JP2011100761A - Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device - Google Patents

Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011100761A
JP2011100761A JP2009252799A JP2009252799A JP2011100761A JP 2011100761 A JP2011100761 A JP 2011100761A JP 2009252799 A JP2009252799 A JP 2009252799A JP 2009252799 A JP2009252799 A JP 2009252799A JP 2011100761 A JP2011100761 A JP 2011100761A
Authority
JP
Japan
Prior art keywords
drain region
low
concentration drain
gate electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252799A
Other languages
Japanese (ja)
Inventor
Yuichiro Oku
裕一朗 奥
Kazumi Sugita
一美 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2009252799A priority Critical patent/JP2011100761A/en
Publication of JP2011100761A publication Critical patent/JP2011100761A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which has a high breakdown voltage and low on-resistance, and a semiconductor integrated circuit device including the same in good yield at low cost. <P>SOLUTION: The semiconductor device includes: a semiconductor substrate (1) of a first conductivity type; a source region (11) of a second conductivity type opposite to the first conductivity type and formed on a surface side of the semiconductor substrate; a low-concentration drain region (12) and a high-concentration drain region (14); a gate insulating film (14) formed on the semiconductor substrate; and a gate electrode formed on the gate insulating film, wherein the gate electrode is formed so as to cover at least a part of the low-concentration drain region and has an opening (16) over the low-concentration drain region. It is preferred that the low-concentration drain region and high-density drain region adjoin each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置、半導体集積回路装置及び半導体装置の製造方法に関し、特にGOLD(Gate Overlapped Lightly Doped Drain)構造を有する半導体装置及び半導体集積回路装置並びにその製造方法に関する。
The present invention relates to a semiconductor device, a semiconductor integrated circuit device, and a manufacturing method of the semiconductor device, and more particularly to a semiconductor device having a GOLD (Gate Overlapped Lightly Doped Drain) structure, a semiconductor integrated circuit device, and a manufacturing method thereof.

LDD(Lightly Doped Drain)型のMOSFETは、高耐圧半導体装置として知られ、特に低耐圧なロジック系のMOSFETと高耐圧なパワー系のMOSFETとが同一の半導体基板上に形成される半導体集積回路装置に用いられる。LDD型のMOSFETは、ドレイン領域に形成される低濃度領域がゲート・ドレイン間の電界を緩和することで高耐圧化が達成される。また、GOLD構造を有するMOSFETは、高耐圧且つ低オン抵抗な半導体装置として知られる。GOLD型のMOSFETは、低濃度領域がゲート電極と重なり合う領域を有する。この領域を制御することで、高耐圧化と低オン抵抗化とを同時に得ることができる。
An LDD (Lightly Doped Drain) type MOSFET is known as a high breakdown voltage semiconductor device, and particularly a semiconductor integrated circuit device in which a low breakdown voltage logic MOSFET and a high breakdown voltage power MOSFET are formed on the same semiconductor substrate. Used for. In the LDD type MOSFET, a high withstand voltage is achieved because the low concentration region formed in the drain region relaxes the electric field between the gate and the drain. A MOSFET having a GOLD structure is known as a semiconductor device having a high breakdown voltage and a low on-resistance. The GOLD type MOSFET has a region where the low concentration region overlaps the gate electrode. By controlling this region, high breakdown voltage and low on-resistance can be obtained at the same time.

特許文献1には、MOSFETのゲート電極を形成する工程において、ポリシリコンをパターニングするためのレジストマスクとしてポジ型化学増幅レジストを使用することが開示される。ポジ型化学増幅レジストをマスクとしてポリシリコンをエッチングすることで、断面的に見て凸形状のゲート電極が形成される。凸形状のゲート電極をマスクとしてイオン注入することで、ゲート電極と重なり合う低濃度領域が得られる。
Patent Document 1 discloses that a positive chemically amplified resist is used as a resist mask for patterning polysilicon in a step of forming a gate electrode of a MOSFET. By etching polysilicon using the positive chemically amplified resist as a mask, a gate electrode having a convex shape as viewed in cross section is formed. By ion implantation using the convex gate electrode as a mask, a low concentration region overlapping with the gate electrode can be obtained.

また、特許文献2には、MOSFETのゲート電極上に積層した酸化膜とレジストパターンとを使用することが開示される。酸化膜はゲート電極よりも狭幅にエッチングされ、レジストパターンはゲート電極炉等幅に形成される。レジストパターンをマスクとしてイオン注入することで高濃度領域が形成され、レジストパターンを除去した後、酸化膜をマスクとしてイオン注入することでゲート電極と重なり合う低濃度領域が形成される。
Patent Document 2 discloses the use of an oxide film and a resist pattern stacked on a gate electrode of a MOSFET. The oxide film is etched to be narrower than the gate electrode, and the resist pattern is formed to have a width equal to that of the gate electrode furnace. A high concentration region is formed by ion implantation using the resist pattern as a mask, and after removing the resist pattern, a low concentration region overlapping with the gate electrode is formed by ion implantation using the oxide film as a mask.

特開平5−293421号公報Japanese Patent Laid-Open No. 5-293421 特開2007−242754号公報JP 2007-242754 A

特許文献1は、ポジ型化学増幅レジストを露光及び現像した後に残存する庇状のレジスト幅を制御することが困難である。その結果、ゲート電極の形状及び低濃度領域が安定して得られにくく、MOSFETの製造歩留まりが低くなるという問題点がある。
In Patent Document 1, it is difficult to control the width of the ridge-like resist remaining after exposing and developing a positive chemically amplified resist. As a result, the shape of the gate electrode and the low concentration region are difficult to obtain stably, and there is a problem that the manufacturing yield of the MOSFET is lowered.

また、特許文献2は、ゲート電極上に酸化膜とレジストパターンとを形成する工程及び除去する工程とが必要であり、製造工程が複雑化してしまう。その結果、MOSFETが高コスト化してしまうという問題点がある。
Further, Patent Document 2 requires a process of forming and removing an oxide film and a resist pattern on the gate electrode, and the manufacturing process becomes complicated. As a result, there is a problem that the cost of the MOSFET increases.

本発明は、上記の課題に鑑み、高耐圧且つ低オン抵抗な半導体装置及びこれを含む半導体集積回路装置を歩留まり良く、安価に提供することである。
In view of the above problems, an object of the present invention is to provide a high breakdown voltage and low on-resistance semiconductor device and a semiconductor integrated circuit device including the semiconductor device with high yield and low cost.

上記の課題を解決するため、本発明に係る半導体装置は、第1導電型の半導体基板と、前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域、低濃度ドレイン領域及び高濃度ドレイン領域と、前記半導体基板上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、を備える半導体装置であって、
前記ゲート電極は、前記低濃度ドレイン領域の少なくとも一部を覆うように形成され、且つ、前記低濃度ドレイン領域の上方において開孔を有することを特徴とする。

また、本発明に係る半導体集積回路装置は、第1導電型の半導体基板上に複数の半導素子を形成して成る半導体集積回路であって、
前記複数の半導体素子の少なくとも1つが、前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域、低濃度ドレイン領域及び高濃度ドレイン領域と、前記半導体基板上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、を備え、
前記ゲート電極は、前記低濃度ドレイン領域の少なくとも一部を覆うように形成され、且つ、前記低濃度ドレイン領域の上方において開孔を有することを特徴とする。

また、本発明に係る半導体装置の製造方法は、第1導電型の半導体基板と、前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域、低濃度ドレイン領域及び高濃度ドレイン領域と、前記半導体基板上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、を備える半導体装置の製造方法であって、
前記ゲート電極の一部に開孔を形成する第1の工程と、前記第1の工程の後、前記ゲート電極をマスクとしてイオン注入して前記低濃度ドレイン領域を形成する第2の工程と、を備えることを特徴とする。
In order to solve the above problems, a semiconductor device according to the present invention is formed on a surface side of a semiconductor substrate of a first conductivity type and a second conductivity type opposite to the first conductivity type. A semiconductor device comprising a source region, a low concentration drain region and a high concentration drain region, a gate insulating film formed on the semiconductor substrate, and a gate electrode formed on the gate insulating film,
The gate electrode is formed so as to cover at least a part of the low-concentration drain region, and has an opening above the low-concentration drain region.

The semiconductor integrated circuit device according to the present invention is a semiconductor integrated circuit formed by forming a plurality of semiconductor elements on a semiconductor substrate of a first conductivity type,
At least one of the plurality of semiconductor elements is a second conductivity type opposite to the first conductivity type, and a source region, a low concentration drain region and a high concentration drain region formed on the surface side of the semiconductor substrate, A gate insulating film formed on the semiconductor substrate, and a gate electrode formed on the gate insulating film,
The gate electrode is formed so as to cover at least a part of the low-concentration drain region, and has an opening above the low-concentration drain region.

According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: a first conductive type semiconductor substrate; and a second conductive type opposite to the first conductive type, the source region being formed on the surface side of the semiconductor substrate; A method for manufacturing a semiconductor device comprising: a low concentration drain region and a high concentration drain region; a gate insulating film formed on the semiconductor substrate; and a gate electrode formed on the gate insulating film,
A first step of forming an opening in a part of the gate electrode; and a second step of forming the low-concentration drain region by ion implantation using the gate electrode as a mask after the first step; It is characterized by providing.

本発明は以上のように構成されているので、高耐圧且つ低オン抵抗な半導体装置及びこれを含む半導体集積回路装置を歩留まり良く、安価に提供することができる。
Since the present invention is configured as described above, a high breakdown voltage and low on-resistance semiconductor device and a semiconductor integrated circuit device including the semiconductor device can be provided with a high yield and at a low cost.

本発明の実施形態に係る半導体装置及び半導体集積回路装置の主要部の平面図及び断面図である。2A and 2B are a plan view and a cross-sectional view of main parts of the semiconductor device and the semiconductor integrated circuit device according to the embodiment of the present invention. 本発明の実施形態に係る半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態の変形例に係る半導体装置の主要部の平面図である。It is a top view of the principal part of the semiconductor device which concerns on the modification of embodiment of this invention. 本発明の実施形態の変形例に係る半導体装置の主要部の平面図及び断面図である。It is the top view and sectional view of the principal part of the semiconductor device concerning the modification of the embodiment of the present invention.

以下、本発明の実施形態に係る半導体装置、半導体集積回路装置及び半導体装置の製造方法について説明する。ただし、図面は模式的なものであり、現実のものとは異なる。
Hereinafter, a semiconductor device, a semiconductor integrated circuit device, and a method for manufacturing a semiconductor device according to embodiments of the present invention will be described. However, the drawings are schematic and different from actual ones.

図1(a)は、本発明の実施形態に係る半導体集積回路装置100の主要部の平面構造を示す図であり、図1(b)は、半導体集積回路装置100の主要部の断面構造を示す図である。
FIG. 1A is a diagram showing a planar structure of the main part of the semiconductor integrated circuit device 100 according to the embodiment of the present invention, and FIG. 1B shows a cross-sectional structure of the main part of the semiconductor integrated circuit device 100. FIG.

本発明の実施形態に係る半導体集積回路装置100は、同一の半導体基板1上に形成された高耐圧なMOSFETセル10と低耐圧なMOSFETセル20とを有する。MOSFET10及びMOSFET20は、それぞれ横型MOSFETであり、半導体基板1の表面側(図1(b)における上側)において、それぞれの間には素子分離領域としてのフィールド酸化膜2が形成される。

A semiconductor integrated circuit device 100 according to an embodiment of the present invention includes a high breakdown voltage MOSFET cell 10 and a low breakdown voltage MOSFET cell 20 formed on the same semiconductor substrate 1. The MOSFET 10 and the MOSFET 20 are respectively lateral MOSFETs, and on the surface side of the semiconductor substrate 1 (upper side in FIG. 1B), a field oxide film 2 as an element isolation region is formed between each.

MOSFET10は、本発明における半導体装置であり、p型の半導体基板1と、半導体基板1の表面側に形成されるn+型のソース領域11、n−型の低濃度ドレイン領域12及びn+型の高濃度ドレイン領域13と、半導体基板1上に形成されるゲート絶縁膜14と、ゲート絶縁膜14上に形成されるゲート電極15と、を備える。ソース領域及びドレイン領域は、図示しない開孔部においてソース電極及びドレイン電極に接続される。低濃度ドレイン領域12は、高濃度ドレイン領域13よりも低い不純物濃度を有する拡散層である。また、図1(a)に示す破線は、低濃度ドレイン領域12のソース領域11側の端部を示す。
The MOSFET 10 is a semiconductor device according to the present invention, and includes a p-type semiconductor substrate 1, an n + -type source region 11 formed on the surface side of the semiconductor substrate 1, an n − -type low-concentration drain region 12, and an n + -type high A concentration drain region 13, a gate insulating film 14 formed on the semiconductor substrate 1, and a gate electrode 15 formed on the gate insulating film 14 are provided. The source region and the drain region are connected to the source electrode and the drain electrode in an opening portion (not shown). The low concentration drain region 12 is a diffusion layer having an impurity concentration lower than that of the high concentration drain region 13. Moreover, the broken line shown in FIG. 1A indicates the end of the low concentration drain region 12 on the source region 11 side.

MOSFET10は、GOLD(Gate Overlapped Lightly Doped Drain)構造を有し、MOSFET20よりも高耐圧なMOSFETである。即ち、低濃度ドレイン領域12が高濃度ドレイン領域13に隣接して形成され、低濃度ドレイン領域12の一部とゲート電極15の一部とは互いに重なり合う領域を有する。ゲート電極15は、例えばポリシリコンで形成され、低濃度ドレイン領域12と重なり合う領域には平面的に見て凹型の開孔16が複数形成される。開孔16は、断面的に見てゲート電極15を貫通するように形成されることが好ましい。開孔16の幅、長さ及び隣接する開孔との間隔は、MOSFET10に要求される特性によって決定される。
The MOSFET 10 has a GOLD (Gate Overlapped Lightly Doped Drain) structure and has a higher breakdown voltage than the MOSFET 20. That is, the low-concentration drain region 12 is formed adjacent to the high-concentration drain region 13, and a part of the low-concentration drain region 12 and a part of the gate electrode 15 have a region overlapping each other. The gate electrode 15 is made of, for example, polysilicon, and a plurality of concave openings 16 are formed in a region overlapping the low-concentration drain region 12 when viewed in plan. The opening 16 is preferably formed so as to penetrate the gate electrode 15 when viewed in cross section. The width and length of the opening 16 and the distance between adjacent openings are determined by characteristics required for the MOSFET 10.

MOSFET20は、本発明における半導体素子であり、p型の半導体基板1と、半導体基板1の表面側に形成されるn+型のソース領域21及びn+型の高濃度ドレイン領域23と、半導体基板1上に形成されるゲート絶縁膜24と、ゲート絶縁膜24上に形成されるゲート電極25と、を備える。ソース領域及びドレイン領域は、図示しない開孔部においてソース電極及びドレイン電極に接続される。
The MOSFET 20 is a semiconductor element according to the present invention, and includes a p-type semiconductor substrate 1, an n + -type source region 21 and an n + -type high-concentration drain region 23 formed on the surface side of the semiconductor substrate 1, and the semiconductor substrate 1. And a gate electrode 25 formed on the gate insulating film 24. The source region and the drain region are connected to the source electrode and the drain electrode in an opening portion (not shown).

図2は、本発明の実施形態に係る半導体装置の製造方法を示す工程断面図である。図2を用いて半導体集積回路装置100におけるMOSFET10の製造方法について説明する。
FIG. 2 is a process cross-sectional view illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention. A method for manufacturing MOSFET 10 in semiconductor integrated circuit device 100 will be described with reference to FIG.

図2(a)に示すように、p型の半導体基板1上にゲート絶縁膜14が形成される。また、ゲート絶縁膜14上にポリシリコン膜15’が形成される。ゲート絶縁膜14は、周知の熱酸化法或いはCVD(Chemical Vapor Deposition)法によって形成され、ポリシリコン膜15’は、周知のCVD法によって形成される。
As shown in FIG. 2A, a gate insulating film 14 is formed on the p-type semiconductor substrate 1. Further, a polysilicon film 15 ′ is formed on the gate insulating film 14. The gate insulating film 14 is formed by a well-known thermal oxidation method or CVD (Chemical Vapor Deposition) method, and the polysilicon film 15 ′ is formed by a well-known CVD method.

次に、図2(b)に示すように、ポリシリコン膜15’が周知のフォトリソグラフィ工程によりパターニングされ、ゲート電極15が形成される(第1の工程)。フォトリソグラフィ工程は、平面的に見て凹型の開孔を有するレジストパターンから成るマスク17を形成する工程と、マスク17を介してポリシリコン膜15’をエッチングするRIE(Reactive Ion Etching)等のドライエッチング工程を含むことが好ましい。ドライエッチング工程において、ゲート絶縁膜14は、エッチングストッパ層としての役割を果たすため、ゲート電極15を貫通する開孔16が容易に形成される。
Next, as shown in FIG. 2B, the polysilicon film 15 ′ is patterned by a well-known photolithography process to form the gate electrode 15 (first process). The photolithography process includes a process of forming a mask 17 made of a resist pattern having a concave opening in plan view, and a dry process such as RIE (Reactive Ion Etching) that etches the polysilicon film 15 ′ through the mask 17. It is preferable to include an etching step. In the dry etching process, since the gate insulating film 14 serves as an etching stopper layer, the opening 16 penetrating the gate electrode 15 is easily formed.

次に、図2(c)に示すように、ゲート電極15をマスクとしてイオン注入工程を行い、低濃度領域12’が形成される(第2の工程)。本実施形態における低濃度領域12’は、不純物濃度が1×1013cm−3程度になるように半導体基板1にP(リン)イオンを注入することで形成される。低濃度領域12’は、半導体基板1の表面のうちゲート電極15が形成されていない領域に形成される。即ち、低濃度領域12’は、半導体基板1においてゲート電極15の開孔によって露出する領域にも形成される。イオン注入工程の後、熱拡散工程によって低濃度領域12’の不純物がゲート電極15直下の領域にも拡散し、低濃度ドレイン領域12が形成される。従って、ゲート電極15と低濃度ドレイン領域12とは、平面的に見て互いに重なり合う領域を有する。
Next, as shown in FIG. 2C, an ion implantation process is performed using the gate electrode 15 as a mask to form a low concentration region 12 ′ (second process). In this embodiment, the low concentration region 12 ′ is formed by implanting P (phosphorus) ions into the semiconductor substrate 1 so that the impurity concentration is about 1 × 10 13 cm −3. The low concentration region 12 ′ is formed in a region where the gate electrode 15 is not formed on the surface of the semiconductor substrate 1. That is, the low concentration region 12 ′ is also formed in a region exposed by the opening of the gate electrode 15 in the semiconductor substrate 1. After the ion implantation step, the impurity in the low concentration region 12 ′ is diffused also in the region immediately below the gate electrode 15 by the thermal diffusion step, and the low concentration drain region 12 is formed. Therefore, the gate electrode 15 and the low-concentration drain region 12 have regions that overlap each other in plan view.

次に、図2(d)に示すように、周知のフォトリソグラフィ工程によりゲート電極15の上にマスク18を形成する(第3の工程)。その後、マスク18を介してイオン注入工程を行い、ソース領域11及び高濃度ドレイン領域13が形成される(第4の工程)。本実施形態におけるソース領域11及び高濃度ドレイン領域13は、不純物濃度が1×1016cm−3程度になるようにPイオンを注入することで形成される。イオン注入工程の後、マスク18の除去工程等を経て、MOSFET10が得られる。
Next, as shown in FIG. 2D, a mask 18 is formed on the gate electrode 15 by a known photolithography process (third process). Thereafter, an ion implantation step is performed through the mask 18 to form the source region 11 and the high concentration drain region 13 (fourth step). The source region 11 and the high concentration drain region 13 in the present embodiment are formed by implanting P ions so that the impurity concentration is about 1 × 10 16 cm −3. After the ion implantation process, the MOSFET 10 is obtained through a mask 18 removal process and the like.

本実施形態に係るMOSFET10及び半導体集積回路装置100の作用効果について説明する。
The effects of the MOSFET 10 and the semiconductor integrated circuit device 100 according to this embodiment will be described.

MOSFET10のゲート電極15は、複数の凹型の開孔16を有する。低濃度ドレイン領域12は、開孔16から半導体基板1の表面にイオン注入された不純物が拡散して形成されるため、ゲート電極15と低濃度ドレイン領域12とが互いに重なり合うGOLD構造を有するMOSFET10が得られる。従って、高耐圧且つ低オン抵抗な半導体装置及びこれを含む半導体集積回路装置を提供することができる。
The gate electrode 15 of the MOSFET 10 has a plurality of concave openings 16. The lightly doped drain region 12 is formed by diffusing impurities implanted into the surface of the semiconductor substrate 1 from the opening 16, so that the MOSFET 10 having a GOLD structure in which the gate electrode 15 and the lightly doped drain region 12 overlap each other is formed. can get. Therefore, a high breakdown voltage and low on-resistance semiconductor device and a semiconductor integrated circuit device including the same can be provided.

ゲート電極15と低濃度ドレイン領域12とが互いに重なり合う領域は、ゲート電極15における凹型の開孔16の寸法(幅、長さ及び間隔)と、不純物の拡散条件(温度、時間)と、によって精度良く制御される。従って、高耐圧且つ低オン抵抗なMOSFET及びこれを含む半導体装置の製造歩留まりが、従来の半導体装置に比べて改善される。
The region where the gate electrode 15 and the lightly doped drain region 12 overlap each other depends on the size (width, length and interval) of the concave opening 16 in the gate electrode 15 and the impurity diffusion conditions (temperature, time). Well controlled. Therefore, the manufacturing yield of the high breakdown voltage and low on-resistance MOSFET and the semiconductor device including the MOSFET is improved as compared with the conventional semiconductor device.

低濃度領域12’(低濃度ドレイン領域12)は、凹型の開孔16を有するゲート電極15をマスクとするイオン注入工程(第2の工程)によって形成される。従って、低濃度領域を形成するためのマスク形成工程を行う必要がなくなり、従来の半導体装置に比べて高耐圧なMOSFET及びこれを含む半導体装置を安価に提供することができる。また、低濃度領域12’がゲート電極15に対し自己整合的に形成されるため、半導体装置が小型化される。
The low concentration region 12 ′ (low concentration drain region 12) is formed by an ion implantation process (second process) using the gate electrode 15 having the concave opening 16 as a mask. Therefore, it is not necessary to perform a mask formation step for forming a low concentration region, and a MOSFET having a higher breakdown voltage than a conventional semiconductor device and a semiconductor device including the MOSFET can be provided at low cost. Further, since the low concentration region 12 ′ is formed in a self-aligned manner with respect to the gate electrode 15, the semiconductor device is downsized.

なお、開孔16がゲート電極15を貫通しないように形成された場合においても、上記の作用効果は得られる。
Even when the opening 16 is formed so as not to penetrate the gate electrode 15, the above-described effects can be obtained.

図3は、本発明の実施形態の変形例に係る半導体装置の主要部の平面構造を示す図である。
FIG. 3 is a diagram illustrating a planar structure of a main part of a semiconductor device according to a modification of the embodiment of the present invention.

本実施形態の変形例に係るMOSFET10a〜10cは、ゲート電極15a〜15cの開孔形状が、図1(a)に示すゲート電極15の凹型の開孔16と異なる。例えば、本実施形態の第1の変形例に係るMOSFET10aは、図3(a)に示すように、ゲート電極15aが方形の開孔16aを有し、第2の変形例に係るMOSFET10bは、図3(b)に示すように、ゲート電極15bが円形の開孔16bを有し、第3の変形例に係るMOSFET10cは、図3(c)に示すように、ゲート電極15cがアンテナ型の開孔16cを有する。なお、各変形例においてゲート絶縁膜14の形状は、それぞれ異なっても良い。
The MOSFETs 10a to 10c according to the modified example of the present embodiment are different from the concave opening 16 of the gate electrode 15 shown in FIG. For example, as shown in FIG. 3A, the MOSFET 10a according to the first modified example of the present embodiment has a square opening 16a in the gate electrode 15a, and the MOSFET 10b according to the second modified example 3 (b), the gate electrode 15b has a circular opening 16b, and the MOSFET 10c according to the third modified example has an antenna-type opening as shown in FIG. 3 (c). It has a hole 16c. In each modification, the shape of the gate insulating film 14 may be different.

本実施形態の変形例に係るMOSFETによれば、本実施形態に係るMOSFET10及び半導体集積回路装置100と同様の作用効果が得られる。
According to the MOSFET according to the modification of the present embodiment, the same operational effects as those of the MOSFET 10 and the semiconductor integrated circuit device 100 according to the present embodiment can be obtained.

図4(a)は、本実施形態の第4の変形例に係るMOSFET10dの主要部の平面構造を示す図であり、図4(b)は、MOSFET10dの主要部の断面構造を示す図である。
FIG. 4A is a diagram showing a planar structure of the main part of the MOSFET 10d according to the fourth modification of the present embodiment, and FIG. 4B is a diagram showing a cross-sectional structure of the main part of the MOSFET 10d. .

本実施形態の第4の変形例に係るMOSFET10dは、半導体基板1’がSiC(炭化シリコン)の単結晶基板で構成される。その他の構造及び製造方法は、本実施形態に係るMOSFET10と実質的に同一である。
The MOSFET 10d according to the fourth modification example of the present embodiment is formed of a single crystal substrate whose semiconductor substrate 1 ′ is SiC (silicon carbide). Other structures and manufacturing methods are substantially the same as those of the MOSFET 10 according to the present embodiment.

本実施形態の第4の変形例に係るMOSFET10dは、半導体基板1’がSiC(炭化シリコン)の単結晶基板で構成される。その他の構造及び製造方法は、本実施形態に係るMOSFET10と実質的に同一である。
The MOSFET 10d according to the fourth modification example of the present embodiment is formed of a single crystal substrate whose semiconductor substrate 1 ′ is SiC (silicon carbide). Other structures and manufacturing methods are substantially the same as those of the MOSFET 10 according to the present embodiment.

SiCは、Si(シリコン)に比べ不純物の拡散係数が小さいことが知られる。即ち、イオン注入によって半導体基板1’に導入された不純物イオンは、熱拡散工程によって深さ方向及び横方向に拡散しにくい。そのため、ゲート電極15dは、開孔16dの形状が本実施形態に係るMOSFET10のゲート電極15と実質的に同一であるが、開孔16dの幅及び長さはより大きく形成されることが好ましい。
It is known that SiC has a smaller impurity diffusion coefficient than Si (silicon). That is, impurity ions introduced into the semiconductor substrate 1 ′ by ion implantation are less likely to diffuse in the depth direction and the lateral direction by the thermal diffusion process. Therefore, although the shape of the opening 16d is substantially the same as that of the gate electrode 15 of the MOSFET 10 according to this embodiment, the gate electrode 15d is preferably formed to have a larger width and length.

本実施形態の変形例に係るMOSFET10dによれば、本実施形態に係るMOSFET10及び半導体集積回路装置100と同様の作用効果が得られる。
According to the MOSFET 10d according to the modification of the present embodiment, the same operational effects as those of the MOSFET 10 and the semiconductor integrated circuit device 100 according to the present embodiment can be obtained.

以上、本発明の実施形態の一例について説明したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において種々の変更が可能である。例えば、ドレイン領域に加えソース領域にも低濃度領域が形成される構造においても本発明の実施は可能である。また、上記の実施形態におけるp型及びn型の導電型を入れ替えても良く、ゲート電極における開孔の形状及び配置は上記以外の様々な選択が可能である。また、半導体集積回路装置においてGOLD型のMOSFETとともに同一基板上に形成される半導体素子は、MOSFETに限定されない。
As mentioned above, although an example of an embodiment of the present invention was explained, the present invention is not limited to the specific embodiment concerned, and various changes are within the scope of the gist of the present invention described in the claims. Is possible. For example, the present invention can be implemented even in a structure in which a low concentration region is formed in the source region in addition to the drain region. In addition, the p-type and n-type conductivity types in the above embodiment may be interchanged, and various shapes other than the above can be selected for the shape and arrangement of the openings in the gate electrode. Further, the semiconductor element formed on the same substrate together with the GOLD type MOSFET in the semiconductor integrated circuit device is not limited to the MOSFET.

1、1’ 半導体基板
2 フィールド酸化膜
10、20 MOSFET
11、21 ソース領域
12 低濃度ドレイン領域
13、23 高濃度ドレイン領域
14、24 ゲート絶縁膜
15、25 ゲート電極
16 開孔
100 半導体集積回路装置
1, 1 'semiconductor substrate 2 field oxide film 10, 20 MOSFET
DESCRIPTION OF SYMBOLS 11, 21 Source region 12 Low concentration drain region 13, 23 High concentration drain region 14, 24 Gate insulating film 15, 25 Gate electrode 16 Opening 100 Semiconductor integrated circuit device

Claims (7)

第1導電型の半導体基板と、
前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域、低濃度ドレイン領域及び高濃度ドレイン領域と、
前記半導体基板上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、を備える半導体装置であって、
前記ゲート電極は、前記低濃度ドレイン領域の少なくとも一部を覆うように形成され、且つ、前記低濃度ドレイン領域の上方において開孔を有することを特徴とする半導体装置。
A first conductivity type semiconductor substrate;
A source region, a low-concentration drain region, and a high-concentration drain region that are the second conductivity type opposite to the first conductivity type and are formed on the surface side of the semiconductor substrate;
A gate insulating film formed on the semiconductor substrate;
A gate electrode formed on the gate insulating film, and a semiconductor device comprising:
The semiconductor device, wherein the gate electrode is formed so as to cover at least a part of the low-concentration drain region, and has an opening above the low-concentration drain region.
前記低濃度ドレイン領域と高濃度ドレイン領域とは互いに隣接することを特徴とする請求項1に記載の半導体装置。
The semiconductor device according to claim 1, wherein the low-concentration drain region and the high-concentration drain region are adjacent to each other.
前記ゲート電極は、平面的に見て前記低濃度ドレイン領域の少なくとも一部を覆うように形成されることを特徴とする請求項1又は2に記載の半導体装置。
The semiconductor device according to claim 1, wherein the gate electrode is formed so as to cover at least a part of the low-concentration drain region when seen in a plan view.
前記半導体基板は、炭化シリコンを材料とすることを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。
The semiconductor device according to claim 1, wherein the semiconductor substrate is made of silicon carbide.
第1導電型の半導体基板上に複数の半導体素子を形成して成る半導体集積回路であって、
前記複数の半導体素子の少なくとも1つが、前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域、低濃度ドレイン領域及び高濃度ドレイン領域と、
前記半導体基板上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、を備え、
前記ゲート電極は、前記低濃度ドレイン領域の少なくとも一部を覆うように形成され、且つ、前記低濃度ドレイン領域の上方において開孔を有することを特徴とする半導体集積回路装置。
A semiconductor integrated circuit formed by forming a plurality of semiconductor elements on a semiconductor substrate of a first conductivity type,
A source region, a low concentration drain region and a high concentration drain region formed on the surface side of the semiconductor substrate, wherein at least one of the plurality of semiconductor elements is a second conductivity type opposite to the first conductivity type;
A gate insulating film formed on the semiconductor substrate;
A gate electrode formed on the gate insulating film,
The semiconductor integrated circuit device, wherein the gate electrode is formed so as to cover at least a part of the low-concentration drain region, and has an opening above the low-concentration drain region.
前記複数の半導体素子が、第1のMOSFETと前記第1のMOSFETよりも高耐圧な第2のMOSFETとを含む半導体集積回路装置であって、
前記第1のMOSFETは、前記半導体基板の表面側に形成された第1のソース領域及び第1のドレイン領域を備え、
前記第2のMOSFETは、前記第2導電型であって前記半導体基板の表面側に形成された第2のソース領域、前記低濃度ドレイン領域及び前記高濃度ドレイン領域と、
前記半導体基板上に形成された前記ゲート絶縁膜と、
前記ゲート絶縁膜上に形成された前記ゲート電極と、を備え、
前記ゲート電極は、前記低濃度ドレイン領域の少なくとも一部を覆うように形成され、且つ、前記低濃度ドレイン領域の上方において開孔を有することを特徴とする請求項5に記載の半導体集積回路装置。
The semiconductor integrated circuit device, wherein the plurality of semiconductor elements includes a first MOSFET and a second MOSFET having a higher breakdown voltage than the first MOSFET,
The first MOSFET includes a first source region and a first drain region formed on the surface side of the semiconductor substrate,
The second MOSFET is of the second conductivity type and formed on the surface side of the semiconductor substrate, the second source region, the low concentration drain region and the high concentration drain region,
The gate insulating film formed on the semiconductor substrate;
The gate electrode formed on the gate insulating film,
6. The semiconductor integrated circuit device according to claim 5, wherein the gate electrode is formed so as to cover at least a part of the low-concentration drain region, and has an opening above the low-concentration drain region. .
第1導電型の半導体基板と、
前記第1導電型と反対の第2導電型であって前記半導体基板の表面側に形成されたソース領域、低濃度ドレイン領域及び高濃度ドレイン領域と、
前記半導体基板上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、を備える半導体装置の製造方法であって、
前記ゲート電極の一部に開孔を形成する第1の工程と、
前記第1の工程の後、前記ゲート電極をマスクとしてイオン注入して前記低濃度ドレイン領域を形成する第2の工程と、を備えることを特徴とする半導体装置の製造方法。
A first conductivity type semiconductor substrate;
A source region, a low-concentration drain region, and a high-concentration drain region that are the second conductivity type opposite to the first conductivity type and are formed on the surface side of the semiconductor substrate;
A gate insulating film formed on the semiconductor substrate;
A gate electrode formed on the gate insulating film, and a manufacturing method of a semiconductor device comprising:
A first step of forming an opening in a part of the gate electrode;
And a second step of forming the lightly doped drain region by ion implantation using the gate electrode as a mask after the first step.
JP2009252799A 2009-11-04 2009-11-04 Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device Pending JP2011100761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252799A JP2011100761A (en) 2009-11-04 2009-11-04 Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252799A JP2011100761A (en) 2009-11-04 2009-11-04 Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011100761A true JP2011100761A (en) 2011-05-19

Family

ID=44191739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252799A Pending JP2011100761A (en) 2009-11-04 2009-11-04 Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011100761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851786A (en) * 2014-02-19 2015-08-19 北大方正集团有限公司 Polycrystalline grid manufacturing method and polycrystalline grid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518748A (en) * 1999-12-21 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Self-aligned silicon carbide LMOSFET
JP2006100404A (en) * 2004-09-28 2006-04-13 Nec Electronics Corp Semiconductor device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518748A (en) * 1999-12-21 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Self-aligned silicon carbide LMOSFET
JP2006100404A (en) * 2004-09-28 2006-04-13 Nec Electronics Corp Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851786A (en) * 2014-02-19 2015-08-19 北大方正集团有限公司 Polycrystalline grid manufacturing method and polycrystalline grid

Similar Documents

Publication Publication Date Title
JP4860929B2 (en) Semiconductor device and manufacturing method thereof
US7582533B2 (en) LDMOS device and method for manufacturing the same
US8754422B2 (en) Semiconductor device and process for production thereof
US6852597B2 (en) Method for fabricating power semiconductor device having trench gate structure
US8362558B2 (en) Low on-resistance lateral double-diffused MOS device
JP2002280553A (en) Semiconductor device and method for manufacturing the same
JP2009158681A (en) Silicon carbide semiconductor device and its manufacturing method
JP4955958B2 (en) Semiconductor device
JP5583077B2 (en) Semiconductor device and manufacturing method thereof
JP2006253397A (en) Semiconductor device and its manufacturing method
JP2009038068A (en) Semiconductor device and manufacturing method thereof
TW201943081A (en) Semiconductor device and method of manufacturing the same
JP2010010408A (en) Semiconductor device and method of manufacturing the same
JP2019041084A (en) Silicon carbide semiconductor device and manufacturing method of the same
JP2009055041A (en) Semiconductor device and method of fabricating the same
KR101530579B1 (en) Semiconductor device and method for manufacturing the same
JP2009272480A (en) Method of manufacturing semiconductor device
JP5719899B2 (en) Semiconductor device
JP5386120B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2011071231A (en) Semiconductor device and method for manufacturing the same
JP2011100761A (en) Semiconductor device, semiconductor integrated circuit device, and method of manufacturing semiconductor device
KR100809332B1 (en) Semiconductor integrated circuit device and fabrication method for the same
JP2005191359A (en) Semiconductor device and its manufacturing method
KR101301583B1 (en) method for fabricating power semiconductor devices
JP2006196583A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140130