JP2011106423A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011106423A
JP2011106423A JP2009264858A JP2009264858A JP2011106423A JP 2011106423 A JP2011106423 A JP 2011106423A JP 2009264858 A JP2009264858 A JP 2009264858A JP 2009264858 A JP2009264858 A JP 2009264858A JP 2011106423 A JP2011106423 A JP 2011106423A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust passage
passage
pipe member
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009264858A
Other languages
Japanese (ja)
Inventor
Tatsuro Koga
達郎 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009264858A priority Critical patent/JP2011106423A/en
Publication of JP2011106423A publication Critical patent/JP2011106423A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/15Centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/363Controlling flow of gases or vapour by static mechanical means, e.g. deflector located before the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device improving PM collection efficiency and promoting control of exhaust emission, by guiding an exhaust gas flow to the vicinity of a filter. <P>SOLUTION: The exhaust emission control device 10 includes an exhaust gas flow guide section 14 provided upstream of a discharge electrode section 12 in an exhaust gas flow direction in an exhaust passage 15. The exhaust flow guide section 14 guides the exhaust gas flow in the exhaust passage 15 to the peripheral side of the exhaust passage 15 near to the inner wall 17 of an exhaust pipe member 11. Thereby, a flow of exhaust gas flowing in the exhaust passage 15 is guided to the peripheral side, that is, to the side of the inner wall 17 of the exhaust pipe member 11, by the exhaust gas flow guide section 14. As a result, PM charged by corona discharge in the discharge electrode section 12 flows along the inner wall 17 of the exhaust pipe member 11 and reaches a collection section 13. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関し、特に排気に含まれる粒子状物質(PM:Particulate matter)を除去する排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus that removes particulate matter (PM) contained in exhaust gas.

従来、排気に含まれるPMを捕集して除去することにより、排気の浄化を図る排気浄化装置が公知である。例えば特許文献1は、排気通路を流れる排気中において発生させたコロナ放電によってPMを帯電させ、帯電したPMを捕集部で捕集することを開示している。この特許文献1の場合、捕集部は、排気通路を形成する排気管部材の内壁すなわち排気通路の外周側に設けられている。
しかしながら、排気通路を流れる排気の主流は、排気通路の中心付近に形成される。そのため、主流に多く含まれるPMは、排気管部材の内壁に設けられている捕集部との距離が大きくなる。その結果、PMの捕集効率の向上が困難であるという問題がある。
2. Description of the Related Art Conventionally, an exhaust gas purification device that purifies exhaust gas by collecting and removing PM contained in the exhaust gas is known. For example, Patent Document 1 discloses that PM is charged by corona discharge generated in exhaust gas flowing through an exhaust passage, and the charged PM is collected by a collection unit. In the case of this patent document 1, the collection part is provided in the inner wall of the exhaust pipe member which forms an exhaust passage, ie, the outer peripheral side of an exhaust passage.
However, the main flow of exhaust flowing through the exhaust passage is formed near the center of the exhaust passage. Therefore, a large amount of PM contained in the mainstream has a large distance from the collection portion provided on the inner wall of the exhaust pipe member. As a result, there is a problem that it is difficult to improve the PM collection efficiency.

特開2008−19583号公報JP 2008-19583 A

そこで、本発明の目的は、排気の流れをフィルタの近傍に案内することにより、PMの捕集効率が向上し、排気の浄化が促進される排気浄化装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust purification device that improves PM collection efficiency and promotes exhaust purification by guiding the flow of exhaust to the vicinity of a filter.

請求項1記載の発明では、排気の流れ方向において放電電極部の上流側に排気流案内部を備えている。排気流案内部は、排気通路における排気の流れを排気管部材の内壁に近い排気通路の外周側へ案内する。これにより、排気通路を流れる排気の流れは、排気流案内部によって外周側すなわち排気管部材の内壁側へ案内される。その結果、放電電極部におけるコロナ放電によって帯電したPMは、排気管部材の内壁に沿って流れ、捕集部へ到達する。したがって、PMの捕集効率を向上することができ、排気の浄化を促進することができる。   According to the first aspect of the present invention, the exhaust flow guide portion is provided upstream of the discharge electrode portion in the exhaust flow direction. The exhaust flow guide part guides the flow of exhaust gas in the exhaust passage to the outer peripheral side of the exhaust passage close to the inner wall of the exhaust pipe member. Thereby, the flow of the exhaust gas flowing through the exhaust passage is guided to the outer peripheral side, that is, the inner wall side of the exhaust pipe member by the exhaust flow guide portion. As a result, PM charged by corona discharge in the discharge electrode portion flows along the inner wall of the exhaust pipe member and reaches the collection portion. Therefore, PM collection efficiency can be improved and exhaust purification can be promoted.

請求項2記載の発明では、排気の流れ方向において捕集部の下流側にSCR(Selective Catalytic Reduction)触媒および還元剤添加ノズルを備えている。排気通路を流れる排気は、排気流案内部を通過することにより、流れに乱れが生じる。そのため、捕集部を通過した排気にも流れに乱れが生じている。この流れに乱れが生じている排気に還元剤添加ノズルから還元剤を添加することにより、添加された還元剤と排気との混合が促進される。したがって、SCR触媒における排気に含まれる窒素酸化物の還元が促進され、排気の浄化をより促進することができる。また、PMを捕集する捕集部と窒素酸化物を還元するSCR触媒とがユニット化され、搭載性の向上および機器の小型化を図ることができる。   According to the second aspect of the present invention, an SCR (Selective Catalytic Reduction) catalyst and a reducing agent addition nozzle are provided on the downstream side of the collection portion in the exhaust flow direction. The exhaust flowing through the exhaust passage passes through the exhaust flow guide part, and thus the flow is disturbed. For this reason, the flow that has passed through the collection section is also disturbed. By adding a reducing agent from the reducing agent addition nozzle to the exhaust gas in which the flow is disturbed, mixing of the added reducing agent and the exhaust gas is promoted. Therefore, reduction of nitrogen oxides contained in the exhaust gas in the SCR catalyst is promoted, and exhaust gas purification can be further promoted. Moreover, the collection part which collects PM, and the SCR catalyst which reduces nitrogen oxides are unitized, and the improvement of mounting property and size reduction of an apparatus can be achieved.

請求項3記載の発明では、排気流案内部は排気流方向変更部材を有している。そのため、排気は、動力を必要とすることなく、自身の流れによって排気流方向変更部材に沿って排気管部材の内壁側へ案内される。したがって、消費エネルギーの増大を招くことなく簡単な構造で排気の浄化を促進することができる。   According to a third aspect of the present invention, the exhaust flow guide portion has an exhaust flow direction changing member. Therefore, the exhaust is guided to the inner wall side of the exhaust pipe member along the exhaust flow direction changing member by its own flow without requiring power. Therefore, purification of exhaust gas can be promoted with a simple structure without causing an increase in energy consumption.

請求項4記載の発明では、排気流案内部は旋回力付与部材を有している。そのため、排気通路を流れる排気は、旋回力付与部材を通過することによって旋回力が付与される。これにより、排気通路を流れる排気は、自身の旋回によって排気管部材の内壁側へ案内される。したがって、簡単な構造で排気の浄化を促進することができる。   In the invention as set forth in claim 4, the exhaust flow guide portion has a turning force applying member. Therefore, the exhaust gas flowing through the exhaust passage is given a turning force by passing through the turning force applying member. Thereby, the exhaust gas flowing through the exhaust passage is guided to the inner wall side of the exhaust pipe member by its own turning. Therefore, purification of exhaust gas can be promoted with a simple structure.

第1実施形態による排気浄化装置を示す模式図The schematic diagram which shows the exhaust emission control device by 1st Embodiment 第1実施形態による排気浄化装置の旋回力付与部材を示す模式図The schematic diagram which shows the turning force provision member of the exhaust gas purification apparatus by 1st Embodiment. 図2の矢印III方向から見た矢視図Viewed from the direction of arrow III in FIG. 図1のIV−IV線における断面図Sectional view taken along line IV-IV in FIG. 第1実施形態による排気浄化装置の旋回力付与部材の変形例を示す模式図The schematic diagram which shows the modification of the turning force provision member of the exhaust gas purification apparatus by 1st Embodiment. 図5の矢印VI方向から見た矢視図Viewed from the direction of arrow VI in FIG. 第1実施形態による排気浄化装置の旋回力付与部材の変形例を示す模式図The schematic diagram which shows the modification of the turning force provision member of the exhaust gas purification apparatus by 1st Embodiment. 図7の矢印VIII方向から見た矢視図Viewed from the direction of arrow VIII in FIG. 第2実施形態による排気浄化装置の排気流方向変更部材を示す模式図The schematic diagram which shows the exhaust flow direction change member of the exhaust gas purification apparatus by 2nd Embodiment. 図9の矢印X方向から見た矢視図Arrow view seen from arrow X direction of FIG. 第3実施形態による排気浄化装置を示す模式図Schematic diagram showing an exhaust emission control device according to a third embodiment 図11のXII−XII線における断面図Sectional view taken along line XII-XII in FIG. 第4実施形態による排気浄化装置を示す模式図Schematic diagram showing an exhaust emission control device according to a fourth embodiment 図13のXIV−XIV線における断面図Sectional view taken along line XIV-XIV in FIG. 第5実施形態による排気浄化装置を示す模式図Schematic diagram showing an exhaust emission control device according to a fifth embodiment

以下、本発明の複数の実施形態による排気浄化装置を図面に基づいて説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
(第1実施形態)
第1実施形態による排気浄化装置を図1に示す。排気浄化装置10は、排気管部材11、放電電極部12、捕集部13および排気流案内部14を備えている。排気管部材11は、筒状に形成され、内側に排気通路15を形成している。排気通路15は、一方の端部が図示しない内燃機関に接続し、他方の端部が大気に開放されている。排気は、排気通路15において内燃機関側から大気側へ流れる。本明細書において、内燃機関側を排気通路15の上流側とし、大気に開放されている側を排気通路15の下流側とする。なお、一部の図において排気管部材11は、簡略化のために断面を線状に示している。
Hereinafter, an exhaust emission control device according to a plurality of embodiments of the present invention will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted.
(First embodiment)
An exhaust emission control device according to the first embodiment is shown in FIG. The exhaust purification device 10 includes an exhaust pipe member 11, a discharge electrode unit 12, a collection unit 13, and an exhaust flow guide unit 14. The exhaust pipe member 11 is formed in a cylindrical shape, and an exhaust passage 15 is formed inside. The exhaust passage 15 has one end connected to an internal combustion engine (not shown) and the other end open to the atmosphere. Exhaust gas flows from the internal combustion engine side to the atmosphere side in the exhaust passage 15. In this specification, the internal combustion engine side is the upstream side of the exhaust passage 15, and the side that is open to the atmosphere is the downstream side of the exhaust passage 15. In some of the drawings, the exhaust pipe member 11 has a cross section shown in a linear shape for simplification.

放電電極部12は、排気管部材11に設けられている。放電電極部12は、排気管部材11を貫いており、図示しない電源から電力が供給されることにより、排気通路15を流れる排気中にコロナ放電を生じる。これにより、排気通路15を流れる排気に含まれるPMは、コロナ放電によって帯電する。捕集部13は、この放電電極部12よりも下流側に設けられ、内壁が排気通路15に面している。捕集部13は、例えば金属などの導電性の材料で形成されたフィルタであり、電気的に接地されている。そのため、帯電したPMは、凝集し、捕集部13との電位差によって捕集部13に捕集される。   The discharge electrode portion 12 is provided on the exhaust pipe member 11. The discharge electrode portion 12 penetrates the exhaust pipe member 11 and generates corona discharge in the exhaust flowing through the exhaust passage 15 when electric power is supplied from a power source (not shown). Thereby, PM contained in the exhaust gas flowing through the exhaust passage 15 is charged by corona discharge. The collection unit 13 is provided on the downstream side of the discharge electrode unit 12, and the inner wall faces the exhaust passage 15. The collection unit 13 is a filter formed of a conductive material such as metal, and is electrically grounded. Therefore, the charged PM aggregates and is collected by the collection unit 13 due to a potential difference with the collection unit 13.

排気流案内部14は、放電電極部12よりも上流側に設けられている。排気流案内部14は、例えば図2および図3に示すように羽根状に形成された旋回力付与部材16を有している。旋回力付与部材16は、排気管部材11に固定されている。図2および図3に示す旋回力付与部材16は、円板状の部材に径方向の切れ目を形成し、この切れ目に沿って板状の部分を排気通路15の下流側へ折り曲げることにより、羽根状に形成されている。これにより、排気通路15を流れる排気は、排気流案内部14の旋回力付与部材16を通過するとき、排気通路15の中心側から外周側へ流れの方向が変更されるとともに、図4に示すように排気通路15の軸を中心とする周方向へ旋回力が付与される。旋回力が付与された排気は、自身の旋回力によって排気通路15の中心側から外周側、すなわち排気管部材11の内壁17側へ案内される。   The exhaust flow guide unit 14 is provided on the upstream side of the discharge electrode unit 12. The exhaust flow guide portion 14 has a turning force applying member 16 formed in a blade shape as shown in FIGS. 2 and 3, for example. The turning force applying member 16 is fixed to the exhaust pipe member 11. The turning force applying member 16 shown in FIGS. 2 and 3 is formed by forming a radial cut in a disk-shaped member and folding the plate-shaped portion downstream of the exhaust passage 15 along the cut. It is formed in a shape. Thereby, when the exhaust gas flowing through the exhaust passage 15 passes through the turning force applying member 16 of the exhaust flow guide portion 14, the flow direction is changed from the center side to the outer peripheral side of the exhaust passage 15, and as shown in FIG. Thus, a turning force is applied in the circumferential direction around the axis of the exhaust passage 15. The exhaust to which the turning force is applied is guided from the center side of the exhaust passage 15 to the outer peripheral side, that is, the inner wall 17 side of the exhaust pipe member 11 by the turning force of itself.

このように、排気流案内部14において排気通路15を流れる排気に旋回力を付与し、排気の流れ方向を排気通路15の内周側から外周側へ変更することにより、図1に示すように排気は排気通路15の外周側すなわち排気管部材11の内壁17側を流れる。そのため、排気に含まれるPMも排気の流れに沿って排気管部材11の内壁17側を中心に流れる。その結果、放電電極部12におけるコロナ放電によって帯電したPMは、捕集部13に近い排気管部材11の内壁17側を流れることとなり、捕集部13に捕集されやすくなる。   In this way, by applying a turning force to the exhaust gas flowing through the exhaust passage 15 in the exhaust flow guide portion 14 and changing the flow direction of the exhaust gas from the inner peripheral side to the outer peripheral side of the exhaust passage 15, as shown in FIG. Exhaust gas flows on the outer peripheral side of the exhaust passage 15, that is, on the inner wall 17 side of the exhaust pipe member 11. Therefore, the PM contained in the exhaust also flows around the inner wall 17 side of the exhaust pipe member 11 along the flow of the exhaust. As a result, PM charged by corona discharge in the discharge electrode portion 12 flows on the inner wall 17 side of the exhaust pipe member 11 close to the collecting portion 13 and is easily collected by the collecting portion 13.

第1実施形態では、排気の流れ方向において放電電極部12の上流側に排気流案内部14を備えている。排気流案内部14は、排気通路15における排気の流れを排気管部材11の内壁17に近い排気通路15の外周側へ案内する。これにより、放電電極部12におけるコロナ放電によって帯電したPMは、排気管部材11の内壁17に沿って流れ、捕集部13へ到達する。したがって、PMの捕集効率を向上することができ、排気の浄化を促進することができる。   In the first embodiment, the exhaust flow guide portion 14 is provided on the upstream side of the discharge electrode portion 12 in the exhaust flow direction. The exhaust flow guide 14 guides the exhaust flow in the exhaust passage 15 to the outer peripheral side of the exhaust passage 15 near the inner wall 17 of the exhaust pipe member 11. Thereby, PM charged by corona discharge in the discharge electrode portion 12 flows along the inner wall 17 of the exhaust pipe member 11 and reaches the collection portion 13. Therefore, PM collection efficiency can be improved and exhaust purification can be promoted.

また、第1実施形態では、排気流案内部14は、旋回力付与部材16を有している。そのため、排気通路15を流れる排気は、旋回力付与部材16を通過することによって、排気通路15の軸を中心とした周方向への旋回力が付与される。これにより、排気通路15を流れる排気は、自身の旋回によって排気管部材11の内壁17側へ案内される。したがって、簡単な構造で排気の浄化を促進することができる。また、排気は、旋回力付与部材16を通過することにで自身の流れによって旋回力が付与される。そのため、排気に旋回力を付与するための動力は必要としない。したがって、消費エネルギーの増大を招くことなく簡単な構造で排気の浄化を促進することができる。さらに、旋回力付与部材16で排気流案内部14を構成することにより、旋回力付与部材16は排気管部材11から着脱可能となる。そのため、例えば旋回力付与部材16が汚れたり損傷した場合、旋回力付与部材16を容易に交換することができ、内燃機関や排気浄化装置10の各部の性能にあわせて旋回力付与部材16を容易に変更することができる。   Further, in the first embodiment, the exhaust flow guide unit 14 includes a turning force applying member 16. For this reason, the exhaust gas flowing through the exhaust passage 15 passes through the turning force applying member 16 and is given a turning force in the circumferential direction around the axis of the exhaust passage 15. As a result, the exhaust gas flowing through the exhaust passage 15 is guided to the inner wall 17 side of the exhaust pipe member 11 by its own turning. Therefore, purification of exhaust gas can be promoted with a simple structure. Further, the exhaust is given a turning force by its own flow by passing through the turning force applying member 16. Therefore, no power is required for applying a turning force to the exhaust. Therefore, purification of exhaust gas can be promoted with a simple structure without causing an increase in energy consumption. Further, by configuring the exhaust flow guide portion 14 with the turning force applying member 16, the turning force applying member 16 can be attached to and detached from the exhaust pipe member 11. Therefore, for example, when the turning force applying member 16 is soiled or damaged, the turning force applying member 16 can be easily replaced, and the turning force applying member 16 can be easily adapted to the performance of each part of the internal combustion engine and the exhaust gas purification device 10. Can be changed.

(変形例)
次に、上述の第1実施形態の変形例について説明する。排気流案内部14における旋回力付与部材16は、上述した図2および図3に示す形状に限定されない。例えば図5および図6に示す旋回力付与部材21は、一枚の平板をねじることにより、螺旋状に形成されている。また、図7および図8に示す旋回力付与部材22は、支持部23から外周側へ放射状に設けられた翼部24を有している。これらの構成により、排気通路15を通過する排気は、旋回力付与部材21または旋回力付与部材22を通過する際に排気通路15の中心を軸とする周方向へ旋回力が付与される。このように、旋回力付与部材21、22は、排気通路15を流れる排気に旋回力を付与可能な構成であれば形状を問わない。また、第1実施形態を含む各旋回力付与部材16、21、22は、いずれも排気管部材11に固定され、排気の流れによって排気に旋回力を付与する。したがって、消費エネルギーの増大を招くこともない。
(Modification)
Next, a modification of the above-described first embodiment will be described. The turning force applying member 16 in the exhaust flow guide portion 14 is not limited to the shape shown in FIGS. 2 and 3 described above. For example, the turning force applying member 21 shown in FIGS. 5 and 6 is formed in a spiral shape by twisting one flat plate. 7 and FIG. 8 has a wing part 24 provided radially from the support part 23 to the outer peripheral side. With these configurations, the exhaust gas passing through the exhaust passage 15 is given a turning force in the circumferential direction around the center of the exhaust passage 15 when passing through the turning force applying member 21 or the turning force applying member 22. As described above, the turning force applying members 21 and 22 may have any shape as long as the turning force can be applied to the exhaust gas flowing through the exhaust passage 15. In addition, each of the turning force applying members 16, 21, and 22 including the first embodiment is fixed to the exhaust pipe member 11 and applies a turning force to the exhaust by the flow of the exhaust. Therefore, there is no increase in energy consumption.

(第2実施形態)
第2実施形態による排気浄化装置を図9に示す。
第2実施形態による排気浄化装置10は、図9および図10に示すように排気流案内部14に排気流方向変更部材25を有している。排気流方向変更部材25は、第1実施形態にように排気に旋回力を付与して排気通路15の外周側へ案内するのに代えて、排気通路15を流れる排気の流れの方向を単に変更する。すなわち、図9に示すように排気通路15に円錐状の排気流方向変更部材25を設けることにより、排気の流れは排気流方向変更部材25に案内されて外周側へ変更される。これにより、排気に含まれるPMは、放電電極部12におけるコロナ放電によって帯電した後、排気通路15の外周側すなわち排気管部材11の内壁17側へ案内される。その結果、帯電したPMを含む排気の流れは捕集部13に接近し、PMの捕集効率が向上する。
(Second Embodiment)
FIG. 9 shows an exhaust emission control device according to the second embodiment.
As shown in FIGS. 9 and 10, the exhaust purification device 10 according to the second embodiment has an exhaust flow direction changing member 25 in the exhaust flow guide portion 14. The exhaust flow direction changing member 25 simply changes the direction of the flow of the exhaust gas flowing through the exhaust passage 15 instead of applying a turning force to the exhaust and guiding it to the outer peripheral side of the exhaust passage 15 as in the first embodiment. To do. That is, by providing a conical exhaust flow direction changing member 25 in the exhaust passage 15 as shown in FIG. 9, the exhaust flow is guided by the exhaust flow direction changing member 25 and changed to the outer peripheral side. As a result, PM contained in the exhaust is charged by corona discharge in the discharge electrode portion 12 and then guided to the outer peripheral side of the exhaust passage 15, that is, the inner wall 17 side of the exhaust pipe member 11. As a result, the flow of the exhaust gas containing the charged PM approaches the collection unit 13 and the PM collection efficiency is improved.

第2実施形態では、排気流案内部14は排気流方向変更部材25を有している。そのため、排気は、動力を必要とすることなく、自身の流れによって排気流方向変更部材25に沿って排気管部材11の内壁17側へ案内される。したがって、消費エネルギーの増大を招くことなく簡単な構造で排気の浄化を促進することができる。   In the second embodiment, the exhaust flow guide portion 14 includes an exhaust flow direction changing member 25. Therefore, the exhaust is guided to the inner wall 17 side of the exhaust pipe member 11 along the exhaust flow direction changing member 25 by its own flow without requiring power. Therefore, purification of exhaust gas can be promoted with a simple structure without causing an increase in energy consumption.

(第3、第4実施形態)
第3実施形態および第4実施形態による排気浄化装置を、それぞれ図11または図12に示す。
第3実施形態の場合、図11に示すように排気浄化装置10の排気管部材11は、内燃機関側が上流側排気管部材31に接続している。この上流側排気管部材31は、上流側排気通路32を形成している。第3実施形態の場合、この上流側排気管部材31は、排気管部材11の接線方向に接続している。そのため、上流側排気管部材31が形成する上流側排気通路32を流れる排気は、排気管部材11が形成する排気通路15へ排気管部材11の接線方向から流入する。その結果、上流側排気通路32の排気は、図12に示すように排気通路15の中心を軸とする周方向へ旋回しながら排気通路15へ流入する。すなわち、第3実施形態の場合、排気流案内部14は、排気管部材11と上流側排気管部材31との接続部分に形成される。
(Third and fourth embodiments)
The exhaust emission control devices according to the third embodiment and the fourth embodiment are shown in FIG. 11 and FIG. 12, respectively.
In the case of the third embodiment, as shown in FIG. 11, the exhaust pipe member 11 of the exhaust purification device 10 is connected to the upstream side exhaust pipe member 31 on the internal combustion engine side. The upstream exhaust pipe member 31 forms an upstream exhaust passage 32. In the case of the third embodiment, the upstream side exhaust pipe member 31 is connected in the tangential direction of the exhaust pipe member 11. Therefore, the exhaust gas flowing through the upstream exhaust passage 32 formed by the upstream exhaust pipe member 31 flows into the exhaust passage 15 formed by the exhaust pipe member 11 from the tangential direction of the exhaust pipe member 11. As a result, the exhaust in the upstream side exhaust passage 32 flows into the exhaust passage 15 while turning in the circumferential direction around the center of the exhaust passage 15 as shown in FIG. That is, in the case of the third embodiment, the exhaust flow guide portion 14 is formed at a connection portion between the exhaust pipe member 11 and the upstream side exhaust pipe member 31.

第3実施形態の場合、上流側排気通路32から排気通路15へ流入する排気は、排気管部材11と上流側排気管部材31との接続部分に形成された排気流案内部14において旋回し、排気通路15の外周側すなわち排気管部材11の内壁17側へ案内される。そのため、排気は、自身の流れによって旋回流を形成し、排気通路15の外周側へ流れ方向を変更する。したがって、消費エネルギーの増大を招くことなく簡単な構造で排気の浄化を促進することができる。   In the case of the third embodiment, the exhaust flowing into the exhaust passage 15 from the upstream exhaust passage 32 turns in the exhaust flow guide portion 14 formed at the connection portion between the exhaust pipe member 11 and the upstream exhaust pipe member 31, It is guided to the outer peripheral side of the exhaust passage 15, that is, the inner wall 17 side of the exhaust pipe member 11. Therefore, the exhaust gas forms a swirling flow by its own flow and changes the flow direction toward the outer peripheral side of the exhaust passage 15. Therefore, purification of exhaust gas can be promoted with a simple structure without causing an increase in energy consumption.

第4実施形態の場合、図13に示すように排気浄化装置10の排気管部材11は、内燃機関側が二本の上流側排気管部材33、34に接続している。この二本の上流側排気管部材33、34は、それぞれ上流側排気通路35、36を形成している。第4実施形態の場合、これらの上流側排気管部材33、34は、排気管部材11の接線方向に接続するとともに、二本が互いに180°ずれて接続している。そのため、上流側排気管部材33、34が形成する上流側排気通路35、36を流れる排気は、排気管部材11が形成する排気通路15へ180°ずれた位置で接線方向から流入する。その結果、上流側排気通路35および上流側排気通路36の排気は、図14に示すように排気通路15の中心を軸とする周方向へ旋回しながら排気通路15へ流入する。すなわち、第4実施形態の場合、排気流案内部14は、排気管部材11と上流側排気管部材33および上流側排気管部材34との接続部分に形成される。   In the case of the fourth embodiment, as shown in FIG. 13, the exhaust pipe member 11 of the exhaust purification device 10 has the internal combustion engine side connected to the two upstream exhaust pipe members 33 and 34. The two upstream exhaust pipe members 33 and 34 form upstream exhaust passages 35 and 36, respectively. In the case of the fourth embodiment, the upstream side exhaust pipe members 33 and 34 are connected in the tangential direction of the exhaust pipe member 11 and the two are connected to each other with a shift of 180 °. Therefore, the exhaust gas flowing through the upstream exhaust passages 35 and 36 formed by the upstream exhaust pipe members 33 and 34 flows into the exhaust passage 15 formed by the exhaust pipe member 11 from the tangential direction at a position shifted by 180 °. As a result, the exhaust in the upstream side exhaust passage 35 and the upstream side exhaust passage 36 flows into the exhaust passage 15 while turning in the circumferential direction around the center of the exhaust passage 15 as shown in FIG. That is, in the case of the fourth embodiment, the exhaust flow guide portion 14 is formed at a connection portion between the exhaust pipe member 11, the upstream side exhaust pipe member 33, and the upstream side exhaust pipe member 34.

第4実施形態の場合、上流側排気通路35、36から排気通路15へ流入する排気は、排気管部材11と上流側排気管部材33、34との接続部分に形成された排気流案内部14において旋回し、排気通路15の外周側すなわち排気管部材11の内壁17側へ案内される。そのため、排気は、自身の流れによって旋回流を形成し、排気通路15の外周側へ流れ方向を変更する。したがって、消費エネルギーの増大を招くことなく簡単な構造で排気の浄化を促進することができる。   In the case of the fourth embodiment, the exhaust gas flowing from the upstream exhaust passages 35 and 36 into the exhaust passage 15 is exhausted from the exhaust flow guide portion 14 formed at the connection portion between the exhaust pipe member 11 and the upstream exhaust pipe members 33 and 34. And is guided to the outer peripheral side of the exhaust passage 15, that is, the inner wall 17 side of the exhaust pipe member 11. Therefore, the exhaust gas forms a swirling flow by its own flow and changes the flow direction toward the outer peripheral side of the exhaust passage 15. Therefore, purification of exhaust gas can be promoted with a simple structure without causing an increase in energy consumption.

(第5実施形態)
第5実施形態による排気浄化装置を図15に示す。
第5実施形態の場合、図15に示すように排気浄化装置10は、SCR触媒42および還元剤添加ノズル41をさらに備えている。SCR触媒42および還元剤添加ノズル41は、いずれも排気管部材11に設けられている。具体的には、SCR触媒42は、排気管部材11が形成する排気通路15において捕集部13の下流側に設けられている。また、還元剤添加ノズル41は、捕集部13とSCR触媒42との間に排気管部材11を貫いて設けられ、先端が排気通路15に露出している。還元剤添加ノズル41は、この排気通路15に露出する先端に還元剤を噴射する図示しない噴射口を有している。図示しない還元剤タンクに貯えられている還元剤は、還元剤添加ノズル41の噴射口から排気通路15を流れる排気に噴射される。還元剤としては、例えば尿素やアンモニア水などが適用される。還元剤添加ノズル41から噴射された還元剤は、排気通路15を流れる排気に混合された後、SCR触媒42へ流入する。排気に含まれる窒素酸化物は、SCR触媒42において還元剤添加ノズル41から供給された還元剤と反応し、窒素に還元される。
(Fifth embodiment)
FIG. 15 shows an exhaust emission control device according to the fifth embodiment.
In the case of the fifth embodiment, as shown in FIG. 15, the exhaust purification device 10 further includes an SCR catalyst 42 and a reducing agent addition nozzle 41. The SCR catalyst 42 and the reducing agent addition nozzle 41 are both provided in the exhaust pipe member 11. Specifically, the SCR catalyst 42 is provided on the downstream side of the collection unit 13 in the exhaust passage 15 formed by the exhaust pipe member 11. The reducing agent addition nozzle 41 is provided through the exhaust pipe member 11 between the collection unit 13 and the SCR catalyst 42, and the tip is exposed to the exhaust passage 15. The reducing agent addition nozzle 41 has an injection port (not shown) for injecting the reducing agent at the tip exposed in the exhaust passage 15. The reducing agent stored in a reducing agent tank (not shown) is injected into the exhaust gas flowing through the exhaust passage 15 from the injection port of the reducing agent addition nozzle 41. As the reducing agent, for example, urea or aqueous ammonia is applied. The reducing agent injected from the reducing agent addition nozzle 41 is mixed with the exhaust gas flowing through the exhaust passage 15 and then flows into the SCR catalyst 42. The nitrogen oxide contained in the exhaust gas reacts with the reducing agent supplied from the reducing agent addition nozzle 41 in the SCR catalyst 42 and is reduced to nitrogen.

第5実施形態では、排気の流れ方向において捕集部13の下流側に還元剤添加ノズル41およびSCR触媒42を備えている。排気通路15を流れる排気は、排気流案内部14を通過することにより、流れに乱れが生じる。そのため、捕集部13を通過した排気にも流れに乱れが生じている。この流れに乱れが生じている排気に還元剤添加ノズル41から還元剤を添加することにより、添加された還元剤と排気との混合が促進される。したがって、SCR触媒42における排気に含まれる窒素酸化物の還元が促進され、排気の浄化をより促進することができる。また、PMを捕集する捕集部13と窒素酸化物を還元するSCR触媒42とがユニット化され、搭載性の向上および機器の小型化を図ることができる。   In 5th Embodiment, the reducing agent addition nozzle 41 and the SCR catalyst 42 are provided in the downstream of the collection part 13 in the flow direction of exhaust_gas | exhaustion. The exhaust flowing through the exhaust passage 15 passes through the exhaust flow guide unit 14, thereby causing a disturbance in the flow. Therefore, the flow that has passed through the collection unit 13 is also disturbed. By adding the reducing agent from the reducing agent addition nozzle 41 to the exhaust gas in which the flow is disturbed, mixing of the added reducing agent and the exhaust gas is promoted. Therefore, reduction of nitrogen oxides contained in the exhaust gas in the SCR catalyst 42 is promoted, and exhaust gas purification can be further promoted. In addition, the collection unit 13 that collects PM and the SCR catalyst 42 that reduces nitrogen oxide are unitized, so that the mountability can be improved and the device can be downsized.

(その他の実施形態)
以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
例えば上述の複数の実施形態では、放電電極部12においてコロナ放電を発生する例について説明した。しかし、放電電極部12は、コロナ放電に限らず、PMを帯電させることができる構成であれば他の放電を利用してもよい。
(Other embodiments)
The present invention described above is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.
For example, in the above-described plurality of embodiments, the example in which the corona discharge is generated in the discharge electrode portion 12 has been described. However, the discharge electrode unit 12 is not limited to corona discharge, and other discharges may be used as long as PM can be charged.

図面中、10は排気浄化装置、11は排気管部材、12は放電電極部、13は捕集部、14は排気流案内部、15は排気通路、16、21、22は旋回力付与部材、17は内壁、21は旋回力付与部材、22は旋回力付与部材、25は排気流方向変更部材、41は還元剤添加ノズル、42はSCR触媒を示す。   In the drawings, 10 is an exhaust purification device, 11 is an exhaust pipe member, 12 is a discharge electrode part, 13 is a collection part, 14 is an exhaust flow guide part, 15 is an exhaust passage, 16, 21 and 22 are turning force applying members, Reference numeral 17 denotes an inner wall, 21 denotes a turning force applying member, 22 denotes a turning force applying member, 25 denotes an exhaust flow direction changing member, 41 denotes a reducing agent addition nozzle, and 42 denotes an SCR catalyst.

Claims (4)

内側に内燃機関の排気が流れる排気通路を形成する排気管部材と、
前記排気管部材に設けられ、前記排気通路においてコロナ放電を生じる放電電極部と、
前記排気通路における排気の流れ方向において前記放電電極部の下流側に設けられ、前記放電電極部における放電によって帯電した粒子状物質を捕集する捕集部と、
前記排気通路における排気の流れ方向において前記放電電極部の上流側に設けられ、前記排気通路における排気の流れを前記排気管部材の内壁に近い外周側へ案内する排気流案内部と、
を備えることを特徴とする排気浄化装置。
An exhaust pipe member forming an exhaust passage through which the exhaust of the internal combustion engine flows, and
A discharge electrode portion provided in the exhaust pipe member and generating a corona discharge in the exhaust passage;
A collection unit that is provided on the downstream side of the discharge electrode unit in the flow direction of the exhaust gas in the exhaust passage and collects particulate matter charged by discharge in the discharge electrode unit;
An exhaust flow guide portion provided on the upstream side of the discharge electrode portion in the exhaust flow direction in the exhaust passage, for guiding the exhaust flow in the exhaust passage to the outer peripheral side near the inner wall of the exhaust pipe member;
An exhaust emission control device comprising:
前記排気通路における排気の流れ方向において前記捕集部の下流側に設けられ、前記排気に含まれる窒素酸化物を還元するSCR触媒と、
前記捕集部と前記SCR触媒との間に設けられ、前記排気通路を流れる排気に還元剤を添加する還元剤添加ノズルと、
をさらに備えることを特徴とする請求項1記載の排気浄化装置。
An SCR catalyst provided on the downstream side of the collection part in the flow direction of the exhaust gas in the exhaust passage and reducing nitrogen oxides contained in the exhaust gas;
A reducing agent addition nozzle that is provided between the collection part and the SCR catalyst and adds a reducing agent to the exhaust gas flowing through the exhaust passage;
The exhaust emission control device according to claim 1, further comprising:
前記排気流案内部は、前記排気通路に設けられ、前記排気の流れ方向を変更して前記排気管部材の内壁側へ導く排気流方向変更部材を有することを特徴とする請求項1または2記載の排気浄化装置。   3. The exhaust flow direction changing portion is provided in the exhaust passage, and has an exhaust flow direction changing member that changes the flow direction of the exhaust gas and guides it to the inner wall side of the exhaust pipe member. Exhaust purification equipment. 前記排気流案内部は、前記排気通路に設けられ、前記排気通路を流れる排気に前記排気通路の軸を中心とする旋回力を付与する旋回力付与部材を有することを特徴とする請求項1または2記載の排気浄化装置。   The exhaust flow guide section includes a turning force applying member that is provided in the exhaust passage and applies a turning force about the axis of the exhaust passage to the exhaust flowing through the exhaust passage. 2. An exhaust emission control device according to 2.
JP2009264858A 2009-11-20 2009-11-20 Exhaust emission control device Pending JP2011106423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264858A JP2011106423A (en) 2009-11-20 2009-11-20 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264858A JP2011106423A (en) 2009-11-20 2009-11-20 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2011106423A true JP2011106423A (en) 2011-06-02

Family

ID=44230159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264858A Pending JP2011106423A (en) 2009-11-20 2009-11-20 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2011106423A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188708A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Electrostatic precipitator
JP2013221463A (en) * 2012-04-17 2013-10-28 Daiko Sangyo:Kk Denitration catalyst unit inserted type muffler
JP2014040814A (en) * 2012-08-23 2014-03-06 Hino Motors Ltd Exhaust emission control device
CN104174489A (en) * 2014-08-22 2014-12-03 成都代代吉前瞻科技股份有限公司 Air purifier for filtering out respirable particulate matters
WO2019069792A1 (en) * 2017-10-02 2019-04-11 いすゞ自動車株式会社 Exhaust purification device for internal combustion engine
EP3347133A4 (en) * 2015-09-08 2019-08-14 Rutgers, The State University of New Jersey Personal electrostatic bioaerosol sampler with high sampling flow rate
KR20210085035A (en) * 2019-12-30 2021-07-08 우민기술(주) Apparatus for purifying exhaust gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349232A (en) * 2001-05-25 2002-12-04 Isuzu Motors Ltd Filter piece collecting device for exhaust emission control device
JP2006183508A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine
JP2007100635A (en) * 2005-10-06 2007-04-19 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2008019853A (en) * 2006-06-16 2008-01-31 Denso Corp Exhaust gas treatment apparatus of internal combustion engine
JP2009052440A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Marine exhaust gas treatment device
JP2009114872A (en) * 2007-11-02 2009-05-28 Mitsubishi Heavy Ind Ltd Exhaust emission control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349232A (en) * 2001-05-25 2002-12-04 Isuzu Motors Ltd Filter piece collecting device for exhaust emission control device
JP2006183508A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust gas agitating device of internal combustion engine
JP2007100635A (en) * 2005-10-06 2007-04-19 Mitsubishi Heavy Ind Ltd Exhaust emission control device
JP2008019853A (en) * 2006-06-16 2008-01-31 Denso Corp Exhaust gas treatment apparatus of internal combustion engine
JP2009052440A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Marine exhaust gas treatment device
JP2009114872A (en) * 2007-11-02 2009-05-28 Mitsubishi Heavy Ind Ltd Exhaust emission control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188708A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Electrostatic precipitator
JP2013221463A (en) * 2012-04-17 2013-10-28 Daiko Sangyo:Kk Denitration catalyst unit inserted type muffler
JP2014040814A (en) * 2012-08-23 2014-03-06 Hino Motors Ltd Exhaust emission control device
CN104174489A (en) * 2014-08-22 2014-12-03 成都代代吉前瞻科技股份有限公司 Air purifier for filtering out respirable particulate matters
EP3347133A4 (en) * 2015-09-08 2019-08-14 Rutgers, The State University of New Jersey Personal electrostatic bioaerosol sampler with high sampling flow rate
US10919047B2 (en) 2015-09-08 2021-02-16 Rutgers, The State University Of New Jersey Personal electrostatic bioaerosol sampler with high sampling flow rate
WO2019069792A1 (en) * 2017-10-02 2019-04-11 いすゞ自動車株式会社 Exhaust purification device for internal combustion engine
CN111263849A (en) * 2017-10-02 2020-06-09 五十铃自动车株式会社 Exhaust gas purification device for internal combustion engine
KR20210085035A (en) * 2019-12-30 2021-07-08 우민기술(주) Apparatus for purifying exhaust gas
KR102316123B1 (en) 2019-12-30 2021-12-10 황종덕 Apparatus for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JP2011106423A (en) Exhaust emission control device
JP5985822B2 (en) Exhaust purification device
US9458750B2 (en) Integrated exhaust treatment device having compact configuration
EP3030767B1 (en) Method, apparatus and system for aftertreatment of exhaust gas
JP6009260B2 (en) Exhaust purification device
JP6053096B2 (en) Exhaust purification device
JP5308176B2 (en) Exhaust purification device
WO2014112073A1 (en) Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device provided with same
CN107250498B (en) Closely coupled single module aftertreatment system
JP5655046B2 (en) Mixing / vaporizing device
WO2014112072A1 (en) Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device provided with same
JP2009167806A (en) Exhaust emission control device for internal combustion engine
EP3093463B1 (en) Exhaust purification device
JP2015068341A (en) Exhaust gas treatment device
JP2010144569A (en) Selective reduction catalyst device
JP2014190177A (en) Exhaust cleaning device for internal combustion engine
JP2008248746A (en) Muffler with exhaust emission control function
GB2533790A (en) Method, apparatus and device for improved aftertreatment of exhaust gas
JP2009264290A (en) Exhaust emission control device of internal combustion engine
JP2007016635A (en) Exhaust emission control device for internal combustion engine
JP2013217351A (en) Exhaust emission control device
JP2011074774A (en) Six-way catalyst
WO2016064567A1 (en) Diesel exhaust fluid mixing body using variable cross-section switchback arrangement
WO2018198347A1 (en) Exhaust gas purification device
JP2017106425A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827