JP2011099049A - Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg and circuit board - Google Patents

Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg and circuit board Download PDF

Info

Publication number
JP2011099049A
JP2011099049A JP2009254930A JP2009254930A JP2011099049A JP 2011099049 A JP2011099049 A JP 2011099049A JP 2009254930 A JP2009254930 A JP 2009254930A JP 2009254930 A JP2009254930 A JP 2009254930A JP 2011099049 A JP2011099049 A JP 2011099049A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin composition
phenol
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009254930A
Other languages
Japanese (ja)
Other versions
JP5463859B2 (en
Inventor
Kazuo Arita
和郎 有田
Ichiro Ogura
一郎 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2009254930A priority Critical patent/JP5463859B2/en
Publication of JP2011099049A publication Critical patent/JP2011099049A/en
Application granted granted Critical
Publication of JP5463859B2 publication Critical patent/JP5463859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide excellent flame retardancy and heat resistance as well as low dielectric loss tangent. <P>SOLUTION: An epoxy resin composition contains an epoxy resin (A) and a curing agent (B) as essential constituents. The epoxy resin (A) has a molecular structure which has an polyaryleneoxy structure as a main skeleton thereof and in which glycidyloxy or methyl glycidyloxy group and a structural part (α) are bonded with an aromatic nucleus of the structure. The structural part (α) is expressed by structural formula (1) [in structural formula (1), each of R<SB>1</SB>and R<SB>2</SB>independently expresses methyl group or hydrogen atom, Ar expresses phenylene group, phenylene group nuclear-replaced by one to three 1C-4C alkyl groups, naphthylene group or naphthylene group nuclear-replaced by one to three 1C-4C alkyl groups and (n) is an integer of 1 or 2], wherein the abundance ratio of the aromatic nucleus constituting the structural part (α) is 0.1-0.5 mol per 1 mol aromatic nucleus constituting the polyaryleneoxy structure in the molecular structure and the softening point of the epoxy resin (A) is 80-140°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、その硬化物において優れた難燃性、耐熱性、低誘電正接を発現し、かつ、溶剤溶解性に優れた性能を有するエポキシ樹脂組成物、その硬化物、及びこれに用いる新規エポキシ樹脂、新規フェノール樹脂、並びに、該エポキシ樹脂組成物を用いたプリプレグ、並びに積層板に関する。   The present invention provides an epoxy resin composition that exhibits excellent flame retardancy, heat resistance, and low dielectric loss tangent in the cured product, and has excellent performance in solvent solubility, the cured product, and a novel epoxy used in the epoxy resin composition The present invention relates to a resin, a novel phenol resin, a prepreg using the epoxy resin composition, and a laminate.

エポキシ樹脂は、接着剤、成形材料、塗料、フォトレジスト材料、顕色材料等に用いられている他、得られる硬化物の優れた耐熱性や耐湿性などに優れる点から半導体封止材や回路基板用絶縁材料等の電気・電子分野で幅広く用いられている。
これらの各種用途のうち、積層板などの回路基板用絶縁材料の分野では、電子機器の小型化・高性能化の流れに伴い、半導体装置の配線ピッチの狭小化による高密度化の傾向が著しく、これに対応した半導体実装方法として、はんだボールにより半導体装置と基板とを接合させるフリップチップ接続方式が広く用いられている。このフリップチップ接続方式では、配線板と半導体との間にはんだボールを配置、全体を加熱して溶融接合させる所謂リフロー方式による半導体実装方式であるため、はんだリフロー時に配線版自体が高熱環境に晒され、配線板の高温時の弾性率低下により、配線の接続不良を起こす場合があった。その為、回路基板に用いられる絶縁材料には、高温時においても弾性率が低下しづらい高耐熱性の材料が求められている。
一方、難燃性を付与するために臭素等のハロゲン系難燃剤がアンチモン化合物とともに配合されている。しかし、近年、環境・安全への取り組みのなかで、ダイオキシン発生が懸念されるハロゲン系難燃剤や、発ガン性が疑われているアンチモン化合物を用いない環境・安全対応型の難燃化方法の開発が強く要求されている。
すなわち回路基板用の絶縁材料には、高度な耐熱性、難燃性が求められており、かかる要求に対応できるエポキシ樹脂材料が待望されている。
このような要求に対応すべく、難燃性に優れた絶縁材料として、例えば樹脂構造の主骨格にポリアリーレンオキシ構造を導入し、かつ、該ポリアリーレンオキシ構造に更にアラルキル構造を導入することで得られるフェノール樹脂およびこれをエポキシ化したエポキシ樹脂などが提案されている(下記特許文献1参照)。かかるフェノール樹脂又はエポキシ樹脂は、例えば半導体封止材料として使用した場合には優れた難燃性能を発現するものの、それら自体が有機溶剤への溶解性が低く、有機溶媒中で一部結晶化が発生するため、回路基板用の絶縁材料のようなワニス組成物として使用し難いものであることに加え、仮にこれらを用いて回路基板を製造した場合には、十分な難燃性が発現されない他、耐熱性にも劣るものであった。更に、該フェノール樹脂又はエポキシ樹脂を回路基板用絶縁材料として用いた場合、近年の回路積層板への要求の高い誘電正接が高くなってしまうものであった。
Epoxy resins are used in adhesives, molding materials, paints, photoresist materials, color developing materials, etc., and are also used in semiconductor encapsulants and circuits because of the excellent heat resistance and moisture resistance of the resulting cured products. Widely used in electrical and electronic fields such as insulating materials for substrates.
Among these various applications, in the field of insulating materials for circuit boards such as laminates, with the trend toward smaller and higher performance electronic devices, the trend toward higher density due to the narrower wiring pitch of semiconductor devices is significant. As a semiconductor mounting method corresponding to this, a flip chip connection method in which a semiconductor device and a substrate are joined by solder balls is widely used. In this flip-chip connection method, a solder ball is placed between a wiring board and a semiconductor, and the whole is heated and melt bonded to form a so-called reflow semiconductor mounting method. Therefore, the wiring plate itself is exposed to a high heat environment during solder reflow. In some cases, the wiring board has poor connection due to a decrease in the elastic modulus of the wiring board at a high temperature. Therefore, an insulating material used for a circuit board is required to have a high heat resistance that does not easily lower its elastic modulus even at high temperatures.
On the other hand, a halogen-based flame retardant such as bromine is blended together with an antimony compound in order to impart flame retardancy. However, in recent years, environmental and safety efforts have made efforts to develop a flame retardant method that does not use halogen-based flame retardants that may cause dioxins or antimony compounds that are suspected of causing carcinogenicity. Development is strongly required.
That is, an insulating material for a circuit board is required to have high heat resistance and flame retardancy, and an epoxy resin material that can meet such requirements is awaited.
In order to meet such demands, as an insulating material having excellent flame retardancy, for example, by introducing a polyaryleneoxy structure into the main skeleton of the resin structure, and further introducing an aralkyl structure into the polyaryleneoxy structure. An obtained phenol resin and an epoxy resin obtained by epoxidizing the phenol resin have been proposed (see Patent Document 1 below). Such phenolic resins or epoxy resins, for example, exhibit excellent flame retardancy when used as a semiconductor sealing material, but they themselves have low solubility in organic solvents and are partially crystallized in organic solvents. In addition to being difficult to use as a varnish composition such as an insulating material for circuit boards, if a circuit board is manufactured using these, sufficient flame retardancy is not exhibited. The heat resistance was inferior. Furthermore, when this phenol resin or epoxy resin is used as an insulating material for circuit boards, the high dielectric loss tangent required for circuit laminates in recent years is increased.

特開2006−307162号公報JP 2006-307162 A

従って、本発明が解決しようとする課題は、優れた難燃性、耐熱性、及び低誘電正接といった性能を硬化物に付与することができるエポキシ樹脂組成物、新規エポキシ樹脂及び新規フェノール樹脂、前記性能を兼備したエポキシ樹脂硬化物、並びに、前記組成物から得られるプリプレグ及びに回路基板を提供することにある。   Therefore, the problem to be solved by the present invention is an epoxy resin composition, a novel epoxy resin and a novel phenol resin that can impart to the cured product performance such as excellent flame retardancy, heat resistance, and low dielectric loss tangent, An object of the present invention is to provide a cured epoxy resin product having performance and a circuit board for a prepreg obtained from the composition.

本発明者らは、前記課題を解決すべく鋭意検討した結果、樹脂構造の主骨格にポリアリーレンオキシ構造を導入し、かつ、該ポリアリーレンオキシ構造に更にアラルキル構造を導入することにより誘電特性を低下させることなく、難燃性を飛躍的に向上させることができることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have introduced a polyaryleneoxy structure into the main skeleton of the resin structure, and further introduced an aralkyl structure into the polyaryleneoxy structure, thereby providing dielectric properties. It has been found that flame retardancy can be drastically improved without lowering, and the present invention has been completed.

即ち、本発明は、ポリアリーレンオキシ構造を主骨格としており、該構造の芳香核に、グリシジルオキシ基又はメチルグリシジルオキシ基、及び下記構造式(1)   That is, the present invention has a polyaryleneoxy structure as a main skeleton, and the aromatic nucleus of the structure includes a glycidyloxy group or a methylglycidyloxy group, and the following structural formula (1)

Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が80〜140℃であるエポキシ樹脂(A)、並びに硬化剤(B)を必須成分とすることを特徴とするエポキシ樹脂組成物に関する(以下、このエポキシ樹脂組成物を「エポキシ樹脂組成物(I)」と略記する)。
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The epoxy resin (A) whose softening point is 80 to 140 ° C. and the curing agent (B) are essential components in the range in which the nucleus content is 0.1 to 0.5 mol. The epoxy resin composition is characterized (hereinafter, this epoxy resin composition is abbreviated as “epoxy resin composition (I)”).

本発明は、また、前記エポキシ樹脂組成物(I)を硬化させて得られる硬化物に関する。   The present invention also relates to a cured product obtained by curing the epoxy resin composition (I).

本発明は、更に、ポリアリーレンオキシ構造を主骨格としており、該構造の芳香核に、グリシジルオキシ基又はメチルグリシジルオキシ基、及び下記構造式(1)   The present invention further has a polyaryleneoxy structure as a main skeleton, and the aromatic nucleus of the structure includes a glycidyloxy group or a methylglycidyloxy group, and the following structural formula (1):

Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは繰り返し数の平均値で0.1〜4である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が80〜140℃であることを特徴とする新規エポキシ樹脂に関する。
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an average number of repetitions of 0.1 to 4. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The present invention relates to a novel epoxy resin characterized in that the nucleus content is in the range of 0.1 to 0.5 mol and the softening point is 80 to 140 ° C.

本発明は、また、ポリアリーレンオキシ構造を主骨格としており、該構造の芳香環に、フェノール性水酸基及び下記構造式(1)   The present invention also has a polyaryleneoxy structure as a main skeleton, and the aromatic ring of the structure has a phenolic hydroxyl group and the following structural formula (1).

Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が90〜150℃であるフェノール樹脂(B’)、及びエポキシ樹脂(A’)を必須成分とすることを特徴とするエポキシ樹脂組成物(以下、このエポキシ樹脂組成物を「エポキシ樹脂組成物(II)」と略記する)に関する。
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The phenol resin (B ′) and the epoxy resin (A ′) having a nucleus content of 0.1 to 0.5 mol and a softening point of 90 to 150 ° C. are essential components. The epoxy resin composition (hereinafter, this epoxy resin composition is abbreviated as “epoxy resin composition (II)”).

本発明は、また、前記エポキシ樹脂組成物(II)を硬化させて得られる硬化物に関する。   The present invention also relates to a cured product obtained by curing the epoxy resin composition (II).

本発明は、更に、ポリアリーレンオキシ構造を主骨格としており、かつ、該構造の芳香環に、フェノール性水酸基及び下記構造式(1)   The present invention further has a polyaryleneoxy structure as a main skeleton, and the aromatic ring of the structure has a phenolic hydroxyl group and the following structural formula (1).

Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が90〜150℃であることを特徴とする新規フェノール樹脂に関する。
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The present invention relates to a novel phenol resin characterized in that the nucleus content is in the range of 0.1 to 0.5 mol and the softening point is 90 to 150 ° C.

本発明は、更に、前記エポキシ樹脂組成物(I)又はエポキシ樹脂組成物(II)を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸機材を半硬化させて得られるプリプレグに関する。   The present invention further relates to a prepreg obtained by impregnating a reinforcing base material with the epoxy resin composition (I) or the epoxy resin composition (II) diluted in an organic solvent, and semi-curing the resulting impregnated equipment. .

本発明は、更に、前記エポキシ樹脂組成物(I)又はエポキシ樹脂組成物(II)を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより積層して得られる回路基板に関する。   The present invention further obtains a varnish obtained by diluting the epoxy resin composition (I) or the epoxy resin composition (II) in an organic solvent, and heat-press-molds the resulting varnish and a copper foil. It is related with the circuit board obtained by laminating | stacking.

本発明によれば、優れた難燃性と、誘電特性とを硬化物に付与することができるエポキシ樹脂組成物、新規エポキシ樹脂及び新規フェノール樹脂、前記性能を兼備したエポキシ樹脂硬化物、並びに、前記組成物から得られるプリプレグ及びに回路基板を提供できる。   According to the present invention, an epoxy resin composition capable of imparting excellent flame retardancy and dielectric properties to a cured product, a novel epoxy resin and a novel phenol resin, an epoxy resin cured product having the above-mentioned performance, and A circuit board can be provided for the prepreg obtained from the composition.

実施例1で得られたフェノール樹脂(A−1)のFD−MSのスペクトルである。2 is an FD-MS spectrum of the phenol resin (A-1) obtained in Example 1. FIG. 実施例1で得られたフェノール樹脂(A−1)のトリメチルシリル化法によるFD−MSのスペクトルである。2 is an FD-MS spectrum obtained by trimethylsilylation of the phenol resin (A-1) obtained in Example 1. FIG. 実施例1で得られたフェノール樹脂(A−1)のGPCチャート図である。1 is a GPC chart of a phenol resin (A-1) obtained in Example 1. FIG. 実施例2で得られたエポキシ樹脂(B−1)のFD−MSのスペクトルである。2 is an FD-MS spectrum of the epoxy resin (B-1) obtained in Example 2. 実施例2で得られたフェノール樹脂(B−1)のGPCチャート図である。It is a GPC chart figure of the phenol resin (B-1) obtained in Example 2.

以下、本発明を詳細に説明する。
本発明のエポキシ樹脂組成物(I)で用いるエポキシ樹脂(A)は、ポリアリーレンオキシ構造を主骨格としており、かつ、該構造の芳香核に、グリシジルオキシ基又はメチルグリシジルオキシ基、及び下記構造式(1)
Hereinafter, the present invention will be described in detail.
The epoxy resin (A) used in the epoxy resin composition (I) of the present invention has a polyaryleneoxy structure as the main skeleton, and the aromatic nucleus of the structure has a glycidyloxy group or a methylglycidyloxy group, and the following structure: Formula (1)

Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]
で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が80〜140℃のものである。ここで、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合とは、後述するエポキシ樹脂(A)の製造方法におけるジヒドロキシ芳香族化合物(a1)1モルに対する前記アラルキル化剤(a2)のモル数に相当する。本発明では、エポキシ樹脂(A)の製造方法におけるこれら原料成分のほぼ全量が生成物中に取り込まれる為、これら原料成分のモル比率が、実質的に前記分子構造(α)を構成する芳香核のモル基準の存在割合に相当することとなる。
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. ]
Aromatic nuclei constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. Is in the range of 0.1 to 0.5 mol, and the softening point is 80 to 140 ° C. Here, the abundance ratio of the aromatic nuclei constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure is a dihydroxy aromatic compound in the production method of the epoxy resin (A) described later ( a1) It corresponds to the number of moles of the aralkylating agent (a2) with respect to 1 mole. In the present invention, since almost all of these raw material components in the production method of the epoxy resin (A) are taken into the product, the molar ratio of these raw material components substantially constitutes the molecular structure (α). It corresponds to the existing ratio on the molar basis.

このように前記エポキシ樹脂(A)は、軟化点が高く、また、その割に前記分子構造(α)を構成する芳香核の存在割合が低いことを特徴としている。即ち、ポリアリーレンオキシ構造の主鎖が比較的長くなり、優れた溶剤溶解性が発現されると共に、回路基板用途における高度な難燃性能にも対応することが可能となる。更に、エポキシ樹脂(A)中の前記分子構造(α)の存在比が低くなることから、エポキシ基の反応性が向上し、硬化物に優れた耐熱性を付与することができる。とりわけ難燃性の発現メカニズムが、燃焼時に、ポリアリーレンオキシ構造中のアリーレン基と前記分子構造(α)とによってチャーが形成されるという公知の知見に鑑みれば、前記分子構造(α)の存在比が低くなっても優れた難燃性を発現することは特筆に値するものである。   Thus, the epoxy resin (A) is characterized by a high softening point and a low proportion of aromatic nuclei constituting the molecular structure (α). That is, the main chain of the polyaryleneoxy structure becomes relatively long, and excellent solvent solubility is exhibited, and it is possible to cope with high flame retardancy performance in circuit board applications. Furthermore, since the abundance ratio of the molecular structure (α) in the epoxy resin (A) is low, the reactivity of the epoxy group is improved, and excellent heat resistance can be imparted to the cured product. In particular, the existence of the molecular structure (α) is considered in view of the known knowledge that the char is formed by the arylene group in the polyaryleneoxy structure and the molecular structure (α) during the combustion. It is worth noting that excellent flame retardancy is exhibited even when the ratio is low.

前記エポキシ樹脂(A)の基本骨格を成すポリアリーレンオキサイド構造は、ポリナフチレンオキサイド構造、及び炭素原子数1〜4のアルキル基で置換されたポリナフチレンオキサイド構造などのナフチレンオキサイド系構造、並びに、ポリフェニレンオキサイド構造、及び炭素原子数1〜4のアルキル基で置換されたポリフェニレンオキサイド構造などのフェニレンオキサイド系構造が挙げられる。これらのなかでも特に本発明ではナフチレンオキサイド系構造を有するものが、難燃効果が一層顕著なものとなる他、誘電正接も低くなる点から好ましい。更に、難燃効果の点から中でもポリナフチレンオキサイド構造或いはメチル基含有ポリナフチレンオキシサイド構造が好ましく、特にポリナフチレンオキサイド構造であることが好ましい。   The polyarylene oxide structure constituting the basic skeleton of the epoxy resin (A) includes a polynaphthylene oxide structure and a naphthylene oxide structure such as a polynaphthylene oxide structure substituted with an alkyl group having 1 to 4 carbon atoms, In addition, a phenylene oxide structure such as a polyphenylene oxide structure and a polyphenylene oxide structure substituted with an alkyl group having 1 to 4 carbon atoms can be given. Among these, those having a naphthylene oxide structure are particularly preferred in the present invention because the flame retardant effect becomes more remarkable and the dielectric loss tangent is also lowered. Furthermore, among these, a polynaphthylene oxide structure or a methyl group-containing polynaphthylene oxycide structure is preferable, and a polynaphthylene oxide structure is particularly preferable.

次に、前記エポキシ樹脂(A)の分子構造中に有する下記構造式(1)   Next, the following structural formula (1) in the molecular structure of the epoxy resin (A)

Figure 2011099049

で表される構造部位(α)において、R及びRは各々独立してメチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、及び、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基からなる群から選択される二価の芳香族系炭化水素基である。また、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基とは、メチルフェニレン基、エチルフェニレン基、i−プロピルフェニレン基、又はt−ブチルフェニレン基等が挙げられ、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基とは、メチルナフチレン基、エチルナフチレン基、i−プロピルナフチレン基、及びt−ブチルナフチレン基等が挙げられる。また、nは1又は2の整数である。
Figure 2011099049

R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is one to three of a phenylene group and an alkyl group having 1 to 4 carbon atoms. A divalent aromatic hydrocarbon group selected from the group consisting of a nuclei-substituted phenylene group, a naphthylene group, and a naphthylene group nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms. is there. Examples of the phenylene group nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms include methylphenylene group, ethylphenylene group, i-propylphenylene group, and t-butylphenylene group. Examples of the naphthylene group nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms include methyl naphthylene group, ethyl naphthylene group, i-propyl naphthylene group, and t-butyl naphthylene group. N is an integer of 1 or 2.

これらの中でも、工業的生産において原料の入手が容易であり、得られる硬化物の難燃性に優れ、かつ、誘電特性にも優れる点からR及びRが共に水素原子であることが好ましい。また、nの値は難燃効果及び誘電特性の点から特に1であることが好ましく、原料の入手が容易でかつエポキシ樹脂(A)の粘度が低くなる点からArがフェニレン基であることが好ましい。 Among these, it is preferable that R 1 and R 2 are both hydrogen atoms from the viewpoint of easy availability of raw materials in industrial production, excellent flame retardancy of the resulting cured product, and excellent dielectric properties. . The value of n is particularly preferably 1 from the viewpoints of flame retardancy and dielectric properties, and Ar is a phenylene group from the viewpoint of easy availability of raw materials and low viscosity of the epoxy resin (A). preferable.

更に、本発明では、前記一般式(1)中の「Ar」で表される芳香核の存在割合は、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたり0.1〜0.5モルとなる範囲である。ここで、前記一般式(1)中の「Ar」で表される芳香核の存在割合が0.5以下とすることにより、硬化物の耐熱性が飛躍的に向上する他、難燃性も高くなる。一方、0.1以上とすることにより硬化物の難燃性が良好なものとなる他、硬化物の誘電正接も低いものとなる。なお、ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記一般式(1)中の「Ar」で表される芳香核の存在割合は、前述した通り、エポキシ樹脂(A)の製造方法におけるジヒドロキシ芳香族化合物(a1)1モルに対する前記アラルキル化剤(a2)のモル数に相当する。   Further, in the present invention, the abundance ratio of the aromatic nucleus represented by “Ar” in the general formula (1) is 0.1 to 0.5 mol per mol of the aromatic nucleus constituting the polyaryleneoxy structure. It is a range. Here, when the abundance ratio of the aromatic nucleus represented by “Ar” in the general formula (1) is 0.5 or less, the heat resistance of the cured product is dramatically improved, and the flame retardancy is also improved. Get higher. On the other hand, by setting it to 0.1 or more, the flame retardancy of the cured product becomes good, and the dielectric loss tangent of the cured product also becomes low. The abundance ratio of the aromatic nucleus represented by “Ar” in the general formula (1) per mole of the aromatic nucleus constituting the polyaryleneoxy structure is as described above in the method for producing the epoxy resin (A). This corresponds to the number of moles of the aralkylating agent (a2) relative to 1 mole of the dihydroxy aromatic compound (a1).

また、前記エポキシ樹脂(A)の分子構造中に有するグリシジルオキシ基又はメチルグリシジルオキシ基は、具体的には、グリシジルオキシ基及びβ−メチルグリシジルオキシ基が挙げられるが、本発明では特に硬化物の難燃性の点、及び、エポキシ樹脂(A)を工業的生産する際の原料入手が容易であることなどから、グリシジルオキシ基であることが好ましい。   Moreover, specific examples of the glycidyloxy group or methylglycidyloxy group in the molecular structure of the epoxy resin (A) include glycidyloxy group and β-methylglycidyloxy group. From the viewpoint of flame retardancy and easy availability of raw materials for industrial production of the epoxy resin (A), a glycidyloxy group is preferred.

また、本発明で用いるエポキシ樹脂(A)は、その軟化点が80〜140℃であることから、有機溶剤への溶解性が高くなり、回路基板用ワニスに適した材料となる他、ポリアリーレンオキシ構造の主鎖が比較的長いものとなり、従来になり難燃性能を発現させることができる。   In addition, the epoxy resin (A) used in the present invention has a softening point of 80 to 140 ° C., so that it has high solubility in organic solvents and becomes a material suitable for varnish for circuit boards. The main chain of an oxy structure becomes a comparatively long thing, and the flame retardance performance can be expressed conventionally.

更に、前記エポキシ樹脂(A)は、その前駆体であるフェノール樹脂の製造の際、ジヒドロキシ芳香族化合物を原料としてポリアリーレンオキサイド構造を形成させることが望ましく、この場合、フェノール性水酸基は直鎖状分子構造の両末端に出現する為、主に2官能性のエポキシ樹脂として得られる。然し乍ら、該樹脂成分中には、部分的にポリナフチレンオキサイド構造中のナフタレン環に、他のヒドロキシナフタレン環が直接結合によって結合した分子構造を持つ多官能フェノール樹脂をエポキシ化したものも含まれ得る。よって、この場合、前記エポキシ樹脂(A)は、多官能性のエポキシ樹脂として得られる。ここで、前記エポキシ樹脂(A)を回路基板用途へ適用する際にはエポキシ樹脂中の官能基濃度をより一層低くして硬化後の誘電特性や耐湿性の改善を図ることが好ましく、その一方で、前記エポキシ樹脂(A)中の分子量が小さい場合には、有機溶剤への溶解性に劣り回路基板用ワニスへの適用が困難なものとなる点から、前記エポキシ樹脂(A)は、そのエポキシ当量が、257〜320g/eq.の範囲であることが好ましい。   Further, the epoxy resin (A) preferably forms a polyarylene oxide structure using a dihydroxy aromatic compound as a raw material in the production of a phenol resin as a precursor thereof. In this case, the phenolic hydroxyl group is linear. Since it appears at both ends of the molecular structure, it is obtained mainly as a bifunctional epoxy resin. However, the resin component also includes a resin component partially epoxidized with a polyfunctional phenol resin having a molecular structure in which another hydroxynaphthalene ring is directly bonded to the naphthalene ring in the polynaphthylene oxide structure. obtain. Therefore, in this case, the epoxy resin (A) is obtained as a polyfunctional epoxy resin. Here, when applying the epoxy resin (A) to circuit board applications, it is preferable to further reduce the functional group concentration in the epoxy resin to improve the dielectric properties and moisture resistance after curing, In the case where the molecular weight in the epoxy resin (A) is small, the epoxy resin (A) has a low solubility in an organic solvent and is difficult to apply to a circuit board varnish. Epoxy equivalent is 257 to 320 g / eq. It is preferable that it is the range of these.

以上詳述したエポキシ樹脂(A)は、前記した通り、中でもポリナフチレンオキシ構造を前記ポリアリーレンオキサイド構造として有するものが好ましく、具体的には下記一般式(1)   As described above, the epoxy resin (A) described in detail above preferably has a polynaphthyleneoxy structure as the polyarylene oxide structure, and specifically, the following general formula (1)

Figure 2011099049

で表される構造単位(α)を繰り返し単位とし、その両末端にグリシジルオキシ基又はメチルグリシジルオキシ基を有する構造を有する軟化点80〜140℃のエポキシ樹脂であるものが有機溶剤への溶解性に優れ、かつ、難燃性及び耐熱性に優れた硬化物を与えることができる点から好ましい。
Figure 2011099049

The structural unit (α) represented by the formula is a repeating unit, and an epoxy resin having a softening point of 80 to 140 ° C. having a structure having a glycidyloxy group or a methylglycidyloxy group at both ends thereof is soluble in an organic solvent. It is preferable in that it can provide a cured product excellent in flame retardancy and heat resistance.

ここで上記一般式(1)中、Xは水素原子又は下記一般式(2)   In the general formula (1), X is a hydrogen atom or the following general formula (2)

Figure 2011099049

で表される構造部位(β)であり、かつ、前記一般式(2)中のR’は水素原子又はメチル基であり、前記一般式(1)及び一般式(2)中のRは下記一般式(3)
Figure 2011099049

And R ′ in the general formula (2) is a hydrogen atom or a methyl group, and R in the general formula (1) and the general formula (2) is General formula (3)

Figure 2011099049

で表される構造部位(γ)であり、一般式(3)中のnは1又は2であり、また、一般式(2)及び一般式(3)中のpの値は0〜3の整数である。但し、前記エポキシ樹脂(A)は、その分子構造中、前記構造部位(γ)中のベンゼン環をナフタレン環1個あたり0.1〜0.5個となる割合で有するものである。なお、上記一般式(1)においてナフタレン骨格への結合位置はナフタレン環を構成する2つの環の何れであってもよい。
Figure 2011099049

In the general formula (3), n is 1 or 2, and the values of p in the general formula (2) and the general formula (3) are 0-3. It is an integer. However, the epoxy resin (A) has a benzene ring in the structural part (γ) in the molecular structure at a ratio of 0.1 to 0.5 per naphthalene ring. In the general formula (1), the bonding position to the naphthalene skeleton may be any of the two rings constituting the naphthalene ring.

以上詳述したエポキシ樹脂(A)は、例えば、下記の製造方法によって製造することができる。   The epoxy resin (A) detailed above can be produced, for example, by the following production method.

即ち、ジヒドロキシ芳香族化合物(a1)と、下記構造式(2)   That is, the dihydroxy aromatic compound (a1) and the following structural formula (2)

Figure 2011099049

〔式中、R、Rは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を、Yはハロゲン原子、アルコキシ基、又は水酸基を表す。〕で表される化合物、又は下記構造式(3)
Figure 2011099049

[Wherein R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a phenylene group that is nucleus-substituted with 1 to 3 of a C 1-4 alkyl group. Y represents a halogen atom, an alkoxy group, or a hydroxyl group, a naphthylene group that is nucleus-substituted with 1 to 3 of a naphthylene group or an alkyl group having 1 to 4 carbon atoms. Or a compound represented by the following structural formula (3)

Figure 2011099049

〔式中、R、R、Rは各々独立してメチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。〕で表される化合物からなる群から選択されるアラルキル化剤(a2)とを、酸触媒の存在下に反応させてフェノール樹脂を得る工程(以下、この工程を「工程1」と略記する。)、次いで、得られたフェノール樹脂をとエピハロヒドリン類(a3)とを反応させる工程(以下、この工程を「工程2」と略記する。)とを経て目的とするエポキシ樹脂(A)を製造することができる。
Figure 2011099049

[Wherein R 1 , R 3 and R 4 are each independently a methyl group or a hydrogen atom, and Ar is substituted with 1 to 3 of a phenylene group or an alkyl group having 1 to 4 carbon atoms. A naphthylene group substituted with 1 to 3 of a phenylene group, a naphthylene group, or an alkyl group having 1 to 4 carbon atoms is represented. ] The process which makes the aralkylation agent (a2) selected from the group consisting of the compound represented by these react with presence of an acid catalyst, and obtains a phenol resin (henceforth this process is abbreviated as "process 1". ), And the step of reacting the obtained phenolic resin with epihalohydrins (a3) (hereinafter, this step is abbreviated as “step 2”) to produce the desired epoxy resin (A). be able to.

即ち、先ず工程1において前記ジヒドロキシ芳香族化合物(a1)と、前記アラルキル化剤(a2)とを酸触媒の存在に反応させることにより、ポリアリーレン構造を主骨格としてその両末端にフェノール性水酸基を有し、かつ、該ポリアリーレン構造の芳香核上にアラルキル基がペンダント状に結合した構造のフェノール樹脂を得ることができる。   That is, first, in step 1, the dihydroxy aromatic compound (a1) and the aralkylating agent (a2) are reacted with the presence of an acid catalyst to form a polyarylene structure as a main skeleton with phenolic hydroxyl groups at both ends. And a phenol resin having an aralkyl group bonded in a pendant form on the aromatic nucleus of the polyarylene structure.

ここで、前記ジヒドロキシ芳香族化合物(a1)と、前記アラルキル化剤(a2)との反応割合は、モル基準で前記ジヒドロキシ芳香族化合物(a1)とアラルキル化剤(a2)との反応比率(a1)/(a2)は1/0.1〜1/0.5となる範囲であることが好ましく、最終的に得られるエポキシ樹脂(A)の難燃性と耐熱性とのバランスが良好なものとなる点から好ましい。   Here, the reaction ratio between the dihydroxy aromatic compound (a1) and the aralkylating agent (a2) is the reaction ratio (a1) between the dihydroxy aromatic compound (a1) and the aralkylating agent (a2) on a molar basis. ) / (A2) is preferably in the range of 1 / 0.1 to 1 / 0.5, and the epoxy resin (A) finally obtained has a good balance between flame retardancy and heat resistance. It is preferable from the point which becomes.

ここで使用し得るジヒドロキシ芳香族化合物(a1)は、例えば、カテコール、レゾルシノール、及びハイドロキノン等の2価フェノール類、並びに、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシナフタレンが挙げられる。これらの中でも特に得られるフェノール樹脂或いはそのエポキシ化したエポキシ樹脂の硬化物の難燃性が一層良好なものとなり、また、該硬化物の誘電正接も低くなって誘電特性が良好になる点からジヒドロキシナフタレン、中でも1,6−ジヒドロキシナフタレン又は2,7−ジヒドロキシナフタレンが好ましく、特に2,7−ジヒドロキシナフタレンが好ましい。   Examples of the dihydroxy aromatic compound (a1) that can be used here include dihydric phenols such as catechol, resorcinol, and hydroquinone, and 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxy. Naphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene And dihydroxynaphthalene. Among these, the phenol resin obtained in particular or the cured product of the epoxidized epoxy resin has a further improved flame retardancy, and the cured product has a lower dielectric loss tangent, resulting in better dielectric properties. Naphthalene, particularly 1,6-dihydroxynaphthalene or 2,7-dihydroxynaphthalene is preferable, and 2,7-dihydroxynaphthalene is particularly preferable.

次に、前記アラルキル化剤(a2)のうち、下記構造式(2)   Next, among the aralkylating agent (a2), the following structural formula (2)

Figure 2011099049

[式中、R、Rは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。]で表される化合物としては、例えば、Yがハロゲン原子の場合、ベンジルクロライド、ベンジルブロマイド、ベンジルアイオダイト、o−メチルベンジルクロライド、m−メチルベンジルクロライド、p−メチルベンジルクロライド、p−エチルベンジルクロライド、p−イソプロピルベンジルクロライド、p−tert−ブチルベンジルクロライド、p−フェニルベンジルクロライド、5−クロロメチルアセナフチレン、2−ナフチルメチルクロライド、1−クロロメチル−2−ナフタレン及びこれらの核置換異性体、α−メチルベンジルクロライド、並びにα,α−ジメチルベンジルクロライド等が挙げられる。
Figure 2011099049

[Wherein, R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a phenylene group that is nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms. , A naphthylene group substituted with 1 to 3 of a naphthylene group or an alkyl group having 1 to 4 carbon atoms. As the compound represented by formula (I), for example, when Y is a halogen atom, benzyl chloride, benzyl bromide, benzyl iodide, o-methylbenzyl chloride, m-methylbenzyl chloride, p-methylbenzyl chloride, p-ethylbenzyl Chloride, p-isopropylbenzyl chloride, p-tert-butylbenzyl chloride, p-phenylbenzyl chloride, 5-chloromethylacenaphthylene, 2-naphthylmethyl chloride, 1-chloromethyl-2-naphthalene and their nuclear substitution isomerism Body, α-methylbenzyl chloride, and α, α-dimethylbenzyl chloride.

Yがアルコキシ基の場合、該アルコシキ基は炭素数1〜4のアルコキシ基であることが好ましく、前記構造式(2)で表される化合物は、例えば、ベンジルメチルエーテル、o−メチルベンジルメチルエーテル、m−メチルベンジルメチルエーテル、p−メチルベンジルメチルエーテル、p−エチルベンジルメチルエーテル及びこれらの核置換異性体、ベンジルエチルエーテル、ベンジルプロピルエーテル、ベンジルイソブチルエーテル、ベンジルn−ブチルエーテル、p−メチルベンジルメチルエーテル及びその核置換異性体等が挙げられる。   When Y is an alkoxy group, the alkoxy group is preferably an alkoxy group having 1 to 4 carbon atoms. The compound represented by the structural formula (2) is, for example, benzyl methyl ether or o-methylbenzyl methyl ether. M-methylbenzyl methyl ether, p-methylbenzyl methyl ether, p-ethylbenzyl methyl ether and their nuclear substitution isomers, benzyl ethyl ether, benzylpropyl ether, benzylisobutyl ether, benzyl n-butyl ether, p-methylbenzyl And methyl ether and its nucleus-substituted isomers.

Yが水酸基の場合、前記構造式(2)で表される化合物は、例えば、ベンジルアルコール、o−メチルベンジルアルコール、m−メチルベンジルアルコール、p−メチルベンジルアルコール、p−エチルベンジルアルコール、p−イソプロピルベンジルアルコール、p−tert−ブチルベンジルアルコール、p−フェニルベンジルアルコール、α−ナフチルカルビノール及びこれらの核置換異性体、α−メチルベンジルアルコール、及びα,α−ジメチルベンジルアルコール等が挙げられる。   When Y is a hydroxyl group, examples of the compound represented by the structural formula (2) include benzyl alcohol, o-methylbenzyl alcohol, m-methylbenzyl alcohol, p-methylbenzyl alcohol, p-ethylbenzyl alcohol, p- Examples include isopropyl benzyl alcohol, p-tert-butyl benzyl alcohol, p-phenyl benzyl alcohol, α-naphthyl carbinol and their nuclear substitution isomers, α-methyl benzyl alcohol, and α, α-dimethyl benzyl alcohol.

前記アラルキル化剤(a2)のうち、下記構造式(3)   Of the aralkylating agent (a2), the following structural formula (3)

Figure 2011099049
Figure 2011099049

で表される化合物としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、β−メチルスチレン等が挙げられる。   Examples of the compound represented by the formula include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, β-methylstyrene, and the like.

これらの中でも、特に難燃効果の点から前記構造式(2)で表されるアラルキル化剤が好ましく、とりわけベンジルクロライド、ベンジルブロマイド、及びベンジルアルコールが、最終的に得られるエポキシ樹脂又はフェノール樹脂の硬化物において難燃効果が一層顕著なものとなる点から好ましい。   Among these, the aralkylating agent represented by the structural formula (2) is particularly preferable from the viewpoint of flame retardancy, and benzyl chloride, benzyl bromide, and benzyl alcohol are the final epoxy resins or phenol resins that are finally obtained. It is preferable from the point that the flame retardant effect becomes more remarkable in the cured product.

前記工程1におけるジヒドロキシ芳香族化合物(a1)とアラルキル化剤(a2)との反応において使用し得る酸触媒は、例えばリン酸、硫酸、塩酸などの無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、塩化アルミニウム、塩化亜鉛、塩化第2錫、塩化第2鉄、ジエチル硫酸などのフリーデルクラフツ触媒が挙げられる。   Examples of the acid catalyst that can be used in the reaction of the dihydroxy aromatic compound (a1) and the aralkylating agent (a2) in Step 1 include inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, oxalic acid, benzenesulfonic acid, and toluenesulfone. Examples include acids, organic acids such as methanesulfonic acid and fluoromethanesulfonic acid, and Friedel-Crafts catalysts such as aluminum chloride, zinc chloride, stannic chloride, ferric chloride, and diethylsulfuric acid.

また、上記した酸触媒の使用量は、目標とする変性率などにより適宜選択することができるが、例えば無機酸や有機酸の場合はジヒドロキシ芳香族化合物(a1)100質量部に対し、0.001〜5.0質量部、好ましくは0.01〜3.0質量部なる範囲であり、フリーデルクラフツ触媒の場合はジヒドロキシ芳香族化合物(a1)1モルに対し、0.2〜3.0モル、好ましくは0.5〜2.0モルとなる範囲であることが好ましい。   The amount of the acid catalyst used can be appropriately selected depending on the target modification rate and the like. For example, in the case of an inorganic acid or an organic acid, the amount of the acid catalyst is 0.1% relative to 100 parts by mass of the dihydroxy aromatic compound (a1). The range is from 001 to 5.0 parts by mass, preferably from 0.01 to 3.0 parts by mass. In the case of a Friedel-Crafts catalyst, 0.2 to 3.0 parts per mol of the dihydroxy aromatic compound (a1). It is preferable that the amount be in the range of 0.5 to 2.0 mol.

前記工程1におけるジヒドロキシ芳香族化合物(a1)とアラルキル化剤(a2)との反応は、分子量が高くなり軟化点の調整が容易となる点から好ましい。ここで使用し得る有機溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテルなどのエチレングリコールやジエチレングリコールのモノ又はジエーテル、ジメチルホルムアミドやジメチルスルホキシド等の非プロトン性極性溶媒、並びにベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族系有機溶媒が挙げられる。これらのなかでも、特に原料に対する溶解性に優れる点から芳香族系有機溶媒が好ましく、特に得られる反応生成物の軟化点をより高めることができる点からキシレンが好ましい。   The reaction between the dihydroxy aromatic compound (a1) and the aralkylating agent (a2) in the step 1 is preferable from the viewpoint that the molecular weight increases and the softening point can be easily adjusted. Examples of the organic solvent that can be used here include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Non-protocols such as ethylene glycol such as ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, mono- or diether of diethylene glycol, dimethylformamide and dimethyl sulfoxide Sex polar solvents, as well as benzene, toluene, xylene, aromatic organic solvents such as chlorobenzene. Among these, an aromatic organic solvent is particularly preferable from the viewpoint of excellent solubility in raw materials, and xylene is particularly preferable from the viewpoint that the softening point of the reaction product obtained can be further increased.

前記工程1の反応を行う具体的方法は、有機溶媒存在下にジヒドロキシ芳香族化合物(a1)、アラルキル化剤(a2)、及び前記酸触媒を溶解させ、まず、100〜140℃の温度条件で全反応時間の1/2〜2/3となる時間反応させた後、次いで、140〜180℃に昇温させて反応させる方法が得られるフェノール樹脂の軟化点が高くなる点から好ましい。また、反応時間は特に限定されるものではないが、1〜10時間であることが好ましい。よって、当該反応は、具体的には、前記温度を1〜10時間保持することによって行うことができる。また、反応中に生成するハロゲン化水素、水、或いはアルコール類などは系外に分留管などを用いて留去することが、反応が速やかに進行して生産性が向上する点から好ましい。   A specific method for carrying out the reaction of Step 1 is to dissolve the dihydroxy aromatic compound (a1), the aralkylating agent (a2), and the acid catalyst in the presence of an organic solvent, and first, at a temperature condition of 100 to 140 ° C. It is preferable from the point that the softening point of the phenol resin obtained by reacting by reacting by raising the temperature to 140 to 180 ° C. after reacting for 1/2 to 2/3 of the total reaction time is increased. The reaction time is not particularly limited, but is preferably 1 to 10 hours. Therefore, specifically, the reaction can be performed by maintaining the temperature for 1 to 10 hours. In addition, it is preferable that hydrogen halide, water, alcohols, and the like generated during the reaction are distilled out of the system by using a fractionating tube or the like from the viewpoint that the reaction proceeds rapidly and productivity is improved.

また、得られるジヒドロキシナフタレン化合物の着色が大きい場合は、それを抑制するために、反応系に酸化防止剤や還元剤を添加しても良い。酸化防止剤としては、例えば2,6−ジアルキルフェノール誘導体などのヒンダードフェノール系化合物や2価のイオウ系化合物や3価のリン原子を含む亜リン酸エステル系化合物等が挙られる。還元剤としては例えば次亜リン酸、亜リン酸、チオ硫酸、亜硫酸、ハイドロサルファイトまたはこれらの塩などが挙げられる。   Further, when the resulting dihydroxynaphthalene compound is highly colored, an antioxidant or a reducing agent may be added to the reaction system in order to suppress it. Examples of the antioxidant include hindered phenol compounds such as 2,6-dialkylphenol derivatives, divalent sulfur compounds, and phosphite compounds containing trivalent phosphorus atoms. Examples of the reducing agent include hypophosphorous acid, phosphorous acid, thiosulfuric acid, sulfurous acid, hydrosulfite, and salts thereof.

反応終了後は、酸触媒を中和処理、水洗処理あるいは分解することにより除去し、抽出、蒸留などの一般的な操作により、目的とするフェノール樹脂を分離することができる。中和処理や水洗処理は常法に従って行えばよく、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア、トリエチレンテトラミン、アニリン等の塩基性物質を中和剤として用いることができる。   After completion of the reaction, the acid catalyst can be removed by neutralization treatment, water washing treatment or decomposition, and the desired phenol resin can be separated by general operations such as extraction and distillation. The neutralization treatment and the water washing treatment may be performed according to a conventional method. For example, basic substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia, triethylenetetramine, aniline can be used as the neutralizing agent.

次に、前記工程2として、工程1で得られたフェノール樹脂と、エピハロヒドリン類(a3)とを反応させることにより目的とするエポキシ樹脂を得ることができる。工程2における反応は、前記フェノール樹脂中のフェノール性水酸基1モルに対し、エピハロヒドリン類(a3)2〜10モルを添加し、更に、前記フェノール樹脂中のフェノール性水酸基1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。   Next, as the step 2, the desired epoxy resin can be obtained by reacting the phenol resin obtained in step 1 with the epihalohydrins (a3). In the reaction in Step 2, 2 to 10 mol of epihalohydrin (a3) is added to 1 mol of phenolic hydroxyl group in the phenol resin, and further 0.9 to 1 mol of phenolic hydroxyl group in the phenol resin. A method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding or gradually adding 2.0 mol of a basic catalyst is mentioned.

ここで用いる塩基性触媒は固形として、或いはその水溶液として使用することができる。前記塩基性触媒を水溶液として使用する場合は、連続的に添加すると共に、反応混合物中から減圧下または常圧下に連続的に水及びエピハロヒドリン類(a3)を留出せしめ、更に分液して水は除去しエピハロヒドリン類(a3)は反応混合物中に連続的に戻す方法を採用してもよい。   The basic catalyst used here can be used as a solid or as an aqueous solution thereof. When the basic catalyst is used as an aqueous solution, it is continuously added, and water and epihalohydrins (a3) are continuously distilled from the reaction mixture under reduced pressure or normal pressure. May be removed and the epihalohydrins (a3) may be continuously returned to the reaction mixture.

前記エピハロヒドリン類(a3)は、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられ、なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。なお、工業生産を行う際、エポキシ樹脂生産の初バッチでの反応終了後の次バッチ以降の反応では、粗反応生成物から回収されたエピハロヒドリン類(a3)と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類(a3)とを併用することが好ましい。   Examples of the epihalohydrins (a3) include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin and the like. Among them, epichlorohydrin is preferable because it is easily industrially available. In addition, when performing industrial production, in the reaction after the next batch after completion of the reaction in the first batch of epoxy resin production, the epihalohydrin (a3) recovered from the crude reaction product and the amount consumed in the reaction disappear. It is preferable to use together with a new epihalohydrin (a3) corresponding to the amount to be used.

また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜二種以上を併用してもよい。   Specific examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. In particular, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity of the epoxy resin synthesis reaction, and examples thereof include sodium hydroxide and potassium hydroxide. In use, these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass, or in the form of a solid. Moreover, the reaction rate in the synthesis | combination of an epoxy resin can be raised by using an organic solvent together. Examples of such organic solvents include, but are not limited to, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol, and tertiary butanol, methyl Examples include cellosolves such as cellosolve and ethyl cellosolve, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotic polar solvents such as acetonitrile, dimethyl sulfoxide and dimethylformamide. These organic solvents may be used alone or in combination of two or more as appropriate in order to adjust the polarity.

前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂を得ることができる。   After the reaction product of the epoxidation reaction is washed with water, unreacted epihalohydrin and the organic solvent to be used in combination are distilled off by distillation under heating and reduced pressure. Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the obtained epoxy resin is again dissolved in an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. Further reaction can be carried out by adding an aqueous solution of the product. At this time, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount used is preferably in the range of 0.1 to 3.0% by mass with respect to the epoxy resin used. After completion of the reaction, the generated salt is removed by filtration, washing with water, and a high-purity epoxy resin can be obtained by distilling off a solvent such as toluene and methyl isobutyl ketone under heating and reduced pressure.

また、本発明のエポキシ樹脂組成物(I)においては、エポキシ樹脂成分として前記エポキシ樹脂(A)を単独で用いてもよいし、本発明の効果を損なわない範囲で前記エポキシ樹脂(A)と他のエポキシ樹脂とを併用してもよい。他のエポキシ樹脂を併用する場合、これらの使用割合は、エポキシ樹脂成分の総質量に占める前記エポキシ樹脂(A)の割合が30質量%以上、特に40重量%以上となる範囲であることが好ましい。   Moreover, in the epoxy resin composition (I) of the present invention, the epoxy resin (A) may be used alone as an epoxy resin component, and the epoxy resin (A) and the epoxy resin (A) may be used as long as the effects of the present invention are not impaired. You may use together with another epoxy resin. When other epoxy resins are used in combination, the proportion of these used is preferably in the range where the proportion of the epoxy resin (A) in the total mass of the epoxy resin component is 30% by mass or more, particularly 40% by mass or more. .

ここで併用され得る他のエポキシ樹脂は、種々のエポキシ樹脂を使用することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂の中でも、特に難燃性に優れる硬化物が得られる点から、テトラメチルビフェノール型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ノボラック型エポキシ樹脂を用いることが好ましい。   As the other epoxy resins that can be used in combination here, various epoxy resins can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac Type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type Epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, aromatic hydrocarbon formaldehyde resin-modified phenol Lumpur resin type epoxy resins, biphenyl-modified novolak type epoxy resins. Among these epoxy resins, it is preferable to use a tetramethyl biphenol type epoxy resin, a biphenyl aralkyl type epoxy resin, or a novolac type epoxy resin from the viewpoint that a cured product having excellent flame retardancy can be obtained.

本発明のエポキシ樹脂組成物(I)に用いる硬化剤(B)は、公知の各種エポキシ樹脂用硬化剤、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などの硬化剤を使用できる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。 The curing agent (B) used in the epoxy resin composition (I) of the present invention is a known various curing agent for epoxy resins, such as amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like. A curing agent can be used. Specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative. Examples of the amide compound include dicyandiamide. And polyamide resins synthesized from dimer of linolenic acid and ethylenediamine. Examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride. Acid, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc., and phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol -Cresol-condensed novolak resin, biphenyl-modified phenolic resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nucleus is linked by bismethylene group), aminotriazine modified Examples thereof include polyhydric phenol compounds such as phenol resins (polyhydric phenol compounds in which phenol nuclei are linked with melamine or benzoguanamine).

これらの中でも、特に芳香族骨格を分子構造内に多く含むものが難燃効果の点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が難燃性に優れることから好ましい。   Among these, those containing a large amount of an aromatic skeleton in the molecular structure are preferable from the viewpoint of flame retardancy, and specifically, phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, phenol aralkyls. Resins, naphthol aralkyl resins, naphthol novolak resins, naphthol-phenol co-condensed novolak resins, naphthol-cresol co-condensed novolak resins, biphenyl-modified phenol resins, biphenyl-modified naphthol resins, and aminotriazine-modified phenol resins are preferred because of excellent flame retardancy. .

しかし乍ら、本発明では、難燃性の向上が顕著なものとなり、また、優れた誘電特性を発現する点から、とりわけフェノールアラルキル樹脂、具体的には、下記構造式(i)   However, in the present invention, the flame retardancy is remarkably improved, and the phenolic aralkyl resin, particularly, the following structural formula (i)

Figure 2011099049

で表される構造を結節基として複数のフェノール類が結節した構造を有するフェノール樹脂であることが好ましい。ここで、構造式(i)中、Yは、炭素原子数1〜4のアルキル基又は水素原子、mは0〜3の整数である。
Figure 2011099049

It is preferable that the phenol resin has a structure in which a plurality of phenols are knotted with the structure represented by Here, in Structural Formula (i), Y is an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and m is an integer of 0 to 3.

本発明のエポキシ樹脂組成物(I)における前記エポキシ樹脂(A)及び前記硬化剤(B)の配合量は、得られる硬化物の機械的物性等が良好なものとなる点から、前記エポキシ樹脂(A)を含むエポキシ樹脂中のエポキシ基の合計1当量に対して、前記硬化剤(B)中の活性基が0.7〜1.5当量の範囲となる量であることが好ましい。   The amount of the epoxy resin (A) and the curing agent (B) in the epoxy resin composition (I) of the present invention is such that the resulting cured product has good mechanical properties and the like. The amount of active groups in the curing agent (B) is preferably in the range of 0.7 to 1.5 equivalents with respect to a total of 1 equivalent of epoxy groups in the epoxy resin containing (A).

次に、本発明のもう一つのエポキシ樹脂組成物(II)は、ポリアリーレンオキシ構造を主骨格としており、該構造の芳香環に、フェノール性水酸基及び下記構造式(1)   Next, another epoxy resin composition (II) of the present invention has a polyaryleneoxy structure as a main skeleton, a phenolic hydroxyl group and the following structural formula (1) in the aromatic ring of the structure.

Figure 2011099049

[式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは繰り返し数の平均値で0.1〜4である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が90〜150℃であるフェノール樹脂(B’)、及びエポキシ樹脂(A’)を必須成分とするものである。
Figure 2011099049

[In Formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is substituted with 1 to 3 of a phenylene group or an alkyl group having 1 to 4 carbon atoms. A phenylene group, a naphthylene group, a naphthylene group that is nucleus-substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an average number of repetitions of 0.1 to 4. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The phenol resin (B ′) and the epoxy resin (A ′) having a nucleus content of 0.1 to 0.5 mol and a softening point of 90 to 150 ° C. are essential components. Is.

ここで、フェノール樹脂(B’)において、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.5以下とすることにより、硬化物の耐熱性が飛躍的に向上する他、難燃性も高くなる。一方、0.1以上とすることにより硬化物の難燃性が良好なものとなる他、硬化物の誘電正接も低いものとなる。なお、フェノール樹脂(B’)における、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合とは、前記した通り、フェノール樹脂(B’)の製造方法におけるジヒドロキシ芳香族化合物(a1)1モルに対する前記アラルキル化剤(a2)のモル数に相当する。   Here, in the phenol resin (B ′), the presence of the aromatic nuclei constituting the molecular structure (α) per mole of the aromatic nuclei constituting the polyaryleneoxy structure is 0.5 or less. In addition to dramatically improving the heat resistance of objects, the flame retardancy also increases. On the other hand, by setting it to 0.1 or more, the flame retardancy of the cured product becomes good, and the dielectric loss tangent of the cured product also becomes low. In the phenol resin (B ′), the abundance ratio of the aromatic nucleus constituting the molecular structure (α) per mole of the aromatic nucleus constituting the polyaryleneoxy structure is, as described above, the phenol resin (B ′ This corresponds to the number of moles of the aralkylating agent (a2) relative to 1 mole of the dihydroxy aromatic compound (a1) in the production method.

また、フェノール樹脂(B’)は、その軟化点が90〜150℃の範囲であることから有機溶剤への溶解性が高くなり、回路基板用ワニスに適した材料となる他、ポリアリーレンオキシ構造の主鎖が比較的長いものとなり、従来にない難燃性能を発現させることができる。   In addition, the phenol resin (B ′) has a softening point in the range of 90 to 150 ° C., so that it has high solubility in an organic solvent and becomes a material suitable for a varnish for circuit boards. This has a relatively long main chain, and can exhibit unprecedented flame retardancy.

このように前記フェノール樹脂(B’)は、軟化点が高く、また、その割に前記分子構造(α)を構成する芳香核の存在割合が低いことを特徴としている。ポリアリーレンオキシ構造の主鎖が比較的長くなり、優れた溶剤溶解性を発現すると共に、回路基板用途における高度な難燃性能にも対応することが可能となる。更に、フェノール樹脂(B’)中の前記分子構造(α)の存在比が低くなることから、フェノール性水酸基の反応性が向上し、硬化物に優れた耐熱性を付与することができる。   Thus, the phenol resin (B ′) is characterized by a high softening point and a low proportion of aromatic nuclei constituting the molecular structure (α). The main chain of the polyaryleneoxy structure becomes relatively long, exhibits excellent solvent solubility, and can cope with advanced flame retardancy in circuit board applications. Furthermore, since the abundance ratio of the molecular structure (α) in the phenol resin (B ′) is lowered, the reactivity of the phenolic hydroxyl group is improved, and excellent heat resistance can be imparted to the cured product.

また、エポキシ樹脂組成物(II)中のフェノール樹脂(B’)は、前記したエポキシ樹脂組成物(I)におけるエポキシ樹脂(A)の前駆体であるフェノール樹脂と同一構造である。更に、前記フェノール樹脂(B’)は、そのフェノール性水酸基の官能数は、前記エポキシ樹脂(A)の場合と同様に、ジヒドロキシ芳香族化合物を原料としてポリアリーレンオキサイド構造を形成させることが望ましく、この場合、フェノール性水酸基は直鎖状分子構造の両末端に出現する為、主に2官能性のフェノール樹脂として得られるが、該樹脂成分中に、部分的にポリナフチレンオキサイド構造中のナフタレン環に、他のヒドロキシナフタレン環が直接結合によって結合した分子構造を持つ多官能フェノール樹脂であってもよい。   The phenol resin (B ′) in the epoxy resin composition (II) has the same structure as the phenol resin that is a precursor of the epoxy resin (A) in the epoxy resin composition (I). Further, in the phenol resin (B ′), the functional number of the phenolic hydroxyl group is desirably formed as a polyarylene oxide structure from a dihydroxy aromatic compound as in the case of the epoxy resin (A). In this case, since the phenolic hydroxyl group appears at both ends of the linear molecular structure, it is mainly obtained as a bifunctional phenol resin. However, in the resin component, naphthalene partially in the polynaphthylene oxide structure is obtained. It may be a polyfunctional phenol resin having a molecular structure in which another hydroxy naphthalene ring is bonded to the ring by a direct bond.

前記フェノール樹脂(B’)は、硬化後の誘電特性や耐湿性の改善効果に優れ、かつ、流動性に優れる点から、前記フェノール樹脂(B’)の水酸基当量が160〜220g/eq.の範囲、特に161〜220g/eq.の範囲にあるものが好ましい。   The phenol resin (B ′) is excellent in the effect of improving the dielectric properties and moisture resistance after curing, and is excellent in fluidity, so that the hydroxyl equivalent of the phenol resin (B ′) is 160 to 220 g / eq. , Especially 161-220 g / eq. Those within the range are preferred.

上記したフェノール樹脂(B’)は、中でもポリナフチレンオキシ構造を前記ポリアリーレンオキサイド構造として有するものが優れた難燃効果を発現し、また、誘電正接も低くなる点から好ましく、具体的には、下記一般式(1’)   Among the above-mentioned phenol resins (B ′), those having a polynaphthyleneoxy structure as the polyarylene oxide structure are preferable because they exhibit excellent flame retardancy and also have a low dielectric loss tangent. The following general formula (1 ')

Figure 2011099049

で表される構造単位(α’)を繰り返し単位とし、その両末端にフェノール性水酸基を有する軟化点90〜150℃のエポキシ樹脂であることが有機溶剤への溶解性に優れ、かつ、難燃性及び耐熱性に優れた硬化物を与えることができる点から好ましい。
Figure 2011099049

The epoxy resin having a softening point of 90 to 150 ° C. having a phenolic hydroxyl group at both ends of the structural unit (α ′) represented by the formula is excellent in solubility in an organic solvent and flame retardant From the point which can give the hardened | cured material excellent in property and heat resistance.

ここで上記一般式(1’)中、Xは水素原子又は下記一般式(2)   In the above general formula (1 '), X is a hydrogen atom or the following general formula (2)

Figure 2011099049

で表される構造部位(β’)であり、かつ、前記一般式(1’)及び一般式(2’)中のRは下記一般式(3)
Figure 2011099049

And R in the general formula (1 ′) and the general formula (2 ′) is represented by the following general formula (3):

Figure 2011099049

で表される構造部位(γ)であり、一般式(3)中のnは1又は2であり、また、一般式(2’)及び一般式(3)中のpの値は0〜3の整数である。但し、前記フェノール樹脂(B’)は、その分子構造中、前記構造部位(γ)をナフタレン環1個あたり0.1〜0.5個となる割合で有するものである。
Figure 2011099049

In the general formula (3), n is 1 or 2, and the values of p in the general formula (2 ′) and the general formula (3) are 0-3. Is an integer. However, the said phenol resin (B ') has the said structure part ((gamma)) in the molecular structure in the ratio used as 0.1-0.5 per naphthalene ring.

なお、上記一般式(1’)においてナフタレン骨格への結合位置はナフタレン環を構成する2つの環の何れであってもよい。また、フェノール樹脂(B’)中、前記構造部位(γ)の存在割合がナフタレン骨格1個に対して0.5個以下とすることにより、硬化物の耐熱性が飛躍的に向上する他、難燃性も高くなる。一方、0.1以上とすることにより硬化物の難燃性が良好なものとなる他、硬化物の誘電正接も低いものとなる。ここで、ナフタレン骨格に対する構造部位(γ)の存在割合は、前述した通り、その製造方法におけるジヒドロキシナフタレン1モルに対するアラルキル化剤(a2)のモル数に相当する。   In the general formula (1 ′), the bonding position to the naphthalene skeleton may be any of two rings constituting the naphthalene ring. In addition, in the phenol resin (B ′), the heat resistance of the cured product is dramatically improved by making the existence ratio of the structural portion (γ) 0.5 or less with respect to one naphthalene skeleton, Flame retardancy also increases. On the other hand, by setting it to 0.1 or more, the flame retardancy of the cured product becomes good, and the dielectric loss tangent of the cured product also becomes low. Here, the abundance ratio of the structural site (γ) relative to the naphthalene skeleton corresponds to the number of moles of the aralkylating agent (a2) relative to 1 mole of dihydroxynaphthalene in the production method as described above.

以上詳述したフェノール樹脂(B’)は、前記したエポキシ樹脂組成物(I)におけるエポキシ樹脂(A)の前駆体であるフェノール樹脂と同一構造である為、前記したエポキシ樹脂(A)の製造方法における工程1によって製造することが好ましい。   Since the phenol resin (B ′) detailed above has the same structure as the phenol resin which is the precursor of the epoxy resin (A) in the epoxy resin composition (I), the production of the epoxy resin (A) described above. Preferably, it is produced by step 1 in the method.

本発明のエポキシ樹脂組成物(II)において前記フェノール樹脂(B’)は単独でエポキシ樹脂(A’)の硬化剤として用いてもよいが、本発明の効果を損なわない範囲で他の硬化剤を併用してもよい。具体的には、硬化剤の全質量に対して前記フェノール樹脂が30質量%以上、好ましくは40質量%以上となる範囲で他の硬化剤を併用することができる。   In the epoxy resin composition (II) of the present invention, the phenol resin (B ′) may be used alone as a curing agent for the epoxy resin (A ′), but other curing agents are used as long as the effects of the present invention are not impaired. May be used in combination. Specifically, other curing agents can be used in combination in the range where the phenol resin is 30% by mass or more, preferably 40% by mass or more with respect to the total mass of the curing agent.

本発明のフェノール樹脂(B’)と併用されうる他の硬化剤としては、特に制限されるものではなく、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、前記したフェノール樹脂(B’)以外のフェノ−ル系化合物、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)の多価フェノール化合物挙げられる。   The other curing agent that can be used in combination with the phenol resin (B ′) of the present invention is not particularly limited, and examples thereof include amine compounds, amide compounds, acid anhydride compounds, and the above-described phenol resins (B ′). ) And other phenolic compounds and aminotriazine-modified phenolic resins (polyhydric phenolic compounds in which phenolic nuclei are linked with melamine, benzoguanamine, etc.).

これらの中でも、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が難燃性に優れることから好ましく、特にフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂等の高芳香族性、高水酸基当量のフェノール樹脂や窒素原子を含有するアミノトリアジン変性フェノール樹脂等の化合物を用いることが、得られる硬化物の難燃性や誘電特性が優れる点から好ましい。   Among these, phenol novolak resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, Biphenyl-modified phenolic resin, biphenyl-modified naphthol resin, aminotriazine-modified phenolic resin are preferred because of excellent flame retardancy, especially high aromaticity such as phenol aralkyl resin, naphthol aralkyl resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, Using a compound such as a phenolic resin having a high hydroxyl equivalent or an aminotriazine-modified phenolic resin containing a nitrogen atom, From the viewpoint of retardancy and dielectric properties superior.

次に、本発明のエポキシ樹脂組成物(II)で用いるエポキシ樹脂(B’)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。   Next, as the epoxy resin (B ′) used in the epoxy resin composition (II) of the present invention, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, Naphthol novolac epoxy resin, naphthol aralkyl epoxy resin, naphthol-phenol co-condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, good Family hydrocarbon-formaldehyde resin-modified phenol resin type epoxy resin, a biphenyl novolak type epoxy resins. Moreover, these epoxy resins may be used independently and may mix 2 or more types.

これらのなかでも特にビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂及びキサンテン型エポキシ樹脂が、難燃性や誘電特性に優れる点から特に好ましい。   Of these, biphenyl type epoxy resins, naphthalene type epoxy resins, phenol aralkyl type epoxy resins, biphenyl novolac type epoxy resins and xanthene type epoxy resins are particularly preferred because of their excellent flame retardancy and dielectric properties.

本発明のエポキシ樹脂組成物(II)におけるエポキシ樹脂(B)と硬化剤の配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂(B)のエポキシ基の合計1当量に対して、前記フェノール樹脂(A)を含む硬化剤中の活性基が0.7〜1.5当量になる量が好ましい。   The blending amount of the epoxy resin (B) and the curing agent in the epoxy resin composition (II) of the present invention is not particularly limited, but the epoxy resin (B The amount of the active group in the curing agent containing the phenol resin (A) is preferably 0.7 to 1.5 equivalents with respect to a total of 1 equivalent of the epoxy groups.

また必要に応じて本発明のエポキシ樹脂組成物(II)に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。   Further, if necessary, a curing accelerator can be appropriately used in combination with the epoxy resin composition (II) of the present invention. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor encapsulating material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, etc., so that triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines. -[5.4.0] -undecene (DBU) is preferred.

以上詳述した本発明のエポキシ樹脂組成物(I)及び(II)は、前記した通り、優れた溶剤溶解性を発現することを特徴としている。従って、該エポキシ樹脂組成物(I)及び(II)は、上記各成分の他に有機溶剤(C)を配合することが好ましい。ここで使用し得る前記有機溶剤(C)としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1−メトキシ−2−プロパノール等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤(C)として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。   As described above, the epoxy resin compositions (I) and (II) of the present invention described in detail above are characterized by exhibiting excellent solvent solubility. Therefore, the epoxy resin compositions (I) and (II) preferably contain an organic solvent (C) in addition to the above components. Examples of the organic solvent (C) that can be used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, etc. The proper amount used can be appropriately selected depending on the application, but for example, in a printed wiring board application, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc. The non-volatile content is preferably 40 to 80% by mass. On the other hand, in the adhesive film use for build-up, as the organic solvent (C), for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetic acid such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, etc. Esters, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. are preferably used, and non-volatile content is 30 to 60 mass. It is preferable to use it in the ratio which becomes%.

また、上記エポキシ樹脂組成物(I)及び(II)は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。   In addition, the epoxy resin compositions (I) and (II) contain substantially no halogen atoms in the range of, for example, a printed wiring board, in order to exhibit flame retardancy, as long as reliability is not lowered. A non-halogen flame retardant may be blended.

前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。   Examples of the non-halogen flame retardants include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. The flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.

前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。   As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。   The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.

前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。   Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7 -Dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide and other cyclic organic phosphorus compounds and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins.

それらの配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物(I)及び(II)の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物(I)及び(II)100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。   The blending amount thereof is appropriately selected according to the type of the phosphorus-based flame retardant, the other components of the epoxy resin compositions (I) and (II), and the desired degree of flame retardancy. Red phosphorus is used as a non-halogen flame retardant in 100 parts by mass of the epoxy resin composition (I) and (II) containing all of a resin, a curing agent, a non-halogen flame retardant, and other fillers and additives. In the case of 0.1 to 2.0 parts by mass, the organophosphorus compound is preferably used in the range of 0.1 to 10.0 parts by mass, particularly 0. It is preferable to mix | blend in the range of 0.5-6.0 mass parts.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。   In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.

前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。   Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。   Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, guanylmelamine sulfate, melem sulfate, melam sulfate, etc. Examples thereof include an aminotriazine sulfate compound, aminotriazine-modified phenol resin, and aminotriazine-modified phenol resin further modified with tung oil, isomerized linseed oil, and the like.

前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。   Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物(I)及び(II)の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物(I)及び(II)100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。   The blending amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin compositions (I) and (II), and the desired degree of flame retardancy. For example, 0.05 to 10 parts by mass in 100 parts by mass of epoxy resin composition (I) and (II) in which all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives are blended It is preferable to mix | blend in the range of 0.1-5 mass parts especially.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。   Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.

前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。   The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.

前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物(I)及び(II)の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物(I)及び(II)100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。   The amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, the other components of the epoxy resin compositions (I) and (II), and the desired degree of flame retardancy. For example, in 100 parts by mass of epoxy resin composition (I) and (II) containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives, 0.05 to 20 parts by mass It is preferable to mix in the range. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.

前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.

前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。   Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.

前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。   Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.

前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。   Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.

前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。   Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.

前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。   Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Specific examples of the low-melting-point glass include, for example, Ceeley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, lead borosilicate, etc. The glassy compound can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物(I)及び(II)の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物(I)及び(II)100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。   The amount of the inorganic flame retardant is appropriately selected according to the type of the inorganic flame retardant, the other components of the epoxy resin compositions (I) and (II), and the desired degree of flame retardancy. For example, in 100 parts by mass of epoxy resin composition (I) and (II) containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives, 0.05 to 20 parts by mass It is preferable to mix | blend in the range of 0.5-15 mass parts especially.

前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。   Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物(I)及び(II)の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物(I)及び(II)100質量部中、0.005〜10質量部の範囲で配合することが好ましい。   The amount of the organometallic salt flame retardant is appropriately selected depending on the type of the organometallic salt flame retardant, the other components of the epoxy resin compositions (I) and (II), and the desired degree of flame retardancy. However, for example, in 100 parts by mass of epoxy resin compositions (I) and (II) containing all of epoxy resin, curing agent, non-halogen flame retardant, and other fillers and additives, 0.005 It is preferable to mix | blend in the range of -10 mass parts.

本発明のエポキシ樹脂組成物(I)及び(II)には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、エポキシ樹脂組成物(I)及び(II)の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   An inorganic filler can be blended with the epoxy resin compositions (I) and (II) of the present invention as necessary. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the epoxy resin compositions (I) and (II). Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

本発明のエポキシ樹脂組成物(I)及び(II)は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。   In the epoxy resin compositions (I) and (II) of the present invention, various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be added as necessary.

本発明のエポキシ樹脂組成物(I)及び(II)は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物(I)及び(II)は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。   The epoxy resin compositions (I) and (II) of the present invention can be obtained by uniformly mixing the above-described components. The epoxy resin compositions (I) and (II) of the present invention, in which the epoxy resin of the present invention, a curing agent and, if necessary, a curing accelerator are blended, can be easily converted into a cured product by a method similar to a conventionally known method. can do. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.

本発明のエポキシ樹脂組成物(I)及び(II)が用いられる用途としては、硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等が挙げられる。これら各種用途のうち、硬質プリント配線板材料、電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高難燃性、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性から硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用材料、及び、半導体封止材料に用いることが好ましい。   Applications for which the epoxy resin compositions (I) and (II) of the present invention are used include hard printed wiring board materials, resin compositions for flexible wiring boards, insulating materials for circuit boards such as interlayer insulating materials for build-up boards , Semiconductor sealing material, conductive paste, build-up adhesive film, resin casting material, adhesive and the like. Among these various applications, in hard printed wiring board materials, insulating materials for electronic circuit boards, and adhesive film for build-up, passive parts such as capacitors and active parts such as IC chips are embedded in so-called electronic parts. It can be used as an insulating material for a substrate. Among these, circuit boards such as hard printed wiring board materials, resin compositions for flexible wiring boards, and interlayer insulation materials for build-up boards because of their high flame resistance, high heat resistance, low thermal expansibility, and solvent solubility. It is preferable to use it for a material and a semiconductor sealing material.

ここで、本発明の回路基板は、エポキシ樹脂組成物(I)又は(II)を有機溶剤に希釈したワニスを得、これを板状に賦形したものを銅箔と積層し、加熱加圧成型して製造されるものである。具体的には、例えば硬質プリント配線基板を製造するには、前記有機溶剤(D)を含むワニス状のエポキシ樹脂組成物(I)又は(II)を、更に有機溶剤(D)を配合してワニス化し、これを補強基材に含浸し、半硬化させることによって製造される本発明のプリプレグを得、これに銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状のエポキシ樹脂組成物(I)及び(II)を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この際、用いるエポキシ樹脂組成物(I)又は(II)と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とする回路基板を得ることができる。   Here, the circuit board of the present invention obtains a varnish obtained by diluting the epoxy resin composition (I) or (II) in an organic solvent, and laminates the resulting varnish with a copper foil, followed by heating and pressing. It is manufactured by molding. Specifically, for example, to produce a hard printed wiring board, the varnish-like epoxy resin composition (I) or (II) containing the organic solvent (D) is further blended with the organic solvent (D). There is a method of obtaining a prepreg of the present invention which is produced by varnishing, impregnating it into a reinforcing base material, and semi-curing it, and superimposing a copper foil on the prepreg. Examples of the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. More specifically, the varnish-like epoxy resin compositions (I) and (II) are first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C. A prepreg that is a cured product is obtained. At this time, the mass ratio of the epoxy resin composition (I) or (II) to be used and the reinforcing substrate is not particularly limited, but it is usually prepared so that the resin content in the prepreg is 20 to 60 mass%. Is preferred. Next, the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and then subjected to thermocompression bonding at a pressure of 1 to 10 MPa at 170 to 250 ° C. for 10 minutes to 3 hours, A target circuit board can be obtained.

本発明のエポキシ樹脂組成物(I)又は(II)からフレキシルブル配線基板を製造するには、前記フェノール類、前記エポキシ樹脂(B)、硬化促進剤(C)、及び有機溶剤(D)を配合して、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60〜170℃で1〜15分間加熱し、溶媒を揮発させて、接着剤組成物をB−ステージ化する。次いで、加熱ロール等を用いて、接着剤に金属箔を熱圧着する。その際の圧着圧力は2〜200N/cm、圧着温度は40〜200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100〜200℃で1〜24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の接着剤組成物膜の厚みは、5〜100μmの範囲が好ましい。   In order to produce a flexible wiring board from the epoxy resin composition (I) or (II) of the present invention, the phenols, the epoxy resin (B), the curing accelerator (C), and the organic solvent (D) are added. It mix | blends and it apply | coats to an electrically insulating film using coating machines, such as a reverse roll coater and a comma coater. Subsequently, it heats at 60-170 degreeC for 1 to 15 minutes using a heating machine, volatilizes a solvent, and B-stages an adhesive composition. Next, the metal foil is thermocompression bonded to the adhesive using a heating roll or the like. At that time, the pressure is preferably 2 to 200 N / cm and the pressure is preferably 40 to 200 ° C. If sufficient adhesive performance can be obtained, the process may be completed here. However, when complete curing is required, it is preferably post-cured at 100 to 200 ° C. for 1 to 24 hours. The thickness of the adhesive composition film after finally curing is preferably in the range of 5 to 100 μm.

本発明のエポキシ樹脂組成物(I)又は(II)からビルドアップ基板用層間絶縁材料を得る方法としては、例えば、ゴム、フィラーなどを適宜配合した当該エポキシ樹脂組成物(I)又は(II)を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   As a method for obtaining an interlayer insulating material for buildup substrates from the epoxy resin composition (I) or (II) of the present invention, for example, the epoxy resin composition (I) or (II) appropriately blended with rubber, filler or the like. Is applied to the wiring board on which the circuit is formed using a spray coating method, a curtain coating method, or the like, and then cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

次に、本発明のエポキシ樹脂組成物(I)又は(II)から半導体封止材料を製造するには、前記フェノール類(A)、前記エポキシ樹脂(B)、硬化促進剤(C)、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法がある。   Next, in order to produce a semiconductor sealing material from the epoxy resin composition (I) or (II) of the present invention, the phenols (A), the epoxy resin (B), the curing accelerator (C), and Examples thereof include a method in which a compounding agent such as an inorganic filler is sufficiently melt-mixed using an extruder, a kneader, a roll or the like as required until uniform. At that time, silica is usually used as the inorganic filler, and the filling rate is preferably in the range of 30 to 95% by mass of the filler per 100 parts by mass of the epoxy resin composition. 70 parts by mass or more is particularly preferable in order to improve the moisture resistance and solder crack resistance and decrease the linear expansion coefficient, and 80 parts by mass or more is more effective in order to significantly increase these effects. Can be increased. For semiconductor package molding, the composition is molded by casting, using a transfer molding machine, an injection molding machine or the like, and further heated at 50 to 200 ° C. for 2 to 10 hours to form a semiconductor device which is a molded product. There is a way to get it.

本発明のエポキシ樹脂組成物(I)又は(II)からビルドアップ用接着フィルムを製造する方法は、例えば、本発明のエポキシ樹脂組成物(I)又は(II)を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。   The method for producing an adhesive film for buildup from the epoxy resin composition (I) or (II) of the present invention includes, for example, applying the epoxy resin composition (I) or (II) of the present invention on a support film. The method of forming the resin composition layer and making it the adhesive film for multilayer printed wiring boards is mentioned.

本発明のエポキシ樹脂組成物(I)又は(II)をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。   When the epoxy resin composition (I) or (II) of the present invention is used for an adhesive film for build-up, the adhesive film is softened under the temperature condition of the laminate in the vacuum laminating method (usually 70 ° C. to 140 ° C.). It is important to show fluidity (resin flow) that allows resin filling in via holes or through holes that exist in the circuit board at the same time as the lamination of the substrate, and the above components are blended so as to exhibit such characteristics. It is preferable.

ここで、多層プリント配線板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。   Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. It is usually preferable to allow resin filling in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.

上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明のエポキシ樹脂組成物(I)又は(II)を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させてエポキシ樹脂組成物(I)又は(II)の層(α)を形成させることにより製造することができる。   Specifically, the above-mentioned method for producing an adhesive film is prepared by preparing the varnish-like epoxy resin composition (I) or (II) of the present invention, and then applying the varnish-like composition on the surface of the support film. It can be produced by coating and further drying the organic solvent by heating or blowing hot air to form the layer (α) of the epoxy resin composition (I) or (II).

形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。   The thickness of the formed layer (α) is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.

なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   In addition, the said layer ((alpha)) may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. Moreover, it is preferable that the thickness of a protective film shall be 1-40 micrometers.

上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。   The above support film is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.

次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer (α) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that α) is in direct contact with the circuit board. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 The laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C., a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2), Lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.

本発明のエポキシ樹脂組成物(I)及び(II)を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物(I)及び(II)中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When the epoxy resin compositions (I) and (II) of the present invention are used as a conductive paste, for example, fine conductive particles are dispersed in the epoxy resin compositions (I) and (II) and are anisotropic. Examples thereof include a method for forming a conductive film composition, a method for forming a paste resin composition for circuit connection that is liquid at room temperature, and an anisotropic conductive adhesive.

また、本発明のエポキシ樹脂組成物(I)は、更にレジストインキとして使用することも可能である。この場合、前記エポキシ樹脂(A)に、エチレン性不飽和二重結合を有するビニル系モノマーと、硬化剤(B)としてカチオン重合触媒を配合し、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   Moreover, the epoxy resin composition (I) of the present invention can be further used as a resist ink. In this case, a vinyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as a curing agent (B) are blended with the epoxy resin (A), and a pigment, talc and filler are further added to form a resist. A method for forming a resist ink cured product after coating on a printed circuit board by a screen printing method after an ink composition is used.

本発明の硬化物を得る方法としては、一般的なエポキシ樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、20〜250℃程度の温度範囲で加熱すればよい。成形方法などもエポキシ樹脂組成物の一般的な方法が用いられ、特に本発明のエポキシ樹脂組成物に特有の条件は不要である。   The method for obtaining the cured product of the present invention may be based on a general method for curing an epoxy resin composition. For example, the heating temperature condition may be appropriately selected depending on the type and use of the curing agent to be combined. What is necessary is just to heat the composition obtained by the said method in the temperature range about 20-250 degreeC. As the molding method and the like, a general method of the epoxy resin composition is used, and a condition specific to the epoxy resin composition of the present invention is not particularly required.

従って、前記エポキシ樹脂(A)又はフェノール樹脂(B’)を用いることによって、ハロゲン系難燃剤を使用しなくても高度な難燃性を発現する環境性に優れるエポキシ樹脂組成物を得ることができる。また、これらの硬化物における優れた誘電特性は、高周波デバイスの高速演算速度化を実現できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。   Therefore, by using the epoxy resin (A) or the phenol resin (B ′), it is possible to obtain an epoxy resin composition excellent in environmental characteristics that exhibits high flame retardancy without using a halogen-based flame retardant. it can. In addition, the excellent dielectric properties of these cured products can realize high-speed operation speed of high-frequency devices. In addition, the phenol resin can be easily and efficiently produced by the production method of the present invention, and a molecular design corresponding to the target level of performance described above becomes possible.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度及び軟化点測定、GPC測定、13C−NMR、FD−MSスペクトルは以下の条件にて測定した。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “parts” and “%” are based on mass unless otherwise specified. In addition, the melt viscosity and softening point measurement in 150 degreeC, GPC measurement, < 13 > C-NMR, and FD-MS spectrum were measured on condition of the following.

1)150℃における溶融粘度:ASTM D4287に準拠した。
2)軟化点測定法:JIS K7234に準拠した。
3)GPC:
・装置:東ソー株式会社製「HLC−8220 GPC」により下記の条件下に測定した。
カラム:東ソー株式会社製 TSK−GEL G2000HXL+G2000HXL
+G3000HXL+G4000HXL
溶媒:テトラヒドロフラン
流速:1ml/min
検出器:RI
4)13C−NMR:日本電子株式会社製「NMR GSX270」により測定した。
5)FD−MS :日本電子株式会社製 二重収束型質量分析装置「AX505H(FD505H)」により測定した。
1) Melt viscosity at 150 ° C .: Conforms to ASTM D4287.
2) Softening point measurement method: compliant with JIS K7234.
3) GPC:
Apparatus: Measured under the following conditions using “HLC-8220 GPC” manufactured by Tosoh Corporation.
Column: TSK-GEL G2000HXL + G2000HXL manufactured by Tosoh Corporation
+ G3000HXL + G4000HXL
Solvent: Tetrahydrofuran Flow rate: 1 ml / min
Detector: RI
4) 13 C-NMR: Measured by “NMR GSX270” manufactured by JEOL Ltd.
5) FD-MS: Measured with a double convergence mass spectrometer “AX505H (FD505H)” manufactured by JEOL Ltd.

実施例1
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7−ジヒドロキシナフタレンを160部(1.0モル)、ベンジルアルコール25部(0.25モル)、キシレン160部、パラトルエンスルホン酸・1水和物2部を仕込み、室温下、窒素を吹き込みながら撹拌した。その後、140℃に昇温し、生成する水を系外に留去しながら4時間攪拌した(同時に留去するキシレンは系内に戻す)。その後、150℃に昇温し、生成する水とキシレンを系外に留去しながら3時間攪拌した。反応終了後、20%水酸化ナトリウム水溶液2部を添加して中和した後、水分およびキシレンを減圧下除去してフェノール樹脂類(A−1)を178部得た。得られたフェノール樹脂類(A−1)は褐色固体であり、水酸基当量は169グラム/当量、軟化点は130℃であった。
得られたフェノール樹脂類のGPCチャートを図1に示す。
フェノール樹脂類(A−1)のFD−MS及び13C−NMRによる構造解析を行うと共に、更に、トリメチルシリル化法によるFD−MSの測定に用いるため、フェノール樹脂類(A−1)をトリメチルシリル化し、次いで、FD−MSより以下のa.〜f.のピークを確認した。
Example 1
In a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer, 160 parts (1.0 mol) of 2,7-dihydroxynaphthalene, 25 parts (0.25 mol) of benzyl alcohol, xylene 160 And 2 parts of p-toluenesulfonic acid monohydrate were charged and stirred at room temperature while blowing nitrogen. Thereafter, the temperature was raised to 140 ° C., and the resulting water was stirred for 4 hours while distilling out of the system (xylene distilled off simultaneously was returned to the system). Thereafter, the temperature was raised to 150 ° C., and the resulting water and xylene were stirred for 3 hours while distilling out of the system. After completion of the reaction, 2 parts of a 20% aqueous sodium hydroxide solution was added for neutralization, and then water and xylene were removed under reduced pressure to obtain 178 parts of phenolic resins (A-1). The obtained phenol resins (A-1) were brown solids, the hydroxyl group equivalent was 169 grams / equivalent, and the softening point was 130 ° C.
A GPC chart of the obtained phenolic resins is shown in FIG.
The structural analysis of phenol resins (A-1) by FD-MS and 13 C-NMR is performed, and the phenol resins (A-1) are trimethylsilylated for use in the measurement of FD-MS by the trimethylsilylation method. Then, the following a. To f. The peak of was confirmed.

a.2,7−ジヒドロキシナフタレン(Mw:160)にベンジル基(分子量Mw:90)が1個付加したピーク(M=250)、更にベンジル基(分子量Mw:90)が2個付加したピーク(M=340)。
従って2,7−ジヒドロキシナフタレン1モルにベンジル基が1モル結合した構造の化合物および2モル結合した構造の化合物であることを確認した。
a. A peak in which one benzyl group (molecular weight Mw: 90) is added to 2,7-dihydroxynaphthalene (Mw: 160) (M + = 250), and a peak in which two benzyl groups (molecular weight Mw: 90) are further added (M + = 340).
Therefore, it was confirmed that the compound had a structure in which 1 mol of benzyl group was bonded to 1 mol of 2,7-dihydroxynaphthalene and a compound having a structure in which 2 mol was bonded.

b.2,7−ジヒドロキシナフタレン2量体のピーク(M=302)、更に、これにトリメチルシリル基(分子量Mw:72)が2個付加したピーク(M=446)。
従って、b.は、2,7−ジヒドロキシナフタレン2量体エーテル化合物であることを確認した。
b. A peak of 2,7-dihydroxynaphthalene dimer (M + = 302) and a peak obtained by adding two trimethylsilyl groups (molecular weight Mw: 72) to this (M + = 446).
Therefore, b. Was confirmed to be a 2,7-dihydroxynaphthalene dimer ether compound.

c.2,7−ジヒドロキシナフタレン3量体のピーク(M=444)、更に、これにトリメチルシリル基(分子量Mw:72)が2個付加したピーク(M=588)及び3個付加したピーク(M=660)。
従って、c.は、2,7−ジヒドロキシナフタレン3量体エーテル化合物および2,7−ジヒドロキシナフタレン2量体エーテルの1モルに2,7−ジヒドロキシナフタレンが1モル核脱水して生成した構造の3量体化合物であることを確認した。
c. The peak of 2,7-dihydroxynaphthalene trimer (M + = 444), the peak obtained by adding two trimethylsilyl groups (molecular weight Mw: 72) (M + = 588) and the peak added by three (M + = 444) + = 660).
Therefore, c. Is a trimer compound having a structure formed by nuclear dehydration of 1 mol of 2,7-dihydroxynaphthalene per 1 mol of 2,7-dihydroxynaphthalene trimer ether compound and 2,7-dihydroxynaphthalene dimer ether. I confirmed that there was.

d.2,7−ジヒドロキシナフタレン4量体のピーク(M=586)、更に、これにトリメチルシリル基(分子量Mw:72)が2個付加したピーク(M=730)及び3個付加したピーク(M=802)。
従って、d.は、2,7−ジヒドロキシナフタレン4量体エーテル化合物および2,7−ジヒドロキシナフタレン3量体エーテルの1モルに2,7−ジヒドロキシナフタレンが1モル核脱水して生成した構造の4量体化合物であることを確認した。
d. A peak of 2,7-dihydroxynaphthalene tetramer (M + = 586), a peak (M + = 730) added with two trimethylsilyl groups (molecular weight Mw: 72) and a peak added with three (M + = 586) + = 802).
Therefore, d. Is a tetramer compound having a structure formed by nuclear dehydration of 1 mol of 2,7-dihydroxynaphthalene per 1 mol of 2,7-dihydroxynaphthalene tetramer ether compound and 2,7-dihydroxynaphthalene trimer ether. I confirmed that there was.

e .2,7−ジヒドロキシナフタレン5量体のピーク(M=729)、更に、これにトリメチルシリル基(分子量Mw:72)が2個付加したピーク(M=873)及び3個付加したピーク(M=944)及び4個付加したピーク(M=1016)。
従って、e.は、2,7−ジヒドロキシナフタレン5量体エーテル化合物および2,7−ジヒドロキシナフタレン4量体エーテルの1モルに2,7−ジヒドロキシナフタレンが1モル核脱水して生成した構造の5量体化合物および2,7−ジヒドロキシナフタレン3量体エーテルの1モルに2,7−ジヒドロキシナフタレンが2モル核脱水して生成した構造の5量体化合物であることを確認した。
e. A peak of 2,7-dihydroxynaphthalene pentamer (M + = 729), a peak (M + = 873) added with two trimethylsilyl groups (molecular weight Mw: 72) and a peak added with three (M + = 729) + = 944) and 4 added peaks (M + = 1016).
Therefore, e. Is a pentamer compound having a structure formed by nuclear dehydration of 1 mol of 2,7-dihydroxynaphthalene per 1 mol of 2,7-dihydroxynaphthalene pentamer ether compound and 2,7-dihydroxynaphthalene tetramer ether, and It was confirmed that 1 mol of 2,7-dihydroxynaphthalene trimer ether was a pentamer compound having a structure formed by 2 mol of 2,7-dihydroxynaphthalene resulting from nuclear dehydration.

f .b〜eのそれぞれにベンジル基(分子量Mw:90)が1個付加したピーク、更にベンジル基(分子量Mw:90)が2個付加したピーク。
従ってb〜eのそれぞれに1モルにベンジル基が1モル結合した構造の化合物および2モル結合した構造の化合物であることを確認した。
f. A peak obtained by adding one benzyl group (molecular weight Mw: 90) to each of b to e, and a peak obtained by further adding two benzyl groups (molecular weight Mw: 90).
Therefore, it was confirmed that each of the compounds b to e was a compound having a structure in which 1 mol of a benzyl group was bonded to 1 mol and a compound having a structure in which 2 mol were bonded.

実施例2
温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、実施例1で得られたフェノール樹脂類(A−1)169g、エピクロルヒドリン463g(5.0モル)、n−ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン432gとn−ブタノール130gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ樹脂230gを得た(以下、これを「エポキシ樹脂(B−1)」と略記する)。得られたエポキシ樹脂の軟化点は100℃、エポキシ当量は277g/eqであった。
Example 2
A flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer was purged with nitrogen gas while 169 g of phenol resins (A-1) obtained in Example 1, 463 g of epichlorohydrin (5.0 mol), n -139 g of butanol and 2 g of tetraethylbenzylammonium chloride were charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 90 g (1.1 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. Thereafter, stirring was continued for 0.5 hours under the same conditions. During this time, the distillate distilled by azeotropic distillation was separated with a Dean-Stark trap, the water layer was removed, and the reaction was carried out while returning the oil layer to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. 432 g of methyl isobutyl ketone and 130 g of n-butanol were added to the crude epoxy resin thus obtained and dissolved. Further, 10 g of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with water 150 g was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain 230 g of an epoxy resin (hereinafter abbreviated as “epoxy resin (B-1)”). . The resulting epoxy resin had a softening point of 100 ° C. and an epoxy equivalent of 277 g / eq.

実施例3
ベンジルアルコール54部(0.5モル)に変えた以外は実施例1と同様に反応し、フェノール樹脂類(A−3)を207部得た。このフェノール樹脂類(A−2)は褐色固体であり、水酸基当量は166グラム/当量、軟化点は110℃であった。
Example 3
The reaction was conducted in the same manner as in Example 1 except that the amount was changed to 54 parts (0.5 mol) of benzyl alcohol to obtain 207 parts of phenol resins (A-3). The phenol resins (A-2) were brown solids, had a hydroxyl group equivalent of 166 g / equivalent and a softening point of 110 ° C.

実施例4
ベンジルアルコール16部(0.15モル)に変えた以外は実施例1と同様に反応し、フェノール樹脂類(A−3)を233部得た。このフェノール樹脂類(A−3)は褐色固体であり、水酸基当量は162グラム/当量、軟化点は141℃であった。
Example 4
The reaction was conducted in the same manner as in Example 1 except for changing to 16 parts (0.15 mol) of benzyl alcohol to obtain 233 parts of phenol resins (A-3). The phenol resins (A-3) were brown solids, had a hydroxyl group equivalent of 162 grams / equivalent and a softening point of 141 ° C.

実施例5
フェノール樹脂類(A−1)169gをフェノール樹脂類(A−3)162gに変えた以外は実施例2と同様に反応し、エポキシ樹脂(B−3)を220部得た。得られたエポキシ樹脂の軟化点は110℃、エポキシ当量は268g/eqであった。
Example 5
The reaction was the same as in Example 2 except that 169 g of the phenolic resin (A-1) was changed to 162 g of the phenolic resin (A-3), to obtain 220 parts of an epoxy resin (B-3). The resulting epoxy resin had a softening point of 110 ° C. and an epoxy equivalent of 268 g / eq.

比較例1
反応温度を150℃、反応時間を3時間とし、ベンジルアルコール108部(1.0モル)に変え、キシレン160部を添加しなかった以外は実施例1と同様に反応し、フェノール樹脂類(A−4)を240部得た。このフェノール樹脂類(A−4)は褐色固体であり、水酸基当量は160グラム/当量、軟化点は77℃であった。
Comparative Example 1
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 150 ° C., the reaction time was 3 hours, 108 parts (1.0 mol) of benzyl alcohol was changed, and 160 parts of xylene was not added. -4) was obtained 240 parts. The phenol resins (A-4) were brown solids, the hydroxyl group equivalent was 160 g / equivalent, and the softening point was 77 ° C.

比較例2
フェノール樹脂類(A−1)169gをフェノール樹脂類(A−4)160gに変えた以外は実施例2と同様に反応し、エポキシ樹脂(B−4)を220部得た。得られたエポキシ樹脂の軟化点は47℃、エポキシ当量は231g/eqであった。
Comparative Example 2
The reaction was performed in the same manner as in Example 2 except that 169 g of the phenolic resin (A-1) was changed to 160 g of the phenolic resin (A-4) to obtain 220 parts of an epoxy resin (B-4). The resulting epoxy resin had a softening point of 47 ° C. and an epoxy equivalent of 231 g / eq.

比較例3
反応温度を150℃、反応時間を3時間とし、ベンジルアルコール76部(0.7モル)に変え、キシレン160部を添加しなかった以外は実施例1と同様に反応し、フェノール樹脂類(A−4)を210部得た。このフェノール樹脂類(A−5)は褐色固体であり、水酸基当量は156グラム/当量、軟化点は83℃であった。
Comparative Example 3
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 150 ° C., the reaction time was 3 hours, benzyl alcohol was changed to 76 parts (0.7 mol), and 160 parts of xylene was not added. -4) was obtained 210 parts. The phenol resins (A-5) were brown solids, had a hydroxyl group equivalent of 156 grams / equivalent and a softening point of 83 ° C.

比較例4
フェノール樹脂類(A−1)169gをフェノール樹脂類(A−5)156gに変えた以外は実施例2と同様に反応し、エポキシ樹脂(B−5)を220部得た。得られたエポキシ樹脂の軟化点は66℃、エポキシ当量は255g/eqであった。
Comparative Example 4
The reaction was performed in the same manner as in Example 2 except that 169 g of the phenolic resin (A-1) was changed to 156 g of the phenolic resin (A-5) to obtain 220 parts of an epoxy resin (B-5). The resulting epoxy resin had a softening point of 66 ° C. and an epoxy equivalent of 255 g / eq.

実施例6及び比較例3(エポキシ樹脂組成物の調整及び物性評価)
下記、表1記載の配合に従い、エポキシ樹脂として(B−1)、(B−3)、DIC(株)製N−770(フェノールノボラック型エポキシ樹脂、エポキシ当量:183g/eq)を硬化剤として(A−1)、(A−3)、(A−4)およびDIC(株)製TD−2090(軟化点120℃、フェノールノボラック樹脂、水酸基当量:105g/eq)を配合し、更に、硬化促進剤として2−エチル−4−メチルイミダゾール(2E4MZ)0.1phrを配合し、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。
次いで、下記の如き条件で硬化させて積層板を試作し、下記の方法で耐熱性、誘電特性及び難燃性を評価した。結果を表1に示す。
Example 6 and Comparative Example 3 (Adjustment of epoxy resin composition and evaluation of physical properties)
In accordance with the composition shown in Table 1 below, (B-1) and (B-3) as epoxy resins, N-770 (phenol novolac type epoxy resin, epoxy equivalent: 183 g / eq) manufactured by DIC Corporation as a curing agent (A-1), (A-3), (A-4) and TD-2090 manufactured by DIC Corporation (softening point 120 ° C., phenol novolac resin, hydroxyl group equivalent: 105 g / eq) are blended and further cured. 2-ethyl-4-methylimidazole (2E4MZ) 0.1 phr is blended as an accelerator, and methyl ethyl ketone is blended so that the nonvolatile content (NV) of each composition is finally 58% by mass. did.
Next, a laminate was prepared by curing under the following conditions, and heat resistance, dielectric properties and flame retardancy were evaluated by the following methods. The results are shown in Table 1.

<積層板作製条件>
基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
プライ数:6
プリプレグ化条件:160℃
硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<Laminate production conditions>
Base material: Glass cloth “# 2116” (210 × 280 mm) manufactured by Nitto Boseki Co., Ltd.
Number of plies: 6
Prepregation conditions: 160 ° C
Curing conditions: 200 ° C., 40 kg / cm 2 for 1.5 hours, post-molding plate thickness: 0.8 mm

<耐熱性(ガラス転移温度)>
粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
<Heat resistance (glass transition temperature)>
Using a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device RSAII manufactured by Rheometric, rectangular tension method; frequency 1 Hz, heating rate 3 ° C./min), the elastic modulus change is maximized (tan δ change rate is the highest). The (large) temperature was evaluated as the glass transition temperature.

<誘電率及び誘電正接の測定>
JIS−C−6481に準拠し、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後23℃、湿度50%の室内に24時間保管した後の試験片の1GHzでの誘電率および誘電正接を測定した。
<難燃性>
UL−94試験法に準拠し、125×13×0.8mmの試験片5本用いて燃焼試験を行った。
<溶剤溶解性試験>
配合した不揮発分(N.V.)が58質量%のメチルエチルケトン溶液を0℃で60日間保管後の外観で判定。
<Measurement of dielectric constant and dissipation factor>
In accordance with JIS-C-6481, the dielectric material at 1 GHz of the test piece after being stored in an indoor room at 23 ° C. and 50% humidity for 24 hours after absolutely dry using an impedance material analyzer “HP4291B” manufactured by Agilent Technologies, Inc. The rate and dielectric loss tangent were measured.
<Flame retardance>
In accordance with the UL-94 test method, a combustion test was performed using five 125 × 13 × 0.8 mm test pieces.
<Solvent solubility test>
Judging by the appearance after storing a methyl ethyl ketone solution having a blended nonvolatile content (N.V.) of 58 mass% at 0 ° C. for 60 days.

Figure 2011099049
Figure 2011099049

表1の脚注:
*1:1回の接炎における最大燃焼時間(秒)
*2:試験片5本の合計燃焼時間(秒)
なお、「自消」で示した評価結果は、V−1に要求される難燃性(ΣF≦250秒且つFmax≦30秒)は満たさないが、燃焼(炎のクランプ到達)には至らず消火したレベルである。
Footnotes in Table 1:
* 1: Maximum combustion time (seconds) in one flame contact
* 2: Total burning time of 5 test pieces (seconds)
The evaluation result shown as “self-extinguishing” does not satisfy the flame retardancy required for V-1 (ΣF ≦ 250 seconds and F max ≦ 30 seconds), but does not reach combustion (flame clamp arrival). The fire extinguisher level.

Claims (10)

ポリアリーレンオキシ構造を主骨格としており、該構造の芳香核に、グリシジルオキシ基又はメチルグリシジルオキシ基、及び下記構造式(1)
Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が80〜140℃であるエポキシ樹脂(A)、並びに硬化剤(B)を必須成分とすることを特徴とするエポキシ樹脂組成物。
It has a polyaryleneoxy structure as the main skeleton, and the aromatic nucleus of the structure has a glycidyloxy group or a methylglycidyloxy group, and the following structural formula (1)
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The epoxy resin (A) whose softening point is 80 to 140 ° C. and the curing agent (B) are essential components in the range in which the nucleus content is 0.1 to 0.5 mol. An epoxy resin composition.
前記エポキシ樹脂(A)が、エポキシ当量257〜320g/eq.の範囲にあるものである請求項1記載のエポキシ樹脂組成物。 The epoxy resin (A) has an epoxy equivalent of 257 to 320 g / eq. The epoxy resin composition according to claim 1, which is in the range of 前記一般式(1)中のR及びRが共に水素原子である請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein R 1 and R 2 in the general formula (1) are both hydrogen atoms. 請求項1〜3の何れか1つ記載のエポキシ樹脂組成物を硬化させて得られる硬化物。 Hardened | cured material obtained by hardening the epoxy resin composition of any one of Claims 1-3. ポリアリーレンオキシ構造を主骨格としており、該構造の芳香核に、グリシジルオキシ基又はメチルグリシジルオキシ基、及び下記構造式(1)
Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が80〜140℃であることを特徴とする新規エポキシ樹脂。
It has a polyaryleneoxy structure as the main skeleton, and the aromatic nucleus of the structure has a glycidyloxy group or a methylglycidyloxy group, and the following structural formula (1)
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. A novel epoxy resin characterized in that the nucleus content is in the range of 0.1 to 0.5 mol and the softening point is 80 to 140 ° C.
ポリアリーレンオキシ構造を主骨格としており、該構造の芳香核に、フェノール性水酸基及び下記構造式(1)
Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が90〜150℃であるフェノール樹脂(B’)、及びエポキシ樹脂(A’)を必須成分とすることを特徴とするエポキシ樹脂組成物。
It has a polyaryleneoxy structure as the main skeleton, and the aromatic nucleus of the structure has a phenolic hydroxyl group and the following structural formula (1)
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. The phenol resin (B ′) and the epoxy resin (A ′) having a nucleus content of 0.1 to 0.5 mol and a softening point of 90 to 150 ° C. are essential components. An epoxy resin composition characterized by that.
請求項6記載のエポキシ樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 6. ポリアリーレンオキシ構造を主骨格としており、かつ、該構造の芳香核に、フェノール性水酸基及び下記構造式(1)
Figure 2011099049

[構造式(1)中、R及びRは各々独立して、メチル基又は水素原子であり、Arは、フェニレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基、nは1又は2の整数である。]で表される構造部位(α)が結合した分子構造を有しており、該分子構造中、前記ポリアリーレンオキシ構造を構成する芳香核1モルあたりの前記分子構造(α)を構成する芳香核の存在割合が0.1〜0.5モルとなる範囲であり、かつ、その軟化点が90〜150℃であることを特徴とする新規フェノール樹脂。
It has a polyaryleneoxy structure as the main skeleton, and the aromatic nucleus of the structure has a phenolic hydroxyl group and the following structural formula (1)
Figure 2011099049

[In the structural formula (1), R 1 and R 2 are each independently a methyl group or a hydrogen atom, and Ar is a phenylene group or a nuclear substitution with 1 to 3 of a C 1-4 alkyl group. A phenylene group, a naphthylene group, a naphthylene group substituted with 1 to 3 alkyl groups having 1 to 4 carbon atoms, and n is an integer of 1 or 2. And a fragrance constituting the molecular structure (α) per mole of aromatic nuclei constituting the polyaryleneoxy structure in the molecular structure. A novel phenol resin characterized in that the abundance ratio of nuclei is in the range of 0.1 to 0.5 mol and the softening point is 90 to 150 ° C.
請求項1、2、3、5、6又は8に記載の樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることによって得られるプリプレグ。 A prepreg obtained by impregnating a reinforcing substrate with the resin composition according to claim 1 diluted with an organic solvent and semi-curing the resulting impregnated substrate. 請求項1、2、3、5、6又は8に記載のエポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板。 A varnish obtained by diluting the epoxy resin composition according to claim 1, 2, 3, 5, 6, or 8 in an organic solvent is obtained, and a sheet formed from the varnish and a copper foil are heat-press molded. Circuit board obtained by
JP2009254930A 2009-11-06 2009-11-06 Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg, and circuit board Active JP5463859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254930A JP5463859B2 (en) 2009-11-06 2009-11-06 Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg, and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254930A JP5463859B2 (en) 2009-11-06 2009-11-06 Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg, and circuit board

Publications (2)

Publication Number Publication Date
JP2011099049A true JP2011099049A (en) 2011-05-19
JP5463859B2 JP5463859B2 (en) 2014-04-09

Family

ID=44190503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254930A Active JP5463859B2 (en) 2009-11-06 2009-11-06 Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg, and circuit board

Country Status (1)

Country Link
JP (1) JP5463859B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002119A1 (en) * 2010-07-02 2012-01-05 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
WO2013146478A1 (en) * 2012-03-27 2013-10-03 Dic株式会社 Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP2014037487A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014037486A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014189637A (en) * 2013-03-27 2014-10-06 Dic Corp Modified polyarylene ether resin, epoxy resin composition, cured product of the same, prepreg, circuit board, and build-up film
JP2014205774A (en) * 2013-04-12 2014-10-30 Dic株式会社 Modified polyarylene ether resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP2016155947A (en) * 2015-02-25 2016-09-01 Dic株式会社 Polyarylene ether resin, method for producing polyarylene ether resin, curable resin material and cured product thereof, semiconductor sealing material, semiconductor device, prepreg, printed circuit board, build-up film, and build-up board
JP2018104534A (en) * 2016-12-26 2018-07-05 Dic株式会社 Polyarylene sulfide resin composition, molded article and production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120039A (en) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc Benzylated polyphenol, its epoxy resin, and their production and use thereof
WO2006101008A1 (en) * 2005-03-18 2006-09-28 Dainippon Ink And Chemicals, Inc. Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin
JP2006307162A (en) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120039A (en) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc Benzylated polyphenol, its epoxy resin, and their production and use thereof
WO2006101008A1 (en) * 2005-03-18 2006-09-28 Dainippon Ink And Chemicals, Inc. Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin
JP2006307162A (en) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002119A1 (en) * 2010-07-02 2012-01-05 Dic株式会社 Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, printed circuit board, and build-up film
US8669333B2 (en) 2010-07-02 2014-03-11 Dic Corporation Thermosetting resin composition, cured product thereof, active ester resin, semiconductor encapsulating material, prepreg, circuit board, and build-up film
CN104220477A (en) * 2012-03-27 2014-12-17 Dic株式会社 Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material
WO2013146478A1 (en) * 2012-03-27 2013-10-03 Dic株式会社 Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material
US9441069B2 (en) 2012-03-27 2016-09-13 Dic Corporation Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material
KR101613598B1 (en) * 2012-03-27 2016-04-19 디아이씨 가부시끼가이샤 Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat-dissipating resin material
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JPWO2013187185A1 (en) * 2012-06-12 2016-02-04 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP2014037487A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014037486A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
JP2014189637A (en) * 2013-03-27 2014-10-06 Dic Corp Modified polyarylene ether resin, epoxy resin composition, cured product of the same, prepreg, circuit board, and build-up film
JP2014205774A (en) * 2013-04-12 2014-10-30 Dic株式会社 Modified polyarylene ether resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP2016155947A (en) * 2015-02-25 2016-09-01 Dic株式会社 Polyarylene ether resin, method for producing polyarylene ether resin, curable resin material and cured product thereof, semiconductor sealing material, semiconductor device, prepreg, printed circuit board, build-up film, and build-up board
JP2018104534A (en) * 2016-12-26 2018-07-05 Dic株式会社 Polyarylene sulfide resin composition, molded article and production method

Also Published As

Publication number Publication date
JP5463859B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP6098766B2 (en) Thermosetting resin composition, cured product thereof, and active ester resin used therefor
JP5120520B2 (en) Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5071602B2 (en) Epoxy compound, curable composition, and cured product thereof
JP5463859B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg, and circuit board
WO2011102211A1 (en) Phosphorus-atom-containing oligomers, process for producing same, curable resin composition, cured product thereof, and printed wiring board
WO2011096273A1 (en) Phenol resin composition, process for production thereof, curable resin composition, cured products tehreof, and printed wiring board
JP5648832B2 (en) Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5557033B2 (en) Phosphorus atom-containing oligomer, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5729605B2 (en) Thermosetting resin composition, cured product thereof, active ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5561571B1 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5146793B2 (en) Phosphorus atom-containing oligomer composition, curable resin composition, cured product thereof, and printed wiring board
JP2010202750A (en) Curable resin composition, cured product thereof, printed wiring board, new phenol resin and method for producing the same
JP5614519B1 (en) Modified phenolic resin, method for producing modified phenolic resin, modified epoxy resin, method for producing modified epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5732774B2 (en) Epoxy resin composition, curable resin composition, cured product thereof, and printed wiring board
JP2009286949A (en) Curable resin composition, its cured product, new epoxy resin, and its production method
JP5532368B1 (en) Epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5987261B2 (en) Curable resin composition, cured product, and printed wiring board
JP2014005338A (en) Curable composition, cured product, and printed wiring board
JP6257020B2 (en) Phenylphenol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP5987262B2 (en) Curable resin composition, cured product, and printed wiring board
JP6048035B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP2014058633A (en) Biphenol-naphthol resin, curable resin composition, cured product thereof, and printed circuit board
JP6032476B2 (en) Cresol-naphthol resin, curable resin composition, cured product thereof, and printed wiring board
JP6094091B2 (en) Curable resin composition, cured product, and printed wiring board
JP2014062187A (en) Epoxy resin, curable resin composition, cured product thereof and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5463859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250