JP2011099341A - Plasma reactor and exhaust emission control device using the same - Google Patents

Plasma reactor and exhaust emission control device using the same Download PDF

Info

Publication number
JP2011099341A
JP2011099341A JP2009252977A JP2009252977A JP2011099341A JP 2011099341 A JP2011099341 A JP 2011099341A JP 2009252977 A JP2009252977 A JP 2009252977A JP 2009252977 A JP2009252977 A JP 2009252977A JP 2011099341 A JP2011099341 A JP 2011099341A
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb
plasma
conductive member
plasma reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009252977A
Other languages
Japanese (ja)
Other versions
JP5356183B2 (en
Inventor
Hiroshi Matsuoka
寛 松岡
Yoshihiro Uchiyama
嘉博 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACR Co Ltd
Original Assignee
ACR Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACR Co Ltd filed Critical ACR Co Ltd
Priority to JP2009252977A priority Critical patent/JP5356183B2/en
Publication of JP2011099341A publication Critical patent/JP2011099341A/en
Application granted granted Critical
Publication of JP5356183B2 publication Critical patent/JP5356183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma reactor which eliminates hazardous substances such as NOx and particulates in an emission through an oxidation/reduction reaction by employing plasma discharge and which can be inexpensively manufactured with a simple structure and with high durability, and an exhaust emission control device using the same. <P>SOLUTION: A plasma reactor keeps honeycomb members 10H in a plurality of rows and columns, embeds even rows in a honeycomb gas passage 25 and odd rows in a conductive member 3 taken as an electrode, produces plasma discharge by independently applying high voltage to the conductive member 3 divided into an upstream side and downstream side sandwiching the honeycomb gas passage 25 therebetween, oxidises to eliminate particulates by ozone and active oxygen generated through the plasma discharge, makes a wall surface absorb NOx under the plasma discharge at low temperature and reduces to eliminate NOx discharged at high temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は,ディーゼルエンジン,ガソリンエンジン等の原動機,又はバーナ,ボイラ等の燃焼機器から排出される排気ガスに含有されるNOX ,粒子状物質(PM)等の有害物質を吸着し還元反応や酸化反応で消失させ,排気ガスを浄化するプラズマ反応器及びそれを用いた排気ガス浄化装置に関する。 The present invention adsorbs harmful substances such as NO x and particulate matter (PM) contained in exhaust gas discharged from a prime mover such as a diesel engine and a gasoline engine, or combustion equipment such as a burner and a boiler. The present invention relates to a plasma reactor for eliminating exhaust gas and purifying exhaust gas, and an exhaust gas purifying apparatus using the plasma reactor.

ディーゼルエンジンは,高い熱効率を有することから,結果的にディーゼル車の普及は地球温暖化防止に寄与することになる。また,ディーゼルエンジンから排出される炭素系の粒子状物質(PM),NOX ,有機化合物等の有害物質は,人体に有害であることから,近年,その排出量を益々低減するように規制されている。ディーゼル車から排出される排気ガスの温度が低いため,プラズマ反応による有害物質低減の技術は,PMの除去に有効であるとされている。従来,排気ガス浄化装置について,エンジンや燃焼機から排出されるPMをプラズマ反応を利用して低減することが有効であることが知られている。 Diesel engines have high thermal efficiency, and as a result, the spread of diesel vehicles will contribute to the prevention of global warming. In addition, harmful substances such as carbon-based particulate matter (PM), NO x , and organic compounds emitted from diesel engines are harmful to the human body and have been regulated in recent years to further reduce their emissions. ing. Because the temperature of exhaust gas discharged from diesel vehicles is low, the technology for reducing harmful substances by plasma reaction is said to be effective for removing PM. Conventionally, it is known that it is effective to reduce PM discharged from an engine or a combustor using a plasma reaction in an exhaust gas purification device.

プラズマ下NOX 浄化方法及びその装置として,排気ガスが低温から高温まで効率よくNOX を除去することができるというものが知られている。該プラズマ下NOX 浄化方法は,排気ガス温度がNOX 浄化触媒の作用温度以下であるときには,弱塩基性を呈するプラズマ下NOX 吸着材の表面付近で放電し,還元剤含有排気ガス雰囲気でプラズマを発生させてプラズマ下NOX 吸着材にNOX を吸着させ,排気ガス温度がNOX 浄化触媒の作用温度以上であるときには放電を止めて.プラズマ下NOX 吸着材に吸着されていたNOX を放出させ,プラズマ下NOX 吸着材から放出させたNOX と排気ガス中のNOX とをNOX 浄化触媒に導き,NOX の浄化処理を行うというものである(例えば,特許文献1参照)。 As an under-plasma NO x purification method and apparatus therefor, it is known that exhaust gas can efficiently remove NO x from a low temperature to a high temperature. The plasma under NO X purification method, when the exhaust gas temperature is below operating temperature of the NO X purification catalyst, discharged near the surface of the plasma under NO X adsorbent exhibiting a weakly basic, with a reducing agent-containing exhaust gas atmosphere by generating plasma by adsorbing NO X in the plasma under NO X adsorbent, it stops discharging when the exhaust gas temperature is operating temperatures more of the NO X purification catalyst. To release plasma under NO X NO X which has been adsorbed by the adsorbent leads to a NO X that was released from the plasma under NO X adsorbent and NO X in the exhaust gas in the NO X purification catalyst, purification process of the NO X (For example, refer to Patent Document 1).

従来知られているプラズマ反応器は,プラズマ発生電極と所定の成分を含むガスの流路を内部に有するケース体を有し,ガスがケース体のガス流路に導入されたときに,プラズマ反応器発生電極で発生したプラズマによりガスに含まれる所定の成分が反応するものである。前記プラズマ発生電極は,互いに対向する2つ以上の板状の単位電極を備え,単位電極相互間に電圧を印加することによってプラズマを発生させることが可能であり,単位電極が誘電体となるセラミック体と,該セラミック体の一方の表面に配設された導電膜と,該導電膜の露出面を被覆するように配設された金属膜から構成された第1の保護膜とを有するものである(例えば,特許文献2参照)。   Conventionally known plasma reactors have a case body having a plasma generating electrode and a gas flow path containing a predetermined component inside, and when the gas is introduced into the gas flow path of the case body, the plasma reaction is performed. The predetermined component contained in the gas reacts with the plasma generated by the generator electrode. The plasma generating electrode includes two or more plate-like unit electrodes opposed to each other, can generate plasma by applying a voltage between the unit electrodes, and the unit electrode is a ceramic that is a dielectric. A body, a conductive film disposed on one surface of the ceramic body, and a first protective film composed of a metal film disposed to cover the exposed surface of the conductive film Yes (see, for example, Patent Document 2).

プラズマ電極の製作方法として,電極本体及び誘電体を有し,電圧の印加によってプラズマを発生させるためのプラズマ電極を作製するものであって,ディップコーティングによってガラスを電極本体に被覆して誘電体を形成するものである(例えば,特許文献3参照)。   As a method of manufacturing a plasma electrode, a plasma electrode for producing plasma by applying a voltage is prepared, and a dielectric is formed by coating glass on the electrode body by dip coating. (See, for example, Patent Document 3).

排気ガス浄化方法及びその装置として,排気ガス中のNOX を効果的に浄化するとともに,エネルギーの損失をもたらすことのない効率的なものが知られている。該排気ガス浄化方法は,排気ガス温度がNOX 吸蔵還元型触媒の作用温度未満であるときには,温度センサーからの信号に基づく制御装置からの信号により電極間に高圧電圧を印加して放電し,プラズマ状態を発生し,発生したプラズマがNOX 吸蔵還元型触媒に担持された塩基成分及び/又は貴金属の表面と接触するようにして,リーンの状態ではNOX を吸着させ,リッチの状態ではNOX を還元させ,また,内燃機関からの排気ガス温度がNOX 吸蔵還元型触媒の作用温度以上であるときには,電極間には電圧を印加せず,放電,プラズマの発生を停止し,NOX 吸蔵還元型触媒によるHC存在下での排気ガスの浄化処理を行うというものである(例えば,特許文献4参照)。 As an exhaust gas purification method and apparatus therefor, an efficient one that effectively purifies NO x in exhaust gas and causes no energy loss is known. In the exhaust gas purification method, when the exhaust gas temperature is lower than the operating temperature of the NO x storage reduction catalyst, a discharge is performed by applying a high voltage between the electrodes by a signal from the control device based on a signal from the temperature sensor, A plasma state is generated, and the generated plasma is brought into contact with the base component and / or the surface of the noble metal supported on the NO x storage reduction catalyst so that NO x is adsorbed in the lean state and NO in the rich state. When X is reduced and the exhaust gas temperature from the internal combustion engine is equal to or higher than the operating temperature of the NO X storage reduction catalyst, no voltage is applied between the electrodes, discharge and plasma generation are stopped, and NO X is stopped. The exhaust gas purification process is performed in the presence of HC by the storage reduction catalyst (see, for example, Patent Document 4).

特開2001−182525号公報JP 2001-182525 A 特開2005−93107号公報Japanese Patent Laying-Open No. 2005-93107 特開2009−117175号公報JP 2009-117175 A 特開2001−164927号公報JP 2001-164927 A

ところで,排気ガス浄化装置について,プラズマ反応を利用して排気ガスに含まれる粒子状物質(PM),NOX 等の有害物質を消失させるには,プラズマ放電で生成した活性酸素種をPMと効率的に接触させ,酸化反応させる必要があった。また,プラズマ反応器では,プラズマ放電を所定の場所の放電空間で発生させる必要があった。これまで開発された排気ガス浄化装置は,プラズマ放電を利用して排気ガス中のPM,NOX を除去消失させるにあたり,排気ガス通路にセラミック製ハニカム構造体のプラズマ反応器を組み込んでいるが,その構造は複雑であり,強度を確保できず,ハニカム構造体の損傷が発生し,また,安定してプラズマ放電を発生させることができず,実用的でないものが大半であった。 Incidentally, the exhaust gas purifying apparatus, a plasma reaction utilizing an exhaust gas particulate matter contained in the (PM), in order eliminate harmful substances such as NO X, and the active oxygen species generated by the plasma discharge PM efficiency It was necessary to make contact and oxidize. In the plasma reactor, it is necessary to generate a plasma discharge in a discharge space at a predetermined location. The exhaust gas purification devices that have been developed so far incorporate a plasma reactor with a ceramic honeycomb structure in the exhaust gas passage to remove and eliminate PM and NO x in the exhaust gas using plasma discharge. The structure was complicated, the strength could not be secured, the honeycomb structure was damaged, the plasma discharge could not be generated stably, and most of them were not practical.

この発明の目的は,上記の問題を解決することであり,セラミック製ハニカム部材によって多数のハニカム通路を複数段で複数列状に配置し,偶数段のハニカム通路をハニカムガス通路に構成し且つ奇数列のハニカム通路に電極となる導電部材を埋め込み,ハニカムガス通路を挟む上流側と下流側とに分離された導電部材にそれぞれ独立的に高電圧を印加してプラズマ放電を発生させ,ハニカムガス通路の上流側又は下流側のいずれか一方でプラズマ放電で発生するオゾンや活性酸素で排気ガスに含まれる粒子状物質を酸化消失させ,他方でプラズマ放電環境でNOX を壁面に吸着し,プラズマ放電停止でNOX を解放し還元消失させるものであり,ハニカムガス通路の放電空間にプラズマ放電を安定して発生させると共に,ハニカム部材を高強度にシンプルで簡単なハニカム構造体に構成し,自動車等の高い振動や温度変化の反復負荷に耐え,高い耐久性を確保し,しかも極めて容易に,安価に簡素に作製でき,著しく低コスト化できるプラズマ反応器及びそれを用いた排気ガス浄化装置を提供することである。 An object of the present invention is to solve the above-mentioned problem, in which a large number of honeycomb passages are arranged in a plurality of rows by ceramic honeycomb members, and even-numbered honeycomb passages are configured as honeycomb gas passages and are odd-numbered. Conductive members serving as electrodes are embedded in the honeycomb passages in a row, and a high voltage is independently applied to the conductive members separated on the upstream side and downstream side across the honeycomb gas passages to generate plasma discharges. Either the upstream side or the downstream side of the gas, the particulate matter contained in the exhaust gas is oxidized and disappeared by ozone or active oxygen generated by plasma discharge, and on the other hand, NO x is adsorbed on the wall surface in the plasma discharge environment, and plasma discharge It is intended to release the NO X in the stop reduced loss, a plasma discharge with stably generate the discharge space of the honeycomb gas passage, high honeycomb member It has a simple and strong honeycomb structure, can withstand repeated loads of high vibrations and temperature changes in automobiles, etc., ensures high durability, and can be manufactured very easily, inexpensively, and at a significantly reduced cost. It is an object to provide a plasma reactor and an exhaust gas purification apparatus using the plasma reactor.

この発明は,エンジン又は燃焼機器からの排気ガスを排出する排気ガス通路に配設され,前記排気ガス中に含まれるNOX ,粒子状物質等の有害物質をプラズマ放電を用いて消失させて前記排気ガスを浄化するプラズマ反応器において,
断面が多角形,楕円形,円形等の形状のハニカム通路を複数段で且つ複数列に配置したセラミックスから成るハニカム部材における偶数段の前記ハニカム通路をハニカムガス通路に構成し且つ奇数段の前記ハニカム通路に電極を構成する導電部材を埋め込み,
前記ハニカムガス通路を挟むそれぞれの前記導電部材を電気的に絶縁して前記プラズマ放電が可能な高電圧に印加可能であるハニカム構造体を構成し,
前記ハニカム構造体の前記導電部材を前記ハニカムガス通路の上流側と下流側とにそれぞれ個別に前記高電圧を印加できる上流側と下流側との導電部材に分割構成し,
排気ガス温度が低温時には前記導電部材の両前記電極間に前記高電圧に印加し,少なくとも前記ハニカムガス通路の上流側又は下流側のいずれか一方側では前記NOX を吸着し,他方側では前記粒子状物質を吸着して前記プラズマ放電により発生した活性酸素又はオゾンにより酸化燃焼し,
前記排気ガス温度の高温時には上流側又は下流側の前記導電部材のいずれか一方の前記電極間に対する高電圧の印加を停止させて低温時に吸着した前記NOX を吐き出させ,他方の前記電極間は引き続き前記高電圧を印加して前記粒子状物質の吸着と酸化燃焼を継続し,NOX 還元剤の供給に応答して前記排気ガス中の前記NOX と前記ハニカムガス通路の壁面から吐き出された前記NOX とをN2 に還元して前記排気ガスを浄化することを特徴とするプラズマ反応器に関する。
The present invention is disposed in an exhaust gas passage for discharging exhaust gas from the engine or combustion equipment, NO X contained in the exhaust gas, said harmful substances such as particulate matter abolished by plasma discharge In a plasma reactor that purifies exhaust gas,
In the honeycomb member made of ceramics in which a plurality of honeycomb passages having a polygonal, elliptical, or circular cross section are arranged in a plurality of rows and in a plurality of rows, the even-numbered honeycomb passages are configured as honeycomb gas passages and the odd-numbered honeycombs Embed a conductive member constituting the electrode in the passage,
Forming a honeycomb structure that can be applied to a high voltage capable of plasma discharge by electrically insulating the conductive members sandwiching the honeycomb gas passage;
The conductive member of the honeycomb structure is divided into upstream and downstream conductive members that can individually apply the high voltage to the upstream side and the downstream side of the honeycomb gas passage,
When the exhaust gas temperature is low, the high voltage is applied between both electrodes of the conductive member, and at least one of the upstream side and the downstream side of the honeycomb gas passage adsorbs the NO x , and the other side Oxidized and burned by active oxygen or ozone generated by the plasma discharge by adsorbing particulate matter,
The exhaust gas temperature at high temperatures of not discharged the NO X which stops the application of a high voltage for between one of the electrodes on the upstream side or downstream side of the conductive member was adsorbed at low temperatures, is between the other of said electrodes subsequently continuing the adsorption and oxidative combustion of the high voltage the particulate material was applied was discharged from the wall surface of the honeycomb gas passage and the NO X in the exhaust gas in response to the supply of the NO X reducing agent The present invention relates to a plasma reactor characterized in that the exhaust gas is purified by reducing the NO x to N 2 .

また,前記ハニカム部材を構成するリブの中心部はアルミナ,コージライト,窒化アルミ,チタン酸アルミ,ゼオライトから選択される絶縁性と高い誘電率とを有する緻密質セラミックスで構成され,前記ハニカムガス通路の内面は多孔質セラミックスで構成されている。更に,前記ハニカム部材を構成する前記リブの前記中心部を構成する前記緻密質セラミックスと,前記ハニカムガス通路の内面を構成する前記多孔質セラミックスとは,同質のセラミック材料で構成されている。   The central portion of the rib constituting the honeycomb member is made of a dense ceramic having an insulating property and a high dielectric constant selected from alumina, cordierite, aluminum nitride, aluminum titanate, and zeolite, and the honeycomb gas passage The inner surface of is made of porous ceramics. Further, the dense ceramic constituting the central portion of the rib constituting the honeycomb member and the porous ceramic constituting the inner surface of the honeycomb gas passage are made of the same ceramic material.

また,前記ハニカムガス通路の内面の一部は,γアルミナ,ゼオライト又はγアルミナとゼオライトから成るウォッシュコート材料でウォッシュコートされている。更に,前記ウォッシュコート材料には酸化触媒が担持されている。   Further, a part of the inner surface of the honeycomb gas passage is wash-coated with γ-alumina, zeolite, or a wash-coat material made of γ-alumina and zeolite. Further, an oxidation catalyst is supported on the washcoat material.

また,前記導電部材は,前記ハニカム通路に挿入された金属板,金網,又は前記ハニカム通路の壁面に導電性ペーストを塗布して焼成されている。更に,前記導電部材は,タングステン又はモリブデンを50wt%以上含有している。また,前記導電部材が配設された前記ハニカム通路は非通気性のセラミック材料等の封止材料で封止されている。   In addition, the conductive member is fired by applying a conductive paste to a metal plate, a metal mesh, or a wall surface of the honeycomb passage inserted into the honeycomb passage. Further, the conductive member contains 50 wt% or more of tungsten or molybdenum. The honeycomb passage in which the conductive member is disposed is sealed with a sealing material such as a non-breathable ceramic material.

また,前記ハニカムガス通路を構成する壁面の少なくとも一部には,NOX 還元触媒が担持されている。 An NO x reduction catalyst is supported on at least a part of the wall surface constituting the honeycomb gas passage.

前記上流側導電部材と前記下流側導電部材との前記電極に高電圧を印加するプラズマ発生用電源は,高周波数のパルス電源である。   The plasma generating power source for applying a high voltage to the electrodes of the upstream conductive member and the downstream conductive member is a high frequency pulse power source.

また,この発明は,エンジン又は燃焼機器からの排気ガスを排出する排気ガス通路に配置され,前記排気ガス中に含まれるNOX ,粒子状物質等の有害物質をプラズマ放電を用いて消失させて前記排気ガスを浄化する排気ガス浄化装置において,
前記排気ガス通路には,上記の請求項1−10のいずれかに1項に記載されている前記プラズマ反応器が配設されており,
前記プラズマ反応器の上流側の前記排気ガス通路にNOX 還元剤を供給するNOX 還元装置が配設されており,前記NOX 還元装置から供給される前記NOX 還元剤によって前記NOX が還元されて,前記排気ガスが浄化されることを特徴とするプラズマ放電を用いた排気ガス浄化装置に関する。
Further, the present invention is disposed in the exhaust gas passage for discharging exhaust gas from the engine or combustion equipment, NO X contained in the exhaust gas, and the harmful substances such as particulate matter abolished by plasma discharge In the exhaust gas purification device for purifying the exhaust gas,
In the exhaust gas passage, the plasma reactor according to any one of claims 1 to 10 is disposed,
Wherein and plasma reactor NO X reduction device for supplying NO X reducing agent to the exhaust gas passage upstream of is disposed, the NO X is by the NO X reducing agent supplied from the NO X reduction device The present invention relates to an exhaust gas purification apparatus using plasma discharge, wherein the exhaust gas is purified by being reduced.

また,前記プラズマ発生用電源は前記排気ガス温度に応答してON/OFFが制御され,前記NOX の吸着側の前記導電部材の前記電極は前記排気ガス温度が予め決められた所定の温度以下の低温領域ではONし,それより高温領域ではOFFし,前記粒子状物質を酸化燃焼させる側の前記導電部材の前記電極は常時ONする制御がされるものである。更に,前記NOX 還元装置は,前記排気ガス温度に応答してON/OFFが制御され,前記排気ガス温度が予め決められた所定の温度以下の低温領域ではOFFし,それより高温領域ではONする制御がされるものである。 Further, the plasma generation power source is ON / OFF in response to the exhaust gas temperature is controlled, the NO X given temperature the electrodes of the conductive member of the suction side of the exhaust gas temperature is predetermined in the following It is turned on in the low temperature region and turned off in the higher temperature region, and the electrode of the conductive member on the side where the particulate matter is oxidized and burned is controlled to be always turned on. Further, the NO x reduction device is controlled to be turned on / off in response to the exhaust gas temperature, and is turned off in a low temperature region where the exhaust gas temperature is lower than a predetermined temperature, and is turned on in a higher temperature region. Is controlled.

また,前記還元剤は,アンモニア,尿素,又は軽油,ガソリン,アルコール等の炭化水素である。また,前記プラズマ反応器に流入する前記排気ガス温度は,吸気スロットル,ポストインジェクション,酸化触媒装置の上流側に配設された燃料噴射装置,又は排気シャッタの作動によって制御されるものである。   The reducing agent is ammonia, urea, or a hydrocarbon such as light oil, gasoline, or alcohol. The temperature of the exhaust gas flowing into the plasma reactor is controlled by operation of an intake throttle, post-injection, a fuel injection device disposed upstream of the oxidation catalyst device, or an exhaust shutter.

この発明によるプラズマ反応器及びそれを用いた排気ガス浄化装置は,上記のように構成されているので,エンジンや燃焼機器等から排出された排気ガスが一端の入口から流入し,ハニカム部材に形成されたハニカムガス通路を通過し,浄化された排気ガスが他端の出口から流出されるものであり,排気ガスが低温時には,導電部材から成る高圧側電極とアース側電極との間に高電圧が印加されてハニカムガス通路の放電空間がプラズマ放電雰囲気になり,ハニカムガス通路の上流側又は下流側のいずれか一方の壁面である内面に付着した粒子状物質や排気ガス中の粒子状物質がプラズマ反応により生成したオゾン,活性酸素により二酸化炭素になって排気ガスが浄化されると共に,他方の壁面である内面への排気ガス中のNOX の吸着と吐き出しとの繰返しによってNOX がNOX 還元剤の存在でN2 に還元され,それによって排気ガスが浄化され,また,上流側又は下流側のいずれか一方の導電部材には常時高電圧が印加されてプラズマ放電雰囲気であるので,排気ガス中の粒子状物質がプラズマ反応によって常時浄化され,詳しくは,排気ガスが低温時にはNOX がプラズマ放電雰囲気でハニカムガス通路のγアルミ等の壁面に吸着され,排気ガス温度が高温になると,プラズマ放電をOFFにし,今まで壁面に吸着されていたNOX が放出されるので,ここでNOX 還元剤を供給することによってNOX はN2 に還元され,排気ガスが浄化されるものであり,構造そのものを簡素化すると共に,導電部材の電極間に排気ガス温度に応答して確実にプラズマ放電を発生させ,排気ガスを浄化することができ,装置そのものが高強度にシンプルな構造に構成でき,製造コストを低減できるものである。 Since the plasma reactor and the exhaust gas purification apparatus using the plasma reactor according to the present invention are configured as described above, the exhaust gas discharged from the engine, the combustion equipment, etc. flows from the inlet at one end and is formed in the honeycomb member. The purified exhaust gas flows out from the outlet of the other end, and when the exhaust gas is at a low temperature, a high voltage is applied between the high-voltage side electrode and the ground-side electrode made of a conductive member. Is applied to the discharge space of the honeycomb gas passage to form a plasma discharge atmosphere. Particulate matter adhering to the inner surface, which is one of the upstream or downstream wall surfaces of the honeycomb gas passage, or particulate matter in the exhaust gas is removed. ozone was generated by plasma reaction, together with the exhaust gas become the carbon dioxide is purified by active oxygen adsorption and discharge failure of the NO X in the exhaust gas to the inner surface which is the other wall NO X by repeating the out is reduced to N 2 in the presence of the NO X reducing agent, thereby being purified exhaust gas, also in one of the conductive members on the upstream side or downstream side at all times high voltage Because of the plasma discharge atmosphere, particulate matter in the exhaust gas is constantly purified by the plasma reaction. Specifically, when the exhaust gas is at a low temperature, NO x is adsorbed on the wall of the honeycomb gas passage such as γ aluminum in the plasma discharge atmosphere. is, when the exhaust gas temperature becomes high, the plasma discharge is to OFF, since the NO X which has been adsorbed on the wall surface ever is released, NO X by here supplying NO X reducing agent reduction to N 2 The exhaust gas is purified, the structure itself is simplified, and the plasma discharge is surely generated in response to the exhaust gas temperature between the electrodes of the conductive member. The device itself can be configured with a simple structure with high strength, and the manufacturing cost can be reduced.

この発明によるプラズマ反応器を用いた排気ガス浄化装置を構成する一実施例を示す説明図である。It is explanatory drawing which shows one Example which comprises the exhaust gas purification apparatus using the plasma reactor by this invention. 図1における排気ガス浄化装置におけるセラミック製ハニカム部材を示す排気ガスの流入側の端面を示す正面図である。FIG. 2 is a front view showing an end face on the exhaust gas inflow side showing a ceramic honeycomb member in the exhaust gas purifying apparatus in FIG. 1. 図2のプラズマ反応器を示し,図2のA−A断面における断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. このプラズマ反応器をを用いた排気ガス浄化装置の排気ガス浄化状態を示し,排気ガス温度がハニカムガス通路の壁面に及ぼすNOX の吸着割合と吐き出し割合の特性を示すグラフである。The plasma reactor shows the exhaust gas purifying state of the exhaust gas purification apparatus using the a graph exhaust gas temperature indicates the characteristics of the proportion discharging the adsorption rate of the NO X on the wall surface of the honeycomb gas passage. NOX 還元触媒やNOX 還元剤の排気ガス温度に対するNOX の還元特性を示すグラフである。3 is a graph showing NO X reduction characteristics with respect to the exhaust gas temperature of a NO X reduction catalyst or NO X reducing agent.

以下,この発明によるプラズマ反応器を用いた排気ガス浄化装置の実施例を説明する。この排気ガス浄化装置は,概して,ディーゼルエンジン,ガソリンエンジン等の原動機,ボイラー,バーナ等の燃焼機器から排出される排気ガスGに含まれるNOX ,粒子状物質等の有害物質をプラズマ放電を用いて消失させて排気ガスGを浄化するものである。 Embodiments of an exhaust gas purifying apparatus using a plasma reactor according to the present invention will be described below. This exhaust gas purification device generally uses plasma discharge for harmful substances such as NO x and particulate matter contained in exhaust gas G discharged from combustion engines such as prime movers such as diesel engines and gasoline engines, boilers, and burners. And exhaust gas G is purified.

以下,図面を参照して,この発明によるプラズマ反応器を用いた排気ガス浄化装置の一実施例を説明する。
図1〜図3に示されるように,この排気ガス浄化装置は,ハウジング17に収容されており,ハウジング17は,ディーゼルエンジン,ガソリンエンジン等のエンジン又はボイラー,バーナ等の燃焼機器からの排気ガスを排出する排気ガス通路に配設して使用される。ハウジング17には,上記排気ガス通路と連通する排気ガス通路21が軸方向即ち流れ方向に形成され,一端に排気ガスGが流入する入口22を形成し,途中にプラズマ反応器6が配設され,他端に排気ガスGが流出する出口23を形成している。この排気ガス浄化装置は,ハニカム通路7に構成されたハニカムガス通路25の内壁面8に,排気ガスG中に含まれるNOX ,粒子状物質(PM),スート等の有害物質を吸着し,それらの有害物質をプラズマ放電の助けをかりて酸化・還元反応させて消失させ,排気ガスGを浄化するものである。プラズマ反応器6は,図2に示すように,断面が多角形,楕円形,円形等の形状(図2では断面が四角形)のハニカム通路7が複数段(図1,図2では7段)で,複数列状(図2では4列)に配置されたセラミック製ハニカム部材10Hから構成されており,図1に示すように,ハウジング17内に断熱材16を介して収容されている。
Hereinafter, an embodiment of an exhaust gas purification apparatus using a plasma reactor according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, this exhaust gas purification device is accommodated in a housing 17, and the housing 17 is exhaust gas from an engine such as a diesel engine or a gasoline engine or combustion equipment such as a boiler or a burner. It is used by being disposed in an exhaust gas passage that discharges gas. An exhaust gas passage 21 communicating with the exhaust gas passage is formed in the housing 17 in the axial direction, that is, in the flow direction, an inlet 22 through which exhaust gas G flows is formed at one end, and the plasma reactor 6 is disposed in the middle. , An outlet 23 through which the exhaust gas G flows out is formed at the other end. This exhaust gas purification device adsorbs NO x , particulate matter (PM), soot and other harmful substances contained in the exhaust gas G on the inner wall surface 8 of the honeycomb gas passage 25 formed in the honeycomb passage 7, These harmful substances are oxidized and reduced with the help of plasma discharge to disappear, and the exhaust gas G is purified. As shown in FIG. 2, the plasma reactor 6 has a plurality of stages (7 stages in FIGS. 1 and 2) of honeycomb passages 7 having a polygonal, elliptical, or circular cross section (in FIG. 2, the cross section is square). The ceramic honeycomb members 10H are arranged in a plurality of rows (four rows in FIG. 2), and are housed in the housing 17 via the heat insulating material 16 as shown in FIG.

この排気ガス浄化装置は,図1に示すように,ハウジング17内の排気ガス通路21にハニカム構造体10から成るプラズマ反応器6,及びプラズマ反応器6の上流側の排気ガス通路21に炭化水素系ガス,燃料,アンモニア,尿素等の還元剤14を供給する還元剤供給装置28が配置されている。プラズマ発生装置即ち高圧パルス電源であるプラズマ発生用電源12及び還元剤供給装置28は,排気ガス通路21を流れる排気ガスGの排気ガス温度に応答してコントローラ20でON/OFF制御されるように構成されている。排気ガス温度は,ハウジング17内の入口22に設置された温度センサ11で検出することができる。   As shown in FIG. 1, this exhaust gas purifying apparatus is configured such that the exhaust gas passage 21 in the housing 17 has a plasma reactor 6 made of a honeycomb structure 10 and a hydrocarbon in the exhaust gas passage 21 upstream of the plasma reactor 6. A reducing agent supply device 28 for supplying a reducing agent 14 such as system gas, fuel, ammonia, urea or the like is disposed. The plasma generator 12, which is a high-pressure pulse power supply, and the reducing agent supply device 28 are ON / OFF controlled by the controller 20 in response to the exhaust gas temperature of the exhaust gas G flowing through the exhaust gas passage 21. It is configured. The exhaust gas temperature can be detected by the temperature sensor 11 installed at the inlet 22 in the housing 17.

プラズマ反応器6は,ハニカム部材10Hと電極となる導電部材3とから構成されたハニカム構造体10を備え,排気ガスGがハニカム部材10Hに形成されたハニカムガス通路25を流れる時に有害物質を消失させて排気ガスGを浄化するものである。ハニカム構造体10におけるハニカムガス通路25は,上流側から下流側へ両端が貫通している構造がシンプルな高強度の開放タイプに形成されている。プラズマ反応器6は,ハニカム部材10Hにおける偶数段のハニカム通路7がハニカムガス通路25に構成され,奇数段のハニカム通路7の少なくとも一部に導電部材3が埋め込まれたハニカム構造体10に構成されている。ハニカムガス通路25を構成するハニカム通路7は,導電部材3を埋め込んだハニカム通路7より断面積が大きく,例えば,7〜20倍程度に形成されている。ハニカム通路7に配設された導電部材3は,緻密質セラミックス即ち非通気性のセラミックスから成る封止材料27で囲まれて個々に絶縁されている。プラズマ反応器6は,ハニカムガス通路25を挟むそれぞれの導電部材3が電気的に絶縁されると共に,プラズマ放電が可能な高電圧に印加可能であり,ハニカムガス通路25の壁面にスート,粒子状物質等を吸着し酸化燃焼させると共に,NOX を吸着してNOX 還元剤14を供給してNOX をN2 に還元して消失させるものである。 The plasma reactor 6 includes a honeycomb structure 10 composed of a honeycomb member 10H and a conductive member 3 that serves as an electrode. When the exhaust gas G flows through the honeycomb gas passage 25 formed in the honeycomb member 10H, harmful substances disappear. Thus, the exhaust gas G is purified. The honeycomb gas passage 25 in the honeycomb structure 10 is formed in a high-strength open type with a simple structure in which both ends penetrate from the upstream side to the downstream side. The plasma reactor 6 has a honeycomb structure 10 in which the even-numbered honeycomb passages 7 in the honeycomb member 10H are configured as the honeycomb gas passages 25 and the conductive member 3 is embedded in at least a part of the odd-numbered honeycomb passages 7. ing. The honeycomb passage 7 constituting the honeycomb gas passage 25 has a larger cross-sectional area than the honeycomb passage 7 in which the conductive member 3 is embedded, and is formed, for example, about 7 to 20 times. The conductive members 3 arranged in the honeycomb passages 7 are individually insulated by being surrounded by a sealing material 27 made of dense ceramics, that is, non-breathable ceramics. In the plasma reactor 6, the conductive members 3 sandwiching the honeycomb gas passage 25 are electrically insulated and can be applied to a high voltage capable of plasma discharge. with adsorbed to oxidative combustion of substances like, it is intended to eliminate by reducing NO X to N 2 by supplying NO X reducing agent 14 by adsorbing NO X.

プラズマ反応器6において,特に,高圧側電極4を構成する導電部材3は,印加電圧の少なくとも正極側がプラズマ反応器6の正極側の上流側導電部材18と正極側の下流側導電部材19とに絶縁部材32によって分割されてコントローラ20によって個別に即ち独立的にそれぞれ通電制御されることに特徴を有している。従って,プラズマ反応器6は,ハニカムガス通路25が上流側と下流側とでは独立してプラズマ放電雰囲気又はプラズマ非放電雰囲気に制御されることになる。プラズマ反応器6は,上流側又は下流側の少なくとも一方の導電部材18(又は19)がプラズマ放電雰囲気に常時制御され,排気ガス中の粒子状物質を酸化燃焼させ,他方の導電部材19(又は18)が排気ガス温度が低温時にはNOX をハニカムガス通路25の内壁面8に吸着するプラズマ放電雰囲気,又は高温時にはNOX をハニカムガス通路25の内壁面8から吐き出すプラズマ非放電雰囲気に制御されるものである。NOX がハニカムガス通路25から吐き出される時に,NOX 還元剤14を供給してNOX をNO2 に還元するように制御されている。上流側導電部材18は高圧ライン29を介してプラズマ発生用電源12に接続され,また,下流側導電部材19は高圧ライン30を介してプラズマ発生用電源12に接続されている。また,アース側電極5を構成する導電部材3は,高圧側電極4のように分割する必要はなく,ハニカム部材10Hの軸方向に連続したアース側導電部材24に形成されている。アース側導電部材24は,アースライン31を通じてアース33に接続されている。プラズマ反応器6において,導電部材3は,ハニカム通路7に挿入された金属板,金網又はハニカム通路7の壁面に導電性ペーストを塗布して焼成されて構成されている。更に,導電部材3は,タングステン又はモリブデンを50wt%以上含有している材料で作製されている。 In the plasma reactor 6, in particular, the conductive member 3 constituting the high-voltage side electrode 4 is such that at least the positive electrode side of the applied voltage is connected to the upstream conductive member 18 on the positive electrode side and the downstream conductive member 19 on the positive electrode side of the plasma reactor 6. It is characterized by being divided by the insulating member 32 and being energized individually or independently by the controller 20. Therefore, in the plasma reactor 6, the honeycomb gas passage 25 is controlled to a plasma discharge atmosphere or a plasma non-discharge atmosphere independently on the upstream side and the downstream side. In the plasma reactor 6, at least one conductive member 18 (or 19) on the upstream side or downstream side is always controlled to a plasma discharge atmosphere, and particulate matter in the exhaust gas is oxidized and burned, and the other conductive member 19 (or 18) is controlled NO X during the exhaust gas temperature is low temperature plasma discharge atmosphere adsorbed on the inner wall surface 8 of the honeycomb gas passage 25, or the NO X at high temperatures in the plasma non-discharge atmosphere exhaled from the inner wall surface 8 of the honeycomb gas passage 25 Is. When NO x is discharged from the honeycomb gas passage 25, the NO x reducing agent 14 is supplied to control NO x to be reduced to NO 2 . The upstream conductive member 18 is connected to the plasma generating power source 12 via a high voltage line 29, and the downstream conductive member 19 is connected to the plasma generating power source 12 via a high voltage line 30. The conductive member 3 constituting the ground side electrode 5 does not need to be divided like the high voltage side electrode 4 and is formed on the ground side conductive member 24 that is continuous in the axial direction of the honeycomb member 10H. The ground side conductive member 24 is connected to the ground 33 through the ground line 31. In the plasma reactor 6, the conductive member 3 is configured by applying a conductive paste to a metal plate inserted in the honeycomb passage 7, a metal mesh, or a wall surface of the honeycomb passage 7 and firing it. Further, the conductive member 3 is made of a material containing 50 wt% or more of tungsten or molybdenum.

プラズマ反応器6において,ハニカム部材10Hを構成するリブ26の中心部はアルミナ,コージライト,窒化アルミ,チタン酸アルミ,ゼオライトから選択される絶縁性と高い誘電率とを有する緻密質セラミックス1で構成され,また,ハニカムガス通路25の内壁面8は多孔質セラミックス2で構成されている。ハニカム部材10Hを構成するリブ26の中心部を構成する緻密質セラミックス1と,ハニカムガス通路25の内壁面8を構成する多孔質セラミックス2とは,同質のセラミック材料で構成されている。従って,緻密質セラミックス1と多孔質セラミックス2との両者が互いに強固に接合され,ハニカム構造体10が強度上好ましいものとなる。更に,ハニカム部材10から成るハニカムガス通路25は,その内壁面8を構成する多孔質セラミックス2の一部がウォッシュコート材料15が覆われている。ウォッシュコート材料15は,γアルミナ,ゼオライト又はγアルミナとゼオライトから成る材料がウォッシュコートされて,多孔質セラミックスとなり,そこに酸化触媒が担持されている。また,導電部材3は,セラミックスに予め形成された空洞になっているハニカム通路7に挿入された金属板,金網又はハニカム通路7の壁面に導電性ペーストを塗布して焼成され,絶縁層の封止材料27に埋め込んだ状態に配置されている。更に,導電部材3は,タングステン又はモリブデンを50wt%以上含有している材料で作製されている。   In the plasma reactor 6, the central portion of the rib 26 constituting the honeycomb member 10H is composed of a dense ceramic 1 having an insulating property selected from alumina, cordierite, aluminum nitride, aluminum titanate, and zeolite and a high dielectric constant. Further, the inner wall surface 8 of the honeycomb gas passage 25 is composed of the porous ceramic 2. The dense ceramic 1 constituting the central portion of the rib 26 constituting the honeycomb member 10H and the porous ceramic 2 constituting the inner wall surface 8 of the honeycomb gas passage 25 are made of the same ceramic material. Therefore, both the dense ceramic 1 and the porous ceramic 2 are firmly bonded to each other, and the honeycomb structure 10 is preferable in terms of strength. Further, in the honeycomb gas passage 25 made of the honeycomb member 10, a part of the porous ceramic 2 constituting the inner wall surface 8 is covered with the washcoat material 15. The wash coat material 15 is made of porous ceramics by being coated with γ-alumina, zeolite, or a material composed of γ-alumina and zeolite, on which an oxidation catalyst is supported. Further, the conductive member 3 is fired by applying a conductive paste to a metal plate, a metal mesh, or a wall surface of the honeycomb passage 7 inserted in a honeycomb passage 7 which is a cavity previously formed in ceramics, and sealing the insulating layer. It is arranged in a state embedded in the stop material 27. Further, the conductive member 3 is made of a material containing 50 wt% or more of tungsten or molybdenum.

この排気ガス浄化装置は,ハウジング17の入口22には温度センサ11が設けられており,流入する排気ガス温度を検出するように構成されている。温度センサ11で測定された排気ガス温度は,情報としてコントローラ20に入力される。還元剤供給装置28は,コントローラ20により排気ガス温度に応答してON/OFF制御され,排気ガス温度が予め決められた温度以下の低温ではOFFされ,それより高温ではONされるように設定制御される。また,高圧電源のプラズマ発生用電源12は,コントローラ20により排気ガス温度に応答してON/OFF制御されるものであり,特に,上流側導電部材18(又は下流側導電部材19)は,排気ガス温度が予め決められた温度以下の低温ではONし,それより高温ではOFFするように制御され,また,下流側導電部材19(又は上流側導電部材18)は,常時ONするように制御されている。従って,ハニカムガス通路25は,上流側(又は下流側)がプラズマ放電環境がON/OFFされ,下流側(又は上流側)が常にプラズマ放電環境になっている。更に,この排気ガス浄化装置は,プラズマ反応器6に流入する排気ガス温度を制御するため,図示していないが,吸気スロットル,ポストインジェクション,酸化触媒浄化装置(図示せず)の上流に設けられた燃料噴射装置,及び/又は排気シャッタが設けられ,これらの作動によって排気ガス温度が制御されている。   This exhaust gas purification device is provided with a temperature sensor 11 at the inlet 22 of the housing 17 and is configured to detect the temperature of the inflowing exhaust gas. The exhaust gas temperature measured by the temperature sensor 11 is input to the controller 20 as information. The reducing agent supply device 28 is ON / OFF controlled by the controller 20 in response to the exhaust gas temperature, and is set to be turned off when the exhaust gas temperature is lower than a predetermined temperature, and is turned on when the exhaust gas temperature is higher than that. Is done. The plasma generating power source 12 of the high voltage power source is ON / OFF controlled by the controller 20 in response to the exhaust gas temperature. In particular, the upstream conductive member 18 (or the downstream conductive member 19) is an exhaust gas. The gas temperature is controlled to be turned on at a low temperature below a predetermined temperature, and is turned off at a higher temperature, and the downstream conductive member 19 (or the upstream conductive member 18) is controlled to be always turned on. ing. Therefore, in the honeycomb gas passage 25, the plasma discharge environment is turned ON / OFF on the upstream side (or downstream side), and the plasma discharge environment is always on the downstream side (or upstream side). Further, this exhaust gas purification device is provided upstream of an intake throttle, a post-injection, and an oxidation catalyst purification device (not shown) to control the temperature of exhaust gas flowing into the plasma reactor 6, although not shown. A fuel injection device and / or an exhaust shutter are provided, and the exhaust gas temperature is controlled by these operations.

還元剤供給装置28は,例えば,NOX 還元剤14として炭化水素系ガス,軽油等の燃料,アンモニア,尿素等を使用することができ,プラズマ反応器6の上流側のハウジング17内の排気ガス通路21に設けられており,コントローラ20の指令のよって,加圧燃料等の還元剤14を燃料噴射ノズル9を通じてプラズマ反応器6の上流に噴射するように構成されている。燃料噴射ノズル9からプラズマ反応器6へと噴射される加圧燃料(還元剤14)は,例えば,エンジン用の軽油をポンプ(図示せず)によって加圧して燃料噴射ノズル9へと送り込まれるように構成されている。燃料噴射ノズル9から噴射された軽油は,液滴又は気化された軽油である。更に,この排気ガス浄化装置は,ハニカムガス通路25の少なくとも一部の壁面には,酸化触媒が担持されている。内壁面8を構成する多孔質セラミックス2は,ハニカム部材10Hと一体で焼成して形成されている。この排気ガス浄化装置では,排気ガス温度が低温でプラズマ放電下では,ハニカムガス通路25の内壁面8を構成するγアルミナ等の面にNOX や粒子状物質が吸着される。 The reducing agent supply device 28 can use, for example, hydrocarbon gas, fuel such as light oil, ammonia, urea or the like as the NO x reducing agent 14, and exhaust gas in the housing 17 on the upstream side of the plasma reactor 6. It is provided in the passage 21 and is configured to inject the reducing agent 14 such as pressurized fuel upstream of the plasma reactor 6 through the fuel injection nozzle 9 in accordance with a command from the controller 20. The pressurized fuel (reducing agent 14) injected from the fuel injection nozzle 9 into the plasma reactor 6 is pressurized with engine light oil by a pump (not shown) and sent to the fuel injection nozzle 9, for example. It is configured. The light oil injected from the fuel injection nozzle 9 is droplets or vaporized light oil. Further, in this exhaust gas purification device, an oxidation catalyst is supported on at least a part of the wall surface of the honeycomb gas passage 25. The porous ceramics 2 constituting the inner wall surface 8 is formed by firing integrally with the honeycomb member 10H. In this exhaust gas purification device, NO x and particulate matter are adsorbed on the surface of γ-alumina or the like constituting the inner wall surface 8 of the honeycomb gas passage 25 when the exhaust gas temperature is low and plasma discharge is performed.

高圧側電極4を構成する上流側導電部材18と下流側導電部材19との導電部材3は,高圧側電極4とアース側導電部材24で構成されるアース側電極5との間にプラズマ放電を発生させるための高電圧が印加されるように,プラズマ発生用電源12に接続されている。導電部材3は,ハニカムガス通路25を挟んで配置されており,高圧側電極4を構成する正極側の導電部材3が上流側導電部材18と下流側導電部材19とに分割されている。高圧側電極4を構成する上流側導電部材18と下流側導電部材19とは,高圧電源ライン29,30を通じて高圧電源のプラズマ発生用電源12に接続されており,また,アース側電極5は,アースライン31を通じてアース33に接続されている。   The conductive member 3 of the upstream conductive member 18 and the downstream conductive member 19 constituting the high voltage side electrode 4 causes plasma discharge between the high voltage side electrode 4 and the ground side electrode 5 composed of the ground side conductive member 24. It is connected to the plasma generating power source 12 so that a high voltage for generating it is applied. The conductive member 3 is disposed with the honeycomb gas passage 25 interposed therebetween, and the positive-side conductive member 3 constituting the high-voltage side electrode 4 is divided into an upstream-side conductive member 18 and a downstream-side conductive member 19. The upstream side conductive member 18 and the downstream side conductive member 19 constituting the high voltage side electrode 4 are connected to the plasma generating power source 12 of the high voltage power source through the high voltage power source lines 29 and 30, and the ground side electrode 5 is It is connected to the earth 33 through the earth line 31.

この排気ガス浄化装置では,導電部材3に印加される高電圧は,プラズマ発生用電源12から高周波数のパルス電源として供給されるものである。この排気ガス浄化装置は,導電部材3を印加してプラズマ放電を発生させると,ハニカムガス通路25の内壁面8には,NOX や粒子状物質が吸着し,吸着した粒子状物質は酸化燃焼して焼却させると共に,吸着したNOX はプラズマ放電停止により吐き出されて還元消失させられ,排気ガスGが浄化される。 In this exhaust gas purification device, the high voltage applied to the conductive member 3 is supplied from the plasma generating power source 12 as a high frequency pulse power source. In this exhaust gas purification device, when the conductive member 3 is applied to generate plasma discharge, NO x and particulate matter are adsorbed on the inner wall surface 8 of the honeycomb gas passage 25, and the adsorbed particulate matter is oxidized and burned. together is to incinerate, adsorbed NO X is caused to reduced loss is discharged by the plasma discharge is stopped, the exhaust gas G is purified.

図4には,この排気ガス浄化装置の排気ガス浄化状態を示し,排気ガス温度がハニカムガス通路25の壁面に及ぼすNOX の吸着割合と吐き出し割合の特性が示されており,ハニカムガス通路25の内壁面8即ち内面にγアルミナをウォッシュコートした状態でNOX の吸着割合をテストした結果がグラフとして示されている。排気ガス温度が100℃の低温時には,プラズマ放電環境ではNOX の吸着割合は100%と高く,排気ガス温度が300℃まではNOX の吸着率が極めて高い状態を維持しているが,排気ガス温度が上昇するに従って吸着比率が低下し,400℃では分子運動が活発になって吸着割合は0%近くになり,400℃以上ではほとんど0%となり,それに反して排気ガス温度が100℃〜350℃では,NOX の吐き出し割合はほとんど0%であったが,排気ガス温度が400℃に上昇すると吐き出し比率が上昇し始め,550℃では吐き出し割合は100%近くになる。一方,NOX 還元触媒や還元剤の活性領域は,それらの種類で異なるが,200℃程度の低温域でのN2 への還元は小さく,排気ガス温度が上昇するに従って還元率が高くなっている。一方,図5に示すNOX 還元触媒や還元剤の活性領域は,300℃以下では,還元率が低く,350℃〜450℃では,NOX のN2 への還元能力が極めて高くなっている。そこで,排気ガス温度の低温時には,NOX をハニカムガス通路25の壁面に一旦捕捉即ち吸着し,排気ガス温度が高温になってプラズマ放電を停止し,ハニカムガス通路25の壁面からNOX を放出即ち吐き出させ,同時に還元剤をハニカムガス通路25に供給し,NOX のN2 への高い還元能力を発揮させる。即ち,NOX のハニカムガス通路25の多孔質セラミックスの壁面に対する吸着・吐き出し特性を考慮して,排気ガスG中からのNOX を低温時に吸着させ,高温時にNOX を吐き出させてN2 に還元して消失させるように,コントローラ20は排気ガス温度の高温時に応答して還元剤供給装置28から還元剤14をハニカムガス通路25に供給するように制御するように構成されている。 FIG. 4 shows the exhaust gas purification state of the exhaust gas purification device, and shows the characteristics of the NO x adsorption ratio and the discharge ratio that the exhaust gas temperature exerts on the wall surface of the honeycomb gas passage 25. The results of testing the NO x adsorption rate in the state where the inner wall surface 8, that is, the inner surface, is washed with γ alumina are shown as a graph. During cold exhaust gas temperature is 100 ° C., the adsorption rate of the NO X in the plasma discharge environment as high as 100%, while the adsorption rate of the NO X exhaust gas temperature up to 300 ° C. is maintained very high, exhaust As the gas temperature rises, the adsorption ratio decreases. At 400 ° C, the molecular motion becomes active and the adsorption ratio is close to 0%. At 400 ° C and above, the adsorption ratio is almost 0%. At 350 ° C., the NO x discharge rate was almost 0%, but when the exhaust gas temperature rose to 400 ° C., the discharge rate started to increase, and at 550 ° C., the discharge rate became nearly 100%. On the other hand, the active region of NO x reduction catalyst and reducing agent is different depending on the type, but the reduction to N 2 in the low temperature range of about 200 ° C is small, and the reduction rate increases as the exhaust gas temperature rises. Yes. On the other hand, in the active region of the NO x reduction catalyst and reducing agent shown in FIG. 5, the reduction rate is low at 300 ° C. or lower, and the ability to reduce NO x to N 2 is extremely high at 350 ° C. to 450 ° C. . Therefore, when the exhaust gas temperature is low, NO x is once trapped or adsorbed on the wall surface of the honeycomb gas passage 25, the exhaust gas temperature becomes high and the plasma discharge is stopped, and NO x is released from the wall surface of the honeycomb gas passage 25. In other words, the reducing agent is supplied to the honeycomb gas passage 25 at the same time, and the high reducing ability of NO x to N 2 is exhibited. That is, in view of the suction-ejecting characteristics for the wall of the porous ceramic honeycomb gas passage 25 of the NO X, the NO X from the exhaust gas G is adsorbed at low temperatures, the N 2 by ejecting NO X at a high temperature The controller 20 is configured to control to supply the reducing agent 14 from the reducing agent supply device 28 to the honeycomb gas passage 25 in response to a high temperature of the exhaust gas so as to reduce and disappear.

この排気ガス浄化装置は,上記のように構成されており,エンジン又は燃焼機器から排出された排気ガスGがハウジング17の入口22から流入し,ハウジング17内に流入した排気ガスは,まず,排気ガスGがプラズマ反応器6の入口からハニカムガス通路25に流入する。ハニカムガス通路25の内壁面8には,酸化触媒が担持されているので,排気ガス中のNOをNO2 に酸化変換させる。ハニカムガス通路25に流入した排気ガスGは,多孔質のセラミックスから成る壁面に沿って通過し,この時,排気ガス温度が高い場合には,多孔質セラミックス2の内壁面8で捕捉された粒子状物質PMを酸化反応で消滅させ,ハニカムガス通路25を通り抜けて出口から放出される。 This exhaust gas purification device is configured as described above. Exhaust gas G exhausted from the engine or combustion equipment flows from the inlet 22 of the housing 17, and the exhaust gas flowing into the housing 17 is first exhausted. The gas G flows from the inlet of the plasma reactor 6 into the honeycomb gas passage 25. The inner wall surface 8 of the honeycomb gas passage 25, since the oxidation catalyst is supported, is oxidized convert NO in the exhaust gas to NO 2. The exhaust gas G flowing into the honeycomb gas passage 25 passes along the wall surface made of porous ceramics. At this time, if the exhaust gas temperature is high, particles trapped on the inner wall surface 8 of the porous ceramics 2 The particulate matter PM is extinguished by an oxidation reaction, passes through the honeycomb gas passage 25, and is discharged from the outlet.

この排気ガス浄化装置は,排気ガス温度が低温では,排気ガスはハニカムガス通路25の入口から流入し,次いで,多孔質セラミックス2の内壁面8に沿って出口へ流出するが,この時,ハニカムガス通路25内はプラズマ放電環境になっているため,導電部材3の高圧側電極4とアース側電極5との間に高電圧を印加すると,プラズマ放電を起こり,ハニカムガス通路25の内壁面8に付着した粒子状物質はプラズマ放電により生成したオゾン,活性酸素により二酸化炭素(CO2 )になり,出口から排出される。一方,図4のグラフに示すように,排気ガス温度が低温時には,高圧側電極4がONしているので,NOX はプラズマ放電下でγアルミナ等の多孔質セラミックス2でなる内壁面8に吸着される。他方,排気ガス温度が高温になると,プラズマ放電がOFFになり,プラズマ放電がOFFになると,今まで内壁面8に吸着されていたNOX が解放即ち吐き出され,この時,還元剤供給装置28が作動して還元剤14が供給され,NOX がN2 に還元され,排気ガスGが浄化される。また,この排気ガス浄化装置は,排気ガス温度が高温の時には,粒子状物質は酸化触媒により反応燃焼できるので,プラズマ放電は下流側導電部材19のみのONで十分になる。 In this exhaust gas purification device, when the exhaust gas temperature is low, the exhaust gas flows in from the inlet of the honeycomb gas passage 25 and then flows out along the inner wall surface 8 of the porous ceramics 2. Since the gas passage 25 is in a plasma discharge environment, when a high voltage is applied between the high-voltage side electrode 4 and the ground-side electrode 5 of the conductive member 3, plasma discharge occurs, and the inner wall surface 8 of the honeycomb gas passage 25. Particulate matter adhering to the gas becomes carbon dioxide (CO 2 ) by ozone and active oxygen generated by plasma discharge, and is discharged from the outlet. On the other hand, as shown in the graph of FIG. 4, when the exhaust gas temperature is low, the high voltage side electrode 4 is ON, so that NO x is applied to the inner wall surface 8 made of porous ceramics 2 such as γ alumina under plasma discharge. Adsorbed. On the other hand, when the exhaust gas temperature becomes high, the plasma discharge is turned off, and when the plasma discharge is turned off, the NO x that has been adsorbed on the inner wall surface 8 is released, that is, exhaled. Is operated, the reducing agent 14 is supplied, NO x is reduced to N 2 , and the exhaust gas G is purified. Further, in this exhaust gas purification device, when the exhaust gas temperature is high, the particulate matter can be reacted and burned by the oxidation catalyst, so that it is sufficient to turn on only the downstream conductive member 19 for plasma discharge.

この発明によるプラズマ反応器及びそれを用いた排気ガス浄化装置は,ディーゼルエンジン等の原動機やバーナやボイラ等の燃焼機器からの排気ガスに含まれる煤,黒煙等の粒子状物質,NOX 等の有害物質をプラズマ放電で発生したオゾンや活性酸素を用いて酸化燃焼させたり還元させて消滅させるのに好ましいものである。 The plasma reactor according to the present invention and the exhaust gas purifying apparatus using the plasma reactor are particulate matter such as soot, black smoke, NO x, etc. contained in the exhaust gas from a prime mover such as a diesel engine or combustion equipment such as a burner or boiler. These harmful substances are preferably used for oxidative combustion using ozone generated by plasma discharge or active oxygen, or for reduction and extinction.

1 緻密質セラミックス
2 多孔質セラミックス
3 導電部材
4 高圧側電極
5 アース側電極
6 プラズマ反応器
7 ハニカム通路
8 内壁面(多孔質セラミックス)
9 燃料噴射ノズル
10 ハニカム構造体
10H ハニカム部材
11 温度センサ
12 プラズマ発生用電源(高圧電源)
14 NOX 還元剤(軽油,燃料)
15 ウォッシュコート材料
16 断熱材
17 ハウジング
18 上流側導電部材
19 下流側導電部材
20 コントローラ
21 排気ガス通路
24 アース側導電部材
25 ハニカムガス通路
26 リブ(ハニカム部材)
27 封止材料
28 還元剤供給装置
32 絶縁部材
G 排気ガス
DESCRIPTION OF SYMBOLS 1 Dense ceramics 2 Porous ceramics 3 Conductive member 4 High voltage side electrode 5 Ground side electrode 6 Plasma reactor 7 Honeycomb passage 8 Inner wall surface (porous ceramics)
9 Fuel injection nozzle 10 Honeycomb structure 10H Honeycomb member 11 Temperature sensor 12 Power source for plasma generation (high voltage power source)
14 NO X reducing agent (light oil, fuel)
DESCRIPTION OF SYMBOLS 15 Wash-coat material 16 Heat insulating material 17 Housing 18 Upstream conductive member 19 Downstream conductive member 20 Controller 21 Exhaust gas passage 24 Ground side conductive member 25 Honeycomb gas passage 26 Rib (honeycomb member)
27 Sealing material 28 Reducing agent supply device 32 Insulating member G Exhaust gas

Claims (15)

エンジン又は燃焼機器からの排気ガスを排出する排気ガス通路に配設され,前記排気ガス中に含まれるNOX ,粒子状物質等の有害物質をプラズマ放電を用いて消失させて前記排気ガスを浄化するプラズマ反応器において,
断面が多角形,楕円形,円形等の形状のハニカム通路を複数段で且つ複数列に配置したセラミックスから成るハニカム部材における偶数段の前記ハニカム通路をハニカムガス通路に構成し且つ奇数段の前記ハニカム通路に電極を構成する導電部材を埋め込み,
前記ハニカムガス通路を挟むそれぞれの前記導電部材を電気的に絶縁して前記プラズマ放電が可能な高電圧に印加可能であるハニカム構造体を構成し,
前記ハニカム構造体の前記導電部材を前記ハニカムガス通路の上流側と下流側とにそれぞれ個別に前記高電圧を印加できる上流側と下流側との導電部材に分割構成し,
排気ガス温度が低温時には前記導電部材の両前記電極間に前記高電圧に印加し,少なくとも前記ハニカムガス通路の上流側又は下流側のいずれか一方側では前記NOX を吸着し,他方側では前記粒子状物質を吸着して前記プラズマ放電により発生した活性酸素又はオゾンにより酸化燃焼し,
前記排気ガス温度の高温時には上流側又は下流側の前記導電部材のいずれか一方の前記電極間に対する高電圧の印加を停止させて低温時に吸着した前記NOX を吐き出させ,他方の前記電極間は引き続き前記高電圧を印加して前記粒子状物質の吸着と酸化燃焼を継続し,NOX 還元剤の供給に応答して前記排気ガス中の前記NOX と前記ハニカムガス通路の壁面から吐き出された前記NOX とをN2 に還元して前記排気ガスを浄化することを特徴とするプラズマ反応器。
It is disposed in the exhaust gas passage that exhausts exhaust gas from the engine or combustion equipment, and purifies the exhaust gas by using plasma discharge to eliminate harmful substances such as NO x and particulate matter contained in the exhaust gas In a plasma reactor that
In the honeycomb member made of ceramics in which a plurality of honeycomb passages having a polygonal, elliptical, or circular cross section are arranged in a plurality of rows and in a plurality of rows, the even-numbered honeycomb passages are configured as honeycomb gas passages and the odd-numbered honeycombs Embed a conductive member constituting the electrode in the passage,
Forming a honeycomb structure that can be applied to a high voltage capable of plasma discharge by electrically insulating the conductive members sandwiching the honeycomb gas passage;
The conductive member of the honeycomb structure is divided into upstream and downstream conductive members that can individually apply the high voltage to the upstream side and the downstream side of the honeycomb gas passage,
When the exhaust gas temperature is low, the high voltage is applied between both electrodes of the conductive member, and at least one of the upstream side and the downstream side of the honeycomb gas passage adsorbs the NO x , and the other side Oxidized and burned by active oxygen or ozone generated by the plasma discharge by adsorbing particulate matter,
The exhaust gas temperature at high temperatures of not discharged the NO X which stops the application of a high voltage for between one of the electrodes on the upstream side or downstream side of the conductive member was adsorbed at low temperatures, is between the other of said electrodes subsequently continuing the adsorption and oxidative combustion of the high voltage the particulate material was applied was discharged from the wall surface of the honeycomb gas passage and the NO X in the exhaust gas in response to the supply of the NO X reducing agent A plasma reactor, wherein the exhaust gas is purified by reducing the NO x to N 2 .
前記ハニカム部材を構成するリブの中心部はアルミナ,コージライト,窒化アルミ,チタン酸アルミ,ゼオライトから選択される絶縁性と高い誘電率とを有する緻密質セラミックスで構成され,前記ハニカムガス通路の内面は多孔質セラミックスで構成されていることを特徴とする請求項1に記載のプラズマ反応器。   The central portion of the rib constituting the honeycomb member is made of a dense ceramic having an insulating property and a high dielectric constant selected from alumina, cordierite, aluminum nitride, aluminum titanate, and zeolite, and the inner surface of the honeycomb gas passage The plasma reactor according to claim 1, wherein the plasma reactor is made of porous ceramics. 前記ハニカム部材を構成する前記リブの前記中心部を構成する前記緻密質セラミックスと,前記ハニカムガス通路の内面を構成する前記多孔質セラミックスとは,同質のセラミック材料で構成されていることを特徴とする請求項2に記載のプラズマ反応器。   The dense ceramic constituting the central portion of the rib constituting the honeycomb member and the porous ceramic constituting the inner surface of the honeycomb gas passage are made of the same ceramic material. The plasma reactor according to claim 2. 前記ハニカムガス通路の内面の一部は,γアルミナ,ゼオライト又はγアルミナとゼオライトから成るウォッシュコート材料でウォッシュコートされていることを特徴とする請求項2又は3に記載のプラズマ反応器。   4. The plasma reactor according to claim 2, wherein a part of the inner surface of the honeycomb gas passage is wash-coated with γ-alumina, zeolite, or a wash-coat material made of γ-alumina and zeolite. 前記ウォッシュコート材料には酸化触媒が担持されていることを特徴とする請求項4に記載のプラズマ反応器。   The plasma reactor according to claim 4, wherein an oxidation catalyst is supported on the washcoat material. 前記導電部材は,前記ハニカム通路に挿入された金属板,金網,又は前記ハニカム通路の壁面に導電性ペーストを塗布して焼成されていることを特徴とする請求項1〜5のいずれか1項に記載のプラズマ反応器。   6. The conductive member according to claim 1, wherein the conductive member is fired by applying a conductive paste to a metal plate inserted in the honeycomb passage, a metal mesh, or a wall surface of the honeycomb passage. A plasma reactor according to claim 1. 前記導電部材は,タングステン又はモリブデンを50wt%以上含有していることを特徴とする請求項1〜6のいずれか1項に記載のプラズマ反応器。   The plasma reactor according to claim 1, wherein the conductive member contains 50 wt% or more of tungsten or molybdenum. 前記導電部材が配設された前記ハニカム通路は非通気性のセラミック材料等の封止材料で封止されていることを特徴とする請求項1〜7のいずれか1項に記載のプラズマ反応器。   The plasma reactor according to any one of claims 1 to 7, wherein the honeycomb passage in which the conductive member is disposed is sealed with a sealing material such as a non-breathable ceramic material. . 前記ハニカムガス通路を構成する壁面の少なくとも一部には,NOX 還元触媒が担持されていることを特徴とする請求項1〜8のいずれか1項に記載のプラズマ反応器。 The plasma reactor according to any one of claims 1 to 8, wherein a NO x reduction catalyst is supported on at least a part of the wall surface constituting the honeycomb gas passage. 前記上流側導電部材と前記下流側導電部材との前記電極に高電圧を印加するプラズマ発生用電源は,高周波数のパルス電源であることを特徴とする請求項1〜9のいずれか1項に記載のプラズマ反応器。   10. The plasma generation power source for applying a high voltage to the electrodes of the upstream conductive member and the downstream conductive member is a high frequency pulse power source. The plasma reactor as described. エンジン又は燃焼機器からの排気ガスを排出する排気ガス通路に配置され,前記排気ガス中に含まれるNOX ,粒子状物質等の有害物質をプラズマ放電を用いて消失させて前記排気ガスを浄化する排気ガス浄化装置において,
前記排気ガス通路には,上記の請求項1−10のいずれかに1項に記載されている前記プラズマ反応器が配設されており,
前記プラズマ反応器の上流側の前記排気ガス通路にNOX 還元剤を供給するNOX 還元装置が配設されており,前記NOX 還元装置から供給される前記NOX 還元剤によって前記NOX が還元されて,前記排気ガスが浄化されることを特徴とするプラズマ放電を用いた排気ガス浄化装置。
It is disposed in an exhaust gas passage that exhausts exhaust gas from an engine or combustion equipment, and purifies the exhaust gas by using a plasma discharge to eliminate harmful substances such as NO x and particulate matter contained in the exhaust gas. In exhaust gas purification equipment,
In the exhaust gas passage, the plasma reactor according to any one of claims 1 to 10 is disposed,
Wherein and plasma reactor NO X reduction device for supplying NO X reducing agent to the exhaust gas passage upstream of is disposed, the NO X is by the NO X reducing agent supplied from the NO X reduction device An exhaust gas purification apparatus using plasma discharge, wherein the exhaust gas is purified by being reduced.
前記プラズマ発生用電源は前記排気ガス温度に応答してON/OFFが制御され,前記NOX の吸着側の前記導電部材の前記電極は前記排気ガス温度が予め決められた所定の温度以下の低温領域ではONし,それより高温領域ではOFFし,前記粒子状物質を酸化燃焼させる側の前記導電部材の前記電極は常時ONする制御がされることを特徴とする請求項11に記載のプラズマ放電を用いた排気ガス浄化装置。 The plasma generation power source is controlled ON / OFF in response to the exhaust gas temperature, the NO X of the electrode is low below the exhaust gas temperature is given to a predetermined temperature of the conductive member of the suction side 12. The plasma discharge according to claim 11, wherein the plasma discharge is controlled to be turned on in a region and turned off in a higher temperature region, and the electrode of the conductive member on the side for oxidizing and burning the particulate matter is always turned on. Exhaust gas purification device using. 前記NOX 還元装置は,前記排気ガス温度に応答してON/OFFが制御され,前記排気ガス温度が予め決められた所定の温度以下の低温領域ではOFFし,それより高温領域ではONする制御がされることを特徴とする請求項11又は12に記載のプラズマ放電を用いた排気ガス浄化装置。 The NO X reduction device is controlled to be turned on / off in response to the exhaust gas temperature, and is turned off in a low temperature region where the exhaust gas temperature is equal to or lower than a predetermined temperature, and is turned on in a higher temperature region. The exhaust gas purifying apparatus using plasma discharge according to claim 11 or 12, wherein the exhaust gas purifying apparatus uses plasma discharge. 前記還元剤は,アンモニア,尿素,又は軽油,ガソリン,アルコール等の炭化水素であることを特徴とする請求項11〜13のいずれか1項に記載のプラズマ放電を用いた排気ガス浄化装置。   The exhaust gas purification apparatus using plasma discharge according to any one of claims 11 to 13, wherein the reducing agent is ammonia, urea, or a hydrocarbon such as light oil, gasoline, alcohol, or the like. 前記プラズマ反応器に流入する前記排気ガス温度は,吸気スロットル,ポストインジェクション,酸化触媒装置の上流側に配設された燃料噴射装置,又は排気シャッタの作動によって制御されることを特徴とする請求項11〜14のいずれか1項に記載のプラズマ放電を用いた排気ガス浄化装置。   The temperature of the exhaust gas flowing into the plasma reactor is controlled by operation of an intake throttle, post-injection, a fuel injection device disposed upstream of the oxidation catalyst device, or an exhaust shutter. An exhaust gas purification apparatus using the plasma discharge according to any one of 11 to 14.
JP2009252977A 2009-11-04 2009-11-04 Plasma reactor and exhaust gas purification apparatus using the same Expired - Fee Related JP5356183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252977A JP5356183B2 (en) 2009-11-04 2009-11-04 Plasma reactor and exhaust gas purification apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252977A JP5356183B2 (en) 2009-11-04 2009-11-04 Plasma reactor and exhaust gas purification apparatus using the same

Publications (2)

Publication Number Publication Date
JP2011099341A true JP2011099341A (en) 2011-05-19
JP5356183B2 JP5356183B2 (en) 2013-12-04

Family

ID=44190727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252977A Expired - Fee Related JP5356183B2 (en) 2009-11-04 2009-11-04 Plasma reactor and exhaust gas purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP5356183B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015160057A1 (en) * 2014-04-16 2015-10-22 주식회사 클린팩터스 Plasma reactor for treating exhaust gas generated from processing facility
CN105756750A (en) * 2014-12-15 2016-07-13 北京纳米能源与系统研究所 Gas purifying device
CN106345295A (en) * 2016-08-29 2017-01-25 四川环翔科技有限责任公司 Method and apparatus for removing pollutants by low temperature plasma combined photoelectrocatalysis
CN107261839A (en) * 2016-03-30 2017-10-20 日本碍子株式会社 Reducing agent injection apparatus and waste gas processing method
CN109865426A (en) * 2017-12-05 2019-06-11 南京苏曼等离子科技有限公司 Big flow low-temperature plasma flow bed emission-control equipment and its application method
CN111185049A (en) * 2018-11-14 2020-05-22 中国石油化工股份有限公司 Method for reducing aerosol generated by low-temperature plasma treatment of waste gas through adsorption separation net

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182525A (en) * 1999-12-22 2001-07-06 Toyota Central Res & Dev Lab Inc Nox purifying method under plasma and device thereof
JP2006261040A (en) * 2005-03-18 2006-09-28 Ngk Insulators Ltd Plasma reactor
WO2007116668A1 (en) * 2006-03-30 2007-10-18 Ngk Insulators, Ltd. Exhaust gas purifier
JP2009162059A (en) * 2007-12-28 2009-07-23 Toyota Industries Corp Exhaust gas treatment system of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182525A (en) * 1999-12-22 2001-07-06 Toyota Central Res & Dev Lab Inc Nox purifying method under plasma and device thereof
JP2006261040A (en) * 2005-03-18 2006-09-28 Ngk Insulators Ltd Plasma reactor
WO2007116668A1 (en) * 2006-03-30 2007-10-18 Ngk Insulators, Ltd. Exhaust gas purifier
JP2009162059A (en) * 2007-12-28 2009-07-23 Toyota Industries Corp Exhaust gas treatment system of internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015160057A1 (en) * 2014-04-16 2015-10-22 주식회사 클린팩터스 Plasma reactor for treating exhaust gas generated from processing facility
CN106170845A (en) * 2014-04-16 2016-11-30 清洁要素技术有限公司 Process the plasma reactor of the waste gas betiding process apparatus
TWI564066B (en) * 2014-04-16 2017-01-01 清潔要素技術有限公司 Plasma reactor for purifying exhaust gas of the process facility
CN105756750A (en) * 2014-12-15 2016-07-13 北京纳米能源与系统研究所 Gas purifying device
CN107261839A (en) * 2016-03-30 2017-10-20 日本碍子株式会社 Reducing agent injection apparatus and waste gas processing method
US10519834B2 (en) * 2016-03-30 2019-12-31 Ngk Insulators, Ltd. Reducing agent injection device and exhaust gas treatment method
CN107261839B (en) * 2016-03-30 2021-08-20 日本碍子株式会社 Reducing agent injection device and exhaust gas treatment method
CN106345295A (en) * 2016-08-29 2017-01-25 四川环翔科技有限责任公司 Method and apparatus for removing pollutants by low temperature plasma combined photoelectrocatalysis
CN109865426A (en) * 2017-12-05 2019-06-11 南京苏曼等离子科技有限公司 Big flow low-temperature plasma flow bed emission-control equipment and its application method
CN111185049A (en) * 2018-11-14 2020-05-22 中国石油化工股份有限公司 Method for reducing aerosol generated by low-temperature plasma treatment of waste gas through adsorption separation net
CN111185049B (en) * 2018-11-14 2022-07-08 中国石油化工股份有限公司 Method for reducing aerosol generated by low-temperature plasma treatment of waste gas through adsorption separation net

Also Published As

Publication number Publication date
JP5356183B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5356183B2 (en) Plasma reactor and exhaust gas purification apparatus using the same
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
JP4706757B2 (en) Exhaust gas purification device for internal combustion engine
JP5474468B2 (en) Exhaust gas purification device using plasma discharge
JP2002530181A (en) Method and apparatus for increasing the speed and efficiency of a gas phase reaction
JP2011012559A (en) Exhaust emission control device using plasma discharge
JP2006312921A (en) System and method for purifying exhaust gas of diesel engine
KR20140115377A (en) Use of catalyst converter system
JP6312857B2 (en) Exhaust gas aftertreatment method and combustion system
JP2004176703A (en) Gas purification apparatus, gas purification method, and discharge reactant used for the gas purification apparatus
WO2012131874A1 (en) Exhaust gas purification device for internal combustion engine
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
JP2001123823A (en) Mechanism for converting particulate matter in exhaust gas from gasoline engine
US20040188238A1 (en) System and method for concurrent particulate and NOx control
US20130236364A1 (en) Exhaust purifying apparatus in internal combustion engine
WO2003082426A2 (en) Integrated non-thermal plasma reactor-diesel particulate filter
WO2009104723A1 (en) Exhaust gas purifier
US10648387B1 (en) Exhaust gas post processing apparatus
JP2008298036A (en) Exhaust emission control device
JP2011033017A (en) Exhaust system
JP4582806B2 (en) Exhaust gas purification device
KR100712309B1 (en) Vehicle Exhaust aftertreatment using catalytic coated electric heater
JP4877574B2 (en) Exhaust gas purification device for internal combustion engine
KR100769571B1 (en) Harmfulness matter reduction system of diesel engine
KR101427933B1 (en) Catalytic converter of internal combustion engine and apparatus of purifying exhaust gas provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees