JP2011104274A - Sulfur-based gas deodorant - Google Patents

Sulfur-based gas deodorant Download PDF

Info

Publication number
JP2011104274A
JP2011104274A JP2009265454A JP2009265454A JP2011104274A JP 2011104274 A JP2011104274 A JP 2011104274A JP 2009265454 A JP2009265454 A JP 2009265454A JP 2009265454 A JP2009265454 A JP 2009265454A JP 2011104274 A JP2011104274 A JP 2011104274A
Authority
JP
Japan
Prior art keywords
deodorant
sulfur
based gas
silicate
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265454A
Other languages
Japanese (ja)
Other versions
JP5625333B2 (en
Inventor
Masaki Miyamoto
昌季 宮本
Yasuharu Ono
康晴 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2009265454A priority Critical patent/JP5625333B2/en
Publication of JP2011104274A publication Critical patent/JP2011104274A/en
Application granted granted Critical
Publication of JP5625333B2 publication Critical patent/JP5625333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material which has a large effect of deodorizing the malodor components of various kinds of sulfur-based gas, in particular, the components such as hydrogen sulfide by solving the problem of a conventional deodorant. <P>SOLUTION: This deodorant is achieved by finding that amorphous metal silicate having specific physical property has excellent deodorization performance to the malodor component of sulfur-based gas. That is, a sulfur-based gas deodorant is constituted of amorphous metal silicate salt where an elemental composition (mole) ratio between silicon and at least one kind of metal selected among copper, zinc, manganese, cobalt and nickel is within the range of 0.60-0.80, and also crush strength is within the range of 1-3N. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、種々の悪臭、特に硫黄元素を含む化合物を主成分とする、いわゆる硫黄系ガスに対して優れた消臭性能を有する消臭剤に関するものである。   The present invention relates to a deodorant having excellent deodorizing performance with respect to various bad odors, particularly so-called sulfur-based gas, which contains a compound containing sulfur element as a main component.

近年、快適な生活に対する要求は急激に高まっており、その一つに身の回りに発生する悪臭を除去することができる消臭製品が注目されている。特に、硫化水素、メチルメルカプタン等の硫黄元素を含む化合物を主成分とする硫黄系ガスは、強い不快感を与えるものとして嫌われており、これらの硫黄系ガスの悪臭に有効な消臭剤が望まれている。しかし、従来から知られている一般的な消臭剤である、活性炭、芳香属第一級アミンを添着させた活性炭、pH調整をした活性炭、鉄化合物とアスコルビン酸とを組み合わせたもの、アミノ基やスルホン基を持つ高分子化合物などは、いずれも硫黄系悪臭の消臭能力の低いものであった。またこれらの消臭剤は、元々着色していたり、又は悪臭成分を吸着又は化学反応することによって着色や変色を起すため、用途によっては使用できないという問題もあった。   In recent years, the demand for a comfortable life has increased rapidly, and attention has been focused on deodorizing products that can remove malodors that occur around us. In particular, sulfur-based gases composed mainly of compounds containing sulfur elements such as hydrogen sulfide and methyl mercaptan are disliked as those that give strong discomfort, and there are deodorizers that are effective for the malodor of these sulfur-based gases. It is desired. However, conventionally known deodorants such as activated carbon, activated carbon impregnated with aromatic primary amine, activated carbon adjusted pH, combination of iron compound and ascorbic acid, amino group And the polymer compound having a sulfone group have low deodorizing ability for sulfurous malodors. In addition, these deodorizers are originally colored, or cause coloring or discoloration by adsorbing or chemically reacting malodorous components, so that there is a problem that they cannot be used depending on applications.

これに対し、硫黄系悪臭に対する消臭機能を有する消臭剤として、ジルコニウムやランタノイド元素の水酸化物又は含水酸化物を有効成分とする脱臭剤が報告されている(例えば特許文献1参照)。
また、特定の金属イオンを含有する4価金属リン酸塩からなる消臭剤が提案されている(例えば特許文献2参照)。
また、特定の微粒子酸化亜鉛が硫化水素に対する高い消臭性能を有するものとして示されている(例えば特許文献3参照)。これらの消臭剤は消臭剤自身の着色又は変色がないという特長を有するものの、硫黄系悪臭ガス、特にメチルメルカプタンに対する消臭性能が十分ではない。
On the other hand, as a deodorant having a deodorizing function against a sulfurous malodor, a deodorant containing zirconium or a lanthanoid element hydroxide or a hydrous oxide as an active ingredient has been reported (for example, see Patent Document 1).
In addition, a deodorant composed of a tetravalent metal phosphate containing a specific metal ion has been proposed (see, for example, Patent Document 2).
Moreover, it is shown that a specific fine particle zinc oxide has high deodorizing performance with respect to hydrogen sulfide (for example, refer patent document 3). Although these deodorizers have the feature that there is no coloring or discoloration of the deodorants themselves, their deodorizing performance against sulfur-based malodorous gases, particularly methyl mercaptan, is not sufficient.

また、ケイ酸塩である硫黄系ガス消臭剤としては、ケイ酸ゲル構造の内部に銅、亜鉛等の金属塩を包含した悪臭ガス消臭剤が提案されている(例えば特許文献4参照)。この消臭剤は,硫黄系ガスである硫化水素やメチルメルカプタンならびに塩基性ガスであるアンモニアやアミンの2種類のガス種類を両方消臭させるために、金属塩の含有量をあまり多くならないように抑制することで,消臭剤の比表面積が高く維持できるよう設定している。そのため、2種類のガスを消臭することが可能であるが、硫黄系ガスの消臭量は十分ではない。   Further, as a sulfur-based gas deodorant that is a silicate, a malodorous gas deodorant that includes a metal salt such as copper or zinc inside a silicate gel structure has been proposed (see, for example, Patent Document 4). . This deodorant is designed to deodorize both the sulfur gas hydrogen sulfide and methyl mercaptan and the basic gases ammonia and amine so as not to increase the metal salt content. By suppressing it, it is set so that the specific surface area of the deodorant can be maintained high. For this reason, it is possible to deodorize two types of gas, but the deodorizing amount of sulfur-based gas is not sufficient.

また、特許文献5には、銅、亜鉛、マンガン、コバルト、ニッケル等の金属塩とケイ酸塩の無定形複合体が、メチルメルカプタンに対して高い消臭性能を示すことが開示されている。この無定形複合体は、ケイ酸に対する金属の量が比較的少ないものであり、開示された製造方法はろ過や乾燥、粉砕等の生産性に改良の余地があった。   Patent Document 5 discloses that an amorphous complex of a metal salt such as copper, zinc, manganese, cobalt, and nickel and a silicate exhibits high deodorizing performance with respect to methyl mercaptan. This amorphous composite has a relatively small amount of metal relative to silicic acid, and the disclosed production method has room for improvement in productivity such as filtration, drying, and pulverization.

特開平1−223968号公報JP-A-1-223968 特開平10―155883号公報Japanese Patent Laid-Open No. 10-155883 特開2003−52800号公報JP 2003-52800 A 特開平4−290546号公報JP-A-4-290546 特開2005−87630号公報JP 2005-87630 A

本発明の課題は、従来の金属ケイ酸塩系消臭剤の問題点を解消し、硫黄系ガスに対する消臭効果が大きい上に、粉砕し易く粒度が制御しやすい、生産性に優れる硫黄系ガス消臭剤を提供することである。   The problem of the present invention is to solve the problems of conventional metal silicate deodorants, have a large deodorizing effect on sulfur-based gas, and easily pulverize and easily control the particle size. It is to provide a gas deodorant.

本発明者は鋭意検討した結果、特定の物性を有する非晶質金属ケイ酸塩が、硫黄系ガス、特に硫化水素に対し優れた消臭性能を有し、また、ろ過性と破砕性が高く生産性が良いということを見出し、本発明を完成するに至った。すなわち、本発明は、金属/ケイ素の元素組成(モル)比が0.60〜0.80の範囲であり、圧壊強度が1〜3Nの範囲である、非晶質金属ケイ酸塩からなる硫黄系ガス消臭剤である。   As a result of intensive studies, the present inventors have found that amorphous metal silicates having specific physical properties have excellent deodorizing performance against sulfur-based gases, particularly hydrogen sulfide, and have high filterability and friability. The inventors have found that productivity is good and have completed the present invention. That is, the present invention is a sulfur comprising an amorphous metal silicate having a metal / silicon elemental composition (molar) ratio in the range of 0.60 to 0.80 and a crushing strength in the range of 1 to 3N. It is a system gas deodorant.

本発明の硫黄系ガス消臭剤は、メチルメルカプタンおよび硫化水素などの硫黄系ガスの消臭効果が高いので、排泄臭、生活臭、および生ゴミ臭など生活環境で発生する種々の臭気を除外するために有用であり、さらに、生産性が高いので、工業的に安価に製造して実用に供することができるものである。   Since the sulfur-based gas deodorant of the present invention has a high deodorizing effect on sulfur-based gases such as methyl mercaptan and hydrogen sulfide, it excludes various odors generated in the living environment such as excrement odor, living odor, and garbage odor. In addition, since the productivity is high, it can be produced industrially at low cost and put into practical use.

本発明の硫黄系ガス消臭剤は、銅、亜鉛、マンガン、コバルト、ニッケルから選ばれる少なくとも1種の金属とケイ素の元素組成(モル)比が、金属/ケイ素=0.60〜0.80の範囲であり、圧壊強度が1〜3Nである、非晶質金属ケイ酸塩からなるものである。   The sulfur-based gas deodorant of the present invention has an elemental composition (molar) ratio of at least one metal selected from copper, zinc, manganese, cobalt, and nickel to metal / silicon = 0.60 to 0.80. It is made of an amorphous metal silicate with a crushing strength of 1 to 3 N.

本発明の硫黄系ガス消臭剤は、金属/ケイ素の元素組成(モル)比が0.60〜0.80であり、非晶質金属ケイ酸塩の圧壊強度が1〜3Nである非晶質金属ケイ酸塩を製造する工程を必須として、上記の非晶質金属ケイ酸塩を粉砕、分級などの方法により、微粉末とする工程を含んでも良い製造方法によって製造することができる。非晶質金属ケイ酸塩は、金属塩とケイ酸アルカリ塩との調合により製造することができる。調合する両原料成分の配合比率と調合条件により、消臭剤の消臭性能と生産性が左右される。   The sulfur-based gas deodorant of the present invention has an amorphous metal silicate elemental composition (molar) ratio of 0.60 to 0.80 and an amorphous metal silicate crushing strength of 1 to 3N. It can be produced by a production method that may include a step of making the above-mentioned amorphous metal silicate into a fine powder by a method such as pulverization and classification, with the step of producing a porous metal silicate as an essential step. Amorphous metal silicate can be produced by blending a metal salt and an alkali silicate salt. The deodorizing performance and productivity of the deodorant are affected by the blending ratio of both raw material components to be blended and the blending conditions.

本発明の硫黄系ガス消臭剤の製造に用いる金属塩としては、銅、亜鉛、マンガン、コバルト、ニッケルから選ばれる少なくとも1種の金属の、硫酸、塩酸、硝酸等の無機塩および/またはギ酸、酢酸、シュウ酸などの有機塩を用いることができる。これらの内で、金属として好ましいのは銅(I)、銅(II)、亜鉛(I)であり、さらに好ましくは安定で可溶性の塩が得やすい銅(II)であり、工業的に安価に得られ、化学的に安定である無機塩である。具体的には硫酸銅(II)およびその水和塩が好ましく用いられる。
これらの金属塩を反応に用いる際にはあらかじめ水等の極性溶媒に溶解しておくことが好ましく、そのときの濃度は塩が析出しない程度で高濃度の方がスラリー濃度を上げることができ、生産効率を上げることができるので好ましい。
The metal salt used in the production of the sulfur-based gas deodorant of the present invention is an inorganic salt such as sulfuric acid, hydrochloric acid, nitric acid and / or formic acid of at least one metal selected from copper, zinc, manganese, cobalt, and nickel. Organic salts such as acetic acid and oxalic acid can be used. Among these, copper (I), copper (II), and zinc (I) are preferable as metals, and copper (II) that is easy to obtain a stable and soluble salt is more preferable. It is an inorganic salt obtained and chemically stable. Specifically, copper (II) sulfate and hydrated salts thereof are preferably used.
When these metal salts are used in the reaction, it is preferable to dissolve them in a polar solvent such as water in advance, and the concentration at that time is such that the salt does not precipitate and the higher concentration can increase the slurry concentration, It is preferable because production efficiency can be increased.

本発明の消臭剤の製造に用いるケイ酸アルカリ塩は、式(1)で表される。

2O.nSiO2.xH2O (1)

(式(1)でMは1価アルカリ金属を表し、nは正数、xは0または正数である。) 本発明におけるケイ酸アルカリ塩は式(1)で表されるものを、いずれでも用いることができる。Mの具体例としては、ナトリウム、カリウム、ルビジウム、リチウム、セシウムなどが挙げられるが、工業的に安価に得られる事からナトリウムおよびカリウムが好ましく、さらに好ましくは高い消臭容量が得られることからナトリウムである。また、nは1〜4のものが好ましく、さらに好ましくはnが1.3〜3、より好ましくは2〜2.5である。また、反応に用いるにはケイ酸アルカリ塩の水溶液が好ましく、その濃度はSiO2換算で、水溶液中のSiO2濃度が20〜40質量%が好ましく、さらには33から39質量%である。
The alkali silicate salt used for manufacture of the deodorizer of this invention is represented by Formula (1).

M 2 O. nSiO 2 . xH 2 O (1)

(In the formula (1), M represents a monovalent alkali metal, n is a positive number, x is 0 or a positive number.) The alkali silicate salt in the present invention is any one represented by the formula (1). But it can also be used. Specific examples of M include sodium, potassium, rubidium, lithium, cesium, and the like. Sodium and potassium are preferable because they can be obtained industrially at low cost, and sodium is more preferable because high deodorizing capacity can be obtained. It is. Further, n is preferably 1 to 4, more preferably n is 1.3 to 3, and more preferably 2 to 2.5. Further, an aqueous solution of alkali silicate is preferably for use in reaction, the concentration in terms of SiO 2, SiO 2 concentration is preferably from 20 to 40 wt% in aqueous solution, even at 39% by weight to 33.

これらの金属塩とケイ酸アルカリ塩を、一定の条件下に混合して反応させることにより、非晶質金属ケイ酸塩が得られる。非晶質金属ケイ酸塩に含まれる金属とケイ素の元素組成比(モル比)は、Si元素の1モルに対する金属元素のモル数で定義され、モル比が概ね0〜0.80の間では、モル比が大きい方が消臭剤としての硫黄系ガスの消臭能力が大きくなる傾向があるが、0.80を超えると逆に消臭能力が小さくなる傾向があるため、好ましいモル比は0.60〜0.80であり、より好ましくは0.61〜0.75であり、さらに好ましくは0.62〜0.70である。   An amorphous metal silicate can be obtained by mixing and reacting these metal salt and alkali silicate salt under certain conditions. The elemental composition ratio (molar ratio) of the metal and silicon contained in the amorphous metal silicate is defined by the number of moles of the metal element to 1 mole of the Si element, and the molar ratio is generally between 0 and 0.80. The larger the molar ratio, the greater the deodorizing ability of the sulfur-based gas as the deodorant tends to be. However, when the molar ratio exceeds 0.80, the deodorizing ability tends to decrease. It is 0.60-0.80, More preferably, it is 0.61-0.75, More preferably, it is 0.62-0.70.

非晶質金属ケイ酸塩の製造方法においては、金属塩とケイ酸アルカリ塩とを反応液中で混合するときのpHが、6.0〜9.0の範囲を超えないことが必須であり、より好ましいpH範囲としては、6.5〜8.5、さらに好ましくは7.0〜8.0である。例えば、特許文献4には、ケイ酸塩および亜鉛化合物をアルカリ水溶液に溶解してpHを9〜11に調整し、溶液を50〜70℃に保持することにより、溶液中のケイ酸分子が次第に重合してポリケイ酸分子ゾルが形成され、次に液を中和したときにケイ酸ゾルがゲルに相転移して沈降する、悪臭ガス吸着剤の製法の記載があるが、非晶質金属ケイ酸塩は、このような従来の高温アルカリ条件でケイ酸ゾルを熟成する製造方法とは全く異なる方法で製造されるものである。   In the method for producing an amorphous metal silicate, it is essential that the pH when the metal salt and the alkali silicate salt are mixed in the reaction solution does not exceed the range of 6.0 to 9.0. The more preferable pH range is 6.5 to 8.5, and even more preferably 7.0 to 8.0. For example, in Patent Document 4, a silicate and a zinc compound are dissolved in an alkaline aqueous solution to adjust the pH to 9 to 11, and the solution is kept at 50 to 70 ° C. There is a description of a method for producing a malodorous gas adsorbent in which a polysilicate molecular sol is formed by polymerization, and then the silicate sol undergoes phase transition to the gel and precipitates when the liquid is neutralized. The acid salt is produced by a completely different method from the conventional method for aging a silicate sol under high temperature alkaline conditions.

非晶質金属ケイ酸塩の製造方法において、金属塩とケイ酸アルカリ塩とが反応液に添加され混合される(この工程を調合と呼ぶ)ときのpH条件とは、金属塩とケイ酸アルカリ塩の組成で決まる調合終了後の最終pHではなく、調合開始から調合終了までの間の調合途中における反応混合液の実際のpHである。金属ケイ酸塩の沈殿は調合直後から生じるため、調合中のpHとは金属ケイ酸塩生成時におけるpHを意味する。酸性溶液である金属塩とアルカリ溶液であるケイ酸アルカリ塩の調合時にpH6.0〜9.0に保つためには、両原料を調合開始時から同時滴下することが好ましく、また、反応液のpHを適宜測定して、金属塩とケイ酸アルカリ塩の滴下速度を調整することが好ましい。ただし、pHが6.0〜9.0に保たれているならば調合工程の一部で一方の原料だけを供給したり、交互に供給したりすることも可能であり、全ての原料の供給が終了するまでを調合工程と呼ぶ。   In the method for producing an amorphous metal silicate, the pH condition when the metal salt and the alkali silicate salt are added to the reaction solution and mixed (this step is called preparation) is the metal salt and the alkali silicate. It is not the final pH after completion of the preparation determined by the composition of the salt, but the actual pH of the reaction mixture during preparation from the start of preparation to the end of preparation. Since precipitation of metal silicate occurs immediately after compounding, pH during compounding means pH at the time of metal silicate production. In order to maintain pH 6.0 to 9.0 during the preparation of the metal salt that is an acidic solution and the alkali silicate that is an alkaline solution, it is preferable to add both raw materials simultaneously from the beginning of the preparation, It is preferable to appropriately measure the pH and adjust the dropping rate of the metal salt and the alkali silicate salt. However, if the pH is maintained at 6.0 to 9.0, it is possible to supply only one raw material or to supply it alternately as part of the preparation process. The process until the process is completed is called a blending process.

また、初期の滴下速度は小さく保った方が、急激なpHの変化に対応し易いので、全原料の滴下が完了するまでに30分以上、好ましくは1時間以上となる滴下速度で調合することが好ましい。調合時のpHを6.0〜9.0の範囲にたもったとき、ろ過や乾燥が容易で生産性がよく、圧壊強度が1〜3Nである、本発明の非晶質金属ケイ酸塩が生成する。なお、液のpHはガラス電極を用いる通常のpHメーター等で測定可能であり、測定したpH値を基に、原料の滴下速度を自動制御することなども公知の技術を応用して実施することができる。   Moreover, since it is easier to cope with a sudden change in pH when the initial dropping rate is kept small, preparation should be performed at a dropping rate of 30 minutes or more, preferably 1 hour or more until the dropping of all raw materials is completed. Is preferred. Amorphous metal silicate of the present invention having a crushing strength of 1 to 3N, which is easy to filter and dry, has good productivity and has a crushing strength of 1 to 3N when the pH at the time of preparation is in the range of 6.0 to 9.0. Produces. The pH of the liquid can be measured with a normal pH meter or the like using a glass electrode, and automatic control of the dropping rate of the raw material based on the measured pH value is also carried out by applying known techniques. Can do.

非晶質金属ケイ酸塩を調合するときの温度は、消臭剤の性能に影響を与えるので、5〜40℃の範囲が好ましく、より好ましくは10〜40℃である。原料調合直後は反応が完全には完了していないため、原料調合直後から10分〜24時間、さらに好ましくは1〜12時間程度の攪拌を継続して熟成させることが好ましい。温度は、反応液中に通常の温度計を浸すことによって測定可能である。   Since the temperature at which the amorphous metal silicate is prepared affects the performance of the deodorant, it is preferably in the range of 5 to 40 ° C, more preferably 10 to 40 ° C. Since the reaction is not completely completed immediately after the raw material preparation, it is preferable to continue aging for 10 minutes to 24 hours, more preferably about 1 to 12 hours immediately after the raw material preparation. The temperature can be measured by immersing a normal thermometer in the reaction solution.

非晶質金属ケイ酸塩は沈殿するので、遠心沈降、ろ過、デカンテーションなどの公知の方法で固液分離して得ることができ、洗浄することもできる。洗浄が十分に進んだことは、洗浄液の電気伝導度を測定することにより知ることができる。好ましくは洗浄液の電気伝導度が500μS/cm以下、さらに好ましくは200μS/cm以下、より好ましくは50μS/cm以下になるまで洗浄を行なうことである。なお、Sはジーメンス単位を意味する。   Since the amorphous metal silicate precipitates, it can be obtained by solid-liquid separation by a known method such as centrifugal sedimentation, filtration or decantation, and can also be washed. It can be known that the cleaning has sufficiently progressed by measuring the electrical conductivity of the cleaning liquid. Preferably, cleaning is performed until the electric conductivity of the cleaning liquid is 500 μS / cm or less, more preferably 200 μS / cm or less, and more preferably 50 μS / cm or less. In addition, S means a Siemens unit.

非晶質金属ケイ酸塩の圧壊強度は高い方が極微粉の発生が抑えられてろ過が容易となり、また、粉砕して粉末の消臭剤製品とする際には圧壊強度が低い方が粉砕が容易となるので好ましい。本発明においては、圧壊強度は1〜3Nであり、好ましくは1.3〜2.6Nである。   The higher the crushing strength of the amorphous metal silicate, the more fine powder is suppressed and the filtration becomes easier, and the lower the crushing strength, when pulverized into a powder deodorant product Is preferable. In the present invention, the crushing strength is 1 to 3N, preferably 1.3 to 2.6N.

圧壊強度の測定方法は、JIS−Z8841−1993の造粒物−強度試験方法に準じて測定することが可能である。例えば、150℃で24時間乾燥した非晶質金属ケイ酸塩をASTM規格No.4の標準篩でふるってから、No.10の篩上となった約3mm程度の大きさの粒を、無作為に選び、圧壊強度試験機にかけて、粒が破壊するまでの最大指示値を記録し、好ましくは複数個の平均値、例えば20個の平均値を圧壊強度(単位N:ニュートン)とすることができる。 Method of measuring the crushing strength granulate JIS-Z8841 -1993 - can be measured according to the strength test method. For example, an amorphous metal silicate dried for 24 hours at 150 ° C. is ASTM standard no. No. 4 after sieving with standard sieve. A particle having a size of about 3 mm on a sieve of 10 is randomly selected and subjected to a crushing strength tester to record the maximum indicated value until the particle breaks. Preferably, a plurality of average values, for example, The average value of 20 pieces can be used as the crushing strength (unit N: Newton).

非晶質金属ケイ酸塩の粒度は、たとえば粉砕と分級によって制御することができる。しかし、分級操作の実施の有無で生産性が著しく異なるので、特別な分級工程を行なう必要のないことが好ましい。特に様々な消臭加工製品に応用する場合は、大粒径の粒子は外観を悪くしたり、加工工程で詰まりや傷を引き起こす恐れもあるので少ない方が好ましい。本発明の消臭剤においては、例えば一般的に「d90」と称される、体積基準の粒度分布において、累積90%の粒子の粒径の値および、「d50」として、体積基準で累積50%の粒子径すなわちメジアン径を意味する値のそれぞれを小さくすることが好ましい。粒度分布は測定方法によって若干数値が異なるが、本発明においてはレーザー回折式粒度分布計による測定値を基準とし、他の測定原理の方法で測定する場合には、適宜、標準物質の測定等の方法によって補正係数を求めること等の方法によって測定値を応用することができる。   The particle size of the amorphous metal silicate can be controlled, for example, by grinding and classification. However, it is preferable that a special classification step is not required because productivity varies greatly depending on whether or not a classification operation is performed. In particular, when applied to various deodorized processed products, it is preferable that the particles having a large particle size be less because they may deteriorate the appearance or cause clogging or scratches in the processing step. In the deodorizer of the present invention, for example, in a volume-based particle size distribution generally referred to as “d90”, the particle size value of 90% of the particles is cumulative, and “d50” is 50 It is preferable to reduce each of the values that mean the particle diameter of%, that is, the median diameter. The particle size distribution varies slightly depending on the measurement method, but in the present invention, the measurement value by a laser diffraction particle size distribution meter is used as a reference, and when measuring by a method of another measurement principle, the measurement of a standard substance, etc. The measured value can be applied by a method such as obtaining a correction coefficient by the method.

本発明の消臭剤において好ましいd90は、50μm以下であり、d50は10μm以下である。この値のものは大粒径が少なく、繊維やフィルム等への加工がし易いことを意味する。非晶質金属ケイ酸塩の圧壊強度が1〜3Nである場合は、微粉砕することが容易であり、d50が10μm以下、d90が50μm以下の粒度のものを分級することなく得ることが可能である。なお、粉砕には、微粉砕機であるピンミル、アトマイザー、ボールミル、超微粉砕機であるジェットミルなどが使用できる。   In the deodorizer of the present invention, preferable d90 is 50 μm or less, and d50 is 10 μm or less. This value means that the large particle size is small and the fiber or film can be easily processed. When the crushing strength of the amorphous metal silicate is 1 to 3 N, it can be easily pulverized and can be obtained without classification with a particle size of d50 of 10 μm or less and d90 of 50 μm or less. It is. For the pulverization, a pin mill, atomizer, ball mill, which is a fine pulverizer, a jet mill, which is an ultrafine pulverizer, or the like can be used.

本発明における消臭剤のd50粒径は、大きいほうが凝集の問題が起きにくいので取り扱い易いが、逆に小さい方が薄いあるいは細い製品への応用が容易となるため、0.5〜10.0μmが好ましく、さらに好ましくは1.0〜8.0μmであり、より好ましくは2.0〜5.0μmである。また、d90粒径も同様の理由で1〜50μmが好ましく、さらに好ましくは2〜30μmである。d50とd90の値の関係は、近いほど消臭剤の粒度が揃っていることになり、加工性などに優れるため、好ましくはd90の値がd50の2倍から15倍の間、さらに好ましくは3倍から12倍の間である。   In the present invention, the deodorant has a d50 particle size that is easier to handle because it is less likely to cause agglomeration, but the smaller one is easier to apply to thinner or thinner products, so 0.5 to 10.0 μm. Is more preferable, it is 1.0-8.0 micrometers, More preferably, it is 2.0-5.0 micrometers. The d90 particle size is preferably 1 to 50 μm, more preferably 2 to 30 μm, for the same reason. The closer the d50 and d90 values are, the closer the particle size of the deodorant is, and the better the processability, etc., so the d90 value is preferably between 2 and 15 times d50, more preferably It is between 3 times and 12 times.

本発明の消臭剤の比表面積は、大きいほうが消臭能力が高くなる傾向があって好ましいが、あまり大きいものは得ることが難しいため、好ましくは200〜400m2/gであり、より好ましくは250〜350m2/gである。そもそも、ケイ酸ソーダの中和反応において、中和、熟成の条件によって得られるシリカゲルの比表面積が変化することが知られているが、本発明では金属/ケイ素の元素組成(モル)比が0.60〜0.80と、ケイ素よりも金属の方が多い組成であり、単なるケイ酸ソーダの中和反応とは傾向が異なる。また、同じ条件で製造しても、金属の元素種によって比表面積が異なる。比較的大きな比表面積が得られる金属としては銅または亜鉛が好ましく、さらには銅が好ましい。 The specific surface area of the deodorant of the present invention is preferably larger because it tends to have higher deodorizing ability, but it is difficult to obtain a larger surface area, so it is preferably 200 to 400 m 2 / g, more preferably. 250-350 m 2 / g. In the first place, in the neutralization reaction of sodium silicate, it is known that the specific surface area of silica gel obtained depends on the conditions of neutralization and aging, but in the present invention, the elemental composition (mole) ratio of metal / silicon is 0. .60-0.80, which is a composition with more metal than silicon, and the tendency is different from the mere neutralization reaction of sodium silicate. Moreover, even if it manufactures on the same conditions, a specific surface area changes with metal element types. Copper or zinc is preferable as the metal capable of obtaining a relatively large specific surface area, and copper is more preferable.

本発明の消臭剤の消臭能力は、好ましくは25℃において消臭剤1gあたり、メチルメルカプタン40ml以上を発揮する。これを消臭能力40ml/g以上と表記する。同様に、好ましくは硫化水素に対して60ml/g以上の高い消臭性能を示す。   The deodorizing ability of the deodorant of the present invention preferably exhibits 40 ml or more of methyl mercaptan per 1 g of the deodorant at 25 ° C. This is expressed as a deodorizing ability of 40 ml / g or more. Similarly, a high deodorizing performance of preferably 60 ml / g or more with respect to hydrogen sulfide is exhibited.

硫黄系悪臭ガスを含む数種の悪臭源が混合している複合型悪臭を効率的に除去するために、本発明の消臭剤と公知の消臭剤とを混合または組み合わせて消臭組成物として使用することも可能である。公知の消臭剤としては活性炭、ゼオライト、シリカゲル、ケイ酸アルミニウム、含水酸化ジルコニウム、リン酸ジルコニウム、酸化亜鉛、およびセピオライト等が挙げられる。   In order to efficiently remove the composite malodor containing several types of malodorous sources containing sulfur-based malodorous gases, the deodorant composition of the present invention and a known deodorant are mixed or combined to provide a deodorant composition. It can also be used. Known deodorants include activated carbon, zeolite, silica gel, aluminum silicate, hydrous zirconium oxide, zirconium phosphate, zinc oxide, and sepiolite.

これらの内で、好ましいのは酸化亜鉛、リン酸ジルコニウムであり、さらには層状リン酸ジルコニウムが好ましく、硫黄系ガスの消臭性能を妨げない上に塩基性ガスの消臭性能も格段に向上する。消臭組成物の中に占める本発明の硫黄系ガス消臭剤の好ましい割合は、対象となる悪臭ガスの組成によっても異なるが、通常は3質量%以上90質量%以下が好ましく、さらには10質量%以上70質量%以下である。   Among these, zinc oxide and zirconium phosphate are preferable, and layered zirconium phosphate is preferable, and the deodorizing performance of the basic gas is also greatly improved without impeding the deodorizing performance of the sulfur-based gas. . The preferred proportion of the sulfur-based gas deodorant of the present invention in the deodorant composition varies depending on the composition of the target malodorous gas, but is usually preferably 3% by mass to 90% by mass, and more preferably 10%. It is not less than 70% by mass.

○用途
本発明の消臭剤または消臭組成物は、粉末又は顆粒でそのままカートリッジなどの容器に入れた最終消臭製品として使用でき、室内や室外の悪臭発生源の近傍などに静置しておくことでその効果を発揮することが出来る。さらに、本発明の消臭剤または消臭組成物は、以下に詳述するように繊維、塗料、シート、または成型品などに配合し、消臭製品を製造するために利用できる。
○ Use The deodorant or deodorant composition of the present invention can be used as a final deodorant product in powder or granule as it is in a container such as a cartridge, and can be left in the vicinity of a bad odor source indoors or outdoors. The effect can be demonstrated by placing. Further, the deodorant or deodorant composition of the present invention can be used for producing a deodorant product by blending it into a fiber, paint, sheet, or molded product as described in detail below.

本発明の消臭剤または消臭組成物を用いた有用な消臭製品の1つは消臭性繊維である。この場合の原料繊維としては、天然繊維及び合成繊維のいずれであっても良く、また、短繊維、長繊維及び芯鞘構造をもった複合繊維等いずれであっても良い。繊維に、本発明の消臭剤または消臭組成物を使用して消臭性能を付与する方法には特に制限はなく、例えば、本発明の消臭剤または消臭組成物を繊維に後加工で塗布する場合には、消臭剤または消臭組成物を含有した水系あるいは有機溶剤系懸濁液を、塗布やディッピング等の方法で繊維表面に付着させ、溶剤を除去することにより繊維表面にコーティングすることができる。また、繊維表面への付着力を増すためのバインダー入れて混合してもよい。消臭剤を含有する水系の懸濁液のpHは特に制限はないが、消臭剤の性能を十分に発揮させるためにはpHが6〜8付近であることが好ましい。   One useful deodorant product using the deodorant or deodorant composition of the present invention is a deodorant fiber. The raw fiber in this case may be any of natural fibers and synthetic fibers, and may be any of short fibers, long fibers, and composite fibers having a core-sheath structure. There is no particular limitation on the method for imparting deodorant performance to the fiber using the deodorant or deodorant composition of the present invention. For example, the fiber is post-processed with the deodorant or deodorant composition of the present invention. In the case of coating with a water-based or organic solvent-based suspension containing a deodorant or deodorant composition, it is applied to the fiber surface by a method such as coating or dipping, and the solvent is removed to remove the solvent. Can be coated. Further, a binder for increasing the adhesion to the fiber surface may be added and mixed. The pH of the aqueous suspension containing the deodorant is not particularly limited, but the pH is preferably in the vicinity of 6 to 8 in order to sufficiently exhibit the performance of the deodorant.

また、溶融した液状繊維用樹脂又は溶解した繊維用樹脂溶液に、本発明の消臭剤または消臭組成物を練り込み、これを繊維化することによって消臭性能を付与した繊維を得ることができる。この方法で用いることができる繊維用樹脂は公知の化学繊維はいずれも使用することはできる。この好ましい具体例として、例えばポリエステル、ナイロン、アクリル、ポリエチレン、ポリビニル、ポリビニリデン、ポリウレタン及びポリスチレン等がある。これらの樹脂は、単独ポリマーであっても共重合体であってもよい。共重合体の場合、各共重合成分の重合割合に特に制限はない。   In addition, the deodorant or deodorant composition of the present invention is kneaded into the melted liquid fiber resin or the dissolved fiber resin solution, and fiber is obtained to obtain a fiber having deodorizing performance. it can. As the fiber resin that can be used in this method, any known chemical fiber can be used. Specific examples of such preferable examples include polyester, nylon, acrylic, polyethylene, polyvinyl, polyvinylidene, polyurethane, and polystyrene. These resins may be homopolymers or copolymers. In the case of a copolymer, there is no particular limitation on the polymerization ratio of each copolymer component.

繊維用樹脂に含有させる本発明の消臭剤または消臭組成物の割合は、特に限定はされない。一般に含有量を増やせば消臭性を強力に発揮させ、長期間持続させることができるが、ある程度以上に含有させても消臭効果に大きな差が生じないこと、あるいは繊維の強度が低下することがあるので、好ましくは繊維用樹脂100質量部当たり0.1〜20質量部であり、より好ましくは0.5〜10質量部である。本発明の消臭剤または消臭組成物を使用した消臭繊維は、消臭性を必要とする各種の分野で利用可能であり、例えば肌着、ストッキング、靴下、布団、布団カバー、座布団、毛布、じゅうたん、カーテン、ソファー、カーシート、エアーフィルター、介護用衣類等、多くの繊維製品に使用できる。   The ratio of the deodorant or deodorant composition of the present invention contained in the fiber resin is not particularly limited. In general, if the content is increased, the deodorizing ability can be exerted strongly and can be sustained for a long time, but even if it is added to a certain extent, there is no significant difference in the deodorizing effect, or the strength of the fiber is reduced. Therefore, it is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass per 100 parts by mass of the resin for fibers. The deodorizing fiber using the deodorant or deodorant composition of the present invention can be used in various fields that require deodorizing properties, such as underwear, stockings, socks, duvets, duvet covers, cushions, and blankets. Can be used for many textile products such as carpets, curtains, sofas, car seats, air filters, nursing clothes.

本発明の消臭剤または消臭組成物を用いた2番目の主要な用途は消臭塗料である。消臭塗料を製造するに際し、使用される塗料ビヒクルの主成分となる油脂又は樹脂に特に制限はなく、天然植物油、天然樹脂、半合成樹脂及び合成樹脂のいずれであっても良く、また熱可塑性樹脂、熱硬化性樹脂のいずれであっても良い。使用できる油脂及び樹脂としては、例えばあまに油、しなきり油、大豆油等の乾性油又は半乾性油、ロジン、ニトロセルロース、エチルセルロース、酢酸酪酸セルロース、ベンジルセルロース、ノボラック型又はレゾール型のフェノール樹脂、アルキド樹脂、アミノアルキド樹脂、アクリル樹脂、塩化ビニル、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ウレタン樹脂、飽和ポリエステル樹脂、メラミン樹脂及びポリ塩化ビニリデン樹脂等がある。   The second main application using the deodorant or deodorant composition of the present invention is a deodorant paint. When producing a deodorant paint, there is no particular limitation on the oil or resin as the main component of the paint vehicle used, and any of natural vegetable oils, natural resins, semi-synthetic resins and synthetic resins may be used, and thermoplasticity. Either a resin or a thermosetting resin may be used. Examples of the oils and resins that can be used include dry oil or semi-dry oil such as linseed oil, linden oil, soybean oil, rosin, nitrocellulose, ethylcellulose, cellulose acetate butyrate, benzylcellulose, novolac type or resol type phenol. Resins, alkyd resins, amino alkyd resins, acrylic resins, vinyl chloride, silicone resins, fluororesins, epoxy resins, urethane resins, saturated polyester resins, melamine resins, and polyvinylidene chloride resins.

本発明の消臭剤または消臭組成物は液状塗料、粉体塗料のいずれにも使用可能である。又、本発明の消臭剤または消臭組成物を用いた消臭性塗料組成物はいかなる機構により硬化するタイプでもよく、具体的には酸化重合型、湿気重合型、加熱硬化型、触媒硬化型、紫外線硬化型、及びポリオール硬化型等がある。また塗料組成物中に使用される顔料、分散剤その他の添加剤は、微粒子酸化亜鉛やそれと併用する消臭性物質と化学的反応を起す可能性のあるもの以外を除けば、特に制限はない。本発明の消臭剤または消臭組成物を用いた塗料組成物は、容易に調製でき、具体的には、上記消臭剤または消臭組成物と塗料成分をボールミル、ロールミル、デイスパーやミキサー等の一般的な混合装置を用いて十分に分散、混合すればよい。   The deodorant or deodorant composition of the present invention can be used for both liquid paints and powder paints. In addition, the deodorant coating composition using the deodorant or deodorant composition of the present invention may be of a type that cures by any mechanism, specifically, an oxidation polymerization type, a moisture polymerization type, a heat curing type, a catalyst curing type. Type, ultraviolet curable type, and polyol curable type. There are no particular restrictions on the pigments, dispersants and other additives used in the coating composition, except for those that may cause a chemical reaction with fine zinc oxide and deodorant substances used in combination therewith. . The coating composition using the deodorant or deodorant composition of the present invention can be easily prepared. Specifically, the deodorant or deodorant composition and the paint component are mixed into a ball mill, roll mill, disperser, mixer, etc. It is sufficient to sufficiently disperse and mix using a general mixing apparatus.

消臭性塗料中に含有させる本発明の消臭剤または消臭組成物の割合は、特に限定はされない。一般に含有量を増やせば消臭性を強力に発揮させ、長期間持続させることができるが、ある程度以上に含有させても消臭効果に大きな差が生じないこと、あるいは塗装面の光沢がなくなったり、割れが生じたりするので、好ましくは塗料組成物100質量部当たり0.1〜20質量部であり、より好ましくは0.5〜10質量部である。本発明の消臭剤または消臭組成物を配合した消臭性塗料は、消臭性を必要とする各種の分野で利用可能であり、例えば、建物、車両、鉄道等の内壁・外壁、ゴミ焼却場施設、生ゴミ容器等で使用できる。   The ratio of the deodorant or deodorant composition of the present invention contained in the deodorant paint is not particularly limited. In general, if the content is increased, the deodorizing ability can be exerted strongly and can be sustained for a long period of time, but even if it is added to a certain extent, there will be no significant difference in the deodorizing effect or the gloss of the painted surface will be lost. Since cracking occurs, it is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass per 100 parts by mass of the coating composition. The deodorant paint containing the deodorant or deodorant composition of the present invention can be used in various fields that require deodorization, for example, inner walls / outer walls of buildings, vehicles, railways, etc. Can be used in incineration facilities, garbage containers, etc.

また、本発明の消臭剤または消臭組成物の重要な別の用途の1つは消臭性シートである。原料となるシート材は、その材質、微構造等に制限はない。好ましい材質は樹脂、紙等、あるいはこれらの複合物であり、多孔質材質のものが好ましい。シート材の好ましい具体例として、和紙、合成紙、不織布、樹脂フィルム等があり、特に好ましいシート材は天然パルプ及び/又は合成パルプからなる紙である。天然パルプを使用すると、微細に枝分かれした繊維間に消臭剤粒子の粉末が挟まれ、特に結合剤を使用しなくても実用的な担持体となるという長所があり、一方、合成パルプは耐薬品性に優れるという長所がある。合成パルプを使用する場合には、繊維間に粉体を挟み込むことにより消臭剤粒子を担持することが困難となることがあるので、抄紙後の乾燥工程において繊維の一部を溶融し、粉末と繊維との間の付着力を増加させたり、繊維の一部に別の熱硬化性樹脂繊維を混在させることもよい。このように天然パルプと合成パルプとを適当な割合で混合して使用すると、種々の特性を調整した紙を得ることができ、一般に合成パルプの割合を多くすると、強度、耐水性、耐薬品性及び耐油性等に優れた紙を得ることができ、一方、天然パルプの割合を多くすると、吸水性、ガス透過性、親水性、成形加工性及び風合い等に優れた紙を得ることができる。   Another important use of the deodorant or deodorant composition of the present invention is a deodorant sheet. The sheet material used as a raw material is not limited in its material, microstructure and the like. A preferred material is resin, paper, or the like, or a composite thereof, and a porous material is preferred. Preferable specific examples of the sheet material include Japanese paper, synthetic paper, non-woven fabric, resin film and the like, and particularly preferable sheet material is paper made of natural pulp and / or synthetic pulp. When natural pulp is used, the powder of deodorant particles is sandwiched between finely branched fibers, and there is an advantage that a practical carrier can be obtained without using a binder. It has the advantage of excellent chemical properties. When using synthetic pulp, it may be difficult to support deodorant particles by sandwiching the powder between the fibers. It is also possible to increase the adhesion between the fiber and the fiber, or to mix another thermosetting resin fiber in a part of the fiber. When natural pulp and synthetic pulp are mixed at an appropriate ratio, paper with various characteristics can be obtained. Generally, increasing the ratio of synthetic pulp increases strength, water resistance, and chemical resistance. In addition, a paper excellent in oil resistance and the like can be obtained. On the other hand, when the proportion of natural pulp is increased, a paper excellent in water absorption, gas permeability, hydrophilicity, molding processability and texture can be obtained.

シート材に本発明の消臭剤または消臭組成物を担持させる方法には特に制限はない。本発明の消臭剤または消臭組成物の担持は、シートの製造時又はシートの製造後のいずれでもよく、例えば、紙に担持する場合、抄紙工程のいずれかの工程において消臭剤を導入したり、バインダーと共に消臭剤を分散させた液体を予め製造した紙に塗布、浸漬又は吹き付ける方法がある。
以下、一例として、抄紙工程時に本発明の消臭剤を導入する方法について説明する。抄紙工程自体は公知の方法に従って行えばよく、例えば、まず、所定の割合で消臭剤とパルプとを含むスラリーに、カチオン性及びアニオン性の凝集剤をそれぞれ全スラリー質量の5質量%以下添加して凝集体を生成する。次いで、この凝集体を公知の方法によって抄紙を行うと共に、これを温度100〜190℃で乾燥させることにより、消臭剤を担持した紙を得ることができる。
There is no particular limitation on the method for supporting the deodorant or deodorant composition of the present invention on the sheet material. The deodorant or deodorant composition of the present invention may be supported either during the production of the sheet or after the production of the sheet. For example, in the case of carrying on a paper, the deodorant is introduced in any step of the paper making process. Or a liquid in which a deodorant is dispersed together with a binder is applied, dipped or sprayed onto a previously manufactured paper.
Hereinafter, as an example, a method for introducing the deodorant of the present invention during the paper making process will be described. The paper making process itself may be carried out according to a known method. For example, first, a cationic and anionic flocculant is added to each slurry containing deodorant and pulp at a predetermined ratio in an amount of 5% by mass or less based on the total slurry mass. To produce aggregates. Next, the aggregate is subjected to paper making by a known method, and dried at a temperature of 100 to 190 ° C., whereby a paper carrying a deodorant can be obtained.

本発明の消臭剤または消臭組成物のシート材への担持量は、一般に担持量を増やせば消臭性を強力に発揮させ、長期間持続させることができるが、ある程度以上に担持させても消臭効果に大きな差が生じないので、消臭剤または消臭組成物の好ましい担持量は、抄紙工程時に消臭剤または消臭組成物をシートの表面と内部の全体に担持させる場合、シート100質量部あたり0.1〜10質量部であり、コーティング等により後加工でシートの表面のみに消臭剤または消臭組成物を担持させる場合0.05〜10g/m2である。本発明の消臭剤または消臭組成物を使用した消臭性シートは、消臭性を必要とする各種の分野で利用可能であり、例えば、医療用包装紙、食品用包装紙、電気機器用梱包紙、介護用紙製品、鮮度保持紙、紙製衣料、空気清浄フィルター、壁紙、ティッシュペーパー、トイレットペーパー等がある。 The amount of the deodorant or deodorant composition according to the present invention supported on the sheet material is generally enhanced by increasing the amount supported, and can be sustained for a long period of time. However, since a large difference does not occur in the deodorizing effect, the preferred loading amount of the deodorant or deodorant composition is when the deodorant or deodorant composition is supported on the entire surface and inside of the sheet during the paper making process. The amount is 0.1 to 10 parts by mass per 100 parts by mass of the sheet, and 0.05 to 10 g / m 2 when the deodorant or deodorant composition is supported only on the surface of the sheet by post-processing such as coating. The deodorant sheet using the deodorant or deodorant composition of the present invention can be used in various fields that require deodorizing properties, such as medical wrapping paper, food wrapping paper, and electrical equipment. Packaging paper, nursing care paper products, freshness preservation paper, paper clothing, air cleaning filters, wallpaper, tissue paper, toilet paper, etc.

○樹脂成形品
本発明の消臭剤または消臭組成物の用途として樹脂成形品への適用が挙げられる。本発明の消臭剤を樹脂に添加する場合には、樹脂と消臭剤とをそのまま混合し成形機に投入し成型することも、消臭剤を高濃度含有したペレット状樹脂を予め調製し、これを主樹脂と混合後成型することも可能である。また、樹脂には物性を改善するために、必要に応じて顔料、染料、酸化防止剤、耐光安定剤、帯電防止剤、発泡剤、耐衝撃強化剤、ガラス繊維、防湿剤及び増量剤等種々の他の添加剤を配合することもできる。本発明の消臭剤を用いた消臭性樹脂成形品を製造するための成型方法としては、射出成型、押出成型、インフレーション成型、真空成型など一般の樹脂成型方法が使用できる。本発明の消臭剤または消臭組成物を使用した消臭性樹脂成形品は、消臭性を必要とする各種の分野で利用可能であり、例えば、空気清浄器、冷蔵庫などの家電製品や、ゴミ箱、水切りなどの一般家庭用品、ポータブルトイレ等の各種介護用品、日常品等がある。
-Resin molded product Application to a resin molded product is mentioned as a use of the deodorizer or deodorant composition of this invention. When the deodorant of the present invention is added to the resin, the resin and the deodorant can be mixed as they are, and then put into a molding machine for molding. Alternatively, a pellet-like resin containing a high concentration of the deodorant can be prepared in advance. It is also possible to mold this after mixing with the main resin. In order to improve the physical properties of the resin, various pigments, dyes, antioxidants, light stabilizers, antistatic agents, foaming agents, impact resistance enhancers, glass fibers, moisture proofing agents, bulking agents, etc. Other additives can also be blended. As a molding method for producing a deodorant resin molded product using the deodorant of the present invention, general resin molding methods such as injection molding, extrusion molding, inflation molding, and vacuum molding can be used. The deodorant resin molded article using the deodorant or deodorant composition of the present invention can be used in various fields that require deodorization, for example, home appliances such as air purifiers and refrigerators, There are general household items such as trash cans and drainers, various nursing items such as portable toilets, and daily items.

本発明の消臭剤の粉末物性および消臭性能は、次の方法により測定した。
(1)d50およびd90粒径
レーザー回折粒度分布計で測定し、結果を体積基準で解析した。消臭剤の粒径d50およびd90の測定は、まずレッチェ社製「超遠心粉砕機 ZM200」を用い、80μmメッシュ、10000rpmの条件で粉砕した非晶質金属ケイ酸塩の粒子を脱イオン水に分散し、70Wの超音波で2分以上処理を行った後、レーザー回折式粒度分布計で測定し、結果を体積基準で解析した。なお、粒度分布の含有率%は、この解析方法から全粒子中の体積%であるが、非晶質金属ケイ酸塩の密度が一定であるので、質量%と同じ意味を持つ。具体的にはマルバーン社製レーザー回折式粒度分布測定装置「MS2000」により測定した。
The powder physical properties and deodorizing performance of the deodorant of the present invention were measured by the following methods.
(1) d50 and d90 particle diameters Measured with a laser diffraction particle size distribution meter, and the results were analyzed on a volume basis. The particle diameters d50 and d90 of the deodorant were measured by first using an “ultracentrifugal mill ZM200” manufactured by Lecce and using amorphous metal silicate particles ground under conditions of 80 μm mesh and 10,000 rpm in deionized water. After being dispersed and treated with ultrasonic waves of 70 W for 2 minutes or longer, measurement was performed with a laser diffraction particle size distribution analyzer, and the results were analyzed on a volume basis. The content percentage of the particle size distribution is the volume% in all particles from this analysis method, but has the same meaning as the mass% because the density of the amorphous metal silicate is constant. Specifically, it was measured by a laser diffraction particle size distribution measuring device “MS2000” manufactured by Malvern.

(2)比表面積
JIS Z8830-2001、「気体吸着による粉体(固体)の比表面積測定方法」により、堀場製作所製 連続流動式表面積計「SA−6200」を用いて測定した。
(2) specific surface area JIS Z8830 -2001, the "specific surface area measurement method of the powder (solid) by gas adsorption", was measured using "SA-6200" manufactured by Horiba continuous flow type surface area analyzer.

(3)組成(金属/ケイ素比)
リガク製ZSX100e型蛍光X線分析装置を用いて蛍光X線分析により測定し、結果を物質量基準で解析して、金属/ケイ素の元素組成(モル)比を算出した。
(3) Composition (metal / silicon ratio)
Measurement was made by fluorescent X-ray analysis using a Rigaku ZSX100e type fluorescent X-ray analyzer, and the result was analyzed on the basis of the amount of substance to calculate the elemental composition (mole) ratio of metal / silicon.

(4)圧壊強度
150℃で24時間乾燥した非晶質金属ケイ酸塩の粒子をASTM規格No.4の標準篩でふるってから、No.10の篩でふるい、篩上となった約3mm程度の大きさの粒を、無作為に20個選出し、圧壊強度計により測定した結果を平均し圧壊強度とした。なお、圧壊強度の測定には、Pacific Transducer Corp.製「Model 306L TypeA Classic StyleDurometer」を用いた。
(4) Crushing strength Amorphous metal silicate particles dried at 150 ° C. for 24 hours were measured according to ASTM standard no. No. 4 after sieving with standard sieve. 10 particles having a size of about 3 mm, which was sieved with 10 sieves, were randomly selected, and the results measured by a crushing strength meter were averaged to obtain crushing strength. For the measurement of crushing strength, Pacific Transducer Corp. “Model 306L Type A Classic Style Durometer” manufactured by KK was used.

(5)消臭性能
乾燥した消臭剤粉末0.01gをポリフッ化ビニルフィルムを用いて作製したバック(以下、テドラーバッグと称する)に入れ、ここにメチルメルカプタン(初期濃度600ppm)または硫化水素(初期濃度1500ppm)を1L注入し、30分後のテドラーバッグ中の残存ガス濃度をガス検知管で測定した。検知管には(株)ガステック製、No.4系(硫化水素用)またはNo.71(メチルメルカプタン用)を用いた。No.4系は測定濃度によってNo.4LL,4LT,4H等を使い分けた。検出下限はおよそ0.2ppmである。
(5) Deodorizing performance 0.01 g of dried deodorant powder was placed in a bag (hereinafter referred to as a Tedlar bag) made using a polyvinyl fluoride film, and methyl mercaptan (initial concentration 600 ppm) or hydrogen sulfide (initial) 1 L) was injected, and the residual gas concentration in the Tedlar bag after 30 minutes was measured with a gas detector tube. The detector tube is manufactured by Gastec Co., Ltd. Series 4 (for hydrogen sulfide) or No. 71 (for methyl mercaptan) was used. No. No. 4 system is No. 4LL, 4LT, 4H, etc. were properly used. The lower limit of detection is approximately 0.2 ppm.

<実施例1>
300mlビーカーに入れた脱イオン水75mlを攪拌しながら、2号ケイ酸ソーダ(Na2O.2.5SiO2.xH2O、SiO2濃度35質量%)37.5gと、硫酸銅5水和物17.75gを各々脱イオン水100mlに加えて溶解させた2種類の溶液を1時間かけて同時に滴下した。滴下時の液温は23〜27℃の範囲内でpHが6〜7の範囲を保つように滴下速度を調整した。
なお、2号ケイ酸ソーダとは、JIS K1408-1966に基づく珪酸ソーダ2号の規格に適合するものであることを意味する。
<Example 1>
While stirring 75 ml of deionized water in a 300 ml beaker, 37.5 g of No. 2 sodium silicate (Na 2 O.2.5SiO 2 .xH 2 O, SiO 2 concentration 35 mass%) and copper sulfate pentahydrate Two types of solutions in which 17.75 g was added and dissolved in 100 ml of deionized water were dropped simultaneously over 1 hour. The dropping speed was adjusted so that the liquid temperature during dropping was within the range of 23 to 27 ° C. and the pH was maintained within the range of 6 to 7.
Note that the No. 2 sodium silicate, which means that is intended to conform to the standards of the sodium silicate No. 2 based on JIS K1408 -1 966.

滴下終了後、さらに1時間攪拌を続けることで青色の沈殿生成物を含むpH6.8のスラリーを得た。目開き0.5μmのマイクロフィルターを載せたグラスフィルターでスラリーを減圧ろ過し、引き続き吸引ろ過器からオーバーフローしない程度の脱イオン水を流して沈殿を洗浄し、最後に吸引ろ過して沈殿を得た。このとき、流出するろ液の電気伝導度を測定して、電気伝導度が50μS/cm以下となるまで洗浄を行った。   After completion of the dropwise addition, the mixture was further stirred for 1 hour to obtain a slurry having a pH of 6.8 containing a blue precipitated product. The slurry was filtered under reduced pressure with a glass filter with a microfilter having a mesh opening of 0.5 μm, and the precipitate was washed by flowing deionized water that did not overflow from the suction filter. Finally, the precipitate was obtained by suction filtration. . At this time, the electrical conductivity of the filtrate flowing out was measured, and washing was performed until the electrical conductivity reached 50 μS / cm or less.

上記のスラリーの吸引ろ過の開始から、電気伝導度が50μS/cm以下となるまでの時間を測定して、ろ過・洗浄性の指標とした。吸引ろ過と電気伝導度が50μS/cm以下となるまでの洗浄が1時間以内で完了した場合は○、6時間かけても完了しない場合は×、その中間で完了した場合は△という基準で評価したが、実施例1ではろ過・洗浄は1時間以内に終了したので評価は○だった。洗浄終了後、沈殿生成物を150℃で24時間乾燥し、この乾燥品の圧壊強度を測定した。さらに、乾燥品の粉砕を行うことで硫黄系ガス消臭剤を得た。得られた消臭剤粉末の粒径d50およびd90を測定した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。   The time from the start of suction filtration of the slurry until the electric conductivity reached 50 μS / cm or less was measured and used as an index of filtration / cleanability. Evaluation is based on the criteria of ○ when the suction filtration and cleaning until the electric conductivity is 50 μS / cm or less are completed within 1 hour, × when it is not completed over 6 hours, and Δ when it is completed in the middle. However, in Example 1, since filtration and washing were completed within 1 hour, the evaluation was good. After the washing, the precipitated product was dried at 150 ° C. for 24 hours, and the crushing strength of this dried product was measured. Furthermore, the sulfur-type gas deodorizer was obtained by grind | pulverizing a dried product. The particle size d50 and d90 of the obtained deodorant powder was measured. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<実施例2>
実施例1と同じ仕込み原料を原料滴下時のpHを7〜8の範囲内とするように40分かけて滴下したが、原料のケイ酸ソーダ水溶液の滴下終了時に、未滴下の硫酸銅水溶液が余ったため、pH6〜9の範囲内で20分かけて全量滴下した。それ以外は実施例1と同様の操作を行い、硫黄系ガス消臭剤を得た。なお、調合完了後1時間攪拌したスラリーのpHは6.9であり、ろ過・洗浄は1時間以内で完了した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Example 2>
The same raw material as in Example 1 was dropped over 40 minutes so that the pH at the time of dropping the raw material was within the range of 7 to 8, but at the end of dropping of the raw material sodium silicate aqueous solution, Since there was a surplus, the entire amount was dropped over a period of 20 minutes within the range of pH 6-9. Other than that performed the same operation as Example 1, and obtained the sulfur type gas deodorizer. In addition, the pH of the slurry stirred for 1 hour after completion of preparation was 6.9, and filtration and washing were completed within 1 hour. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<実施例3>
2号ケイ酸ソーダ41.0gと、硫酸銅5水和物17.75gとを各々脱イオン水100mlに加えて溶解させた2種類の溶液を原料滴下時のpHを8〜9の範囲内とするように、40分かけて滴下したが、原料のケイ酸ソーダ水溶液の滴下終了時に、未滴下の硫酸銅水溶液が余ったため、pH6〜9の範囲内で20分かけて全量滴下した。それ以外は実施例1と同様の操作を行い、硫黄系ガス消臭剤を得た。なお、調合完了後1時間攪拌したスラリーのpHは8.2であり、ろ過・洗浄は1時間以内で完了した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Example 3>
Two types of solutions prepared by adding 41.0 g of No. 2 sodium silicate and 17.75 g of copper sulfate pentahydrate to 100 ml of deionized water were adjusted to a pH within the range of 8 to 9 when the raw material was dropped. However, since the undropped copper sulfate aqueous solution remained at the end of dropping of the raw material sodium silicate aqueous solution, the entire amount was dropped over 20 minutes within the range of pH 6-9. Other than that performed the same operation as Example 1, and obtained the sulfur type gas deodorizer. In addition, the pH of the slurry stirred for 1 hour after the completion of preparation was 8.2, and filtration and washing were completed within 1 hour. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<実施例4>
2号ケイ酸ソーダ37.5gと硫酸銅5水和物19.5gを用いた他は実施例1と同様の操作をして、pHが6〜7の範囲を保つように調合を行ない、硫黄系ガス消臭剤を得た。なお、調合完了後1時間攪拌したスラリーのpHは6.0であり、ろ過・洗浄は1時間以内で完了した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Example 4>
The same procedure as in Example 1 was performed except that 37.5 g of sodium silicate 2 and 19.5 g of copper sulfate pentahydrate were used, and the mixture was prepared so as to maintain the pH in the range of 6 to 7, and sulfur. A system gas deodorant was obtained. In addition, pH of the slurry stirred for 1 hour after completion of preparation was 6.0, and filtration and washing were completed within 1 hour. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<実施例5>
ケイ酸ソーダの代わりに2号相当ケイ酸カリウム(K2O.3.5SiO2.xH2O、SiO2濃度20質量%)65.6gを使用した以外は実施例1と同様の操作をして、pHが6〜7の範囲を保つように調合を行ない、硫黄系ガス消臭剤を得た。なお、調合完了後1時間攪拌したスラリーのpHは8.8であり、ろ過・洗浄は1時間以内で完了した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Example 5>
The same operation as in Example 1 was performed except that 65.6 g of No. 2 equivalent potassium silicate (K 2 O.3.5SiO 2 .xH 2 O, SiO 2 concentration 20 mass%) was used instead of sodium silicate. The mixture was prepared so as to maintain the pH in the range of 6 to 7, and a sulfur-based gas deodorant was obtained. In addition, pH of the slurry stirred for 1 hour after completion of preparation was 8.8, and filtration and washing were completed within 1 hour. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<実施例6>
ケイ酸ソーダの代わりに2号相当ケイ酸カリウム(K2O.3.5SiO2.xH2O、SiO2濃度20質量%)65.6gを使用した以外は実施例2と同様の操作をして、硫黄系ガス消臭剤を得た。なお、調合完了後1時間攪拌したスラリーのpHは8.0であり、ろ過・洗浄は1時間以内で完了した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Example 6>
The same operation as in Example 2 was performed except that 65.6 g of No. 2 equivalent potassium silicate (K 2 O.3.5SiO 2 .xH 2 O, SiO 2 concentration 20 mass%) was used instead of sodium silicate. A sulfur-based gas deodorant was obtained. In addition, the pH of the slurry stirred for 1 hour after completion of preparation was 8.0, and filtration and washing were completed within 1 hour. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<実施例7>
硫酸銅5水和物17.75gのかわりに硫酸亜鉛7水和物20.45gを使用した以外は実施例1と同様の操作をして、pHが6〜7の範囲を保つように調合を行ない、硫黄系ガス消臭剤を得た。なお、調合完了後1時間攪拌したスラリーのpHは7.2であり、ろ過・洗浄は1時間以内で完了した。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Example 7>
The same procedure as in Example 1 was performed except that 20.45 g of zinc sulfate heptahydrate was used instead of 17.75 g of copper sulfate pentahydrate, and the formulation was adjusted so as to maintain the pH in the range of 6-7. The sulfur-based gas deodorant was obtained. The pH of the slurry stirred for 1 hour after the completion of the preparation was 7.2, and filtration and washing were completed within 1 hour. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例1>
原料の仕込み量は実施例1と同じだが、硫酸銅水溶液の滴下量を多めにすることにより、調合時のpHを5以上6未満の範囲として40分かけて調合を行なった。硫酸銅水溶液の滴下終了時に残存したケイ酸ソーダ水溶液はその後20分かけて滴下した。それ以外は実施例1と同様の操作をして、硫黄系ガス消臭剤を得た。調合完了後1時間攪拌したスラリーのpHは6.7であり、ろ過・洗浄は6時間以上かかった。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative Example 1>
The amount of raw materials charged was the same as in Example 1, but by adding a larger amount of the copper sulfate aqueous solution, the pH was adjusted to a range of 5 or more and less than 6, and the mixture was prepared for 40 minutes. The aqueous sodium silicate solution remaining at the end of the dropping of the aqueous copper sulfate solution was then added dropwise over 20 minutes. Otherwise, the same operation as in Example 1 was performed to obtain a sulfur-based gas deodorant. The slurry stirred for 1 hour after completion of the preparation had a pH of 6.7, and filtration and washing took 6 hours or more. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例2>
原料の仕込み量は実施例1と同じだが、ケイ酸ソーダ水溶液の滴下量を多めにすることによって、調合時のpHを10〜11の範囲内とし、40分かけて調合を行なった。原料であるケイ酸ソーダ水溶液の滴下終了時に残存した硫酸銅水溶液は、その後20分かけて滴下した。それ以外は実施例1と同様の操作をして、硫黄系ガス消臭剤を得た。
調合完了後1時間攪拌したスラリーのpHは7.4であり、ろ過・洗浄は6時間以上かかった。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative example 2>
The raw materials were charged in the same amount as in Example 1, but the amount of sodium silicate aqueous solution was increased so that the pH during the preparation was within the range of 10 to 11, and the preparation was carried out over 40 minutes. The copper sulfate aqueous solution remaining at the end of dropping of the raw material sodium silicate aqueous solution was dropped over 20 minutes thereafter. Otherwise, the same operation as in Example 1 was performed to obtain a sulfur-based gas deodorant.
The slurry stirred for 1 hour after completion of the preparation had a pH of 7.4, and filtration and washing took 6 hours or more. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例3>
硫酸銅5水和物17.75gを脱イオン水175mlに加えて溶解させた溶液(pH3.6)を300mlビーカーに入れて攪拌した。2号ケイ酸ソーダ37.5gを脱イオン水100mlに加えて溶解させた溶液(pH13.2)を、硫酸銅水溶液中に水温を約25℃に保った状態で1時間かけて滴下した。滴下終了後、さらに1時間攪拌を続けて青色の沈殿生成物を得た。このときスラリーのpHは6.7であった。このスラリーをろ過し、さらにろ液の電気伝導度が50μS/cm以下となるまで沈殿生成物の洗浄を行ったが、ろ過・洗浄は6時間以上かかった。洗浄終了後、沈殿生成物を150℃で乾燥した後、粉砕し硫黄系ガス消臭剤を得た。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative Example 3>
A solution (pH 3.6) prepared by adding 17.75 g of copper sulfate pentahydrate to 175 ml of deionized water was placed in a 300 ml beaker and stirred. A solution (pH 13.2) prepared by adding 37.5 g of No. 2 sodium silicate to 100 ml of deionized water was added dropwise to the aqueous copper sulfate solution over 1 hour while maintaining the water temperature at about 25 ° C. After completion of the dropwise addition, the mixture was further stirred for 1 hour to obtain a blue precipitated product. At this time, the pH of the slurry was 6.7. The slurry was filtered, and the precipitated product was washed until the electrical conductivity of the filtrate was 50 μS / cm or less, but filtration and washing took 6 hours or more. After washing, the precipitated product was dried at 150 ° C. and then pulverized to obtain a sulfur-based gas deodorant. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例4>
硫酸銅5水和物23.0gを用いた他は実施例1と同様にしてpHを6〜7の間で40分かけて調合を行なった。原料であるケイ酸ソーダ水溶液の滴下終了時に残存した硫酸銅水溶液は、さらに20かけて滴下したところ、途中で反応液のpHは4.9まで下がった。滴下完了後1時間攪拌したスラリーのpHは5.5であり、ろ過・洗浄は6時間以上かかった。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative example 4>
The preparation was carried out in the same manner as in Example 1 except that 23.0 g of copper sulfate pentahydrate was used and the pH was between 6 and 7 over 40 minutes. When the copper sulfate aqueous solution remaining at the end of dropping of the sodium silicate aqueous solution as the raw material was further dropped over 20, the pH of the reaction solution dropped to 4.9 on the way. The slurry stirred for 1 hour after completion of the dropping had a pH of 5.5, and filtration and washing took 6 hours or more. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例5>
2号ケイ酸ソーダ44.00gと、硫酸銅5水和物17.75gを用いた他は実施例1と同様にしてpHを6〜7の間で40分かけて調合を行なった、原料である硫酸銅水溶液の滴下終了時に残存したケイ酸ソーダ水溶液の滴下はその後20分かけて滴下したが、途中でpH10.3まで上昇した。滴下終了後のpHが10.0であったスラリーを10wt%硫酸水溶液でpH7.0に調整して1時間攪拌し、硫黄系ガス消臭剤を得た。なお、ろ過・洗浄は6時間以上かかった。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative Example 5>
The raw material was prepared in the same manner as in Example 1 except that 44.00 g of No. 2 sodium silicate and 17.75 g of copper sulfate pentahydrate were used and the pH was adjusted between 6 and 7 over 40 minutes. The dropping of the aqueous sodium silicate solution remaining at the end of dropping of the certain aqueous copper sulfate solution was dropped over the course of 20 minutes, but the pH rose to 10.3 on the way. The slurry having a pH of 10.0 after the completion of dropping was adjusted to pH 7.0 with a 10 wt% sulfuric acid aqueous solution and stirred for 1 hour to obtain a sulfur-based gas deodorant. The filtration and washing took 6 hours or more. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例6>
2号ケイ酸ソーダ32.75gと、硫酸銅5水和物21.50.gとした他は実施例1と同様にしてpHを6〜7の間で40分かけて滴下を行なった。原料であるケイ酸ソーダ水溶液の滴下終了時に残存した硫酸銅水溶液は、さらに20かけて滴下したところ、途中でpHは4.9まで下がり、滴下終了後のpHが5.1であった。調合終了後のスラリーを10wt%水酸化ナトリウム水溶液でpH7.0に調整して1時間攪拌し、硫黄系ガス消臭剤を得た。なお、ろ過・洗浄は6時間以上かかった。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative Example 6>
No. 2 sodium silicate 32.75 g and copper sulfate pentahydrate 21.50. In the same manner as in Example 1 except that g was used, the pH was dropped between 6 and 7 over 40 minutes. When the copper sulfate aqueous solution remaining at the end of dropping of the sodium silicate aqueous solution as a raw material was further dropped over 20, the pH dropped to 4.9 on the way, and the pH after the dropping was 5.1. The slurry after completion of the preparation was adjusted to pH 7.0 with a 10 wt% aqueous sodium hydroxide solution and stirred for 1 hour to obtain a sulfur-based gas deodorant. The filtration and washing took 6 hours or more. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例7>
2号ケイ酸ソーダ37.5gを脱イオン水175mlに加えて溶解させた溶液(pH11.6)を300mlビーカーに入れて攪拌した。硫酸銅5水和物17.75gを脱イオン水100mlに加えて溶解させた溶液(pH3.2)を、硫酸銅水溶液中に水温を約25℃に保った状態で1時間かけて滴下した。滴下終了後、さらに1時間攪拌を続けて青色の沈殿生成物を得た。このときスラリーのpHは6.7であった。このスラリーをろ過し、さらにろ液の電気伝導度が50μS/cm以下となるまで沈殿生成物の洗浄を行ったが、ろ過・洗浄は6時間以上かかった。洗浄終了後、沈殿生成物を150℃で乾燥した後、粉砕し硫黄系ガス消臭剤を得た。硫黄系ガス消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative Example 7>
A solution (pH 11.6) prepared by adding 37.5 g of No. 2 sodium silicate to 175 ml of deionized water was placed in a 300 ml beaker and stirred. A solution (pH 3.2) in which 17.75 g of copper sulfate pentahydrate was added and dissolved in 100 ml of deionized water was added dropwise to the aqueous copper sulfate solution over 1 hour while maintaining the water temperature at about 25 ° C. After completion of the dropwise addition, the mixture was further stirred for 1 hour to obtain a blue precipitated product. At this time, the pH of the slurry was 6.7. The slurry was filtered, and the precipitated product was washed until the electrical conductivity of the filtrate was 50 μS / cm or less, but filtration and washing took 6 hours or more. After washing, the precipitated product was dried at 150 ° C. and then pulverized to obtain a sulfur-based gas deodorant. Table 1 shows the properties of the sulfur-based gas deodorant, and Table 2 shows the results of the deodorization test.

<比較例8>
脱イオン水1リットルと2号ケイ酸ソーダ270g、硫酸亜鉛7水和物25g、硫酸アルミニウム6水和物507gを、2リットルビーカーに加え、水酸化ナトリウム溶液でpHを10に調製した。さらに50℃で20分間熟成した。次に攪拌しながら40%硫酸を加え、消臭剤を得た。なお、熟成後のスラリーのpHは7.1であり、ろ過・洗浄は1時間以内で完了した。この消臭剤の性状を表1、消臭性試験結果を表2に示した。
<Comparative Example 8>
1 liter of deionized water, 270 g of No. 2 sodium silicate, 25 g of zinc sulfate heptahydrate and 507 g of aluminum sulfate hexahydrate were added to a 2 liter beaker, and the pH was adjusted to 10 with a sodium hydroxide solution. Further, it was aged at 50 ° C. for 20 minutes. Next, 40% sulfuric acid was added with stirring to obtain a deodorant. The pH of the slurry after aging was 7.1, and filtration and washing were completed within 1 hour. Table 1 shows the properties of this deodorant and Table 2 shows the results of the deodorization test.

<硫黄系ガス消臭剤の性状>

Figure 2011104274
<Properties of sulfur gas deodorant>
Figure 2011104274

<消臭試験結果>

Figure 2011104274
<Deodorization test results>
Figure 2011104274

<実施例8および9>
○消臭繊維に対する消臭試験
純水100質量部に対して実施例1の消臭剤3質量部または実施例1の消臭剤3質量部と層状リン酸ジルコニウム2質量部の混合消臭剤をアクリル系バインダー(KB−1300、東亞合成(株)製)を3質量部に添加し懸濁液AおよびBを作製した。
これらの懸濁液AおよびBならびにアクリル系バインダーを各々50質量部をポリエステル繊維100重量部に対して塗布し、150℃で乾燥後、繊維A(実施例8)、繊維B(実施例9)および繊維C(消臭剤の含有量はポリエステル繊維100質量部に対して1.5質量部)を得た。
これらの繊維5gをテドラーバッグに入れ、ここにメチルメルカプタン(初期濃度15ppm)、硫化水素(初期濃度20ppm)、アンモニア(初期濃度100ppm)を1L注入し、30分後のテドラーバッグ中の残存ガス濃度を測定した。その結果を表3(単位ppm。NDは、検出できなかったことを示す)に示した。
<Examples 8 and 9>
Deodorant test for deodorized fiber 3 parts by mass of the deodorant of Example 1 or 3 parts by mass of the deodorant of Example 1 and 2 parts by mass of layered zirconium phosphate with respect to 100 parts by mass of pure water Were added to 3 parts by mass of an acrylic binder (KB-1300, manufactured by Toagosei Co., Ltd.) to prepare suspensions A and B.
50 parts by weight of each of these suspensions A and B and acrylic binder were applied to 100 parts by weight of polyester fiber, dried at 150 ° C., and then fiber A (Example 8) and fiber B (Example 9). And fiber C (deodorant content was 1.5 parts by mass with respect to 100 parts by mass of polyester fiber).
5 g of these fibers are put into a Tedlar bag, and 1 L of methyl mercaptan (initial concentration 15 ppm), hydrogen sulfide (initial concentration 20 ppm), and ammonia (initial concentration 100 ppm) are injected therein, and the residual gas concentration in the Tedlar bag after 30 minutes is measured. did. The results are shown in Table 3 (unit: ppm. ND indicates that it could not be detected).

Figure 2011104274
Figure 2011104274

以上の実施例が示すように、本発明の硫黄系ガス消臭剤は、ろ過洗浄性や易粉砕性などの生産性に優れたものであり、消臭剤あるいは消臭剤を用いた消臭組成物や消臭性品は硫黄系悪臭に対する消臭性能に優れるものである。
As shown in the above examples, the sulfur-based gas deodorant of the present invention is excellent in productivity such as filter detergency and easy pulverization, and deodorant using the deodorant or deodorant. Compositions and deodorant products are excellent in deodorizing performance against sulfur-based malodors.

実施例及び比較例における各種悪臭に対する消臭性能評価から明らかなように、本発明の消臭剤または消臭組成物はメチルメルカプタンおよび硫化水素などの硫黄系悪臭に対する消臭性能に優れる。このことから、本発明の消臭剤または消臭組成物を利用することにより、繊維、塗料、シート、および成形品等に優れた消臭性を付与でき、消臭製品として用いることができる。   As is clear from the evaluation of deodorizing performance against various malodors in Examples and Comparative Examples, the deodorant or deodorizing composition of the present invention is excellent in deodorizing performance against sulfurous malodors such as methyl mercaptan and hydrogen sulfide. Thus, by using the deodorant or deodorant composition of the present invention, excellent deodorant properties can be imparted to fibers, paints, sheets, molded articles, etc., and it can be used as a deodorant product.

Claims (5)

銅、亜鉛、マンガン、コバルト、ニッケルから選ばれる少なくとも1種の金属とケイ素の元素組成(モル)比が、金属/ケイ素=0.60〜0.80の範囲であり、圧壊強度が1〜3Nの範囲である非晶質金属ケイ酸塩からなる硫黄系ガス消臭剤。
The elemental composition (mole) ratio of at least one metal selected from copper, zinc, manganese, cobalt, and nickel is in the range of metal / silicon = 0.60-0.80, and the crushing strength is 1-3N. A sulfur-based gas deodorant comprising an amorphous metal silicate in the range of
請求項1に記載の非晶質金属ケイ酸塩からなり、体積基準での粒度分布がメジアン径(d50値)で10μm以下であり、d90値で50μm以下である、硫黄系ガス消臭剤。
A sulfur-based gas deodorant comprising the amorphous metal silicate according to claim 1, wherein the particle size distribution on a volume basis is 10 μm or less in terms of median diameter (d50 value) and 50 μm or less in terms of d90 value.
金属塩を含む水溶液とケイ酸アルカリ塩の水溶液とを、pH6〜9の範囲内で調合することを特徴とする、請求項1または2に記載の硫黄系ガス消臭剤の製造方法。
The method for producing a sulfur-based gas deodorant according to claim 1 or 2, wherein an aqueous solution containing a metal salt and an aqueous solution of an alkali silicate salt are prepared within a pH range of 6 to 9.
請求項1または2に記載の硫黄系ガス消臭剤を含有する消臭性組成物。
A deodorant composition comprising the sulfur-based gas deodorant according to claim 1 or 2.
請求項1、2、4のいずれかに記載の硫黄系ガス消臭剤または消臭組成物を含有する消臭製品。   A deodorized product containing the sulfur-based gas deodorant or deodorant composition according to claim 1.
JP2009265454A 2009-11-20 2009-11-20 Sulfur-based gas deodorant Active JP5625333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265454A JP5625333B2 (en) 2009-11-20 2009-11-20 Sulfur-based gas deodorant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265454A JP5625333B2 (en) 2009-11-20 2009-11-20 Sulfur-based gas deodorant

Publications (2)

Publication Number Publication Date
JP2011104274A true JP2011104274A (en) 2011-06-02
JP5625333B2 JP5625333B2 (en) 2014-11-19

Family

ID=44228468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265454A Active JP5625333B2 (en) 2009-11-20 2009-11-20 Sulfur-based gas deodorant

Country Status (1)

Country Link
JP (1) JP5625333B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160071428A (en) 2013-10-17 2016-06-21 도아고세이가부시키가이샤 Deodorizing filter
WO2016098461A1 (en) * 2014-12-19 2016-06-23 東亞合成株式会社 Deodorant, deodorant composition, and deodorizing product
US9421294B2 (en) 2012-03-07 2016-08-23 Toagosei Co., Ltd. Deodorizing mask
JP2017025190A (en) * 2015-07-22 2017-02-02 石塚硝子株式会社 Deodorant film and bag having deodorant function
JP2017029578A (en) * 2015-08-05 2017-02-09 石塚硝子株式会社 Deodorant resin container
JP2017029326A (en) * 2015-07-31 2017-02-09 石塚硝子株式会社 Deodorant organic composition and deodorant coated product using the same, and deodorant printed matter
JP2017035196A (en) * 2015-08-07 2017-02-16 石塚硝子株式会社 Deodorant sheet
JP2017046746A (en) * 2015-08-31 2017-03-09 石塚硝子株式会社 Deodorant spray
JP2017046744A (en) * 2015-08-31 2017-03-09 石塚硝子株式会社 Deodorant plate body
JP2017046747A (en) * 2015-08-31 2017-03-09 石塚硝子株式会社 Filter having deodorant function
JP2017070384A (en) * 2015-10-06 2017-04-13 住江織物株式会社 Adhesive nonwoven fabric with deodorant function
EP3213775A4 (en) * 2014-10-31 2018-07-25 Toagosei Co., Ltd. Deodorizer, deodorizing processed product produced using same, method for producing deodorizer, and method for producing deodorizing processed product
KR20190032000A (en) * 2017-09-19 2019-03-27 주식회사 세일에프에이 Copper-manganese oxides for removing harmful gas having high porosity and preparation method thereof
JP2020014656A (en) * 2018-07-25 2020-01-30 東洋製罐グループホールディングス株式会社 Deodorant composition for permanent wave-treated hair, manufacturing method of deodorant composition, and deodorizing method of hair
JP2020082624A (en) * 2018-11-29 2020-06-04 共同印刷株式会社 Gas absorbing film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087630A (en) * 2003-09-19 2005-04-07 Toagosei Co Ltd Deodorant suitable for deodorization of sulfur-based malodor
JP2006511338A (en) * 2002-12-23 2006-04-06 キンバリー クラーク ワールドワイド インコーポレイテッド Odor control composition
JP2006223645A (en) * 2005-02-18 2006-08-31 Kaisui Kagaku Kenkyusho:Kk Deodorant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511338A (en) * 2002-12-23 2006-04-06 キンバリー クラーク ワールドワイド インコーポレイテッド Odor control composition
JP2005087630A (en) * 2003-09-19 2005-04-07 Toagosei Co Ltd Deodorant suitable for deodorization of sulfur-based malodor
JP2006223645A (en) * 2005-02-18 2006-08-31 Kaisui Kagaku Kenkyusho:Kk Deodorant

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421294B2 (en) 2012-03-07 2016-08-23 Toagosei Co., Ltd. Deodorizing mask
KR20160071428A (en) 2013-10-17 2016-06-21 도아고세이가부시키가이샤 Deodorizing filter
EP3213775A4 (en) * 2014-10-31 2018-07-25 Toagosei Co., Ltd. Deodorizer, deodorizing processed product produced using same, method for producing deodorizer, and method for producing deodorizing processed product
WO2016098461A1 (en) * 2014-12-19 2016-06-23 東亞合成株式会社 Deodorant, deodorant composition, and deodorizing product
US10086101B2 (en) 2014-12-19 2018-10-02 Toagosei Co., Ltd. Deodorant, deodorant composition, and deodorizing product
JPWO2016098461A1 (en) * 2014-12-19 2017-10-19 東亞合成株式会社 Deodorant, deodorant composition and deodorized processed product
KR20170098816A (en) 2014-12-19 2017-08-30 도아고세이가부시키가이샤 Deodorant, deodorant composition, and deodorizing product
JP2017025190A (en) * 2015-07-22 2017-02-02 石塚硝子株式会社 Deodorant film and bag having deodorant function
JP2017029326A (en) * 2015-07-31 2017-02-09 石塚硝子株式会社 Deodorant organic composition and deodorant coated product using the same, and deodorant printed matter
JP2017029578A (en) * 2015-08-05 2017-02-09 石塚硝子株式会社 Deodorant resin container
JP2017035196A (en) * 2015-08-07 2017-02-16 石塚硝子株式会社 Deodorant sheet
JP2017046747A (en) * 2015-08-31 2017-03-09 石塚硝子株式会社 Filter having deodorant function
JP2017046744A (en) * 2015-08-31 2017-03-09 石塚硝子株式会社 Deodorant plate body
JP2017046746A (en) * 2015-08-31 2017-03-09 石塚硝子株式会社 Deodorant spray
JP2017070384A (en) * 2015-10-06 2017-04-13 住江織物株式会社 Adhesive nonwoven fabric with deodorant function
KR20190032000A (en) * 2017-09-19 2019-03-27 주식회사 세일에프에이 Copper-manganese oxides for removing harmful gas having high porosity and preparation method thereof
KR101976598B1 (en) 2017-09-19 2019-05-09 주식회사 세일에프에이 Copper-manganese oxides for removing harmful gas having high porosity and preparation method thereof
JP2020014656A (en) * 2018-07-25 2020-01-30 東洋製罐グループホールディングス株式会社 Deodorant composition for permanent wave-treated hair, manufacturing method of deodorant composition, and deodorizing method of hair
JP7428955B2 (en) 2018-07-25 2024-02-07 東洋製罐グループホールディングス株式会社 Deodorant composition for perm-treated hair, method for producing a deodorant composition, and method for deodorizing hair
JP2020082624A (en) * 2018-11-29 2020-06-04 共同印刷株式会社 Gas absorbing film

Also Published As

Publication number Publication date
JP5625333B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5625333B2 (en) Sulfur-based gas deodorant
WO2016103807A1 (en) Deodorant and deodorizing product
JP6460122B2 (en) Deodorant, deodorant composition and deodorized processed product
WO2016199756A1 (en) Ketone-based gas adsorbent, gas adsorbent composition, and deodorant processed goods
JP2003052800A (en) Deodorant composition suitable for deodorization of sulfur-base malodor
JP4534454B2 (en) Deodorant suitable for deodorization of sulfurous malodor
JP6304404B2 (en) Deodorant composition and deodorant product
WO2016167272A1 (en) Deodorizer, deodorizer composition, and deodorizing processed article
JP6668495B2 (en) White deodorant, chemical product with deodorant function, method of using white deodorant, and method of producing white deodorant
JP6572970B2 (en) Deodorant, deodorant composition and deodorized processed product
WO2017212724A1 (en) Deodorant dispersion, deodorant-containing processing solution, and method for producing deodorant product
JPWO2018074509A1 (en) Adsorbents and deodorized processed products
JP2020110767A (en) Gas adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250