絶対値はεe・Qeであり、発熱抵抗で構成されるEGRガス流量センサ12の検出誤差の絶対値はεe・Qeはガス流量Qeが少なくなるにつれて減少する。   Here, the detection error of the EGR gas flow sensor 12 and the air flow sensor 15 that detect the mass flow rate of the gas based on the amount of heat released from the heating resistor is a value determined by a predetermined ratio (ratio) with respect to the detected flow rate. That is, when the detected flow rate of the EGR gas flow sensor is Qes and the detection error ratio is εe, Qes = (1 + εe) Qe. Here, the absolute value of the detection error is εe · Qe, and the absolute value of the detection error of the EGR gas flow rate sensor 12 constituted by the heating resistor decreases as the gas flow rate Qe decreases.

また同様にエアフローセンサ15の検出流量をQas、検出誤差比率をεaとすると
Qas=(1+εa)Qaで示される。よって式(1)より上記センサ信号より求められる吸入ガスの酸素濃度算出値DO2Sは式(3)で示される。
Similarly, when the detection flow rate of the air flow sensor 15 is Qas and the detection error ratio is εa, Qas = (1 + εa) Qa. Therefore, the oxygen concentration calculation value DO2S of the intake gas obtained from the sensor signal from the equation (1) is expressed by the equation (3).

Figure 2006316706
Figure 2006316706

ここで分子の新気中の酸素量算出値O2asはエアフローセンサ15より求められるので、新気中の実酸素量O2aにエアフローセンサ15の誤差分(1+εa)を掛けた値となる。分子のEGRガス中の酸素量算出値O2esも同様にEGRガス中の実酸素量O2eにEGRガス流量センサ12の誤差分(1+εe)を掛けた値となる。   Here, the calculated oxygen amount value O2as in the fresh air of the molecule is obtained from the air flow sensor 15, and is a value obtained by multiplying the actual oxygen amount O2a in the fresh air by the error (1 + εa) of the air flow sensor 15. Similarly, the calculated amount of oxygen O2es in the molecular EGR gas is a value obtained by multiplying the actual oxygen amount O2e in the EGR gas by the error (1 + εe) of the EGR gas flow sensor 12.

ここでEGRガス中の酸素量O2eは新気中の酸素量O2aに比べて少ないので、近似的には無視でき、このとき吸入ガスの酸素濃度算出値DO2Sは式(4)で示される。   Here, since the oxygen amount O2e in the EGR gas is smaller than the oxygen amount O2a in the fresh air, it can be neglected approximately. At this time, the oxygen concentration calculation value DO2S of the intake gas is expressed by the equation (4).

Figure 2006316706
Figure 2006316706

また、吸入ガスの実酸素濃度は式(4)でεe=0,εa=0とおくと式(5)で表わされる。   The actual oxygen concentration of the intake gas is expressed by equation (5) when εe = 0 and εa = 0 in equation (4).

Figure 2006316706
Figure 2006316706

よって、EGRガス流量センサ12,エアフローセンサ15から算出された吸入ガスの酸素濃度DO2Sの実酸素濃度DO2に対する誤差の比率εdeは式(6)で示される。   Therefore, the error ratio εde of the intake gas oxygen concentration DO2S to the actual oxygen concentration DO2 calculated from the EGR gas flow rate sensor 12 and the airflow sensor 15 is expressed by Expression (6).

Figure 2006316706
Figure 2006316706

ここで、インジェクタ5の噴射量ばらつきがある場合は、吸入ガスの最適な酸素濃度がこれに応じてずれるので、この噴射量ばらつきによるずれ分をεFを吸入ガスの酸素濃度DO2Sの誤差分として加算している。   Here, when there is a variation in the injection amount of the injector 5, the optimum oxygen concentration of the suction gas shifts accordingly, so the shift due to the variation in the injection amount is added as an error of the oxygen concentration DO2S of the suction gas. is doing.

吸入ガス酸素濃度の検出誤差はεdeは、EGRガス流量センサ12を用いて吸入ガス酸素濃度を調節したときの制御誤差となる。   The detection error of the intake gas oxygen concentration εde is a control error when the intake gas oxygen concentration is adjusted using the EGR gas flow rate sensor 12.

式(4)(5)より運転状態によりEGR率が変化したときの、EGRガス流量センサ12による吸入ガス酸素濃度の制御誤差εdeは式(6)から求めることができる。   From the equations (4) and (5), the control error εde of the intake gas oxygen concentration by the EGR gas flow rate sensor 12 when the EGR rate changes depending on the operating state can be obtained from the equation (6).

図3に排気酸素濃度に対するEGR率、式(6)による吸入ガス酸素濃度の制御誤差
εdeの算出結果の関係の例を示す。またこれと比較してλセンサ18により吸入ガス酸素濃度を制御した場合の制御誤差の例を併せて示す。
FIG. 3 shows an example of the relationship between the EGR rate with respect to the exhaust oxygen concentration and the calculation result of the control error εde of the intake gas oxygen concentration according to the equation (6). In comparison with this, an example of a control error when the intake gas oxygen concentration is controlled by the λ sensor 18 is also shown.

ここでεdeの絶対値が最も大きくなる条件としてεe=+0.05(+5%),εa=−0.03(−3%)とし、εFは−0.04(−4%)として計算した。   Here, εe = + 0.05 (+ 5%), εa = −0.03 (−3%) and εF as −0.04 (−4%) were calculated as conditions for the maximum absolute value of εde.

EGR率が減少するに従い排気酸素濃度が増加するが、EGRガス流量センサ12による吸入ガス酸素濃度の制御誤差εdeは排気酸素濃度が増加するに従い小さくなることがわかった。   It has been found that the exhaust gas oxygen concentration increases as the EGR rate decreases, but the intake gas oxygen concentration control error εde by the EGR gas flow rate sensor 12 decreases as the exhaust oxygen concentration increases.

これは、式(3)のように発熱抵抗体で形成されるEGRガス流量センサ12の検出誤差の絶対量がεe・Qeで示され流量検出値に対する相対比で決まり、EGR流量(EGR率)が減少するとEGR流量検出誤差の絶対量が減少して全吸入ガス量に対するEGR流量検出誤差の割合が減少することによる。   This is because the absolute amount of detection error of the EGR gas flow rate sensor 12 formed of the heating resistor as shown in the equation (3) is indicated by εe · Qe and is determined by the relative ratio to the detected flow rate, and the EGR flow rate (EGR rate) This is because the absolute amount of the EGR flow rate detection error decreases and the ratio of the EGR flow rate detection error to the total intake gas amount decreases.

詳細には式(3)の吸入ガス酸素濃度算出値においてEGR率(EGR流量)が減少したときに分母の全吸入ガス量Qa+Qeに対するEGR流量検出誤差εe・Qeの割合が小さくなり、EGR流量検出誤差による吸入ガス酸素濃度の制御誤差が減少する。   Specifically, when the EGR rate (EGR flow rate) decreases in the calculated intake gas oxygen concentration value of Equation (3), the ratio of the EGR flow rate detection error εe · Qe to the total intake gas amount Qa + Qe in the denominator decreases, and EGR flow rate detection The control error of the intake gas oxygen concentration due to the error is reduced.

ここでエアフローセンサの誤差εaの影響については、式(3)の分子の酸素質量がエアフローセンサによる新気量の検出値より求められ、EGR流量が減少すると分母のエアフローセンサによる新気量の検出値の全吸入ガス量に対する割合が高まるのでεaの影響が分子,分母でほぼ等しくなり、EGR率が低下するに従いエアフローセンサの誤差の影響が減少する。   Here, regarding the influence of the error εa of the air flow sensor, the oxygen mass of the numerator of equation (3) is obtained from the detected value of the new air amount by the air flow sensor, and when the EGR flow rate decreases, the new air amount is detected by the denominator air flow sensor. Since the ratio of the value to the total amount of inhaled gas increases, the influence of εa becomes almost equal in the numerator and denominator, and the influence of the error of the air flow sensor decreases as the EGR rate decreases.

一方、前述したように排気酸素濃度を検出するλセンサ18による吸入ガス酸素濃度の制御誤差についてはλセンサが大気と排気ガスの酸素濃度差に応じた電流を発生する特性から排気酸素濃度が低く大気と排気ガスの酸素濃度差が大きい条件では排気酸素濃度変化に対するλセンサの電流変化が大きく制御誤差は少ないが、排気酸素濃度が高く大気と排気ガスの酸素濃度差が小さい条件では、排気酸素濃度変化に対するλセンサの電流変化量が小さく感度が低下するため、λセンサの電流ばらつきの影響の割合が大きくなり吸入ガス酸素濃度の制御誤差が増加する。   On the other hand, regarding the control error of the intake gas oxygen concentration by the λ sensor 18 that detects the exhaust oxygen concentration as described above, the exhaust oxygen concentration is low because the λ sensor generates a current corresponding to the oxygen concentration difference between the atmosphere and the exhaust gas. Under conditions where the oxygen concentration difference between the atmosphere and exhaust gas is large, the change in the current of the λ sensor is large and the control error is small with respect to the change in exhaust oxygen concentration, but under conditions where the exhaust oxygen concentration is high and the oxygen concentration difference between the atmosphere and exhaust gas is small Since the current change amount of the λ sensor with respect to the concentration change is small and the sensitivity is lowered, the ratio of the influence of the current variation of the λ sensor increases, and the control error of the intake gas oxygen concentration increases.

EGRガス流量センサ12による吸入ガス酸素濃度の制御誤差とλセンサ18による吸入ガス酸素濃度の制御誤差を比較すると、排気酸素濃度が低い条件ではλセンサにより吸入ガス酸素濃度を制御した方がEGRガス流量センサで制御した場合に比べ制御誤差が小さく、排気酸素濃度が高い条件ではEGRガス流量センサにより吸入ガス酸素濃度を制御した方がλセンサで制御した場合に比べ制御誤差が小さくなることがわかった。   Comparing the control error of the intake gas oxygen concentration by the EGR gas flow rate sensor 12 and the control error of the intake gas oxygen concentration by the λ sensor 18, the EGR gas is controlled by the λ sensor when the exhaust oxygen concentration is low. It can be seen that the control error is smaller than when the control is performed with the flow sensor, and that the control error is smaller when the intake gas oxygen concentration is controlled with the EGR gas flow sensor than when the control is performed with the λ sensor. It was.

すなわち還流路9に発熱抵抗体式のEGRガス流量センサ12を配置し直接EGRガス流量を検出するようにした構成では、EGR率が減少する(排気酸素濃度が高くなる)に従ってEGRガス流量センサ12の検出誤差の全吸入ガス量に対する割合が減少するのでEGRガス流量センサ12による吸入ガスの酸素濃度算出値の誤差が排気酸素濃度が高くなるに従って減少する特性を有し、これは排気酸素濃度が高くなるに従い吸入ガスの酸素濃度算出値の誤差が増加するλセンサ18に対して相反する誤差特性を有することを見出した。   That is, in the configuration in which the heating resistor type EGR gas flow rate sensor 12 is arranged in the reflux path 9 and the EGR gas flow rate is directly detected, the EGR gas flow rate sensor 12 increases as the EGR rate decreases (the exhaust oxygen concentration increases). Since the ratio of the detection error to the total intake gas amount decreases, the error in the calculated oxygen concentration value of the intake gas by the EGR gas flow rate sensor 12 has a characteristic that decreases as the exhaust oxygen concentration increases, which has a high exhaust oxygen concentration. As a result, it has been found that there is a contradictory error characteristic with respect to the λ sensor 18 in which the error of the oxygen concentration calculation value of the intake gas increases.

本発明では、上記の誤差特性の評価結果から、λセンサ18を備えた排気ガス還流装置において、還流路9に発熱抵抗体で構成されるEGRガス流量センサ12を設け、排気酸素濃度が所定値に対し低いときにはλセンサ18を用いてEGRバルブ開度を制御するようにし、排気酸素濃度が前記所定値より高いときには前記EGRガス流量センサ12を用いてEGRバルブ開度の制御を実施するようにした。これにより運転状態の変化により排気酸素濃度が変動しても吸入ガスの酸素濃度制御誤差を常に最小とすることができ、排出ガス中のNOxやすすの排出量を最小化することができる。   In the present invention, based on the evaluation results of the error characteristics described above, in the exhaust gas recirculation device provided with the λ sensor 18, the EGR gas flow rate sensor 12 composed of a heating resistor is provided in the recirculation path 9, and the exhaust oxygen concentration is a predetermined value. When the exhaust gas concentration is higher than the predetermined value, the EGR valve opening degree is controlled using the EGR gas flow rate sensor 12 when the exhaust gas oxygen concentration is higher than the predetermined value. did. As a result, even if the exhaust oxygen concentration varies due to changes in the operating state, the oxygen concentration control error of the intake gas can always be minimized, and the discharge amount of NOx and soot in the exhaust gas can be minimized.

前述の例ではλセンサ,EGRガス流量センサ,エアフローセンサを有する構成について説明したが、エアフローセンサの代わりに吸気管圧力センサ16と吸気温センサ17を設けた構成に適用しても良い。   In the above-described example, the configuration including the λ sensor, the EGR gas flow rate sensor, and the air flow sensor has been described. However, the configuration may be applied to a configuration in which the intake pipe pressure sensor 16 and the intake temperature sensor 17 are provided instead of the air flow sensor.

吸気管圧力センサ16と吸気温センサ17を備えた構成では、一般にこれらのセンサ信号よりシリンダの全吸入ガス量Qgが求められる。吸入ガスの酸素濃度DO2はQgと
EGRガス流量Qeより式(7)で示される。ここでaは吸入新気(大気)の酸素濃度である。
In the configuration including the intake pipe pressure sensor 16 and the intake air temperature sensor 17, the total intake gas amount Qg of the cylinder is generally obtained from these sensor signals. The oxygen concentration DO2 of the intake gas is expressed by equation (7) from Qg and the EGR gas flow rate Qe. Here, a is the oxygen concentration of inhaled fresh air (atmosphere).

Figure 2006316706
Figure 2006316706

吸気管圧力センサ16と吸気温センサ17により算出される全吸入ガス量Qgの誤差をεg,EGRガス流量センサの検出誤差をεeとすると、これらのセンサ信号より算出される吸入ガスの酸素濃度DO2Sは式(8)で表わされる。   If the error of the total intake gas amount Qg calculated by the intake pipe pressure sensor 16 and the intake air temperature sensor 17 is εg, and the detection error of the EGR gas flow rate sensor is εe, the oxygen concentration DO2S of the intake gas calculated from these sensor signals. Is represented by equation (8).

Figure 2006316706
Figure 2006316706

O2eはO2aに対し小さいものとして無視するとDO2Sは式(9)で近似される。   If O2e is ignored with respect to O2a, DO2S is approximated by equation (9).

Figure 2006316706
Figure 2006316706

式(9)よりDO2SはEGR率Rを用いて式(10)で表わすことができる。   From Equation (9), DO2S can be expressed by Equation (10) using the EGR rate R.

Figure 2006316706
Figure 2006316706

吸入ガスの実酸素濃度DO2は式(10)でεg=0,εe=0として式(11)で示される。   The actual oxygen concentration DO2 of the intake gas is expressed by equation (11) with εg = 0 and εe = 0 in equation (10).

Figure 2006316706
Figure 2006316706

よって算出された吸入ガスの酸素濃度DO2Sの実酸素濃度DO2に対する誤差率εdeは式(12)で示される。   Accordingly, the calculated error rate εde of the oxygen concentration DO2S of the intake gas with respect to the actual oxygen concentration DO2 is expressed by Equation (12).

Figure 2006316706
Figure 2006316706

ここで誤差率εdeはそのまま吸入ガス酸素濃度の制御誤差となる。   Here, the error rate εde is a control error of the intake gas oxygen concentration as it is.

図4にEGR率、式(12)による吸入ガス酸素濃度の制御誤差εdeの算出結果、排気酸素濃度の関係の例を示す。またこれと比較してλセンサ18により吸入ガス酸素濃度を制御した場合の制御誤差を併せて示す。   FIG. 4 shows an example of the relationship between the EGR rate, the calculation result of the intake gas oxygen concentration control error εde according to the equation (12), and the exhaust oxygen concentration. Further, in comparison with this, a control error when the intake gas oxygen concentration is controlled by the λ sensor 18 is also shown.

前述したエアフローセンサ15で新気量を求めて吸入ガス酸素濃度を算出した場合と同様にEGRガス流量センサ12による吸入ガス酸素濃度の制御誤差εdeはEGR率
(EGRガス流量)が減少して排気酸素濃度が増加するに従い小さくなる。
As in the case where the intake air oxygen concentration is calculated by obtaining the fresh air amount by the air flow sensor 15 described above, the control error εde of the intake gas oxygen concentration by the EGR gas flow rate sensor 12 is reduced when the EGR rate (EGR gas flow rate) decreases. It becomes smaller as the oxygen concentration increases.

よってエアフローセンサ15で新気量を求めて吸入ガス酸素濃度を算出した場合と同様にEGRガス流量センサ12による吸入ガス酸素濃度の制御誤差とλセンサ18による吸入ガス酸素濃度の制御誤差を比較すると、排気酸素濃度が低い条件ではλセンサ18により吸入ガス酸素濃度を制御した方がEGRガス流量センサで制御した場合に比べ制御誤差が小さく、排気酸素濃度が高い条件ではEGRガス流量センサにより吸入ガス酸素濃度を制御した方がλセンサで制御した場合に比べ制御誤差が小さくなる。   Therefore, the control error of the intake gas oxygen concentration by the EGR gas flow rate sensor 12 and the control error of the intake gas oxygen concentration by the λ sensor 18 are compared in the same manner as when the intake gas oxygen concentration is calculated by obtaining the fresh air amount by the air flow sensor 15. When the exhaust gas oxygen concentration is low, the control error is smaller when the intake gas oxygen concentration is controlled by the λ sensor 18 than when the exhaust gas oxygen concentration is controlled by the EGR gas flow rate sensor. Control error is smaller when the oxygen concentration is controlled than when the oxygen concentration is controlled.

したがってエアフローセンサで新気量を求めて吸入ガス酸素濃度を算出した場合においても同様に排気酸素濃度が所定値に対し低いときにはλセンサを用いてEGRバルブ開度を制御するようにし、排気酸素濃度が前記所定値より高いときには前記EGRガス流量センサを用いてEGRバルブ開度の制御を実施すれば吸入ガス酸素濃度の制御誤差を減少させることができる。   Therefore, when the intake gas oxygen concentration is calculated by obtaining the fresh air amount by the air flow sensor, similarly, when the exhaust oxygen concentration is lower than the predetermined value, the EGR valve opening is controlled using the λ sensor, and the exhaust oxygen concentration is controlled. Is higher than the predetermined value, the control error of the intake gas oxygen concentration can be reduced by controlling the EGR valve opening using the EGR gas flow rate sensor.

次に本発明のECU8による制御フローを図6により説明する。   Next, a control flow by the ECU 8 of the present invention will be described with reference to FIG.

ステップ100でλセンサ18,EGRガス流量センサ12、およびエアフローセンサ15または吸気管圧力センサ16,吸気温センサ17の信号等を読込む。   In step 100, signals from the λ sensor 18, the EGR gas flow rate sensor 12, the air flow sensor 15, the intake pipe pressure sensor 16, and the intake air temperature sensor 17 are read.

ステップ110でλセンサ18が活性化しているかを判定する。λセンサ18が活性化していないときは、EGRガス流量センサ12を用いてステップ140に従いEGRバルブ開度を制御する。   In step 110, it is determined whether the λ sensor 18 is activated. When the λ sensor 18 is not activated, the EGR valve opening degree is controlled according to step 140 using the EGR gas flow rate sensor 12.

λセンサ18が活性化していればステップ120でEGR制御用センサ(λセンサまたはEGRガス流量センサ)を選択する。EGR制御用センサの選択方法の例としては、
EGRガス流量センサ12でEGRバルブを制御した場合の吸入ガス酸素濃度の制御誤差εdeをECU8が逐次算出し、これとλセンサ18によりEGRバルブを制御した場合の吸入ガス酸素濃度の制御誤差εdλ(λセンサのばらつき特性から決まり、予めλセンサで検出された排気酸素濃度の関数としてECUのROMに図8に示すようなテーブルデータとして記憶されている)と比較を行い、εdλ<εdeのときはλセンサ18をEGR制御用センサとして選択するようにし、εdλ≧εdeのときはEGRガス流量センサ
12をEGR制御用センサとして選択する。
If the λ sensor 18 is activated, an EGR control sensor (λ sensor or EGR gas flow rate sensor) is selected in step 120. As an example of the selection method of the sensor for EGR control,
The ECU 8 sequentially calculates the control error εde of the intake gas oxygen concentration when the EGR valve is controlled by the EGR gas flow sensor 12, and the control error εdλ () of the intake gas oxygen concentration when the EGR valve is controlled by this and the λ sensor 18 and is stored in the ROM of the ECU as table data as shown in FIG. 8 as a function of the exhaust oxygen concentration detected in advance by the λ sensor), and when εdλ <εde The λ sensor 18 is selected as the EGR control sensor. When εdλ ≧ εde, the EGR gas flow rate sensor 12 is selected as the EGR control sensor.

ここで、εdλ<εdeのときは基本的なEGR制御用センサとしてλセンサ18を選択するが、EGRガス流量センサ12はλセンサ18に対し応答性に優れるので定常状態ではλセンサ18でEGRバルブの制御を実施し、加減速等の過渡状態では一時的にEGRガス流量センサ12を用いてEGRバルブの制御を実施するようにしても良い。εdλ≧εdeのときはEGRガス流量センサ12をEGRバルブの制御用センサとして用い、このときλセンサ18の検出信号はEGRバルブの制御に使用しない。   Here, when εdλ <εde, the λ sensor 18 is selected as a basic EGR control sensor. However, since the EGR gas flow rate sensor 12 is excellent in response to the λ sensor 18, the λ sensor 18 is used as the EGR valve in a steady state. The EGR valve may be temporarily controlled using the EGR gas flow rate sensor 12 in a transient state such as acceleration / deceleration. When εdλ ≧ εde, the EGR gas flow rate sensor 12 is used as a sensor for controlling the EGR valve. At this time, the detection signal of the λ sensor 18 is not used for controlling the EGR valve.

上記εdeの算出方法としてはEGRガス流量センサ12で検出されるEGRガス流量と、エアフローセンサ15による新気量もしくは吸気管圧力センサ16と吸気温センサ
17から算出される全吸入ガス量から計算したEGR率R、および各センサ,インジェクタの特性ばらつきより決まるεe,εa,εFより式(6)を用いて算出するか、またはこれらのセンサ信号に対するεdeを予め求めておきECUのメモリ(ROM)に各センサ信号から算出されるEGR率Rに応じた図7のようなマップデータとして記憶しておき、前記マップデータを各センサ信号から逐次参照して求めるようにしても良い。
The εde is calculated from the EGR gas flow rate detected by the EGR gas flow rate sensor 12 and the fresh air amount by the airflow sensor 15 or the total intake gas amount calculated from the intake pipe pressure sensor 16 and the intake air temperature sensor 17. The EGR rate R and εe, εa, εF determined from the characteristic variation of each sensor and injector are calculated using the equation (6), or εde for these sensor signals is obtained in advance in the memory (ROM) of the ECU. It may be stored as map data as shown in FIG. 7 corresponding to the EGR rate R calculated from each sensor signal, and the map data may be obtained by sequentially referring to each sensor signal.

また、λセンサで検出された排気酸素濃度DEO2λを所定のしきい値SLと比較し、DEO2λがSLより低い場合にλセンサをEGR制御用センサとして選択し、DEO2λがSLより高い場合にEGRガス流量センサ12をEGR制御用センサとして選択するようにしても良い。ここでSLはλセンサの検出精度が確保できる上限値を予め設定しておくか、または前述したようにEGRガス流量センサ12による吸入ガスの酸素濃度制御精度がEGR率に依存するのでSLを予め図9に示すようなEGR率の関数として記憶されたテーブルデータにより設定するようにしても良い。   Further, the exhaust gas oxygen concentration DEO2λ detected by the λ sensor is compared with a predetermined threshold value SL. When DEO2λ is lower than SL, the λ sensor is selected as an EGR control sensor, and when DEO2λ is higher than SL, EGR gas is selected. The flow sensor 12 may be selected as an EGR control sensor. Here, SL is set in advance to an upper limit value that can ensure the detection accuracy of the λ sensor, or, as described above, since the accuracy of oxygen concentration control of the intake gas by the EGR gas flow rate sensor 12 depends on the EGR rate, SL is set in advance. You may make it set with the table data memorize | stored as a function of an EGR rate as shown in FIG.

また、各センサによる吸入酸素濃度の制御誤差εdλ,εdeは排気酸素濃度、EGR率に依るが、排気酸素濃度はEGR率と燃料噴射量に依り、一般にEGR率は燃料噴射量(負荷)と回転に応じて予め設定されているので、燃料噴射量(負荷)、回転に応じて
EGR制御用センサを選択するようにしても良い。この場合は、前述した各センサによる吸入ガス酸素濃度の制御誤差を燃料噴射量(負荷)、回転に対し予め求めておき、制御誤差の小さいほうのセンサをECU8のメモリに上記負荷,回転に対して記憶させておくようにしても良い。
Further, the control error εdλ and εde of the intake oxygen concentration by each sensor depends on the exhaust oxygen concentration and the EGR rate, but the exhaust oxygen concentration depends on the EGR rate and the fuel injection amount. Generally, the EGR rate depends on the fuel injection amount (load) and the rotation. Therefore, the EGR control sensor may be selected according to the fuel injection amount (load) and the rotation. In this case, the control error of the intake gas oxygen concentration by each sensor described above is obtained in advance for the fuel injection amount (load) and rotation, and the sensor having the smaller control error is stored in the memory of the ECU 8 with respect to the load and rotation. You may make it memorize.

また簡易的に低〜中負荷では排気酸素濃度は主にEGR率に依るので、EGRガス流量センサ12等の検出値より計算されるEGR率もしくは、前記EGR流量検出値により、EGR率が所定のしきい値より高いときはEGRバルブ制御用センサとしてλセンサ18を使用し、EGR率が前記しきい値より低いときはEGRガス流量センサ12を使用するようにしても良い。また前記しきい値は燃料噴射量等で補正するようにしてもよい。   Further, since the exhaust oxygen concentration mainly depends on the EGR rate at low to medium loads, the EGR rate calculated from the detection value of the EGR gas flow rate sensor 12 or the like or the EGR flow rate detection value has a predetermined EGR rate. When the value is higher than the threshold value, the λ sensor 18 may be used as the EGR valve control sensor, and when the EGR rate is lower than the threshold value, the EGR gas flow rate sensor 12 may be used. The threshold value may be corrected by a fuel injection amount or the like.

ステップ120でEGR制御用センサとしてλセンサ18が選択されたときは、ステップ130でλセンサ18による排気酸素濃度の検出値DEO2λと、排気酸素濃度の目標値DEO2Tとを比較し、DEO2λ>DEO2TのときはEGRバルブ開度θEGRを増加させてEGR率を増やして排気酸素濃度を減少させ、DEO2λ<DEO2TのときはEGRバルブ開度θEGRを減少させてEGR率を減少させ吸入ガスの酸素濃度を増加させるようにしてDEO2λをDEO2Tに整定させるようにθEGRを制御する。ここで排気ガスのNOx,すすの排出量が最小となるとなる吸入ガス酸素濃度となるよう排気酸素濃度の目標値DEO2Tは予め運転状態に応じてECU8のメモリに記憶されている。   When the λ sensor 18 is selected as the EGR control sensor in step 120, the detection value DEO2λ of the exhaust oxygen concentration detected by the λ sensor 18 is compared with the target value DEO2T of the exhaust oxygen concentration in step 130, and DEO2λ> DEO2T is satisfied. To increase the EGR valve opening θEGR and increase the EGR rate to decrease the exhaust oxygen concentration, and when DEO2λ <DEO2T, decrease the EGR valve opening θEGR to decrease the EGR rate and increase the oxygen concentration of the intake gas Thus, θEGR is controlled so that DEO2λ is set to DEO2T. Here, the target value DEO2T of the exhaust oxygen concentration is stored in advance in the memory of the ECU 8 in accordance with the operating state so that the exhaust gas NOx and the soot discharge amount are minimized.

ステップ120でEGR制御用センサとしてEGRガス流量センサ12が選択されたときはステップ140でEGRガス流量センサ12の検出ガス流量Qesと、ガス流量の目標値QeTとを比較し、Qes>QeTのときはθEGRを減少させ、Qes<QeTのときはθEGRを増加させてQesをQeTに整定させるようにθEGRを制御する。ここで排気ガスのNOx,すすの排出量が最小となる吸入ガス酸素濃度となるようEGRガス流量の目標値QeTは予め運転状態に応じてECU8のメモリに記憶されている。これによりλセンサ18で排気酸素濃度の検出精度が確保できない運転状態においてもEGRガス流量センサ12により吸入ガスの酸素濃度を精度良く最適値に制御することができる。   When the EGR gas flow rate sensor 12 is selected as the EGR control sensor in step 120, the detected gas flow rate Qes of the EGR gas flow rate sensor 12 is compared with the target value QeT of the gas flow rate in step 140, and when Qes> QeT Decreases θEGR, and when Qes <QeT, controls θEGR to increase θEGR and to set Qes to QeT. Here, the target value QeT of the EGR gas flow rate is stored in advance in the memory of the ECU 8 in accordance with the operating state so that the exhaust gas NOx and the soot discharge amount are minimized. As a result, the oxygen concentration of the intake gas can be accurately controlled to the optimum value by the EGR gas flow rate sensor 12 even in an operating state where the detection accuracy of the exhaust oxygen concentration cannot be ensured by the λ sensor 18.

本実施形態に係るエンジンシステムの構成図。The block diagram of the engine system which concerns on this embodiment. 本実施形態に係るEGRガス流量センサの構成図。The block diagram of the EGR gas flow rate sensor which concerns on this embodiment. 排気酸素濃度と各センサの制御誤差の関係(エアフローセンサ付システム)。Relationship between exhaust oxygen concentration and control error of each sensor (system with air flow sensor). 排気酸素濃度と各センサの制御誤差の関係(吸気管圧力センサ付システム)。Relationship between exhaust oxygen concentration and control error of each sensor (system with intake pipe pressure sensor). 排気酸素濃度とλセンサの出力電流の関係。Relationship between exhaust oxygen concentration and λ sensor output current. 本実施形態に係る制御フローチャート。The control flowchart which concerns on this embodiment. EGRガス流量センサによる吸入ガス酸素濃度の制御誤差特性テーブル。The control error characteristic table of the intake gas oxygen concentration by an EGR gas flow sensor. λセンサによる吸入ガス酸素濃度の制御誤差特性テーブル。The control error characteristic table of the intake gas oxygen concentration by a lambda sensor. 制御用センサを選択するための排気酸素濃度のしきい値テーブル。Threshold table of exhaust oxygen concentration for selecting a control sensor.

符号の説明Explanation of symbols

1…発熱抵抗体、2…測温抵抗体、3…制御回路、5…インジェクタ、8…ECU、9…還流路、10…EGRクーラ、11…EGRバルブ、12…EGRガス流量センサ、
13…吸気管、15…エアフローセンサ、16…吸気管圧力センサ、17…吸気温センサ、18…λセンサ、19…排気管。
DESCRIPTION OF SYMBOLS 1 ... Heating resistor, 2 ... Resistance temperature detector, 3 ... Control circuit, 5 ... Injector, 8 ... ECU, 9 ... Recirculation path, 10 ... EGR cooler, 11 ... EGR valve, 12 ... EGR gas flow sensor,
DESCRIPTION OF SYMBOLS 13 ... Intake pipe, 15 ... Air flow sensor, 16 ... Intake pipe pressure sensor, 17 ... Intake temperature sensor, 18 ... Lambda sensor, 19 ... Exhaust pipe

Claims (5)

内燃機関の排気管から吸気管に排気ガスを導入する還流路と、前記還流路内に取り付けられるEGRバルブと、前記排気管に取り付けられる排気酸素濃度センサと、前記還流路内に取り付けられ発熱抵抗体で構成されるEGRガス流量センサと、前記排気酸素濃度センサの検出酸素濃度に基づいて前記EGRバルブの開度を調節する制御手段とを備え、
前記制御手段は所定の第一の運転状態において前記排気酸素濃度センサの検出酸素濃度に応じて前記EGRバルブの開度を調節し、前記所定の第一の運転状態に対し排気酸素濃度が高い所定の第二の運転状態においての前記EGRガス流量センサの検出ガス流量に基づいて前記EGRバルブの開度を調節することを特徴とする内燃機関の排気ガス還流装置及び制御方法。
A recirculation path for introducing exhaust gas from an exhaust pipe of an internal combustion engine to an intake pipe, an EGR valve attached to the recirculation path, an exhaust oxygen concentration sensor attached to the exhaust pipe, and a heating resistance attached to the recirculation path An EGR gas flow sensor composed of a body, and control means for adjusting the opening of the EGR valve based on the detected oxygen concentration of the exhaust oxygen concentration sensor,
The control means adjusts the opening degree of the EGR valve in accordance with the detected oxygen concentration of the exhaust oxygen concentration sensor in a predetermined first operating state, and has a predetermined exhaust oxygen concentration higher than that in the predetermined first operating state. An exhaust gas recirculation device and control method for an internal combustion engine, wherein the opening degree of the EGR valve is adjusted based on a gas flow rate detected by the EGR gas flow rate sensor in the second operating state.
前記制御手段は、前記所定の第一の運転状態において前記排気酸素濃度センサの検出酸素濃度が所定の第一の目標値より低いときは前記EGRバルブの開度を減少させ、前記排気酸素濃度センサの検出酸素濃度が所定の第一の目標値より高いときは前記EGRバルブの開度を増加させて、前記所定の第二の運転状態において前記EGRガス流量センサの検出ガス流量が所定の第二の目標値より低いときは前記EGRバルブの開度を増加させ、前記EGRガス流量センサの検出ガス流量が所定の目標値2より高いときは前記EGRバルブの開度を減少させることを特徴とする請求項1に記載の排気ガス還流装置及び制御方法。   The control means decreases the opening of the EGR valve when the detected oxygen concentration of the exhaust oxygen concentration sensor is lower than a predetermined first target value in the predetermined first operating state, and the exhaust oxygen concentration sensor When the detected oxygen concentration is higher than a predetermined first target value, the opening degree of the EGR valve is increased, and the detected gas flow rate of the EGR gas flow sensor is set to a predetermined second in the predetermined second operating state. When the detected gas flow rate of the EGR gas flow sensor is higher than a predetermined target value 2, the EGR valve opening is decreased when the EGR valve opening is lower than the target value. The exhaust gas recirculation apparatus and control method according to claim 1. 前記制御手段は、前記排気酸素濃度センサの検出酸素濃度、前記EGRガス流量センサの検出ガス流量,燃料噴射量のいずれかにより前記第一の運転状態と前記第二の運転状態を判定することを特徴とする請求項1に記載の排気ガス還流装置及び制御方法。   The control means determines the first operating state and the second operating state based on any one of a detected oxygen concentration of the exhaust oxygen concentration sensor, a detected gas flow rate of the EGR gas flow rate sensor, and a fuel injection amount. The exhaust gas recirculation apparatus and control method according to claim 1. 前記制御手段は、前記排気酸素濃度センサの検出酸素濃度が所定のしきい値より低いときに前記排気酸素濃度センサの検出酸素濃度に応じて前記EGRバルブの開度を調節し、前記排気酸素濃度センサの検出酸素濃度が所定のしきい値より高いときは前記EGRガス流量センサの検出ガス流量に応じて前記EGRバルブの開度を調節することを特徴とする請求項1に記載の排気ガス還流装置及び制御方法。   The control means adjusts the opening degree of the EGR valve according to the detected oxygen concentration of the exhaust oxygen concentration sensor when the detected oxygen concentration of the exhaust oxygen concentration sensor is lower than a predetermined threshold, and the exhaust oxygen concentration 2. The exhaust gas recirculation according to claim 1, wherein when the detected oxygen concentration of the sensor is higher than a predetermined threshold value, the opening degree of the EGR valve is adjusted according to the detected gas flow rate of the EGR gas flow rate sensor. Apparatus and control method. 前記制御手段は、前記EGRガス流量センサの検出ガス流量が所定のしきい値より高いときに前記排気酸素濃度センサの検出酸素濃度に応じて前記EGRバルブの開度を調節し、前記EGRガス流量センサの検出ガス流量が所定のしきい値より低いときは前記EGRガス流量センサの検出ガス流量に応じて前記EGRバルブの開度を調節することを特徴とする請求項1に記載の排気ガス還流装置及び制御方法。
The control means adjusts the opening degree of the EGR valve according to the detected oxygen concentration of the exhaust oxygen concentration sensor when the detected gas flow rate of the EGR gas flow rate sensor is higher than a predetermined threshold value, and the EGR gas flow rate 2. The exhaust gas recirculation according to claim 1, wherein when the detected gas flow rate of the sensor is lower than a predetermined threshold value, the opening degree of the EGR valve is adjusted according to the detected gas flow rate of the EGR gas flow rate sensor. Apparatus and control method.
JP2005140553A 2005-05-13 2005-05-13 Exhaust gas recirculation device and control method of internal combustion engine Pending JP2006316706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140553A JP2006316706A (en) 2005-05-13 2005-05-13 Exhaust gas recirculation device and control method of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140553A JP2006316706A (en) 2005-05-13 2005-05-13 Exhaust gas recirculation device and control method of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006316706A true JP2006316706A (en) 2006-11-24

Family

ID=37537598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140553A Pending JP2006316706A (en) 2005-05-13 2005-05-13 Exhaust gas recirculation device and control method of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006316706A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681560B2 (en) 2007-01-26 2010-03-23 Hitachi, Ltd. Exhaust gas recirculation system
US8001834B2 (en) 2008-06-27 2011-08-23 GM Global Technology Operations LLC Method for detecting faults in the air system of internal combustion engines
JP2013170520A (en) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd Egr control device, and engine equipped with egr control device
JP2018112122A (en) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7681560B2 (en) 2007-01-26 2010-03-23 Hitachi, Ltd. Exhaust gas recirculation system
US8001834B2 (en) 2008-06-27 2011-08-23 GM Global Technology Operations LLC Method for detecting faults in the air system of internal combustion engines
JP2013170520A (en) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd Egr control device, and engine equipped with egr control device
JP2018112122A (en) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
US10400695B2 (en) 2017-01-11 2019-09-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system of internal combustion engine and method of controlling exhaust gas control system of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5102787B2 (en) Determination method of gas concentration in measurement gas by gas sensor
US7048891B2 (en) Catalyst deterioration detecting apparatus
US5357750A (en) Method for detecting deterioration of catalyst and measuring conversion efficiency thereof with an air/fuel ratio sensor
KR100649403B1 (en) Device and method for estimating occlusion amount of ??? occlusion catalyst
CN101006254B (en) Method of determining abnormality in particulate filter
CN102621212B (en) Determine oxygen concentration O in air-flow2method
EP1950406A2 (en) Exhaust gas recirculation sytem
JP5969433B2 (en) SOx concentration detection device for internal combustion engine
US9068937B2 (en) Method and device for examining an exhaust gas sensor
US20060254265A1 (en) Exhaust gas purifying apparatus for internal combustion engine
KR20000053439A (en) An apparatus of diagnosing an internal combustion engine and a method of diagnosing an internal combustion engine
JP2010203281A (en) Egr control device
JP5981398B2 (en) SOx concentration detection device for internal combustion engine
US6378508B1 (en) Process and system for automatically controlling the fraction of the exhaust gas quantity returned to an internal-combustion engine
JP2007292014A (en) Catalyst deterioration detecting device for internal combustion engine
JP4507957B2 (en) Catalyst deterioration detection device for internal combustion engine
US20090145110A1 (en) Apparatus for diagnosing exhaust gas purifying device
CN112412644B (en) Engine controller, engine control method, and storage medium
JP2008038648A (en) Exhaust gas recirculation device for internal combustion engine
JP2006316706A (en) Exhaust gas recirculation device and control method of internal combustion engine
US6976475B2 (en) Method for detecting a leakage in the intake port of a combustion engine, and a combustion engine equipped for implementing the method
KR102517209B1 (en) Method and control unit for operating a particle filter
JP4618141B2 (en) Exhaust gas recirculation device for internal combustion engine
EP1536121B1 (en) Catalyst control apparatus for internal combustion engine and method for performing catalyst control
JP4019413B2 (en) Intake air flow rate measuring device