JP2011102596A - Pipe joint structure, and heat exchanger - Google Patents

Pipe joint structure, and heat exchanger Download PDF

Info

Publication number
JP2011102596A
JP2011102596A JP2009256686A JP2009256686A JP2011102596A JP 2011102596 A JP2011102596 A JP 2011102596A JP 2009256686 A JP2009256686 A JP 2009256686A JP 2009256686 A JP2009256686 A JP 2009256686A JP 2011102596 A JP2011102596 A JP 2011102596A
Authority
JP
Japan
Prior art keywords
pipe
main pipe
joint
joint structure
joint portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009256686A
Other languages
Japanese (ja)
Other versions
JP5430360B2 (en
Inventor
Koichi Ida
紘一 位田
Yoichi Tamiya
洋一 田宮
Daisuke Echizenya
大介 越前谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009256686A priority Critical patent/JP5430360B2/en
Publication of JP2011102596A publication Critical patent/JP2011102596A/en
Application granted granted Critical
Publication of JP5430360B2 publication Critical patent/JP5430360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure pressure capacity of a pipe joint through which carbon dioxide or the like with high coolant pressure passes; and further to meet weight saving or space saving of a pipe. <P>SOLUTION: In a pipe joint structure where a first pipe (main pipe 1) is connected with a second pipe (branch pipe 2) in a branched way. An outer diameter of the joint 5 of the first pipe is formed so that the outer diameter of the joint 5 is smaller than that of parts other than the joint. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍サイクル装置などに用いられる配管継手構造に関するものであり、特に二酸化炭素等の高圧冷媒を用いる、耐圧が必要とされる熱交換器に関する。   The present invention relates to a pipe joint structure used in a refrigeration cycle apparatus and the like, and more particularly, to a heat exchanger using a high-pressure refrigerant such as carbon dioxide and requiring high pressure resistance.

冷凍サイクル装置などの熱交換器に冷媒として二酸化炭素を用いる場合には、従来のフロン等に比べて著しく配管内部の冷媒圧力が高くなる。このため、配管継手部などの構造上問題となりうる部位は耐圧の観点から、特に高耐圧の設計が必要である。そこで、このような高い内圧に耐え得る配管継手構造として、例えば特許文献1では、継手部における主管の内圧負荷による変形量を抑制すべく、主管と直交状の枝管の中心線上でしかも主管の外周の少なくとも半円弧部に、それに沿って半円弧リング状に形成された補強リブを溶着する配管継手構造を提案している。
また、特許文献2では、ヘッダーパイプのチューブ挿入孔が設けられている部分で、ヘッダーパイプの応力が集中する箇所との距離を短くする方向へ外壁を変形させる配管継手構造を提案している。
When carbon dioxide is used as a refrigerant in a heat exchanger such as a refrigeration cycle apparatus, the refrigerant pressure inside the pipe is significantly higher than that of conventional chlorofluorocarbons. For this reason, the part which may become a problem on structure, such as a pipe joint part, needs a design of especially high pressure | voltage resistance from a viewpoint of pressure | voltage resistance. Therefore, as a pipe joint structure that can withstand such a high internal pressure, for example, in Patent Document 1, in order to suppress the deformation due to the internal pressure load of the main pipe in the joint portion, on the center line of the main pipe orthogonal to the main pipe, A pipe joint structure has been proposed in which reinforcing ribs formed in a semicircular arc ring shape are welded to at least a semicircular arc portion on the outer periphery.
Further, Patent Document 2 proposes a pipe joint structure in which the outer wall is deformed in a direction in which the distance from the portion where the header pipe stress is concentrated is shortened at the portion where the tube insertion hole of the header pipe is provided.

実開昭62−7913号公報(図5、図6)Japanese Utility Model Publication No. 62-7913 (FIGS. 5 and 6) 特開2001−59687号公報(図2)JP 2001-59687 A (FIG. 2)

特許文献1のような補強リブを溶着する配管継手構造は、耐圧性に優れた構成であるが、主管の変形量が非常に大きい場合、主管に溶着されている補強リブが破損、もしくは剥離してしまうことが懸念される。
このような事態を避けるには、補強リブの肉厚を十分に大きくすることも考えられるが、それによって主管の重量、さらには、熱交換器などの冷凍サイクル装置の重量が大きくなり、軽量化の要請に反するものとなる。また、主管の肉厚を大きくすれば、それだけ主管が大きいものとなり、省スペース化の要請にも反する。
The pipe joint structure in which the reinforcing ribs are welded as in Patent Document 1 has a structure excellent in pressure resistance, but when the deformation amount of the main pipe is very large, the reinforcing ribs welded to the main pipe are damaged or peeled off. There is a concern that
In order to avoid such a situation, it is conceivable to increase the thickness of the reinforcing rib sufficiently, but this increases the weight of the main pipe and further the weight of the refrigeration cycle device such as a heat exchanger, thereby reducing the weight. It will be against the request. In addition, if the thickness of the main pipe is increased, the main pipe becomes larger, which is contrary to the demand for space saving.

また、特許文献2に開示される配管継手構造では、ヘッダーパイプの外壁を変形させることにより、媒体通路の断面を半円弧状に形成するものであるが、長手方向の形状による剛性を高耐圧に耐えうるようにするには十分とはいえない。加えて、ヘッダーパイプと冷媒配管との接続構造もしくは接続具が特別なものとなり、コスト高となる。   Moreover, in the pipe joint structure disclosed in Patent Document 2, the outer wall of the header pipe is deformed to form a cross section of the medium passage in a semicircular arc shape. Not enough to be able to withstand. In addition, the connection structure or connection tool between the header pipe and the refrigerant pipe becomes special, which increases the cost.

本発明は、上記のような従来技術の課題に鑑み、冷媒圧力が高い二酸化炭素等が通過する配管継手部の耐圧強度を確保すること、さらには配管の軽量化や省スペース化を満足することを課題としている。   The present invention, in view of the problems of the prior art as described above, ensures the pressure-resistant strength of the pipe joint portion through which carbon dioxide or the like having a high refrigerant pressure passes, and further satisfies the weight reduction and space saving of the pipe. Is an issue.

本発明に係る配管継手構造は、第1の管に第2の管を分岐状に接続する配管継手構造であって、前記第1の管の継手部の外径寸法が、前記第1の管の継手部以外の部分の外径寸法よりも小さくなるように、形成されているものである。   The pipe joint structure according to the present invention is a pipe joint structure in which a second pipe is connected in a branched manner to a first pipe, and the outer diameter of the joint portion of the first pipe is the first pipe. It is formed so that it may become smaller than the outer diameter dimension of parts other than this joint part.

本発明によれば、冷凍サイクル装置などに用いられる、特に二酸化炭素等を冷媒とする、耐圧が必要とされる配管継手構造にあって、第1の管の継手部の外径寸法が、その継手部以外の部分の外径寸法よりも小さくなるように形成するものであるので、第1の管の長手方向の形状が剛性向上効果をもたらし、さらに第1の管の継手部の変形量を低減させることができるので、第2の管との接続口を押し広げる力(開口力)、つまり応力自体を小さくするため、耐圧強度を向上させることができる。   According to the present invention, there is a pipe joint structure that is used in a refrigeration cycle apparatus or the like, in particular, uses carbon dioxide or the like as a refrigerant and requires pressure resistance, and the outer diameter of the joint portion of the first pipe is Since it is formed so as to be smaller than the outer diameter of the portion other than the joint portion, the shape in the longitudinal direction of the first tube brings about an effect of improving rigidity, and further, the deformation amount of the joint portion of the first tube is reduced. Since the pressure can be reduced, the pressure (strength) that pushes the connection port with the second pipe (opening force), that is, the stress itself is reduced, so that the pressure strength can be improved.

本発明の実施の形態1に係る配管継手構造を示す斜視図である。It is a perspective view which shows the pipe joint structure which concerns on Embodiment 1 of this invention. 実施の形態1による主管の概略側面図である。2 is a schematic side view of a main pipe according to Embodiment 1. FIG. 実施の形態1による主管の継手部の断面図(図2のA−Aで切断した拡大断面図)である。It is sectional drawing (enlarged sectional drawing cut | disconnected by AA of FIG. 2) of the coupling part of the main pipe by Embodiment 1. FIG. 実施の形態1による主管の継手部以外の部分の断面図(図2のB−Bで切断した拡大断面図)である。It is sectional drawing (enlarged sectional drawing cut | disconnected by BB of FIG. 2) of parts other than the joint part of the main pipe by Embodiment 1. FIG. 実施の形態2による主管の継手部の断面図(図2のA−Aで切断した拡大断面図)である。It is sectional drawing (enlarged sectional drawing cut | disconnected by AA of FIG. 2) of the coupling part of the main pipe by Embodiment 2. FIG. 実施の形態3による主管の継手部の断面図(図2のA−Aで切断した拡大断面図)である。It is sectional drawing (enlarged sectional drawing cut | disconnected by AA of FIG. 2) of the coupling part of the main pipe by Embodiment 3. FIG. 実施の形態4による主管の概略側面図である。FIG. 10 is a schematic side view of a main pipe according to a fourth embodiment. 実施の形態5に係る熱交換器の構成を示す斜視図である。It is a perspective view which shows the structure of the heat exchanger which concerns on Embodiment 5. FIG. 実施の形態5に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on Embodiment 5. FIG. 実施の形態5に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on Embodiment 5. FIG.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る配管継手構造を示す斜視図で、図2は、図1に示す主管1を略側面から見た図である。また、図3は、図2に示す主管1の継手部をA−Aで切断した断面を拡大して示す拡大断面図で、図4は、主管1の継手部以外の部分をB−Bで切断した断面を拡大して示す拡大断面図である。なお、以下の説明では、前記第1の管を「主管」、前記第2の管を「枝管」として説明する。また、各図において、同一の符号を付したものは、同一またはこれに相当するものを示す。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a pipe joint structure according to Embodiment 1 of the present invention, and FIG. 2 is a view of the main pipe 1 shown in FIG. 3 is an enlarged cross-sectional view showing a cross section of the joint portion of the main pipe 1 shown in FIG. 2 cut along AA, and FIG. 4 is a cross section of the main pipe 1 other than the joint portion taken along BB. It is an expanded sectional view which expands and shows the cut section. In the following description, the first pipe is described as a “main pipe” and the second pipe is described as a “branch pipe”. Moreover, in each figure, what attached | subjected the same code | symbol shows the same or equivalent thing.

内部を二酸化炭素などの高圧冷媒等が流通する冷媒通路4を有する主管1には、外周面に挿入孔3(接続口)の穴が設けてあり、この挿入孔3に分岐管である枝管2を差し込む構造となっている。そして、主管1と挿入孔3に差し込まれた枝管2とは、ロウ付けあるいは溶接などで接合がなされている。なお、図1には、図2に示す主管1の挿入孔3に枝管2が差し込まれている配管継手の構造を示し、主管1および枝管2の各配管は熱伝導性の良い材質、例えば、アルミ合金、銅、またはステンレスなどで構成される。   A main pipe 1 having a refrigerant passage 4 through which a high-pressure refrigerant such as carbon dioxide circulates is provided with a hole of an insertion hole 3 (connection port) on the outer peripheral surface. 2 is inserted. The main pipe 1 and the branch pipe 2 inserted into the insertion hole 3 are joined by brazing or welding. 1 shows the structure of a pipe joint in which the branch pipe 2 is inserted into the insertion hole 3 of the main pipe 1 shown in FIG. 2, and each pipe of the main pipe 1 and the branch pipe 2 is made of a material having good heat conductivity. For example, it is made of aluminum alloy, copper, or stainless steel.

挿入孔3の形状は、図示のように扁平な形状もしくは長穴の形状に限らず、円形などでもよい。枝管2の接続端部の外形に合わせた形状とする。また、主管1に対する枝管2の挿入方向(接続方向)も直交方向に限られるものではなく、枝管2を主管1の管軸に対し直角以外の任意の角度で接続することができる。   The shape of the insertion hole 3 is not limited to a flat shape or a long hole shape as shown, but may be a circle or the like. The shape matches the outer shape of the connection end of the branch pipe 2. Further, the insertion direction (connection direction) of the branch pipe 2 with respect to the main pipe 1 is not limited to the orthogonal direction, and the branch pipe 2 can be connected at an arbitrary angle other than a right angle with respect to the pipe axis of the main pipe 1.

本実施の形態では、図3に示す継手部5における主管1の外径寸法d1が、図4に示す継手部5以外の部分における主管1の外径寸法d2よりも小さくなるように(d1<d2)、主管1の継手部5の外側断面が円形となるように加工されている。すなわち、継手部5には、環状凹部6が設けられ、その一部が挿入孔3によって切除(開口)された欠円状(Cの字状)となっている。主管1の外周部に環状凹部6を設けることによって、主管1の継手部5は、断面の外径が継手部以外の部分の断面径よりも縮径された円形となっている。なお、環状凹部6は複数設けることもできるが、1つでも十分に剛性向上効果を発揮する。また、挿入孔3の中心部の変形量を抑制するために、環状凹部6は挿入孔3の中心部に略一致するように設けることが好ましい。
また、主管1の継手部5が曲面で形成されているため、加工部とそれ以外の部分で、応力集中部などの構造上の問題となる箇所を形成せず、耐圧強度を確保できる構造となっている。
In the present embodiment, the outer diameter dimension d 1 of the main pipe 1 in the joint portion 5 shown in FIG. 3 is smaller than the outer diameter dimension d 2 of the main pipe 1 in the portion other than the joint portion 5 shown in FIG. d 1 <d 2 ), and the outer cross section of the joint portion 5 of the main pipe 1 is processed to be circular. That is, the joint portion 5 is provided with an annular recess 6, and a part thereof is cut out (opened) by the insertion hole 3 and has a circular shape (C shape). By providing the annular recess 6 on the outer periphery of the main pipe 1, the joint portion 5 of the main pipe 1 has a circular shape in which the outer diameter of the cross section is smaller than the cross section diameter of the portion other than the joint portion. Although a plurality of annular recesses 6 can be provided, even one can sufficiently exhibit the rigidity improvement effect. Further, in order to suppress the deformation amount of the center portion of the insertion hole 3, the annular recess 6 is preferably provided so as to substantially coincide with the center portion of the insertion hole 3.
In addition, since the joint portion 5 of the main pipe 1 is formed with a curved surface, the processed portion and other portions do not form a location that causes a structural problem such as a stress concentration portion, and the structure can ensure the pressure strength. It has become.

上記構成において、主管1の冷媒通路4を通る高圧冷媒により、主管1の内面には、冷媒圧力が均等に作用する。この際、枝管挿入孔3を押し広げようとする力(開口力という)が作用することになるが、主管1の継手部5の外径を図1のように小さく加工することで、主管1の継手部5において、主管1の長手方向の形状が剛性向上効果をもたらし、環状凹部が形成されていない従来の配管継手構造と比べて、主管1の継手部5の変形量を低減させることができるので、挿入孔3を押し広げる力(開口力)、つまり応力自体を低減させることができる。このため、主管1の継手部の外径が変形しない従来の主管に比べて、主管の強度が相対的に高められており、従来よりも耐久性に優れた継手部の構造が可能となる。   In the above configuration, the refrigerant pressure acts evenly on the inner surface of the main pipe 1 by the high-pressure refrigerant passing through the refrigerant passage 4 of the main pipe 1. At this time, a force (referred to as opening force) that pushes and expands the branch pipe insertion hole 3 acts. However, by processing the outer diameter of the joint portion 5 of the main pipe 1 to be small as shown in FIG. In the joint portion 5 of 1, the shape of the main pipe 1 in the longitudinal direction brings about an effect of improving rigidity, and the deformation amount of the joint portion 5 of the main pipe 1 is reduced as compared with the conventional pipe joint structure in which the annular recess is not formed. Therefore, the force (opening force) for expanding the insertion hole 3, that is, the stress itself can be reduced. For this reason, the strength of the main pipe is relatively increased as compared with the conventional main pipe in which the outer diameter of the joint portion of the main pipe 1 is not deformed, and the structure of the joint portion having higher durability than the conventional one is possible.

さらに、主管1の継手部の外径を小さくすることができるので、省スペース化を図ることができると共に、余計な補強部材を取り付けることもないので、主管1の重量が増加する不都合もなくなる。さらに、主管1の継手部のみの外径を小さくするため、設計において後加工が可能となり、設計自由度向上にもつながり、加工性向上も期待できる。
また、主管1の端部は円形断面となっているため、冷媒配管との接続も従来の接続具を用いて安価に、しかも容易かつ確実に行うことができる。
Furthermore, since the outer diameter of the joint portion of the main pipe 1 can be reduced, space can be saved and an extra reinforcing member is not attached, so that there is no inconvenience that the weight of the main pipe 1 increases. Furthermore, since the outer diameter of only the joint portion of the main pipe 1 is reduced, post-processing can be performed in the design, leading to an improvement in design flexibility, and an improvement in workability can be expected.
Further, since the end portion of the main pipe 1 has a circular cross section, connection to the refrigerant pipe can be easily and reliably performed at low cost using a conventional connector.

実施の形態2.
図5は、本発明の実施の形態2を示すものであり、図2に示す主管1の継手部5のA−A拡大断面図である。この例では、主管1の継手部5の外側断面が縮小された四角形となっている。この場合、外径を小さくする方向へ外壁を加工する際、平板ポンチなどでプレスすることによって四角形に形成することができるため、上記の形状を加工するのが簡単であり、加工性が良い。なお、ここでの外径寸法は四角形の辺の長さを示す。
このような主管1の継手部5の構成であっても、主管1の長手方向の形状が剛性向上効果を発揮できるので、実施の形態1とほぼ同様な効果が得られる。
Embodiment 2. FIG.
FIG. 5 shows the second embodiment of the present invention and is an AA enlarged sectional view of the joint portion 5 of the main pipe 1 shown in FIG. In this example, the outer cross section of the joint portion 5 of the main pipe 1 is a reduced quadrangle. In this case, when the outer wall is processed in the direction of decreasing the outer diameter, the outer wall can be formed into a quadrangle by pressing with a flat plate punch or the like. Therefore, it is easy to process the above shape and the workability is good. In addition, the outer diameter dimension here shows the length of a square side.
Even with such a configuration of the joint portion 5 of the main pipe 1, the shape in the longitudinal direction of the main pipe 1 can exhibit the effect of improving the rigidity, and therefore, substantially the same effect as in the first embodiment can be obtained.

実施の形態3.
図6は、本発明の実施の形態3を示すものであり、図2に示す主管1の継手部5のA−A拡大断面図である。この例では、主管1の継手部5の枝管挿入方向の内径寸法d3を、これと直交する方向の内径寸法d4よりも小さく加工することによって(d3<d4)、挿入孔3の枝管挿入方向と垂直方向の応力をより低減させることができ、さらなる耐圧強度を確保できる継手部の補強構造となっている。
Embodiment 3 FIG.
FIG. 6 shows the third embodiment of the present invention and is an AA enlarged cross-sectional view of the joint portion 5 of the main pipe 1 shown in FIG. In this example, the insertion hole 3 is formed by processing the inner diameter dimension d 3 in the branch pipe insertion direction of the joint portion 5 of the main pipe 1 to be smaller than the inner diameter dimension d 4 in the direction orthogonal thereto (d 3 <d 4 ). It is possible to further reduce the stress in the direction perpendicular to the branch pipe insertion direction, and to provide a joint reinforcement structure that can secure further pressure resistance.

ここで、上記の枝管挿入方向というのは、枝管2が主管1に直交する場合を指し、90度以外の角度で接続される場合は、挿入孔3の中心部を通り主管1の管軸に垂直な方向の内径寸法d3がこれと直交する方向(すなわち、主管1の管軸方向)の内径寸法d4よりも小さくなるように加工する趣旨である。 Here, the above-mentioned branch pipe insertion direction refers to a case where the branch pipe 2 is orthogonal to the main pipe 1. When the branch pipe 2 is connected at an angle other than 90 degrees, the pipe of the main pipe 1 passes through the center of the insertion hole 3. The purpose is that the inner diameter dimension d 3 in the direction perpendicular to the axis is made smaller than the inner diameter dimension d 4 in the direction orthogonal to this (that is, the pipe axis direction of the main pipe 1).

なお、主管1の継手部5における断面形状の外径寸法d1は、実施の形態1と同様に、主管1の継手部以外の部分の外径寸法d2よりも小さくなるように形成されている。したがって、本例では、主管1の継手部5における断面形状は、短径の内径がd3、長径の内径がd4、外径がd1となる楕円形に形成されている。 The outer diameter dimension d 1 of the cross-sectional shape of the joint portion 5 of the main pipe 1 is formed to be smaller than the outer diameter dimension d 2 of the portion other than the joint portion of the main pipe 1 as in the first embodiment. Yes. Therefore, in this example, the cross-sectional shape of the joint portion 5 of the main pipe 1 is formed in an elliptical shape in which the inner diameter of the minor axis is d 3 , the inner diameter of the major axis is d 4 , and the outer diameter is d 1 .

実施の形態4.
図7は、本発明の実施の形態4を示す主管1の概略側面図である。ここでは、主管1の継手部5において、主管1の外周部に、冷媒の流れ方向に沿って傾斜状に縮径した環状凹部6を設ける。そして、挿入孔3の中心部における主管1の内径寸法減少率が、冷媒が流れる上流部に比べて下流部を大きくなるように加工することによって、圧損を低減させることができる。
なお、主管1の内径寸法減少率=[1−(加工後の内径寸法)/(加工前の内径寸法)]×100(%)で求められる。
Embodiment 4 FIG.
FIG. 7 is a schematic side view of the main pipe 1 showing Embodiment 4 of the present invention. Here, in the joint portion 5 of the main pipe 1, an annular recess 6 having a diameter reduced in an inclined manner along the refrigerant flow direction is provided on the outer peripheral portion of the main pipe 1. The pressure loss can be reduced by processing the inner diameter dimension reduction rate of the main pipe 1 at the center portion of the insertion hole 3 so that the downstream portion becomes larger than the upstream portion through which the refrigerant flows.
In addition, it is calculated | required by the internal-diameter dimension reduction | decrease rate of the main pipe 1 = [1- (inside diameter after processing) / (inside diameter before processing)] × 100 (%).

実施の形態5.
図8〜図10は、本発明の実施の形態5に係る熱交換器8の構成を示す図であり、図8は熱交換器8の斜視図、図9および図10は熱交換器8の断面図である。本実施の形態では、前記第1の管を「第1主管11と第2主管21」、前記第2の管を「第1枝管12と第2枝管22」として説明する。
図9に示すように、熱交換器8は、第1冷媒が流れる第1冷媒流路を有する扁平状の第1枝管12と、第2冷媒が流れる略長方形の第2冷媒流路を有する扁平状の第2枝管22と、第1枝管12の両端に接続された管状の第1主管11と、第2枝管の両端に接続された管状の第2主管21とを有する。なお、第1枝管12および第2枝管22は、熱交換器8の構成を示す断面図である図10に示すように、例えば6列の枝管で構成されている。
熱交換器8を構成する各管は、熱伝導性の良い材質、例えば、アルミ合金、銅およびステンレスなどで構成され、押し出し成形または引抜き成形することによって製造される。また、図10に示すように、第1主管11および第2主管21の円周側面には、それぞれ第1枝管11または第2枝管21の端部を差し込む挿入孔3が設けられており、第1枝管12と第1主管11、および第2枝管22と第2主管21とをそれぞれ接続する接合部10、20には、アルミ−シリコン系などのろう材を用いてロウ付けされる。
Embodiment 5 FIG.
8-10 is a figure which shows the structure of the heat exchanger 8 which concerns on Embodiment 5 of this invention, FIG. 8 is a perspective view of the heat exchanger 8, FIG.9 and FIG.10 is the heat exchanger 8. FIG. It is sectional drawing. In the present embodiment, the first pipe will be described as “first main pipe 11 and second main pipe 21”, and the second pipe will be described as “first branch pipe 12 and second branch pipe 22”.
As shown in FIG. 9, the heat exchanger 8 has a flat first branch pipe 12 having a first refrigerant flow path through which the first refrigerant flows, and a substantially rectangular second refrigerant flow path through which the second refrigerant flows. It has a flat second branch pipe 22, a tubular first main pipe 11 connected to both ends of the first branch pipe 12, and a tubular second main pipe 21 connected to both ends of the second branch pipe. In addition, the 1st branch pipe 12 and the 2nd branch pipe 22 are comprised, for example by 6 rows of branch pipes, as shown in FIG. 10 which is sectional drawing which shows the structure of the heat exchanger 8. As shown in FIG.
Each tube constituting the heat exchanger 8 is made of a material having good thermal conductivity, for example, aluminum alloy, copper and stainless steel, and is manufactured by extrusion molding or pultrusion molding. As shown in FIG. 10, the insertion holes 3 into which the end portions of the first branch pipe 11 or the second branch pipe 21 are respectively inserted are provided on the circumferential side surfaces of the first main pipe 11 and the second main pipe 21. The joints 10 and 20 connecting the first branch pipe 12 and the first main pipe 11 and the second branch pipe 22 and the second main pipe 21 are brazed using a brazing material such as an aluminum-silicon system. The

第1主管11および第2主管21には、熱交換器8を搭載するヒートポンプ機器などの冷熱システムの冷媒回路に接続され、第1枝管12を流れる第1冷媒と、第2枝管22を流れる第2冷媒との間で熱交換する構成となっている。
ここで、第1主管11および第2主管21の継手部の外径寸法が、第1主管11および第2主管21の継手部以外の部分の外径寸法よりも小さくなるように、環状凹部6を形成することにより加工されているので、第1主管11および第2主管21の長手方向の形状が剛性向上効果をもたらし、環状凹部が形成されていない従来の配管継手構造と比べて、継手部の変形量を低減させることができるので、挿入孔3を押し広げる力(図9に矢印で示す開口力F)、つまり応力自体を小さくし、配管継手部、さらには、熱交換器8の耐圧強度を従来に比べて相対的に高めるようにして耐圧強度向上を図ることができる。
The first main pipe 11 and the second main pipe 21 are connected to a refrigerant circuit of a cooling system such as a heat pump device in which the heat exchanger 8 is mounted, and a first refrigerant flowing through the first branch pipe 12 and a second branch pipe 22 are connected to the first main pipe 11 and the second main pipe 21. Heat exchange is performed with the flowing second refrigerant.
Here, the annular recess 6 is formed so that the outer diameter dimension of the joint portion of the first main pipe 11 and the second main pipe 21 is smaller than the outer diameter dimension of the portion other than the joint portion of the first main pipe 11 and the second main pipe 21. The shape of the first main pipe 11 and the second main pipe 21 in the longitudinal direction brings about an effect of improving rigidity, and compared with a conventional pipe joint structure in which an annular recess is not formed. Therefore, the force for expanding the insertion hole 3 (opening force F indicated by an arrow in FIG. 9), that is, the stress itself is reduced, and the pressure resistance of the pipe joint and the heat exchanger 8 is reduced. The strength against pressure can be improved by increasing the strength relative to the conventional one.

また、第1主管11および第2主管21の継手部の外径を小さくすることができるので、省スペース化を図ることができると共に、余計な補強部材を取り付けることもないので、第1主管11および第2主管21、さらには、熱交換器8の重量が増加する不都合もなくなる。さらに、第1主管11および第2主管21の継手部のみの外径を小さくするため、設計において後加工が可能となり、熱交換器8においての設計自由度向上にもつながり、加工性向上も期待できる。   Moreover, since the outer diameter of the joint part of the 1st main pipe 11 and the 2nd main pipe 21 can be made small, while being able to attain space saving and attaching an extra reinforcement member, the 1st main pipe 11 is not attached. And the inconvenience that the weight of the 2nd main pipe 21, and also the heat exchanger 8 increases is also eliminated. Furthermore, since the outer diameters of only the joint portions of the first main pipe 11 and the second main pipe 21 are reduced, post-processing can be performed in the design, leading to improvement in design flexibility in the heat exchanger 8, and improvement in workability is also expected. it can.

なお、第1冷媒および第2冷媒には二酸化炭素等の高圧冷媒が用いられるが、例えば、第1冷媒に高圧冷媒、第2冷媒に第1冷媒に比べて圧力の低い低圧冷媒が用いられる場合には、第1主管11にのみ環状凹部6を設け、第2主管21には環状凹部を設けなくても良い。   Note that high-pressure refrigerant such as carbon dioxide is used for the first refrigerant and the second refrigerant. For example, a high-pressure refrigerant is used for the first refrigerant, and a low-pressure refrigerant having a lower pressure than the first refrigerant is used for the second refrigerant. In this case, the annular recess 6 may be provided only in the first main pipe 11, and the annular recess may not be provided in the second main pipe 21.

1 主管(第1の管)、2 枝管(第2の管)、3 挿入孔(接続口)、4 冷媒通路、5 継手部、6 環状凹部、8 熱交換器、10 第1主管と第1枝管の接合部、11 第1主管、12 第1枝管、20 第2主管と第2枝管の接合部、21 第2主管、22 第2枝管。   DESCRIPTION OF SYMBOLS 1 Main pipe (1st pipe), 2 branch pipe (2nd pipe), 3 Insertion hole (connection port), 4 Refrigerant passage, 5 Joint part, 6 Annular recessed part, 8 Heat exchanger, 10 1st main pipe and 1st Junction part of 1 branch pipe, 11 1st main pipe, 12 1st branch pipe, 20 Junction part of 2nd main pipe and 2nd branch pipe, 21 2nd main pipe, 22 2nd branch pipe.

Claims (7)

第1の管に第2の管を分岐状に接続する配管継手構造であって、
前記第1の管の継手部の外径寸法が、前記第1の管の継手部以外の部分の外径寸法よりも小さくなるように、形成されていることを特徴とする配管継手構造。
A pipe joint structure for connecting the second pipe to the first pipe in a branched shape,
A pipe joint structure, wherein an outer diameter dimension of a joint portion of the first pipe is formed to be smaller than an outer diameter dimension of a portion other than the joint portion of the first pipe.
前記第1の管の継手部の断面が、縮径された円形に形成されていることを特徴とする請求項1に記載の配管継手構造。   The pipe joint structure according to claim 1, wherein a cross section of the joint portion of the first pipe is formed in a reduced circular shape. 前記第1の管の継手部の断面が、縮小された四角形に形成されていることを特徴とする請求項1に記載の配管継手構造。   2. The pipe joint structure according to claim 1, wherein a cross section of the joint portion of the first pipe is formed into a reduced quadrangle. 前記第1の管の継手部において、前記第2の管との接続口の中心部を通り前記第1の管の管軸に垂直な方向の内径寸法が、前記第1の管の管軸方向の内径寸法よりも小さくなるように、形成されていることを特徴とする請求項1〜3のいずれか1項に記載の配管継手構造。   In the joint portion of the first tube, the inner diameter dimension in a direction perpendicular to the tube axis of the first tube passing through the center portion of the connection port with the second tube is the tube axis direction of the first tube. The pipe joint structure according to any one of claims 1 to 3, wherein the pipe joint structure is formed to be smaller than an inner diameter dimension of the pipe joint. 前記第1の管の継手部が曲面で形成されていることを特徴とする請求項1〜4のいずれか1項に記載の配管継手構造。   The pipe joint structure according to any one of claims 1 to 4, wherein the joint portion of the first pipe is formed of a curved surface. 前記第1の管の外周部に、冷媒の流れ方向に沿って傾斜状に縮径した環状凹部を設け、前記第2の管との接続口の中心部における前記第1の管の内径寸法減少率が、前記冷媒が流れる上流部に比べて下流部が大きいことを特徴とする請求項1〜5のいずれか1項に記載の配管継手構造。   An annular recess having a diameter reduced in an inclined manner along the flow direction of the refrigerant is provided on the outer periphery of the first tube, and the inner diameter of the first tube is reduced at the center of the connection port with the second tube. The pipe joint structure according to any one of claims 1 to 5, wherein the downstream portion is larger in rate than the upstream portion through which the refrigerant flows. 請求項1〜6のいずれか1項に記載の配管継手構造を用いたことを特徴とする熱交換器。   A heat exchanger using the pipe joint structure according to any one of claims 1 to 6.
JP2009256686A 2009-11-10 2009-11-10 Piping joint structure and heat exchanger Expired - Fee Related JP5430360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256686A JP5430360B2 (en) 2009-11-10 2009-11-10 Piping joint structure and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256686A JP5430360B2 (en) 2009-11-10 2009-11-10 Piping joint structure and heat exchanger

Publications (2)

Publication Number Publication Date
JP2011102596A true JP2011102596A (en) 2011-05-26
JP5430360B2 JP5430360B2 (en) 2014-02-26

Family

ID=44193009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256686A Expired - Fee Related JP5430360B2 (en) 2009-11-10 2009-11-10 Piping joint structure and heat exchanger

Country Status (1)

Country Link
JP (1) JP5430360B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331068U (en) * 1989-08-02 1991-03-26
JPH0634282A (en) * 1992-06-30 1994-02-08 Bernard J Wallis Heat exchanger and manufacture thereof and header tube for heat exchanger and manufacture thereof
JPH08136182A (en) * 1994-11-11 1996-05-31 Toshiba Corp Heat exchanger
JP2007327664A (en) * 2006-06-06 2007-12-20 Japan Climate Systems Corp Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331068U (en) * 1989-08-02 1991-03-26
JPH0634282A (en) * 1992-06-30 1994-02-08 Bernard J Wallis Heat exchanger and manufacture thereof and header tube for heat exchanger and manufacture thereof
JPH08136182A (en) * 1994-11-11 1996-05-31 Toshiba Corp Heat exchanger
JP2007327664A (en) * 2006-06-06 2007-12-20 Japan Climate Systems Corp Heat exchanger

Also Published As

Publication number Publication date
JP5430360B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP2010185614A (en) Flat pipe joint
JP2009138909A (en) Pipe joint device
US10317147B2 (en) Tank and heat exchanger
WO2011162170A1 (en) Double tube for heat exchanger
JP5709733B2 (en) Double pipe
JP2009041798A (en) Heat exchanger
JP5430360B2 (en) Piping joint structure and heat exchanger
WO2022156545A1 (en) Gas collecting pipe assembly
CN216845766U (en) Heat exchanger and air conditioning system with same
JP2011099620A (en) Heat exchanger
KR101422074B1 (en) Structure for fixing heat exchanger in outlet pipe
WO2013118762A1 (en) Fin tube-type heat exchanger
WO2012017777A1 (en) Double pipe for heat exchanger
JPWO2019130386A1 (en) Heat exchanger manufacturing method and heat exchanger
JP2010203726A (en) Heat exchanger and air conditioner
JP2007177848A (en) Piping
JP5249818B2 (en) Four-way selector valve
JP2011075154A (en) Heat exchange unit
KR20160117376A (en) Manufacturing method for heat exchanger with i-o pipe connecting member for heat exchanger
JP2003156291A (en) Heat exchanger
JP2012163223A (en) Pipe joint structure for heat exchanger
JP2009250600A (en) Copper flat heat-transfer pipe
JP2014206246A (en) Pipe joint structure and heat exchanger including the pipe joint structure
JP2010243078A (en) Heat exchanger and its manufacturing method
JP2007187381A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees