JP2011102838A - Achromatic athermal lens system and optical apparatus with the same - Google Patents

Achromatic athermal lens system and optical apparatus with the same Download PDF

Info

Publication number
JP2011102838A
JP2011102838A JP2009256911A JP2009256911A JP2011102838A JP 2011102838 A JP2011102838 A JP 2011102838A JP 2009256911 A JP2009256911 A JP 2009256911A JP 2009256911 A JP2009256911 A JP 2009256911A JP 2011102838 A JP2011102838 A JP 2011102838A
Authority
JP
Japan
Prior art keywords
lens
positive
achromatic
glass material
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009256911A
Other languages
Japanese (ja)
Other versions
JP5392618B2 (en
JP2011102838A5 (en
Inventor
Kenta Sudo
健太 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009256911A priority Critical patent/JP5392618B2/en
Publication of JP2011102838A publication Critical patent/JP2011102838A/en
Publication of JP2011102838A5 publication Critical patent/JP2011102838A5/ja
Application granted granted Critical
Publication of JP5392618B2 publication Critical patent/JP5392618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an achromatic athermal (independence of temperature) lens system that has high achromatic-lens performance, is bright in F number, and minimizes defocus deviation occurring in a temperature change. <P>SOLUTION: The system includes, in order from an object side, a first lens group G1 having positive refractive power as a whole, and a second lens group G2. The first lens group G1 has, in order from the object side, a positive lens L11, a biconvex lens L12, and a negative lens L13 cemented to the biconvex lens L12 or disposed with a predetermined airspace between them. The second lens group G2 has, in order from the object side, a positive lens L21, a negative lens L22 cemented to the positive lens L21 or disposed with a predetermined airspace between them, and a positive lens L23 cemented to the negative lens L22 or disposed with a predetermined airspace between them. The temperature dependent coefficient of the lens power relative to the glass material of the positive lens L11 and the temperature dependent coefficient of the lens power relative to the glass material of the biconvex lens L12 are appropriately limited. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、デジタルカメラやテレビカメラなどに使用する、高い色消し性能を有する色消しレンズ系に関するものである。   The present invention relates to an achromatic lens system having high achromatic performance used for a digital camera, a television camera, and the like.

近年、デジタルカメラやテレビカメラのような、撮像素子を用いて映像信号を得るカメラが普及している。こうした装置のレンズ系では、特に、色によるにじみや、色によるピントの位置ずれを、可能な限り抑制しておく必要がある。   In recent years, cameras that obtain video signals using an image sensor, such as digital cameras and television cameras, have become widespread. In the lens system of such an apparatus, in particular, it is necessary to suppress as much as possible the blur due to the color and the positional deviation of the focus due to the color.

こうした傾向は顕微鏡システムにおいても同様であり、近年、接眼レンズを用いた眼視系ではなく、光束をCCD(charged coupled device)等の撮像素子上に結像させる顕微鏡システムが増えてきている。例えば、特許文献1には、無限共役系の顕微鏡システムにおける結像レンズ系に関するものであり、高い色消し性能を有したレンズ系についての発明が開示されている。   Such a tendency is the same in the microscope system. In recent years, an increasing number of microscope systems have formed an image of a light beam on an image pickup element such as a CCD (charged coupled device) instead of an eye-view system using an eyepiece. For example, Patent Document 1 relates to an imaging lens system in an infinite conjugate microscope system, and discloses an invention relating to a lens system having high achromatic performance.

特開2007−304312号公報Japanese Patent Application Publication No. 2007-303041

しかしながら、特許文献1の発明は、顕微鏡システムにおける結像レンズ系に特化したものとなっており、レンズ系のFナンバーがF/8という暗いものになっている。また、高い色消し性能を実現するために、正レンズにED(Extra-low Dispersion)ガラスを2枚採用している。一般に、EDガラスを用いたレンズ系は、正のEDレンズの焦点距離が温度上昇に伴って大幅に伸びてしまうため、温度変動時に大きなデフォーカス(合焦ずれ)を生じてしまうといった欠点を持つ。このため、特許文献1のレンズ系は、温度変動時にデフォーカスによる像の劣化を生じてしまう。   However, the invention of Patent Document 1 is specialized for an imaging lens system in a microscope system, and the F number of the lens system is a dark one of F / 8. In order to achieve high achromatic performance, two positive-low dispersion (ED) glasses are used for the positive lens. In general, a lens system using ED glass has a disadvantage that a focal length of a positive ED lens is greatly increased as the temperature rises, so that a large defocus (out-of-focusing) occurs when the temperature changes. . For this reason, the lens system of Patent Document 1 causes image degradation due to defocusing when the temperature fluctuates.

本発明は、このような問題に鑑みてなされたものであり、高い色消し性能を有しながら、Fナンバーが明るく、かつ温度変動時に生じるデフォーカスずれを最小限に抑える、色消しアサーマル(温度無依存化)レンズ系及びこれを備える光学機器を提供することを目的とする。   The present invention has been made in view of such problems, and has an achromatic athermal (temperature) that has a high achromatic performance and has a bright F number and minimizes a defocus shift caused by temperature fluctuation. It is an object of the present invention to provide a lens system and an optical apparatus including the lens system.

このような目的を達成するため、本発明を例示する第一の態様に従えば、物体側より順に並んだ、全体として正の屈折力を有する第1レンズ群と、第2レンズ群とから構成され、前記第1レンズ群は、物体側より順に並んだ、物体側に凸面を向けた正レンズL11と、両凸レンズL12と、前記両凸レンズL12に接合されるか又は所定の空気間隔を隔てて配置される負レンズL13とを有し、前記第2レンズ群は、物体側より順に並んだ、正レンズL21と、前記正レンズL21に接合されるか又は所定の空気間隔を隔てて配置される負レンズL22と、前記負レンズL22に接合されるか又は所定の空気間隔を隔てて配置される正レンズL23とを有し、硝材に対するレンズパワーの温度依存係数C(K-1)を、前記硝材の基準波長に対する屈折率をnとし、前記硝材の基準波長に対する屈折率の温度依存係数をdn/dT(K-1)とし、前記硝材の線膨張係数をα(K-1)としたとき、次式 C={(1/(n−1))・dn/dT}−α で表すとき、前記正レンズL11の硝材に対するレンズパワーの温度依存係数CL11は、次式 CL11>15×10-6(K-1) の条件を満たし、前記両凸レンズL12の硝材に対するレンズパワーの温度依存係数CL12(K-1)は、次式 CL12<-20×10-6(K-1) の条件を満たすことを特徴とする色消しアサーマルレンズ系が提供される。 In order to achieve such an object, according to the first aspect illustrating the present invention, the first lens group having a positive refractive power as a whole and arranged in order from the object side and the second lens group are configured. The first lens group is joined to the positive lens L11, the biconvex lens L12, and the biconvex lens L12, which are arranged in order from the object side, with the convex surface facing the object side, or spaced apart from each other by a predetermined air interval. The second lens group is arranged in order from the object side, and is joined to the positive lens L21 or arranged at a predetermined air interval. A negative lens L22, and a positive lens L23 which is joined to the negative lens L22 or arranged at a predetermined air interval, and the temperature dependence coefficient C (K −1 ) of the lens power with respect to the glass material is To the reference wavelength of glass material When the refractive index to be used is n, the temperature dependence coefficient of the refractive index with respect to the reference wavelength of the glass material is dn / dT (K −1 ), and the linear expansion coefficient of the glass material is α (K −1 ), the following formula C = {(1 / (n−1)) · dn / dT} −α, the temperature dependence coefficient C L11 of the lens power with respect to the glass material of the positive lens L11 is expressed by the following formula: C L11 > 15 × 10 −6 ( satisfies the condition K -1), the temperature-dependent coefficient C L12 lens power for glass material of the biconvex lens L12 (K -1) is the condition of the following formula C L12 <-20 × 10 -6 ( K -1) An achromatic athermal lens system characterized by satisfying is provided.

また、本発明を例示する第二の態様に従えば、第一の態様の色消しアサーマルレンズ系を備えることを特徴とする光学機器が提供される。   According to a second aspect illustrating the present invention, there is provided an optical apparatus comprising the achromatic athermal lens system of the first aspect.

本発明の色消しアサーマルレンズ系及びこれを備える光学機器によれば、高い色消し性能を有しながら、Fナンバーが明るく、かつ温度変動時に生じるデフォーカスずれを最小限に抑えることが可能である。   According to the achromatic athermal lens system of the present invention and the optical apparatus including the same, it is possible to minimize the defocus shift that occurs when the F number is bright and the temperature fluctuates while having high achromatic performance. .

第1実施例に係る色消しアサーマルレンズ系の構成を概略的に示す図である。It is a figure which shows schematically the structure of the achromatic athermal lens system which concerns on 1st Example. 第1実施例に係る色消しアサーマルレンズ系の球面収差、非点収差、歪曲収差を示す図である。It is a figure which shows the spherical aberration, astigmatism, and distortion of the achromatic athermal lens system which concerns on 1st Example. 第2実施例に係る色消しアサーマルレンズ系の構成を概略的に示す図である。It is a figure which shows schematically the structure of the achromatic | thermal athermal lens system which concerns on 2nd Example. 第2実施例に係る色消しアサーマルレンズ系の球面収差、非点収差、歪曲収差を示す図である。It is a figure which shows the spherical aberration, astigmatism, and distortion aberration of the achromatic athermal lens system which concerns on 2nd Example. 第3実施例に係る色消しアサーマルレンズ系の構成を概略的に示す図である。It is a figure which shows schematically the structure of the achromatic athermal lens system which concerns on 3rd Example. 第3実施例に係る色消しアサーマルレンズ系の球面収差、非点収差、歪曲収差を示す図である。It is a figure which shows the spherical aberration, the astigmatism, and the distortion aberration of the achromatic athermal lens system according to the third example. 上記色消しアサーマルレンズ系を備える撮像カメラ(光学機器)の構成を概略的に示す図である。It is a figure which shows schematically the structure of the imaging camera (optical apparatus) provided with the said achromatic | decolored athermal lens system. 特許文献1に記載の顕微鏡システムにおける結像レンズ系の構成を示す図である。It is a figure which shows the structure of the imaging lens system in the microscope system of patent document 1. FIG. 上記結像レンズ系の球面収差を示す図である。It is a figure which shows the spherical aberration of the said imaging lens system.

以下、本発明の実施形態について、図面を用いて説明する。本実施形態に係る色消しアサーマルレンズ系は、図1に示すように、物体側より順に並んだ、全体として正の屈折力を有する第1レンズ群G1と、第2レンズ群G2とから構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the achromatic athermal lens system according to this embodiment includes a first lens group G1 and a second lens group G2, which are arranged in order from the object side and have a positive refractive power as a whole. The

第1レンズ群G1は、物体側より順に並んだ、物体側に凸面を向けた正レンズL11と、両凸レンズL12と、両凸レンズL12に接合されるか又は所定の空気間隔を隔てて配置される負レンズL13とを有する。第2レンズ群G2は、物体側より順に並んだ、正レンズL21と、正レンズL21に接合されるか又は所定の空気間隔を隔てて配置される負レンズL22と、負レンズL22に接合されるか又は所定の空気間隔を隔てて配置される正レンズL23とを有する。   The first lens group G1 is arranged in order from the object side, and is joined to the positive lens L11 having a convex surface facing the object side, the biconvex lens L12, and the biconvex lens L12, or arranged with a predetermined air interval. A negative lens L13. The second lens group G2 is joined in order from the object side, the positive lens L21, the negative lens L22 joined to the positive lens L21 or arranged with a predetermined air interval, and the negative lens L22. Or a positive lens L23 arranged at a predetermined air interval.

そして、硝材に対するレンズパワーの温度依存係数C(K-1)を、前記硝材の基準波長に対する屈折率をnとし、前記硝材の基準波長に対する屈折率の温度依存係数をdn/dT(K-1)とし、前記硝材の線膨張係数をα(K-1)としたとき、次式 C={(1/(n−1))・dn/dT}−α で表すとき、正レンズL11の硝材に対するレンズパワーの温度依存係数CL11は以下の条件式(1)を満たし、両凸レンズL12の硝材に対するレンズパワーの温度依存係数CL12(K-1)は以下の条件式(2)を満足する。 Then, the temperature dependence coefficient C (K −1 ) of the lens power for the glass material is n, the refractive index with respect to the reference wavelength of the glass material is n, and the temperature dependence coefficient of the refractive index with respect to the reference wavelength of the glass material is dn / dT (K −1). ), And when the linear expansion coefficient of the glass material is α (K −1 ), when expressed by the following formula C = {(1 / (n−1)) · dn / dT} −α, the glass material of the positive lens L11 The temperature dependence coefficient C L11 of the lens power with respect to the lens satisfies the following conditional expression (1), and the temperature dependence coefficient C L12 (K −1 ) of the lens power with respect to the glass material of the biconvex lens L12 satisfies the following conditional expression (2). .

L11 > 15×10-6(K-1) …(1)
L12 < −20×10-6(K-1) …(2)
C L11 > 15 × 10 −6 (K −1 ) (1)
C L12 <−20 × 10 −6 (K −1 ) (2)

本実施形態においては、軸上色収差をより小さく抑えるため、第1レンズ群G1を構成する両凸レンズL12の硝材に、上記条件式(2)を満足するEDガラスを採用している。正のEDレンズである両凸レンズL12は、温度上昇に伴って大幅に焦点距離が延びる、すなわちレンズパワーが大幅に小さくなる性質を持っている。このことは、レンズパワーの温度依存係数CL12が大きな負の値を示すことからも説明できる。そこで、温度上昇に伴う両凸レンズL12のレンズパワー減少の効果を打ち消すために、両凸レンズL12の物体側に位置する正レンズL11の硝材には、上記条件式(1)を満足するレンズパワーの温度依存係数CL11が大きな正の値であるものを採用している。この構成により、正レンズL11は温度上昇に伴って大幅にレンズパワーが大きくなり、正のEDレンズである両凸レンズL12の温度上昇に伴うレンズパワー減少の効果を打ち消すことが可能となり、最終的に温度変動時のデフォーカスの発生を抑えることが可能となる。 In the present embodiment, ED glass that satisfies the above conditional expression (2) is employed for the glass material of the biconvex lens L12 constituting the first lens group G1 in order to suppress axial chromatic aberration to a smaller extent. The biconvex lens L12, which is a positive ED lens, has a property that the focal length is greatly extended as the temperature rises, that is, the lens power is significantly reduced. This can also be explained from the fact that the temperature dependency coefficient C L12 of the lens power shows a large negative value. Therefore, in order to cancel the effect of the reduction of the lens power of the biconvex lens L12 due to the temperature rise, the glass material of the positive lens L11 located on the object side of the biconvex lens L12 has a lens power temperature satisfying the conditional expression (1). The dependence coefficient C L11 is a large positive value. With this configuration, the lens power of the positive lens L11 greatly increases as the temperature rises, and it becomes possible to counteract the lens power reduction effect associated with the temperature rise of the biconvex lens L12, which is a positive ED lens. It is possible to suppress the occurrence of defocus at the time of temperature fluctuation.

さらに、本実施形態においては、正レンズL23の硝材に対するレンズパワーの温度依存係数CL23(K-1)は、以下の条件式(3)を満足することが好ましい。 Furthermore, in this embodiment, it is preferable that the temperature dependence coefficient C L23 (K −1 ) of the lens power with respect to the glass material of the positive lens L23 satisfies the following conditional expression (3).

L23 > 15×10-6(K-1) …(3) C L23 > 15 × 10 −6 (K −1 ) (3)

上記条件式(3)を満足することにより、温度変動時のレンズパワー補正負担を、第1レンズ群G1を構成する正レンズL11と、第2レンズ群G2を構成する正レンズL23との2つのレンズに分担させることが可能となるため、(レンズパワーを収差補正上最適なパワーよりも大幅に大きく設定して正レンズL11に単独で負担させる場合よりも、)EDレンズである両凸レンズL12のレンズパワーを大きくすることが可能となり、デフォーカスの発生を抑えるだけでなく、軸上色収差の発生をより効果的に抑えることが可能となる。   By satisfying the above conditional expression (3), the lens power correction burden at the time of temperature fluctuation is divided into two lenses, a positive lens L11 constituting the first lens group G1 and a positive lens L23 constituting the second lens group G2. Since the lens can be shared, the biconvex lens L12 that is an ED lens (as compared to the case where the lens power is set to be significantly larger than the optimum power for aberration correction and the positive lens L11 alone is burdened) The lens power can be increased, and not only the occurrence of defocus can be suppressed, but also the occurrence of axial chromatic aberration can be more effectively suppressed.

図7に、本実施形態に係る色消しアサーマルレンズ系(図1参照)を備えた光学機器の例として、撮像カメラCAMの構成を示す。撮像カメラCAMは、不図示の被写体からの光を、レンズ鏡筒B内に設けた色消しアサーマルレンズ系ALにより集光し、像面に配置された(例えば、CCDやCMOS等からなる)撮像素子Cに結像させる。撮像素子Cにより撮像された被写体からの光は、被写体画像として不図示のメモリに記録される。このようにして、撮影者は、撮像カメラCAMを用いて、被写体の撮影を行うことができる。   FIG. 7 shows a configuration of an imaging camera CAM as an example of an optical apparatus provided with the achromatic athermal lens system (see FIG. 1) according to the present embodiment. The imaging camera CAM collects light from a subject (not shown) by an achromatic athermal lens system AL provided in the lens barrel B and is arranged on the image plane (for example, composed of a CCD, a CMOS, or the like). An image is formed on the element C. Light from the subject imaged by the image sensor C is recorded in a memory (not shown) as a subject image. In this way, the photographer can shoot the subject using the imaging camera CAM.

以下、本実施形態に係る各実施例について、図面と表を用いて説明する。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings and tables.

(第1実施例)
図1,図2及び表1〜表3を用いて、本発明の第1実施例に係る色消しアサーマルレンズ系について説明する。第1実施例に係る色消しアサーマルレンズ系は、図1に示すように、物体側から順に並んだ、開口絞りSと、全体として正の屈折力を有する第1レンズ群G1と、第2レンズ群G2とから構成される。
(First embodiment)
The achromatic athermal lens system according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2 and Tables 1 to 3. As shown in FIG. 1, the achromatic athermal lens system according to the first example includes an aperture stop S, a first lens group G1 having a positive refractive power as a whole, and a second lens, which are arranged in order from the object side. And a group G2.

第1レンズ群G1は、物体側より順に並んだ、物体側に凸面を向けた正レンズL11と、両凸レンズL12と、両凸レンズL12に接合される負レンズL13とからなる。   The first lens group G1 includes a positive lens L11 arranged in order from the object side, a positive lens L11 having a convex surface directed toward the object side, a biconvex lens L12, and a negative lens L13 cemented to the biconvex lens L12.

第2レンズ群G2は、物体側より順に並んだ、正レンズL21と、正レンズL21に接合される負レンズL22と、負レンズL22から所定の空気間隔を隔てて配置される正レンズL23とからなる。   The second lens group G2 includes a positive lens L21, a negative lens L22 cemented to the positive lens L21, and a positive lens L23 arranged at a predetermined air interval from the negative lens L22, which are arranged in order from the object side. Become.

第1レンズ群G1を構成する正レンズL11の硝材は、合成石英であり、後述の表3よりレンズパワーの温度依存係数がCL11=21.5×10-6(K-1)なので、条件式(1)すなわちCL11>15×10-6(K-1)を満たしている。 The glass material of the positive lens L11 constituting the first lens group G1 is synthetic quartz, and the temperature dependence coefficient of the lens power is C L11 = 21.5 × 10 −6 (K −1 ) from Table 3 to be described later. 1) That is, C L11 > 15 × 10 −6 (K −1 ) is satisfied.

また、第1レンズ群G1を構成する両凸レンズL12の硝材は、オハラ社のS-FPL51を用いたEDガラスであり、後述の表3よりレンズパワーの温度依存係数がCL12=-25.3×10-6(K-1)なので、条件式(2)すなわちCL12<-20×10-6(K-1)を満たしている。 The glass material of the biconvex lens L12 constituting the first lens group G1 is ED glass using Ohara S-FPL51, and the temperature dependence coefficient of the lens power is C L12 = −25.3 × 10 from Table 3 described later. Since −6 (K −1 ), the conditional expression (2), that is, C L12 <−20 × 10 −6 (K −1 ) is satisfied.

また、第2レンズ群G2を構成する正レンズL23の硝材は、合成石英であり、後述の表3よりレンズパワーの温度依存係数はCL23=21.5×10-6(K-1)なので、条件式(3)すなわちCL23>15×10-6(K-1)を満たしている。 Further, the glass material of the positive lens L23 constituting the second lens group G2 is synthetic quartz, and the temperature dependence coefficient of the lens power is C L23 = 21.5 × 10 −6 (K −1 ) from Table 3 described later. Expression (3), that is, C L23 > 15 × 10 −6 (K −1 ) is satisfied.

図2は、第1実施例に係る色消しアサーマルレンズ系の球面収差、非点収差、歪曲収差を示す図である。なお、非点収差図において、Sはサジタル像面を示し、Tはメリジオナル像面を示す。本実施例では、両凸レンズL12の硝材はEDガラスであるため、図2に示すように、軸上色収差が小さく抑えられている。   FIG. 2 is a diagram illustrating spherical aberration, astigmatism, and distortion of the achromatic athermal lens system according to the first example. In the astigmatism diagram, S indicates a sagittal image plane, and T indicates a meridional image plane. In this embodiment, since the glass material of the biconvex lens L12 is ED glass, axial chromatic aberration is suppressed to a small value as shown in FIG.

そして、先に述べたように、正のEDレンズである両凸レンズL12は、温度上昇に伴って大幅に焦点距離が延びる、すなわちレンズパワーが大幅に小さくなる性質を持っている。このことは、レンズパワーの温度依存係数がCL12=-25.3×10-6(K-1)という大きな負の値を示すことからも説明できる。そこで、本実施例では、温度上昇に伴う両凸レンズL12のレンズパワー減少の効果を打ち消すために、レンズパワーの温度依存係数が大きな正の値(=21.5×10-6(K-1))を持つ合成石英を、両凸レンズL12の物体側に位置する正レンズL11の硝材及び第2レンズ群G2を構成する正レンズL23の硝材に採用した。このことより、温度変動時のレンズパワー補正負担を、これら2つのレンズL11,L23に分担させることが可能となるため、(レンズパワーを収差補正上最適なパワーよりも大幅に大きく設定して正レンズL11に単独で負担させる場合よりも、)EDレンズである両凸レンズL12のレンズパワーを大きくすることが可能となり、デフォーカスの発生を抑えるだけでなく、軸上色収差の発生をより効果的に抑えることができた。 As described above, the biconvex lens L12, which is a positive ED lens, has a property that the focal length is greatly increased as the temperature rises, that is, the lens power is significantly reduced. This can be explained by the fact that the temperature dependence coefficient of the lens power shows a large negative value of C L12 = −25.3 × 10 −6 (K −1 ). Therefore, in this embodiment, in order to cancel the effect of the reduction in the lens power of the biconvex lens L12 due to the temperature rise, a positive value (= 21.5 × 10 −6 (K −1 )) having a large temperature dependence coefficient of the lens power is used. Synthetic quartz is used for the glass material of the positive lens L11 located on the object side of the biconvex lens L12 and the glass material of the positive lens L23 constituting the second lens group G2. As a result, the lens power correction burden at the time of temperature fluctuation can be shared by these two lenses L11 and L23, so that the lens power is set to be significantly larger than the optimum power for aberration correction. It is possible to increase the lens power of the biconvex lens L12, which is an ED lens, as compared with the case where the lens L11 is solely burdened, and not only suppresses the occurrence of defocus but also more effectively generates axial chromatic aberration. I was able to suppress it.

以下、表1に第1実施例の色消しアサーマルレンズ系が環境温度20℃の状態にある場合のレンズ系データ、表2に第1実施例の色消しアサーマルレンズ系が環境温度40℃の状態にある場合のレンズ系データを示す。   Table 1 below shows lens system data when the achromatic athermal lens system of the first embodiment is at an ambient temperature of 20 ° C. Table 2 shows the status of the achromatic athermal lens system of the first embodiment at an ambient temperature of 40 ° C. Lens system data in the case of

なお、表中の[全体諸元]において、レンズ全系の焦点距離と、Fナンバーと、画角と、基準波長とを示す。また、[レンズデータ]において、光線の進行する方向に沿った物体側からのレンズ面の順序である面番号と、各レンズ面の曲率半径(mm)と、各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔(mm)と、基準波長e線(波長546.07nm)に対する屈折率及び硝材名とを示す。また、環境温度40℃の状態にある場合のレンズ系データに示す記号Δは、環境温度が20℃から40℃に変化した場合の近軸像面位置の移動量(mm)を示し、正の符号は像側へ移動する場合を、負の符号は物体側へ移動する場合を示す。   In [Overall specifications] in the table, the focal length, F number, field angle, and reference wavelength of the entire lens system are shown. In [Lens Data], the surface number, which is the order of the lens surfaces from the object side along the light traveling direction, the radius of curvature (mm) of each lens surface, and the next optical surface from each optical surface ( Or a surface interval (mm) which is a distance on the optical axis to the image surface), a refractive index with respect to a reference wavelength e-line (wavelength 546.07 nm), and a glass material name. The symbol Δ shown in the lens system data when the ambient temperature is 40 ° C. indicates the amount of movement (mm) of the paraxial image plane position when the ambient temperature changes from 20 ° C. to 40 ° C. The sign indicates the case of moving to the image side, and the negative sign indicates the case of moving to the object side.

また、表1,表2において、温度変動時の曲率半径、レンズ中心厚、レンズ間隔、屈折率、それぞれの変化を計算するために用いたデータ、具体的には、硝材の線膨脹係数α(×10-6K-1)と、基準波長(e線)に対する屈折率の温度依存係数dn/dT(×10-6K-1)と、レンズパワーの温度依存係数C(×10-6K-1)とを表3に示す。 In Tables 1 and 2, the data used to calculate the curvature radius, the lens center thickness, the lens interval, the refractive index, and the changes of each when temperature changes, specifically, the linear expansion coefficient α ( × 10 -6 K -1 and), and a reference wavelength (temperature dependence coefficient of the refractive index with respect to e-line) dn / dT (× 10 -6 K -1), the temperature dependence coefficient of the lens power C (× 10 -6 K -1 ) is shown in Table 3.

なお、第1実施例の色消しアサーマルレンズ系を保持するレンズ鏡筒は全てアルミニウムで作成されているとし、レンズ間隔の変化の計算にはアルミニウムの線膨張係数を用いた。また、レンズ接合面の曲率半径の変化は、接合面を構成する硝材の線膨張係数の平均値を用いて計算した。   Note that the lens barrel that holds the achromatic athermal lens system of the first embodiment is all made of aluminum, and the linear expansion coefficient of aluminum was used for the calculation of the change in the lens interval. In addition, the change in the radius of curvature of the lens cemented surface was calculated using the average value of the linear expansion coefficients of the glass materials constituting the cemented surface.

以上、表の説明は、他の実施例についても同様である。   The description of the table is the same for the other examples.

(表1)第1実施例に係る色消しアサーマルレンズ系が環境温度20℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.00mm、 F/3、 画角5.25°、 基準波長e線
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 10.0000 1.000000
2 121.0452 6.0000 1.460082(合成石英)
3 -1082.2043 1.0000 1.000000
4 38.3413 13.0000 1.498454(S-FPL51)
5 -84.8069 4.0000 1.806422(S-LAM66)
6 119.3237 3.6548 1.000000
7 140.0877 8.0000 1.855040(S-TIH53)
8 -54.3545 8.0000 1.652220(S-TIM22)
9 28.1446 4.4255 1.000000
10 43.9638 10.0000 1.460082(合成石英)
11 -447.2961 69.4957 1.000000
12(近軸像面) INFINITY − 1.000000
(Table 1) Lens system data when the achromatic athermal lens system according to the first example is at an ambient temperature of 20 ° C. [Overall specifications]
Focal length 120.00mm, F / 3, angle of view 5.25 °, reference wavelength e-line [lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 10.0000 1.000000
2 121.0452 6.0000 1.460082 (Synthetic quartz)
3 -1082.2043 1.0000 1.000000
4 38.3413 13.0000 1.498454 (S-FPL51)
5 -84.8069 4.0000 1.806422 (S-LAM66)
6 119.3237 3.6548 1.000000
7 140.0877 8.0000 1.855040 (S-TIH53)
8 -54.3545 8.0000 1.652220 (S-TIM22)
9 28.1446 4.4255 1.000000
10 43.9638 10.0000 1.460082 (Synthetic quartz)
11 -447.2961 69.4957 1.000000
12 (Paraxial image plane) INFINITY-1.000000

(表2) 第1実施例に係る色消しアサーマルレンズ系が環境温度40℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.04mm、 F/3、 画角5.25°、 基準波長e線
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 10.0047 1.000000
2 121.0464 6.0001 1.460284(合成石英)
3 -1082.2152 1.0005 1.000000
4 38.3514 13.0034 1.498332(S-FPL51)
5 -84.8247 4.0006 1.806502(S-LAM66)
6 119.3425 3.6565 1.000000
7 140.1124 8.0014 1.855080(S-TIH53)
8 -54.3638 8.0013 1.652272(S-TIM22)
9 28.1493 4.4275 1.000000
10 43.9642 10.0001 1.460284(合成石英)
11 -447.3006 69.5285 1.000000
12(近軸像面) INFINITY Δ=±0.0000 1.000000
(Table 2) Lens system data when the achromatic athermal lens system according to the first example is at an ambient temperature of 40 ° C. [Overall specifications]
Focal length 120.04mm, F / 3, angle of view 5.25 °, reference wavelength e-line [lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 10.0047 1.000000
2 121.0464 6.0001 1.460284 (Synthetic quartz)
3 -1082.2152 1.0005 1.000000
4 38.3514 13.0034 1.498332 (S-FPL51)
5 -84.8247 4.0006 1.806502 (S-LAM66)
6 119.3425 3.6565 1.000000
7 140.1124 8.0014 1.855080 (S-TIH53)
8 -54.3638 8.0013 1.652272 (S-TIM22)
9 28.1493 4.4275 1.000000
10 43.9642 10.0001 1.460284 (Synthetic quartz)
11 -447.3006 69.5285 1.000000
12 (Paraxial image plane) INFINITY Δ = ± 0.0000 1.000000

(表3) 温度変動時に、曲率半径、レンズ中心厚、レンズ間隔、屈折率、それぞれの変化を計算するために用いた材料のデータ
材料名 線膨張係数α 基準波長(e線)の屈折率の レンズパワーの
温度依存係数dn/dT 温度依存係数C
S-FPL51 13.1 -6.1 -25.3
S-BSM18 7.0 2.8 -2.6
S-TIM28 8.2 3.0 -3.9
S-BSL7 7.2 2.8 -1.8
合成石英 0.5 10.1 21.5
S-BAM4 8.4 1.7 -5.6
S-TIH53 8.8 2.0 -6.5
S-TIM22 8.3 2.6 -4.3
S-LAM66 7.9 4.0 -2.9
S-TIM39 8.7 2.1 -5.6
アルミニウム 23.6
(Table 3) Material data used to calculate the radius of curvature, lens center thickness, lens spacing, and refractive index when temperature changes. Material name Linear expansion coefficient α Refractive index of the reference wavelength (e-line) Lens power
Temperature dependence coefficient dn / dT Temperature dependence coefficient C
S-FPL51 13.1 -6.1 -25.3
S-BSM18 7.0 2.8 -2.6
S-TIM28 8.2 3.0 -3.9
S-BSL7 7.2 2.8 -1.8
Synthetic quartz 0.5 10.1 21.5
S-BAM4 8.4 1.7 -5.6
S-TIH53 8.8 2.0 -6.5
S-TIM22 8.3 2.6 -4.3
S-LAM66 7.9 4.0 -2.9
S-TIM39 8.7 2.1 -5.6
Aluminum 23.6

表1と表2のレンズ系データを基に近軸光線追跡を行うと、第1実施例に係る色消しアサーマルレンズ系において、環境温度が20℃から40℃に変化すると、レンズ系の焦点距離は0.04mm長くなるが、近軸像面位置は全く移動していない。したがって、第1実施例では、温度変動によるデフォーカスの発生を良好に抑えていることが分かる。   When paraxial ray tracing is performed based on the lens system data in Tables 1 and 2, when the environmental temperature changes from 20 ° C. to 40 ° C. in the achromatic athermal lens system according to the first example, the focal length of the lens system Is 0.04 mm longer, but the paraxial image plane position does not move at all. Therefore, it can be seen that in the first embodiment, the occurrence of defocus due to temperature fluctuation is satisfactorily suppressed.

(第2実施例)
図3,図4及び表3〜表5を用いて、本発明の第2実施例に係る色消しアサーマルレンズ系について説明する。図3に示すように、第2実施例に係る色消しアサーマルレンズ系は、物体側から順に並んだ、開口絞りSと、全体として正の屈折力を有する第1レンズ群G1と、第2レンズ群G2とから構成される。
(Second embodiment)
The achromatic athermal lens system according to the second embodiment of the present invention will be described with reference to FIGS. 3 and 4 and Tables 3 to 5. As shown in FIG. 3, the achromatic athermal lens system according to the second example includes an aperture stop S, a first lens group G1 having a positive refractive power as a whole, and a second lens, which are arranged in order from the object side. And a group G2.

第1レンズ群G1は、物体側より順に並んだ、物体側に凸面を向けた正レンズL11と、両凸レンズL12と、両凸レンズL12に接合される負レンズL13とからなる。   The first lens group G1 includes a positive lens L11 arranged in order from the object side, a positive lens L11 having a convex surface directed toward the object side, a biconvex lens L12, and a negative lens L13 cemented to the biconvex lens L12.

第2レンズ群G2は、物体側より順に並んだ、正レンズL21と、正レンズL21に接合される負レンズL22と、負レンズL22に接合される正レンズL23とからなる。   The second lens group G2 includes a positive lens L21, a negative lens L22 cemented to the positive lens L21, and a positive lens L23 cemented to the negative lens L22, which are arranged in order from the object side.

第1レンズ群G1を構成する正レンズL11の硝材は、合成石英であり、前述の表3よりレンズパワーの温度依存係数はCL11=21.5×10-6(K-1)なので、条件式(1)すなわちCL11>15×10-6(K-1)を満たしている。 The glass material of the positive lens L11 constituting the first lens group G1 is synthetic quartz, and the temperature dependence coefficient of the lens power is C L11 = 21.5 × 10 −6 (K −1 ) from the above-described Table 3, so that the conditional expression ( 1) That is, C L11 > 15 × 10 −6 (K −1 ) is satisfied.

また、第1レンズ群G1を構成する両凸レンズL12の硝材は、オハラ社のS-FPL51のEDガラスであり、前述の表3よりレンズパワーの温度依存係数はCL12=-25.3×10-6(K-1)なので、条件式(2)すなわちCL12<-20×10-6(K-1)を満たしている。 The glass material of the biconvex lens L12 constituting the first lens group G1 is OH glass of OHARA S-FPL51. From Table 3, the temperature dependence coefficient of the lens power is C L12 = −25.3 × 10 −6. Since (K −1 ), the conditional expression (2), that is, C L12 <−20 × 10 −6 (K −1 ) is satisfied.

図4は、第2実施例に係る色消しアサーマルレンズ系の球面収差、非点収差、歪曲収差を示す図である。なお、非点収差図において、Sはサジタル像面を示し、Tはメリジオナル像面を示す。本実施例では、両凸レンズL12の硝材はEDガラスであるため、図4に示すように、軸上色収差が小さく抑えられている。   FIG. 4 is a diagram illustrating spherical aberration, astigmatism, and distortion of the achromatic athermal lens system according to the second example. In the astigmatism diagram, S indicates a sagittal image plane, and T indicates a meridional image plane. In this embodiment, since the glass material of the biconvex lens L12 is ED glass, axial chromatic aberration is suppressed to a small value as shown in FIG.

そして、先に述べたように、正のEDレンズである両凸レンズL12は、温度上昇に伴って大幅に焦点距離が延びる、すなわちレンズパワーが大幅に小さくなる性質を持っている。このことは、レンズパワーの温度依存係数がCL12=-25.3×10-6(K-1)という大きな負の値を示すことからも説明できる。そこで、本実施例では、温度上昇に伴う両凸レンズL12のレンズパワー減少の効果を打ち消すために、両凸レンズL12の物体側に位置する正レンズL11の硝材に、レンズパワーの温度依存係数Cが大きな正の値(CL1=21.5×10-6(K-1))を持つ合成石英を採用した。その結果、正レンズL11は温度上昇に伴って大幅にレンズパワーが大きくなり、両凸レンズL12のレンズパワー減少の効果を打ち消すことが可能となり、最終的に温度変動時のデフォーカスの発生を抑えることが可能である。 As described above, the biconvex lens L12, which is a positive ED lens, has a property that the focal length is greatly increased as the temperature rises, that is, the lens power is significantly reduced. This can be explained by the fact that the temperature dependence coefficient of the lens power shows a large negative value of C L12 = −25.3 × 10 −6 (K −1 ). Therefore, in this embodiment, in order to cancel out the effect of reducing the lens power of the biconvex lens L12 due to the temperature rise, the glass material of the positive lens L11 located on the object side of the biconvex lens L12 has a large temperature dependence coefficient C of the lens power. Synthetic quartz having a positive value (C L1 = 21.5 × 10 −6 (K −1 )) was employed. As a result, the lens power of the positive lens L11 greatly increases as the temperature rises, and the effect of reducing the lens power of the biconvex lens L12 can be canceled out, and finally the occurrence of defocus during temperature fluctuations can be suppressed. Is possible.

以下、表4に第2実施例に係る色消しアサーマルレンズ系が環境温度20℃の状態にある場合のレンズ系データ、表5に第2実施例に係る色消しアサーマルレンズ系が環境温度40℃の状態にある場合のレンズ系データを示す。表4,表5において温度変動時の曲率半径、レンズ中心厚、レンズ間隔、屈折率、それぞれの変化を計算するために用いたデータは、前述の表3のものを使った。   Table 4 below shows lens system data when the achromatic athermal lens system according to the second example is at an ambient temperature of 20 ° C., and Table 5 shows that the achromatic athermal lens system according to the second example has an ambient temperature of 40 ° C. The lens system data in the state is shown. In Tables 4 and 5, the data used to calculate the radius of curvature, the lens center thickness, the lens interval, and the refractive index when temperature changes are the same as those in Table 3 described above.

(表4)第2実施例に係る色消しアサーマルレンズ系が環境温度20℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.00mm、 F/3、 画角5.25°、 基準波長e線(波長546.07nm)
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 10.0000 1.000000
2 113.0610 6.0000 1.460082(合成石英)
3 -467.1246 1.0000 1.000000
4 61.2036 11.0000 1.498454(S-FPL51)
5 -61.8003 4.0000 1.608909(S-BAM4)
6 115.8874 23.6637 1.000000
7 208.6886 8.0000 1.855040(S-TIH53)
8 -46.6818 8.0000 1.652220(S-TIM22)
9 21.6453 11.0000 1.518251(S-BSL7)
10 440.8099 62.6798 1.000000
11(近軸像面) INFINITY − 1.000000
(Table 4) Lens system data when the achromatic athermal lens system according to the second example is in an ambient temperature of 20 ° C. [Overall specifications]
Focal length 120.00mm, F / 3, angle of view 5.25 °, reference wavelength e-line (wavelength 546.07nm)
[Lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 10.0000 1.000000
2 113.0610 6.0000 1.460082 (Synthetic quartz)
3 -467.1246 1.0000 1.000000
4 61.2036 11.0000 1.498454 (S-FPL51)
5 -61.8003 4.0000 1.608909 (S-BAM4)
6 115.8874 23.6637 1.000000
7 208.6886 8.0000 1.855040 (S-TIH53)
8 -46.6818 8.0000 1.652220 (S-TIM22)
9 21.6453 11.0000 1.518251 (S-BSL7)
10 440.8099 62.6798 1.000000
11 (Paraxial image plane) INFINITY-1.000000

(表5) 第2実施例に係る色消しアサーマルレンズ系が環境温度40℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.05mm、 F/3、 画角5.25°、 基準波長e線(波長546.07nm)
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 10.0047 1.000000
2 113.0621 6.0001 1.460284(合成石英)
3 -467.1293 1.0005 1.000000
4 61.2196 11.0029 1.498332(S-FPL51)
5 -61.8136 4.0007 1.608943(S-BAM4)
6 115.9068 23.6749 1.000000
7 208.7253 8.0014 1.855080(S-TIH53)
8 -46.6898 8.0013 1.652272(S-TIM22)
9 21.6486 11.0016 1.518307(S-BSL7)
10 440.8734 62.7094 1.000000
11(近軸像面) INFINITY Δ=±0.0000 1.000000
(Table 5) Lens system data when the achromatic athermal lens system according to the second example is in an ambient temperature of 40 ° C. [Overall specifications]
Focal length 120.05mm, F / 3, angle of view 5.25 °, reference wavelength e-line (wavelength 546.07nm)
[Lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 10.0047 1.000000
2 113.0621 6.0001 1.460284 (Synthetic quartz)
3 -467.1293 1.0005 1.000000
4 61.2196 11.0029 1.498332 (S-FPL51)
5 -61.8136 4.0007 1.608943 (S-BAM4)
6 115.9068 23.6749 1.000000
7 208.7253 8.0014 1.855080 (S-TIH53)
8 -46.6898 8.0013 1.652272 (S-TIM22)
9 21.6486 11.0016 1.518307 (S-BSL7)
10 440.8734 62.7094 1.000000
11 (Paraxial image plane) INFINITY Δ = ± 0.0000 1.000000

表4と表5のレンズ系データを基に近軸光線追跡を行うと、第2実施例に係る色消しアサーマルレンズ系において、環境温度が20℃から40℃に変化すると、レンズ系の焦点距離は0.05mm長くなるが、近軸像面位置は全く移動していない。したがって、第2実施例では、温度変動によるデフォーカスの発生を良好に抑えていることが分かる。   When paraxial ray tracing is performed based on the lens system data in Tables 4 and 5, in the achromatic athermal lens system according to the second example, when the environmental temperature changes from 20 ° C. to 40 ° C., the focal length of the lens system Is longer by 0.05 mm, but the paraxial image plane position is not moved at all. Therefore, it can be seen that in the second embodiment, the occurrence of defocus due to temperature fluctuation is well suppressed.

(第3実施例)
図5,図6及び表3,表6,表7を用いて、本発明の第3実施例に係る色消しアサーマルレンズ系について説明する。図5に示すように、第3実施例に係る色消しアサーマルレンズ系は、物体側から順に並んだ、開口絞りSと、全体として正の屈折力を有する第1レンズ群G1と、第2レンズ群G2とから構成される。
(Third embodiment)
An achromatic athermal lens system according to the third embodiment of the present invention will be described with reference to FIGS. 5 and 6 and Tables 3, 6 and 7. FIG. As shown in FIG. 5, the achromatic athermal lens system according to the third example includes an aperture stop S, a first lens group G1 having a positive refractive power as a whole, and a second lens, which are arranged in order from the object side. And a group G2.

第1レンズ群G1は、物体側より順に並んだ、物体側に凸面を向けた正レンズL11と、両凸レンズL12と、両凸レンズL12に所定の空気間隔を隔てて配置される負レンズL13とからなる。   The first lens group G1 is composed of a positive lens L11 having a convex surface directed toward the object side, a biconvex lens L12, and a negative lens L13 arranged at a predetermined air interval from the biconvex lens L12, which are arranged in order from the object side. Become.

第2レンズ群G2は、物体側より順に並んだ、正レンズL21と、正レンズL21に所定の空気間隔を隔てて配置される負レンズL22と、負レンズL22に所定の空気間隔を隔てて配置される正レンズL23とからなる。   The second lens group G2 is arranged in order from the object side, the positive lens L21, the negative lens L22 arranged with a predetermined air interval from the positive lens L21, and the negative lens L22 with a predetermined air interval. And a positive lens L23.

第1レンズ群G1を構成する正レンズL11の硝材は、合成石英であり、前述の表3よりレンズパワーの温度依存係数はCL11=21.5×10-6(K-1)なので、条件式(1)すなわちCL11>15×10-6(K-1)を満たしている。 The glass material of the positive lens L11 constituting the first lens group G1 is synthetic quartz, and the temperature dependence coefficient of the lens power is C L11 = 21.5 × 10 −6 (K −1 ) from the above-described Table 3, so that the conditional expression ( 1) That is, C L11 > 15 × 10 −6 (K −1 ) is satisfied.

また、第1レンズ群G1を構成する両凸レンズL12の硝材は、オハラ社のS-FPL51のEDガラスであり、前述の表3よりレンズパワーの温度依存係数はCL12=-25.3×10-6(K-1)なので、条件式(2)すなわちCL12<-20×10-6(K-1)を満たしている。 The glass material of the biconvex lens L12 constituting the first lens group G1 is OH glass of OHARA S-FPL51. From Table 3, the temperature dependence coefficient of the lens power is C L12 = −25.3 × 10 −6. Since (K −1 ), the conditional expression (2), that is, C L12 <−20 × 10 −6 (K −1 ) is satisfied.

また、第2レンズ群G2を構成する正レンズL23の硝材は、合成石英であり、前述の表3よりレンズパワーの温度依存係数はCL23=21.5×10-6(K-1)なので、条件式(3)すなわちCL23>15×10-6(K-1)を満たしている。 Further, the glass material of the positive lens L23 constituting the second lens group G2 is synthetic quartz, and the temperature dependency coefficient of the lens power is C L23 = 21.5 × 10 −6 (K −1 ) from Table 3 above, so that the condition Expression (3), that is, C L23 > 15 × 10 −6 (K −1 ) is satisfied.

図6は、第3実施例に係る色消しアサーマルレンズ系の球面収差、非点収差、歪曲収差を示す図である。なお、非点収差図において、Sはサジタル像面を示し、Tはメリジオナル像面を示す。本実施例では、両凸レンズL12の硝材はEDガラスであるため、図6に示すように、軸上色収差が小さく抑えられている。   FIG. 6 is a diagram illustrating spherical aberration, astigmatism, and distortion of the achromatic athermal lens system according to the third example. In the astigmatism diagram, S indicates a sagittal image plane, and T indicates a meridional image plane. In the present embodiment, since the glass material of the biconvex lens L12 is ED glass, the axial chromatic aberration is suppressed to be small as shown in FIG.

そして、先に述べたように、正のEDレンズである両凸レンズL12は、温度上昇に伴って大幅に焦点距離が延びる、すなわちレンズパワーが大幅に小さくなる性質を持っている。このことは、レンズパワーの温度依存係数がCL12=-25.3×10-6(K-1)という大きな負の値を示すことからも説明できる。そこで、本実施例では、温度上昇に伴う両凸レンズL12のレンズパワー減少の効果を打ち消すために、レンズパワーの温度依存係数が大きな正の値(=21.5×10-6(K-1))を持つ合成石英を、両凸レンズL12の物体側に位置する正レンズL11の硝材及び第2レンズ群G2を構成する正レンズL23の硝材に採用した。このことより、温度変動時のレンズパワー補正負担を、これら2つのレンズL11,L23に分担させることが可能となるため、(レンズパワーを収差補正上最適なパワーよりも大幅に大きく設定して正レンズL11に単独で負担させる場合よりも、)EDレンズである両凸レンズL12のレンズパワーを大きくすることが可能となり、デフォーカスの発生を抑えるだけでなく、軸上色収差の発生をより効果的に抑えることができた。 As described above, the biconvex lens L12, which is a positive ED lens, has a property that the focal length is greatly increased as the temperature rises, that is, the lens power is significantly reduced. This can be explained by the fact that the temperature dependence coefficient of the lens power shows a large negative value of C L12 = −25.3 × 10 −6 (K −1 ). Therefore, in this embodiment, in order to cancel the effect of the reduction in the lens power of the biconvex lens L12 due to the temperature rise, a positive value (= 21.5 × 10 −6 (K −1 )) having a large temperature dependence coefficient of the lens power is used. Synthetic quartz is used for the glass material of the positive lens L11 located on the object side of the biconvex lens L12 and the glass material of the positive lens L23 constituting the second lens group G2. As a result, the lens power correction burden at the time of temperature fluctuation can be shared by these two lenses L11 and L23, so that the lens power is set to be significantly larger than the optimum power for aberration correction. It is possible to increase the lens power of the biconvex lens L12, which is an ED lens, as compared with the case where the lens L11 is solely burdened, and not only suppresses the occurrence of defocus but also more effectively generates axial chromatic aberration. I was able to suppress it.

以下、表6に第3実施例が環境温度20℃の状態にある場合のレンズ系データ、表7に第3実施例が環境温度40℃の状態にある場合のレンズ系データを示す。表6,表7において温度変動時の曲率半径、レンズ中心厚、レンズ間隔、屈折率、それぞれの変化を計算するために用いたデータは、前述の表3のものを使った。   Table 6 shows lens system data when the third example is in an environmental temperature of 20 ° C., and Table 7 shows lens system data when the third example is in an environmental temperature of 40 ° C. In Tables 6 and 7, the data used for calculating the radius of curvature, the lens center thickness, the lens interval, and the refractive index when temperature changes are the same as those in Table 3 described above.

(表6)第3実施例に係る色消しアサーマルレンズ系が環境温度20℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.00mm、 F/3、 画角5.25°、 基準波長e線
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 10.0000 1.000000
2 109.8118 6.0000 1.460082(合成石英)
3 -299.1439 1.0000 1.000000
4 32.8596 14.0000 1.498454(S-FPL51)
5 -91.2448 1.1374 1.000000
6 -79.3941 4.0000 1.806422(S-LAM66)
7 44.7424 7.6157 1.000000
8 59.2385 8.0000 1.855040(S-TIH53)
9 -72.6885 0.5977 1.000000
10 -89.6702 4.0000 1.671568(S-TIM39)
11 25.2173 2.1570 1.000000
12 35.9362 6.0000 1.460082(合成石英)
13 440.0427 64.0446 1.000000
14(近軸像面) INFINITY − 1.000000
(Table 6) Lens system data when the achromatic athermal lens system according to the third example is at an ambient temperature of 20 ° C. [Overall specifications]
Focal length 120.00mm, F / 3, angle of view 5.25 °, reference wavelength e-line [lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 10.0000 1.000000
2 109.8118 6.0000 1.460082 (Synthetic quartz)
3 -299.1439 1.0000 1.000000
4 32.8596 14.0000 1.498454 (S-FPL51)
5 -91.2448 1.1374 1.000000
6 -79.3941 4.0000 1.806422 (S-LAM66)
7 44.7424 7.6157 1.000000
8 59.2385 8.0000 1.855040 (S-TIH53)
9 -72.6885 0.5977 1.000000
10 -89.6702 4.0000 1.671568 (S-TIM39)
11 25.2173 2.1570 1.000000
12 35.9362 6.0000 1.460082 (Synthetic quartz)
13 440.0427 64.0446 1.000000
14 (Paraxial image plane) INFINITY-1.000000

(表7) 第3実施例に係る色消しアサーマルレンズ系が環境温度40℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.04mm、 F/3、 画角5.25°、 基準波長e線
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 10.0047 1.000000
2 109.8129 6.0001 1.460284(合成石英)
3 -299.1469 1.0005 1.000000
4 32.8682 14.0037 1.498332(S-FPL51)
5 -91.2687 1.1379 1.000000
6 -79.4067 4.0006 1.806502(S-LAM66)
7 44.7495 7.6193 1.000000
8 59.2489 8.0014 1.855080(S-TIH53)
9 -72.7013 0.5979 1.000000
10 -89.6858 4.0007 1.671610(S-TIM39)
11 25.2217 2.1580 1.000000
12 35.9365 6.0001 1.460284(合成石英)
13 440.0471 64.0748 1.000000
14(近軸像面) INFINITY Δ=±0.0000 1.000000
(Table 7) Lens system data when the achromatic athermal lens system according to the third example is at an ambient temperature of 40 ° C. [Overall specifications]
Focal length 120.04mm, F / 3, angle of view 5.25 °, reference wavelength e-line [lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 10.0047 1.000000
2 109.8129 6.0001 1.460284 (Synthetic quartz)
3 -299.1469 1.0005 1.000000
4 32.8682 14.0037 1.498332 (S-FPL51)
5 -91.2687 1.1379 1.000000
6 -79.4067 4.0006 1.806502 (S-LAM66)
7 44.7495 7.6193 1.000000
8 59.2489 8.0014 1.855080 (S-TIH53)
9 -72.7013 0.5979 1.000000
10 -89.6858 4.0007 1.671610 (S-TIM39)
11 25.2217 2.1580 1.000000
12 35.9365 6.0001 1.460284 (Synthetic quartz)
13 440.0471 64.0748 1.000000
14 (Paraxial image plane) INFINITY Δ = ± 0.0000 1.000000

表6と表7のレンズ系データを基に近軸光線追跡を行うと、第3実施例に係る色消しアサーマルレンズ系において、環境温度が20℃から40℃に変化すると、レンズ系の焦点距離は0.04mm長くなるが、近軸像面位置は全く移動していない。したがって、第3実施例では、温度変動によるデフォーカスの発生を良好に抑えていることが分かる。   When paraxial ray tracing is performed based on the lens system data in Tables 6 and 7, in the achromatic athermal lens system according to the third example, when the environmental temperature changes from 20 ° C. to 40 ° C., the focal length of the lens system Is 0.04 mm longer, but the paraxial image plane position does not move at all. Therefore, it can be seen that in the third embodiment, the occurrence of defocus due to temperature fluctuation is well suppressed.

ここで比較のため、図8,図9及び表3,表8,表9を用いて、特許文献1の実施例1である結像レンズ系について説明する。図8に示す結像レンズ系は、接合レンズG1、メニスカスレンズG2、接合レンズG3から成り、接合レンズG1は両凸レンズL11とメニスカスレンズL12から成り、接合レンズG3は平凹レンズL31と両凸レンズL32から成っている。特許文献1のレンズ系においては、両凸レンズL11,L32は共にEDガラス(オハラ社のS-FPL51に相当するガラス(前述の表3参照))で作成されている。そのため、図9に示すように、軸上色収差が極めて小さく抑えられている。   Here, for comparison, the imaging lens system that is Example 1 of Patent Document 1 will be described with reference to FIGS. 8 and 9 and Tables 3, 8, and 9. The imaging lens system shown in FIG. 8 includes a cemented lens G1, a meniscus lens G2, and a cemented lens G3. The cemented lens G1 includes a biconvex lens L11 and a meniscus lens L12. The cemented lens G3 includes a plano-concave lens L31 and a biconvex lens L32. It is made up. In the lens system of Patent Document 1, the biconvex lenses L11 and L32 are both made of ED glass (glass corresponding to S-FPL51 of OHARA Inc. (see Table 3 above)). For this reason, as shown in FIG. 9, the longitudinal chromatic aberration is suppressed to be extremely small.

以下、表8に特許文献1の実施例1に係るレンズ系が環境温度20℃の状態にある場合のレンズデータ、表9に特許文献1の実施例1に係るレンズ系が環境温度40℃の状態にある場合のレンズデータを示す。また、表8,表9において温度変動時の曲率半径、レンズ中心厚、レンズ間隔、屈折率、それぞれの変化を計算するために用いたデータは、前述の表3のものを使った。   Table 8 below shows lens data when the lens system according to Example 1 of Patent Document 1 is in an environmental temperature state of 20 ° C., and Table 9 shows that the lens system according to Example 1 of Patent Document 1 has an environmental temperature of 40 ° C. The lens data in the state is shown. In Tables 8 and 9, the data used to calculate the radius of curvature, the lens center thickness, the lens interval, and the refractive index when temperature changes are the same as those in Table 3 described above.

(表8) 特許文献1の実施例1に係るレンズ系が環境温度20℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.00mm、 F/8、 画角5.25°、 基準波長e線(波長546.07nm)
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 131.5000 1.000000
2 225.3300 7.0000 1.498454(S-FPL51)
3 -29.3810 1.5000 1.641287(S-BSM18)
4 -225.3300 0.3000 1.000000
5 32.6160 7.1000 1.694167(S-TIM28)
6 30.3230 3.5000 1.000000
7 INFINITY 2.5000 1.518251(S-BSL7)
8 56.0890 6.5000 1.498454(S-FPL51)
9 -56.0890 107.6995 1.000000
10(近軸像面) INFINITY − 1.000000
(Table 8) Lens system data when the lens system according to Example 1 of Patent Document 1 is at an ambient temperature of 20 ° C. [Overall specifications]
Focal length 120.00mm, F / 8, angle of view 5.25 °, reference wavelength e-line (wavelength 546.07nm)
[Lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 131.5000 1.000000
2 225.3300 7.0000 1.498454 (S-FPL51)
3 -29.3810 1.5000 1.641287 (S-BSM18)
4 -225.3300 0.3000 1.000000
5 32.6160 7.1000 1.694167 (S-TIM28)
6 30.3230 3.5000 1.000000
7 INFINITY 2.5000 1.518251 (S-BSL7)
8 56.0890 6.5000 1.498454 (S-FPL51)
9 -56.0890 107.6995 1.000000
10 (Paraxial image plane) INFINITY-1.000000

(表9) 特許文献1の実施例1に係るレンズ系が環境温度40℃の状態にある場合のレンズ系データ
[全体諸元]
焦点距離120.18mm、 F/8、 画角5.25°、 基準波長e線(波長546.07nm)
[レンズデータ]
面番号 曲率半径(mm) 面間隔(mm) 屈折率ne(硝材名)
1(入射瞳面) INFINITY 131.5621 1.000000
2 225.3890 7.0018 1.498332(S-FPL51)
3 -29.3869 1.5002 1.641343(S-BSM18)
4 -225.3615 0.3001 1.000000
5 32.6213 7.1012 1.694227(S-TIM28)
6 30.3280 3.5017 1.000000
7 INFINITY 2.5004 1.518307(S-BSL7)
8 56.1004 6.5017 1.498332(S-FPL51)
9 -56.1037 107.7503 1.000000
10(近軸像面) INFINITY Δ=+0.1266 1.000000
(Table 9) Lens system data when the lens system according to Example 1 of Patent Document 1 is in an ambient temperature of 40 ° C. [Overall specifications]
Focal length 120.18mm, F / 8, angle of view 5.25 °, reference wavelength e-line (wavelength 546.07nm)
[Lens data]
Surface number Curvature radius (mm) Surface spacing (mm) Refractive index ne (Glass name)
1 (entrance pupil plane) INFINITY 131.5621 1.000000
2 225.3890 7.0018 1.498332 (S-FPL51)
3 -29.3869 1.5002 1.641343 (S-BSM18)
4 -225.3615 0.3001 1.000000
5 32.6213 7.1012 1.694227 (S-TIM28)
6 30.3280 3.5017 1.000000
7 INFINITY 2.5004 1.518307 (S-BSL7)
8 56.1004 6.5017 1.498332 (S-FPL51)
9 -56.1037 107.7503 1.000000
10 (Paraxial image plane) INFINITY Δ = + 0.1266 1.000000

表8と表9のレンズ系データを基に近軸光線追跡を行うと、特許文献1の実施例1に係るレンズ系において、環境温度が20℃から40℃に変化すると、光学系の焦点距離が0.18mm長くなり、近軸像面位置が0.1266mm像側へ移動することが分かる。このとき、許容錯乱円の直径を0.010mmとすると、FナンバーがF/8なので焦点深度は0.080mmとなり、20℃から40℃への変化で生じた0.1266mmのデフォーカスは許容できないことが分かる。   When paraxial ray tracing is performed based on the lens system data in Table 8 and Table 9, when the environmental temperature changes from 20 ° C. to 40 ° C. in the lens system according to Example 1 of Patent Document 1, the focal length of the optical system Is increased by 0.18 mm, and the paraxial image plane position moves to the 0.1266 mm image side. At this time, if the allowable circle of confusion is 0.010 mm, the F number is F / 8, so the depth of focus is 0.080 mm, and defocusing of 0.1266 mm caused by a change from 20 ° C. to 40 ° C. is not allowed. I understand that.

以上のように、本実施形態に係る色消しアサーマルレンズ系によれば、高い色消し性能を有しながら、Fナンバーが明るく、かつ温度変動時に生じるデフォーカスずれを最小限に抑えることが可能である。   As described above, according to the achromatic athermal lens system according to the present embodiment, it is possible to minimize the defocus shift that occurs when the F number is bright and the temperature fluctuates while having high achromatic performance. is there.

なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In addition, in order to make this invention intelligible, although demonstrated with the component requirement of embodiment, it cannot be overemphasized that this invention is not limited to this.

G1 第1レンズ群
G2 第2レンズ群
S 開口絞り
L1n 第1レンズ群を構成するレンズ(n=1、2、3)
L2n 第2レンズ群を構成するレンズ(n=1、2、3)
CAM 撮像カメラ(光学機器)
AL 色消しアサーマルレンズ系
B レンズ鏡筒
C 撮像素子
G1 first lens group G2 second lens group S aperture stop L1n lenses constituting the first lens group (n = 1, 2, 3)
L2n Lenses constituting the second lens group (n = 1, 2, 3)
CAM imaging camera (optical equipment)
AL Achromatic athermal lens system B Lens barrel C Image sensor

Claims (3)

物体側より順に並んだ、全体として正の屈折力を有する第1レンズ群と、第2レンズ群とから構成され、
前記第1レンズ群は、物体側より順に並んだ、物体側に凸面を向けた正レンズL11と、両凸レンズL12と、前記両凸レンズL12に接合されるか又は所定の空気間隔を隔てて配置される負レンズL13とを有し、
前記第2レンズ群は、物体側より順に並んだ、正レンズL21と、前記正レンズL21に接合されるか又は所定の空気間隔を隔てて配置される負レンズL22と、前記負レンズL22に接合されるか又は所定の空気間隔を隔てて配置される正レンズL23とを有し、
硝材に対するレンズパワーの温度依存係数C(K-1)を、前記硝材の基準波長に対する屈折率をnとし、前記硝材の基準波長に対する屈折率の温度依存係数をdn/dT(K-1)とし、前記硝材の線膨張係数をα(K-1)としたとき、次式 C={(1/(n−1))・dn/dT}−α で表すとき、
前記正レンズL11の硝材に対するレンズパワーの温度依存係数CL11は、次式
L11 > 15×10-6(K-1
の条件を満たし、
前記両凸レンズL12の硝材に対するレンズパワーの温度依存係数CL12(K-1)は、次式
L12 < -20×10-6(K-1
の条件を満たすことを特徴とする色消しアサーマルレンズ系。
The first lens group having a positive refractive power as a whole, arranged in order from the object side, and a second lens group,
The first lens group is arranged in order from the object side, and is joined to the positive lens L11 having a convex surface facing the object side, the biconvex lens L12, and the biconvex lens L12, or arranged with a predetermined air gap. Negative lens L13,
The second lens group is arranged in order from the object side, a positive lens L21, a negative lens L22 joined to the positive lens L21 or arranged with a predetermined air interval, and joined to the negative lens L22. Or a positive lens L23 arranged at a predetermined air interval,
The temperature dependence coefficient C (K −1 ) of the lens power for the glass material is defined as n for the refractive index with respect to the reference wavelength of the glass material, and dn / dT (K −1 ) for the temperature dependence coefficient of the refractive index with respect to the reference wavelength of the glass material. When the linear expansion coefficient of the glass material is α (K −1 ), the following expression C = {(1 / (n−1)) · dn / dT} −α
The temperature dependence coefficient C L11 of the lens power with respect to the glass material of the positive lens L11 is expressed by the following formula: C L11 > 15 × 10 −6 (K −1 )
Meet the requirements of
The temperature dependence coefficient C L12 (K −1 ) of the lens power with respect to the glass material of the biconvex lens L12 is expressed by the following formula: C L12 <−20 × 10 −6 (K −1 )
Achromatic athermal lens system characterized by satisfying the following conditions.
前記正レンズL23の硝材に対するレンズパワーの温度依存係数CL23(K-1)は、次式
L23 > 15×10-6(K-1
の条件を満たすことを特徴とする請求項1に記載の色消しアサーマルレンズ系。
The temperature dependence coefficient C L23 (K −1 ) of the lens power with respect to the glass material of the positive lens L23 is expressed by the following formula: C L23 > 15 × 10 −6 (K −1 )
The achromatic athermal lens system according to claim 1, wherein:
請求項1又は2に記載の色消しアサーマルレンズ系を有することを特徴とする光学機器。   An optical apparatus comprising the achromatic athermal lens system according to claim 1.
JP2009256911A 2009-11-10 2009-11-10 Achromatic athermal lens system and optical apparatus provided with the same Active JP5392618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256911A JP5392618B2 (en) 2009-11-10 2009-11-10 Achromatic athermal lens system and optical apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256911A JP5392618B2 (en) 2009-11-10 2009-11-10 Achromatic athermal lens system and optical apparatus provided with the same

Publications (3)

Publication Number Publication Date
JP2011102838A true JP2011102838A (en) 2011-05-26
JP2011102838A5 JP2011102838A5 (en) 2012-12-20
JP5392618B2 JP5392618B2 (en) 2014-01-22

Family

ID=44193206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256911A Active JP5392618B2 (en) 2009-11-10 2009-11-10 Achromatic athermal lens system and optical apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP5392618B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162779A1 (en) * 2013-04-01 2014-10-09 ソニー株式会社 Image pickup lens and image pickup apparatus
CN104166223A (en) * 2014-08-21 2014-11-26 福建福光数码科技有限公司 Miniature high-definition camera lens
CN112255696A (en) * 2020-10-30 2021-01-22 中国航空工业集团公司洛阳电光设备研究所 Infrared athermalization automatic detection equipment
CN113793655A (en) * 2021-09-14 2021-12-14 吉林大学 Optical system athermalization method based on quantitative combined glass replacement
CN114200662A (en) * 2021-12-21 2022-03-18 湖南华南光电(集团)有限责任公司 Athermal infrared collimator optical system
EP3961282A4 (en) * 2019-06-27 2022-07-06 Huawei Technologies Co., Ltd. Optical lens unit, camera, and terminal device
WO2022145772A1 (en) * 2021-01-04 2022-07-07 삼성전자 주식회사 Lens assembly and electronic device comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961713A (en) * 1995-08-30 1997-03-07 Ricoh Co Ltd Reading lens
JP2007304312A (en) * 2006-05-11 2007-11-22 Nidec Copal Corp Achromatic lens system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961713A (en) * 1995-08-30 1997-03-07 Ricoh Co Ltd Reading lens
JP2007304312A (en) * 2006-05-11 2007-11-22 Nidec Copal Corp Achromatic lens system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162779A1 (en) * 2013-04-01 2014-10-09 ソニー株式会社 Image pickup lens and image pickup apparatus
JPWO2014162779A1 (en) * 2013-04-01 2017-02-16 ソニー株式会社 Imaging lens and imaging apparatus
US9804358B2 (en) 2013-04-01 2017-10-31 Sony Corporation Bright large aperture imaging lens and imaging unit
CN104166223A (en) * 2014-08-21 2014-11-26 福建福光数码科技有限公司 Miniature high-definition camera lens
EP3961282A4 (en) * 2019-06-27 2022-07-06 Huawei Technologies Co., Ltd. Optical lens unit, camera, and terminal device
CN112255696A (en) * 2020-10-30 2021-01-22 中国航空工业集团公司洛阳电光设备研究所 Infrared athermalization automatic detection equipment
CN112255696B (en) * 2020-10-30 2024-02-20 中国航空工业集团公司洛阳电光设备研究所 Infrared athermalization automatic detecting equipment
WO2022145772A1 (en) * 2021-01-04 2022-07-07 삼성전자 주식회사 Lens assembly and electronic device comprising same
CN113793655A (en) * 2021-09-14 2021-12-14 吉林大学 Optical system athermalization method based on quantitative combined glass replacement
CN113793655B (en) * 2021-09-14 2023-11-03 吉林大学 Athermalization method for optical system based on quantitative combined glass replacement
CN114200662A (en) * 2021-12-21 2022-03-18 湖南华南光电(集团)有限责任公司 Athermal infrared collimator optical system

Also Published As

Publication number Publication date
JP5392618B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US9684155B2 (en) Optical system and image pickup apparatus including the same
JP5392618B2 (en) Achromatic athermal lens system and optical apparatus provided with the same
JP2001242378A (en) Three-group zoom lens
JP2011128371A (en) Zoom lens and imaging apparatus
JP2013161076A (en) Inner focus type telephoto lens
JP6188798B2 (en) Zoom lens
JP2008040033A (en) Wide-angle lens
JP2007156251A (en) Zoom lens and imaging apparatus having the same
KR20160144847A (en) Zoom lens system
JP2011118372A (en) Lens system
JP5755816B2 (en) Zoom lens and imaging device
JP5570171B2 (en) Imaging device and surveillance camera
JP2009175202A (en) Imaging lens, optical device with the same, and image blur correction method
JPWO2012066735A1 (en) Zoom lens
JP2009205055A (en) Variable power optical system and imaging apparatus
JP2009063715A (en) Photographic lens and imaging apparatus having the same
WO2018216789A1 (en) Optical system for image pickup, and image pickup device
JP2007171248A (en) Zoom lens system and imaging apparatus equipped with same
JP2009162809A (en) Optical system and optical equipment including the same
JP2011197058A (en) Zoom lens and imaging device using the same
JP2015022146A (en) Zoom lens and image capturing device
JP2002082281A (en) Objective lens of large aperture ratio and dark field optical device
JP5229614B2 (en) Photographic lens, optical device including the same, and image blur correction method
JP2003287678A (en) Zoom lens
JP3862117B2 (en) Zoom lens with temperature change compensation function

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5392618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250