JP2011106794A - Underground heat exchange system - Google Patents

Underground heat exchange system Download PDF

Info

Publication number
JP2011106794A
JP2011106794A JP2009265399A JP2009265399A JP2011106794A JP 2011106794 A JP2011106794 A JP 2011106794A JP 2009265399 A JP2009265399 A JP 2009265399A JP 2009265399 A JP2009265399 A JP 2009265399A JP 2011106794 A JP2011106794 A JP 2011106794A
Authority
JP
Japan
Prior art keywords
heat exchange
underground
pipe
exchange system
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265399A
Other languages
Japanese (ja)
Other versions
JP5463872B2 (en
Inventor
Tatsuichi Tamura
達一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2009265399A priority Critical patent/JP5463872B2/en
Publication of JP2011106794A publication Critical patent/JP2011106794A/en
Application granted granted Critical
Publication of JP5463872B2 publication Critical patent/JP5463872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground heat exchange system which enables efficient heat exchange by excavating a region surrounded with an underground continuous wall to form an excavation space securing water stop performance and laying a heat exchange pipe in the excavation space. <P>SOLUTION: The underground heat exchange system includes: the underground continuous wall 11 reaching an impermeable layer 7; the heat exchange pipe 20 laid on the excavation bottom 13 in the excavation space formed by excavating the region surrounded by the underground continuous wall 11; and a supply pipe 18 supplying the underground water of a confined aquifer 8 deeper than the impermeable layer 7 to the portion where the heat exchange pipe 20 is laid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地下水を利用した地中熱交換システムに関する。   The present invention relates to an underground heat exchange system using groundwater.

地下水を利用した地中熱交換システムとしては、例えば、不透水層に達する深さまで設けられた、対向する一対の地中連続壁の間に、熱交換を行う流体が循環されるパイプが敷設された地中熱交換システムが知られている(例えば、特許文献1参照)。このような地中熱交換システムでは、対向する地中連続壁の地下水位より下の位置に、地下水の通水口と排水口とが設けられており、通水口から流入し排水口から流出する地下水がパイプの近傍を流れることにより熱交換が行われる。   As an underground heat exchange system using groundwater, for example, a pipe through which a fluid for heat exchange is circulated is installed between a pair of opposed underground continuous walls provided to a depth reaching the impermeable layer. An underground heat exchange system is known (see, for example, Patent Document 1). In such a geothermal heat exchange system, groundwater flow outlets and drainage outlets are provided at positions below the groundwater level of the opposing underground continuous wall, and groundwater flows into and out of the drainage openings. Heat exchange is performed by flowing in the vicinity of the pipe.

特開2008−275263号公報JP 2008-275263 A

上記地中熱交換システムは、対向する地中連続壁の、地下水位より低い位置に地下水の通水口と排水口とが設けられており、通水口と排水口とが設けられている部位の間にパイプが設けられている。このため、パイプを敷設する際には、対向する地中連続壁の間を掘削する必要があるが、掘削する領域には通水口から地下水が流入するので、地下水が掘削作業の妨げとなり作業効率が悪いという課題がある。   The above ground heat exchange system is provided with ground water outlets and drain outlets at positions lower than the ground water level on the opposing underground continuous wall, and between the parts where the water inlets and drain outlets are provided. There is a pipe. For this reason, when laying pipes, it is necessary to excavate between opposing underground continuous walls. However, groundwater flows into the excavation area from the water entrance, which hinders excavation work and improves work efficiency. There is a problem that is bad.

本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、止水性が確保された地中連続壁を利用して効率良く熱交換を行うことが可能な地中熱交換システムを提供することにある。   This invention is made | formed in view of the said subject, The place made into the objective is the underground heat exchange which can perform heat exchange efficiently using the underground continuous wall with which water stop was ensured. To provide a system.

かかる目的を達成するために本発明地中熱交換システムは、不透水層に達する地中連続壁と、前記地中連続壁に囲まれた領域が掘削されて形成された掘削空間の掘削底に敷設された熱交換パイプと、前記熱交換パイプが敷設された部位に前記不透水層より深い被圧帯水層の地下水を供給する供給管と、を有することを特徴とする地中熱交換システムである。
このような地中熱交換システムによれば、熱交換パイプは、不透水層に達する地中連続壁に囲まれた領域が掘削された掘削空間の掘削底に敷設されているので、熱交換パイプを敷設する際には、地中連続壁に囲まれた領域内は遮水されているので、容易に掘削して熱交換パイプを敷設することが可能である。
In order to achieve such an object, the underground heat exchange system of the present invention includes an underground continuous wall that reaches the impermeable layer, and an excavation bottom of an excavation space formed by excavating a region surrounded by the underground continuous wall. An underground heat exchange system, comprising: a heat exchange pipe laid; and a supply pipe that supplies groundwater of a confined aquifer deeper than the impermeable layer to a site where the heat exchange pipe is laid. It is.
According to such an underground heat exchange system, the heat exchange pipe is laid on the excavation bottom of the excavation space where the region surrounded by the underground continuous wall reaching the impermeable layer is excavated. Since the area surrounded by the underground continuous wall is shielded from water, it is possible to easily excavate and lay the heat exchange pipe.

また、不透水層より深い被圧帯水層の地下水が供給管により、熱交換パイプが敷設されている部位に供給されるので、供給された地下水にて効率がよい熱交換が行われる地中熱交換システムを提供することが可能である。   In addition, the groundwater of the confined aquifer deeper than the impermeable layer is supplied to the site where the heat exchange pipe is laid by the supply pipe. It is possible to provide a heat exchange system.

かかる地中熱交換システムであって、前記地中連続壁は、前記熱交換パイプと接続される装置が設けられた建物の地下躯体を構築する際に構築される山留壁であり、前記供給管は、前記被圧帯水層の圧力を減圧する減圧井戸の採水管であることが望ましい。
このような地中熱交換システムによれば、地下躯体を構築する際に構築された山留壁と被圧帯水層の圧力を減圧する減圧井戸の採水管とを利用することにより、地中熱交換システムのためだけに大がかりな工事を行うことなく効率の良い地中熱交換システムを構築することが可能である。このため、施工コストを抑えるとともに短い工期にて施工することが可能である。
In this underground heat exchange system, the underground continuous wall is a mountain wall constructed when constructing an underground frame of a building provided with a device connected to the heat exchange pipe, and the supply The pipe is preferably a vacuum well sampling pipe for reducing the pressure of the pressurized aquifer.
According to such a subsurface heat exchange system, by using the retaining wall constructed when constructing the underground frame and the water sampling pipe of the decompression well that depressurizes the pressure of the confined aquifer, It is possible to construct an efficient underground heat exchange system without carrying out extensive construction just for the heat exchange system. For this reason, it is possible to reduce the construction cost and perform construction in a short construction period.

本発明によれば、止水性が確保された地中連続壁を利用して効率良く熱交換を行うことが可能な地中熱交換システムを提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the underground heat exchange system which can perform heat exchange efficiently using the underground continuous wall with which water stop was ensured.

本実施形態に係る地中熱交換システムのモデル図である。It is a model figure of the underground heat exchange system which concerns on this embodiment. 地中熱交換システムに用いる地下ピットを形成する工程を説明するための図である。It is a figure for demonstrating the process of forming an underground pit used for an underground heat exchange system. 基礎下に設けられた熱交換パイプの配管の一例を示す平断面図である。It is a plane sectional view showing an example of piping of a heat exchange pipe provided under the foundation. 基礎下に設けられた熱交換パイプと採水管を説明するための図である。It is a figure for demonstrating the heat exchange pipe and water sampling pipe provided under the foundation.

以下、本発明に係る一実施形態について図を用いて詳細に説明する。
図1は、本実施形態に係る地中熱交換システムのモデル図である。
本実施形態の地中熱交換システム1は、例えば建物としてのビル3の空調装置に用いられる地中熱交換システム1であり、当該ビル3内に設けられた空調設備とビル3の地下躯体3aの下に設けられた熱交換用の地下ピット10と、空調設備と繋がって液体が循環される熱交換パイプ20とを有している。
Hereinafter, an embodiment according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a model diagram of the underground heat exchange system according to the present embodiment.
The geothermal heat exchange system 1 of the present embodiment is, for example, a geothermal heat exchange system 1 used in an air conditioner of a building 3 as a building. The air conditioning equipment provided in the building 3 and the underground frame 3a of the building 3 An underground pit 10 for heat exchange provided below and a heat exchange pipe 20 that is connected to the air conditioning equipment and circulates liquid.

空調設備は、ビル3内の各室に設けられたファンコイルユニット30、ヒートポンプ31、ファンコイルユニット30とヒートポンプ31とを接続する循環パイプ32とを有している。
熱交換パイプ20は、ポリエチレン等の樹脂製であり、ヒートポンプ31を介して循環パイプ32と接続されるとともに、地下ピット10の底部となる基礎12の下に埋設されている。
The air conditioning equipment includes a fan coil unit 30, a heat pump 31, and a circulation pipe 32 that connects the fan coil unit 30 and the heat pump 31 provided in each room in the building 3.
The heat exchange pipe 20 is made of a resin such as polyethylene, is connected to the circulation pipe 32 via the heat pump 31, and is embedded under the foundation 12 that becomes the bottom of the underground pit 10.

一方、循環パイプ32側にはファンコイルユニット30が設けられており、液体が循環する間にファンコイルユニット30を通過するように構成されている。すなわち、熱交換パイプ20と循環パイプ32とは、内部を液体が循環可能に環状に接続されており、熱交換パイプ20内を流れた液体がヒートポンプ31を通って循環パイプ32に流れ込み、循環パイプ32の途中に設けられたファンコイルユニット30内を通過してヒートポンプ31に戻り、ヒートポンプ31から再び熱交換パイプ20へ流れて循環するように構成されている。   On the other hand, a fan coil unit 30 is provided on the circulation pipe 32 side, and is configured to pass through the fan coil unit 30 while the liquid circulates. That is, the heat exchange pipe 20 and the circulation pipe 32 are connected in an annular shape so that liquid can circulate therein, and the liquid that has flowed through the heat exchange pipe 20 flows into the circulation pipe 32 through the heat pump 31, and the circulation pipe. It passes through the inside of the fan coil unit 30 provided in the middle of 32, returns to the heat pump 31, and is configured to flow from the heat pump 31 to the heat exchange pipe 20 and circulate again.

地下ピット10は、ビル3の地下躯体3aを構築するために地盤Gが掘削される際に、掘削する掘削領域を囲むように構築される山留壁11と、山留壁11に囲まれた領域が所定深さまで掘削された掘削底13の上面に形成された基礎12とにより形成されている。   The underground pit 10 is surrounded by a mountain retaining wall 11 constructed so as to surround an excavation area to be excavated when the ground G is excavated to construct the underground frame 3 a of the building 3, and the mountain retaining wall 11. The region is formed by the foundation 12 formed on the upper surface of the excavation bottom 13 excavated to a predetermined depth.

山留壁11は、例えばSMW工法により構築されたソイルセメントの地中連続壁であり、高い止水性を有している。この山留壁11は、地盤Gのシルトや粘土などの不透水層7に達する深さまで構築されている。このため、地盤Gには山留壁11と不透水層7とにより囲まれて、地下水を蓄積可能な領域が形成されている。   The mountain retaining wall 11 is a soil cement underground continuous wall constructed by, for example, the SMW method, and has a high water-stopping property. This mountain retaining wall 11 is constructed to a depth that reaches the impermeable layer 7 such as silt or clay of the ground G. For this reason, the ground G is surrounded by the mountain retaining wall 11 and the impermeable layer 7 to form an area where groundwater can be accumulated.

基礎12は、山留壁11に囲まれた領域において、不透水層7より浅い位置まで掘削された掘削底13にコンクリートが打設されて形成されている。   The foundation 12 is formed by placing concrete on an excavation bottom 13 excavated to a position shallower than the impermeable layer 7 in an area surrounded by the mountain retaining wall 11.

ところで、不透水層7には、不透水層7より被圧帯水層8の地下水の圧力が作用している。このため、図2に示すように、掘削する掘削領域の掘削底13が地下水位WLより低い場合には、掘削領域を掘削して、不透水層7の上方から、掘削した土の重さが除去されると、不透水層7が上方に押圧されて掘削底13が膨らむ虞がある。   By the way, the pressure of the groundwater of the pressurized aquifer 8 is acting on the impermeable layer 7 from the impermeable layer 7. For this reason, as shown in FIG. 2, when the excavation bottom 13 of the excavation area to be excavated is lower than the groundwater level WL, the excavation area is excavated, and the weight of the excavated soil is increased from above the impermeable layer 7. If removed, the impermeable layer 7 may be pressed upward and the excavation bottom 13 may swell.

掘削底13が地下水により膨らむことを防止するために、地盤Gを掘削する前に予めボーリング等を行い、地盤Gの地下水位WL及び不透水層7に作用する圧力を調査する。調査の結果、掘削により土を除去することにより掘削底13が膨らむ虞がある場合には、減圧井戸を設けておく。本実施形態のように、掘削底13が地下水位WLより低い場合に、減圧井戸が設けられる。   In order to prevent the excavation bottom 13 from being swollen by groundwater, before excavating the ground G, drilling or the like is performed in advance, and the pressure acting on the groundwater level WL of the ground G and the impermeable layer 7 is investigated. As a result of the investigation, if there is a possibility that the excavation bottom 13 may swell by removing soil by excavation, a decompression well is provided. As in this embodiment, when the excavation bottom 13 is lower than the groundwater level WL, a decompression well is provided.

減圧井戸は、不透水層7の下の被圧帯水層8と地盤G上の空間又は掘削領域が掘削された掘削底13上の空間とを連通し地下水を供給する供給管としての採水管18を備えている。採水管18は、掘削作業の前に、下端が被圧帯水層8に至るように、掘削する面積に応じて複数本埋設され、掘削作業は埋設した採水管18にポンプ(不図示)及びバルブ19を設けて地下水を排出しつつ進められていく。ここで、減圧井戸は、例えば、400mに1本の割合で設けられている。 The decompression well communicates the pressured aquifer 8 under the impermeable layer 7 and the space on the ground G or the space on the excavation bottom 13 where the excavation area is excavated, and a sampling pipe as a supply pipe for supplying groundwater. 18 is provided. Prior to the excavation work, a plurality of water sampling pipes 18 are buried in accordance with the area to be excavated so that the lower end reaches the confined aquifer 8, and excavation work is pumped (not shown) and A valve 19 is provided to proceed while discharging groundwater. Here, for example, one decompression well is provided at a rate of 400 m 2 .

減圧井戸は、不透水層7の上部に、掘削にて除去した土の重さより重い重さが作用すると、実質的に不要となる。すなわち、山留壁11にて囲まれた領域内に、地下躯体3a及びビル3が構築され、構築された地下躯体3a及びビル3の重さが、掘削にて除去した土の重さより重くなると不要となる。本発明においては、この採水管18をそのまま残し、熱交換パイプ20が埋設されている透水部16への地下水の供給と不透水層7と透水部16との熱の伝達経路として、ビル3が完成した後も使用する。   The decompression well becomes substantially unnecessary when a weight heavier than the soil removed by excavation acts on the upper portion of the impermeable layer 7. That is, when the underground frame 3a and the building 3 are constructed in the area surrounded by the mountain retaining wall 11, the weight of the constructed underground frame 3a and the building 3 becomes heavier than the weight of the soil removed by excavation. It becomes unnecessary. In the present invention, the water sampling pipe 18 is left as it is, and the building 3 is used as a heat transfer path between the water-permeable layer 7 and the water-permeable portion 16 for supplying groundwater to the water-permeable portion 16 in which the heat exchange pipe 20 is embedded. Use after completion.

具体的には、山留壁11にて囲まれた領域内を掘削する際に、掘削底13の上面側に、熱交換パイプ20を配設可能な凹部14を形成しておく。凹部14内には、熱交換パイプ20を敷設した後に、砕石を入れて透水部16を形成し、熱交換パイプ20を埋設する。その上に捨てコンクリートを打設し、その上に基礎12を施工する。すなわち、熱交換パイプ20は基礎12下にて透水部16内に埋設されている。   Specifically, when excavating the area surrounded by the mountain retaining wall 11, a recess 14 in which the heat exchange pipe 20 can be disposed is formed on the upper surface side of the excavation bottom 13. After the heat exchange pipe 20 is laid in the recess 14, crushed stone is put to form the water permeable part 16, and the heat exchange pipe 20 is buried. Abandoned concrete is cast on it, and the foundation 12 is constructed thereon. That is, the heat exchange pipe 20 is embedded in the water permeable part 16 under the foundation 12.

図3は、基礎下に設けられた熱交換パイプの配管の一例を示す平断面図である。
凹部14は、例えば平面形状が矩形状をなし、熱交換パイプ20の直径より十分に深い深さを有している。凹部14内には、ビル3の空調装置として必要な長さを有する熱交換パイプ20を、図3に示すように、所定方向に沿って配置すると共に、所定方向の端部にてU字状に屈曲させ、折り返された熱交換パイプ20が折り返される前の熱交換パイプ20とほぼ平行になるように順次配置しておく。
FIG. 3 is a plan sectional view showing an example of the piping of the heat exchange pipe provided under the foundation.
For example, the concave portion 14 has a rectangular planar shape and has a depth sufficiently deeper than the diameter of the heat exchange pipe 20. In the recess 14, a heat exchange pipe 20 having a length necessary as an air conditioner for the building 3 is arranged along a predetermined direction as shown in FIG. 3 and is U-shaped at an end in the predetermined direction. The heat exchange pipes 20 that are bent back and are sequentially arranged so as to be substantially parallel to the heat exchange pipe 20 before being turned back.

図4は、基礎下に設けられた熱交換パイプと採水管を説明するための図である。
図4に示すように、凹部14内には、減圧井戸として使用した採水管18の上部が、凹部14内に地下水を供給できるように長さ及び向きが変更されて配置されている。このため、凹部14内に不透水層7より下方の被圧帯水層8の地下水を導いて、凹部14内に地下水を浸透させることにより、熱交換パイプ20内を循環する液体と地下水との間にて熱交換が行われるように構成される。
FIG. 4 is a view for explaining a heat exchange pipe and a water sampling pipe provided under the foundation.
As shown in FIG. 4, in the recess 14, the upper part of the water sampling pipe 18 used as a decompression well is arranged with its length and orientation changed so that groundwater can be supplied into the recess 14. For this reason, by introducing the groundwater of the confined aquifer 8 below the impermeable layer 7 into the recess 14 and infiltrating the groundwater into the recess 14, the liquid circulating in the heat exchange pipe 20 and the groundwater It is comprised so that heat exchange may be performed in between.

被圧帯水層8の地下水は、安定した地熱により、夏は外気より低く、冬は外気より高い温度を維持している。このため、熱交換パイプ20が敷設された凹部14に被圧帯水層8の地下水が浸透されることにより、単に基礎12上に敷設された熱交換パイプ20より効率良く熱交換が行われる。   The groundwater in the confined aquifer 8 is maintained at a temperature lower than the outside air in summer and higher than the outside air in winter due to stable geothermal heat. For this reason, the ground water of the pressurized aquifer 8 is infiltrated into the concave portion 14 in which the heat exchange pipe 20 is laid, so that heat exchange is performed more efficiently than the heat exchange pipe 20 simply laid on the foundation 12.

特に、本発明の地中熱交換システム1は、透水部16と被圧帯水層8とを連通する採水管18が設けられており、透水部16内に浸透されている水と被圧帯水層8の地下水とが繋がっているので、透水部16と被圧帯水層8との間でも熱交換が行われるため、透水部16の水の温度変化も抑えられる。このため、熱交換パイプ20が埋設されている、基礎12下の温度を、夏は外気より低く、冬は外気より高い温度に維持させて、高い熱交換性能を維持させることが可能である。   In particular, the underground heat exchanging system 1 of the present invention is provided with a water sampling pipe 18 that allows the water permeable portion 16 and the pressurized aquifer 8 to communicate with each other. Since the groundwater of the water layer 8 is connected, heat exchange is also performed between the water permeable portion 16 and the pressurized aquifer 8, so that the temperature change of the water in the water permeable portion 16 is also suppressed. For this reason, it is possible to maintain high heat exchange performance by maintaining the temperature under the foundation 12 in which the heat exchange pipe 20 is embedded at a temperature lower than the outside air in summer and higher than the outside air in winter.

また、本発明の地中熱交換システム1は、ビル3等の建物を構築する際に地盤Gを掘削して形成された山留壁11と、地下水の圧力により掘削底13が膨れることを防止するために設けた減圧井戸に用いた採水管18とを利用しているので、地中熱交換システム1だけのために、大がかりな工事を必要としない。このため、施工コストを抑えるとともに短い工期にて施工することが可能である。すなわち、工期を延ばすことなく熱交換効率の高い地中熱交換システム1を構築することが可能である。   In addition, the underground heat exchange system 1 of the present invention prevents the bottom wall 13 from being swollen by the pressure of the ground wall 11 and the mountain wall 11 formed by excavating the ground G when building a building 3 or the like. Since the water sampling pipe 18 used for the decompression well provided for this purpose is utilized, a large-scale construction is not required only for the underground heat exchange system 1. For this reason, it is possible to reduce the construction cost and perform construction in a short construction period. That is, it is possible to construct the underground heat exchange system 1 with high heat exchange efficiency without extending the construction period.

また、減圧井戸は、地上の建物が構築されて不透水層7に、掘削した土と同様の重量が作用するまで必要なものなので、一般的には、建物が完成した後には撤去されるものであるが、採水管18を地中熱交換システム1としても使用するので、採水管18を撤去する手間も省けるため、工期を短縮することが可能である。   In addition, the decompression well is necessary until the same weight as the excavated soil is applied to the impermeable layer 7 after the building on the ground is constructed, so it is generally removed after the building is completed. However, since the water sampling pipe 18 is also used as the underground heat exchange system 1, the labor for removing the water sampling pipe 18 can be saved, so that the construction period can be shortened.

上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。   The above embodiment is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.

1 地中熱交換システム、3 ビル、3a 地下躯体、7 不透水層、
8 被圧帯水層、10 地下ピット、11 山留壁、12 基礎、13 掘削底、
14 凹部、18 採水管、19 バルブ、20 熱交換パイプ、
30 ファンコイルユニット、31 ヒートポンプ、32 循環パイプ、
G 地盤、WL 地下水位
1 underground heat exchange system, 3 building, 3a underground building, 7 impermeable layer,
8 Underwater aquifer, 10 underground pit, 11 mountain retaining wall, 12 foundation, 13 excavated bottom,
14 recesses, 18 water sampling pipes, 19 valves, 20 heat exchange pipes,
30 fan coil unit, 31 heat pump, 32 circulation pipe,
G Ground, WL Groundwater level

Claims (2)

不透水層に達する地中連続壁と、
前記地中連続壁に囲まれた領域が掘削されて形成された掘削空間の掘削底に敷設された熱交換パイプと、
前記熱交換パイプが敷設された部位に前記不透水層より深い被圧帯水層の地下水を供給する供給管と、
を有することを特徴とする地中熱交換システム。
Underground continuous wall reaching the impermeable layer,
A heat exchange pipe laid on the excavation bottom of the excavation space formed by excavating the region surrounded by the underground continuous wall;
A supply pipe for supplying groundwater of a confined aquifer deeper than the impermeable layer to a site where the heat exchange pipe is laid;
An underground heat exchange system characterized by comprising:
請求項1に記載の地中熱交換システムであって、
前記地中連続壁は、前記熱交換パイプと接続される装置が設けられた建物の地下躯体を構築する際に構築される山留壁であり、
前記供給管は、前記被圧帯水層の圧力を減圧する減圧井戸の採水管であることを特徴とする地中熱交換システム。
The underground heat exchange system according to claim 1,
The underground continuous wall is a mountain retaining wall constructed when constructing a basement of a building provided with a device connected to the heat exchange pipe,
The underground heat exchange system according to claim 1, wherein the supply pipe is a vacuum well sampling pipe for reducing the pressure of the pressurized aquifer.
JP2009265399A 2009-11-20 2009-11-20 Underground heat exchange system Expired - Fee Related JP5463872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265399A JP5463872B2 (en) 2009-11-20 2009-11-20 Underground heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265399A JP5463872B2 (en) 2009-11-20 2009-11-20 Underground heat exchange system

Publications (2)

Publication Number Publication Date
JP2011106794A true JP2011106794A (en) 2011-06-02
JP5463872B2 JP5463872B2 (en) 2014-04-09

Family

ID=44230457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265399A Expired - Fee Related JP5463872B2 (en) 2009-11-20 2009-11-20 Underground heat exchange system

Country Status (1)

Country Link
JP (1) JP5463872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185718A (en) * 2012-03-06 2013-09-19 Shimizu Corp Heat pump system and control method for the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048052U (en) * 1990-05-08 1992-01-24
JPH09328770A (en) * 1996-06-11 1997-12-22 Shimizu Corp Impervious pressure reducing method for inter impermeable soil layers
JPH09328771A (en) * 1996-06-07 1997-12-22 Shimizu Corp Floating preventing structure of underground structure
JPH11256609A (en) * 1998-03-13 1999-09-21 Shimizu Corp Uplift prevention method of structure and uplift prevention construction
JP3080875U (en) * 2001-04-05 2001-10-12 株式会社シンエイ Antifreeze underground equipment for well water sampling
JP2007333296A (en) * 2006-06-14 2007-12-27 Sekisui Chem Co Ltd Heat storage system
JP2008075994A (en) * 2006-09-22 2008-04-03 Hiroaki Kamiyama Double tube type geothermal water circulating device
JP2008275263A (en) * 2007-05-01 2008-11-13 Kajima Corp Underground heat exchange system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048052U (en) * 1990-05-08 1992-01-24
JPH09328771A (en) * 1996-06-07 1997-12-22 Shimizu Corp Floating preventing structure of underground structure
JPH09328770A (en) * 1996-06-11 1997-12-22 Shimizu Corp Impervious pressure reducing method for inter impermeable soil layers
JPH11256609A (en) * 1998-03-13 1999-09-21 Shimizu Corp Uplift prevention method of structure and uplift prevention construction
JP3080875U (en) * 2001-04-05 2001-10-12 株式会社シンエイ Antifreeze underground equipment for well water sampling
JP2007333296A (en) * 2006-06-14 2007-12-27 Sekisui Chem Co Ltd Heat storage system
JP2008075994A (en) * 2006-09-22 2008-04-03 Hiroaki Kamiyama Double tube type geothermal water circulating device
JP2008275263A (en) * 2007-05-01 2008-11-13 Kajima Corp Underground heat exchange system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185718A (en) * 2012-03-06 2013-09-19 Shimizu Corp Heat pump system and control method for the same

Also Published As

Publication number Publication date
JP5463872B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
KR101992308B1 (en) Geothermal System Using a Single Water Supply System for Smart Farm and Building Cooling and Method for constructing this same
KR101370640B1 (en) Geothermal system which differ in the depth of the construction of geothermal hole
CN102808405B (en) PCC (Large Diameter Pipe Pile by using Cast-in-place Concrete) energy pile and manufacturing method thereof
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
CN102995627B (en) Geothermal energy collecting pile foundation
JP5363399B2 (en) Construction method of underground heat exchanger
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
KR20160065502A (en) Geothermal heat exchange system using heat storage-tank of vertical pipe
JP5463872B2 (en) Underground heat exchange system
KR20180133579A (en) Heat pump system using geothermal energy and controlling apparatus contrl
CN103161162A (en) Anti-floating anchor rod capable of collecting ground source heat energy and construction method
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
KR20160148268A (en) Underground heat exchange apparatus using multiple well and improved pour power
KR101220897B1 (en) equipment for exchanging terrestrial heat
KR100407673B1 (en) An air conditioning system using the heat of the earth and method of constructing a large heat-exchanging pipe
KR101606830B1 (en) Tube Well-type Heat Exchanger for Heat Pump System
JP5638111B2 (en) Construction method of underground heat exchanger
JP2009209637A (en) Method of constructing buried structure
JP4859871B2 (en) Buried pipe for heat exchange
CN111074906A (en) Heating system combining foundation pit supporting structure and building structure and construction method thereof
CN105698437B (en) A kind of U-joint used for geothermal heat pump, earth source heat pump and earth source heat pump construction method
JP2014115025A (en) Geothermal utilization heat exchange structure and heat pump system using the same
WO2015016143A1 (en) Large capacity geothermal heat exchange well
KR20160140309A (en) Single wells underground heat exchanger system with water intake and water exchange position is separated
CN105042670A (en) Groundwater recharge technology of heating system of water source heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5463872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees