JP2011098849A - Oxide nanoparticle, oxide nanoparticle dispersed colloidal liquid and method for producing those - Google Patents
Oxide nanoparticle, oxide nanoparticle dispersed colloidal liquid and method for producing those Download PDFInfo
- Publication number
- JP2011098849A JP2011098849A JP2009253488A JP2009253488A JP2011098849A JP 2011098849 A JP2011098849 A JP 2011098849A JP 2009253488 A JP2009253488 A JP 2009253488A JP 2009253488 A JP2009253488 A JP 2009253488A JP 2011098849 A JP2011098849 A JP 2011098849A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- oxide
- oxide nanoparticle
- dispersed colloidal
- oxide nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Silicon Compounds (AREA)
Abstract
Description
本発明は酸化物ナノ粒子、酸化物ナノ粒子分散コロイド液、およびそれらの製造方法に関する。 The present invention relates to oxide nanoparticles, oxide nanoparticle-dispersed colloidal liquids, and methods for producing them.
酸化物ナノ粒子は、電極材料、紫外線吸収剤材料、誘電体材料などの各種材料として有用であり非常に注目されている。 Oxide nanoparticles are useful as various materials such as an electrode material, an ultraviolet absorber material, and a dielectric material, and are attracting much attention.
一般に、粒子径がナノメートルオーダーの粒子(ナノ粒子)を製造する方法としては、液相中の化学反応により行う液相法と、気相中の化学反応により行う気相法とが知られている。
このうち、液相法の代表的な例としては、ゾルゲル法、共沈法、水熱合成法などが挙げられる。しかし、これらの手法では、不純物の除去及び結晶構造創製のために、合成後の粒子を1000℃以上の高温に長時間晒すアニーリング処理を行うことが一般的で、このアニーリング過程において粒子同士が凝集・焼結するといった粒子サイズの増大を招きやすいという問題点があった。
In general, as a method for producing particles (nanoparticles) having a particle size of the order of nanometers, a liquid phase method performed by a chemical reaction in a liquid phase and a gas phase method performed by a chemical reaction in a gas phase are known. Yes.
Among these, representative examples of the liquid phase method include a sol-gel method, a coprecipitation method, and a hydrothermal synthesis method. However, in these methods, in order to remove impurities and create a crystal structure, it is common to perform an annealing process in which the synthesized particles are exposed to a high temperature of 1000 ° C. or higher for a long time. In this annealing process, the particles aggregate together. -There is a problem that the particle size is likely to increase, such as sintering.
一方、気相法は、前駆物質を気相燃焼反応場(酸化反応場)に通過させることで製造を行うため、酸化物生成に非常に適した場であり、3000℃以上の高温も容易に実現可能であることから、高品位な結晶構造を持つ粒子を短時間に簡便に合成することが可能である。例えば、特許文献1には、複数の金属成分からなる複合微粒子であって、複数種の金属を含有する原料気体流ETと当該原料気体流ETを覆う反応気体流GRとが高温雰囲気の反応空間HKに流入され、原料気体流ETの外周部で熱処理によって粒子生成するとともに、反応気体流GRで冷却することによって製造され、特に、前記熱処理が原料気体流ETと反応気体流GR(例えば酸素含有ガスからなる)の化学反応(酸化反応等)により、複数の金属酸化物からなる複合微粒子を調製すること記載されている。 On the other hand, the vapor phase process is performed by passing a precursor through a gas phase combustion reaction field (oxidation reaction field), and is therefore a very suitable field for oxide formation. Since it is feasible, it is possible to easily synthesize particles having a high-quality crystal structure in a short time. For example, Patent Literature 1 discloses a reaction space in which a raw material gas flow ET containing a plurality of types of metal and a reaction gas flow GR covering the raw material gas flow ET is a high-temperature atmosphere. It is introduced into the HK and produced by heat treatment at the outer periphery of the raw material gas stream ET and cooled by the reaction gas stream GR. It is described that composite fine particles made of a plurality of metal oxides are prepared by a chemical reaction (made of gas) (oxidation reaction or the like).
しかしながら、このような従来の気相法では表面の親水性が失われ、生成粒子間で融着が進行するため、水系溶液中での分散が困難であった。
また、通常の気相法では粒子は粉体として得られる。そのため、ハンドリングが困難であり、吸引の危険などがある。また、回収効率の向上が困難であるといった問題点があった。また、金属製のバーナで火炎を発生させるときに、バーナの燃料ガス成分が混入し、ナノ粒子の純度が低下するといった問題点があった。
However, in such a conventional gas phase method, the hydrophilicity of the surface is lost and the fusion between the generated particles proceeds, so that it is difficult to disperse in an aqueous solution.
Further, particles are obtained as a powder in a normal gas phase method. Therefore, handling is difficult and there is a danger of suction. In addition, there is a problem that it is difficult to improve the recovery efficiency. Further, when a flame is generated by a metal burner, there is a problem that the fuel gas component of the burner is mixed and the purity of the nanoparticles is lowered.
本発明は、他の気相法と比較して親水性の高い粒子を低コストで大量に製造することができる酸化物ナノ粒子、酸化物ナノ粒子分散コロイド溶液、並びにそれらの製造方法を提供することを目的とする。 The present invention provides an oxide nanoparticle, an oxide nanoparticle-dispersed colloidal solution, and a production method thereof that can produce a large amount of highly hydrophilic particles at a low cost as compared with other gas phase methods. For the purpose.
本発明は、
(1)気化した原料物質を心棒に吹き付け心棒表面で酸化物を粒子状に生成させるとともに、該粒子を堆積させ、その後、堆積した粒子の凝集体を粉砕することを特徴とする酸化物ナノ粒子の製造方法、
(2)(1)項記載の方法で製造された粉体状の酸化物ナノ粒子、
(3)(2)項記載の粉体状の酸化物ナノ粒子を水中で超音波によりさらに粉砕することを特徴とする酸化物ナノ粒子分散コロイド溶液の製造方法、および
(4)(3)項記載の方法で製造された酸化物ナノ粒子分散コロイド溶液、
を提供するものである。
The present invention
(1) Oxide nanoparticles characterized by spraying vaporized raw material onto a mandrel to produce oxide particles on the mandrel surface, depositing the particles, and then pulverizing the aggregates of the deposited particles Manufacturing method,
(2) Powdered oxide nanoparticles produced by the method according to (1),
(3) A method for producing an oxide nanoparticle-dispersed colloidal solution, wherein the powdered oxide nanoparticles according to the item (2) are further pulverized in water by ultrasonic waves, and (4) the item (3) Oxide nanoparticle-dispersed colloidal solution produced by the described method,
Is to provide.
本発明の方法により、他の気相法と比較して親水性の高い酸化物ナノ粒子が廉価に効率よく製造でき、スループットが非常に高い。また、原料が気相で導入され、原料中の不純物と分離されることから、従来の気相法と比較して酸化物粒子の純度を著しく高くできる。また、粒子を凝集体にすることでハンドリングが容易で安全である。さらに、本発明の酸化物ナノ粒子分散コロイド溶液は、粒子凝集体を水中で超音波により破砕することでロスを少なくして分散安定性良く製造することができる。 By the method of the present invention, oxide nanoparticles having high hydrophilicity can be produced at low cost and efficiently compared with other gas phase methods, and the throughput is very high. Further, since the raw material is introduced in the gas phase and separated from the impurities in the raw material, the purity of the oxide particles can be remarkably increased as compared with the conventional gas phase method. Moreover, handling is easy and safe by forming particles into aggregates. Furthermore, the oxide nanoparticle-dispersed colloid solution of the present invention can be produced with good dispersion stability by reducing loss by crushing particle aggregates in water with ultrasonic waves.
本発明の酸化物ナノ粒子の製造方法は、気化した原料物質を心棒に吹き付け心棒表面で酸化物を粒子化して生成させるとともに、該粒子を堆積させ、その後、堆積した粒子凝集体を粉砕する工程を有するものである。 In the method for producing oxide nanoparticles of the present invention, the vaporized raw material is sprayed onto a mandrel to produce oxide particles on the mandrel surface, the particles are deposited, and then the deposited particle aggregate is pulverized. It is what has.
本発明の方法を適用しうるナノ粒子の酸化物は、特に限定されるものではないが、例えば、シリカ(SiO2)、チタニア(TiO2)、アルミナ(Al2O3)、二酸化ゲルマニウム(GeO2)、酸化セリウム(CeO2)、酸化亜鉛(ZnO)、などが挙げられ、なかでも、シリカ、チタニアのナノ粒子の製造に好適である。 The nano-particle oxide to which the method of the present invention can be applied is not particularly limited. For example, silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), germanium dioxide (GeO) 2 ), cerium oxide (CeO 2 ), zinc oxide (ZnO), and the like. Among these, silica and titania nanoparticles are suitable.
本発明において、気化した原料物質を心棒に吹き付け酸化物を生成させ粒子化して心棒表面上に堆積させる手段として、従来、光ファイバ母材の製造に用いられるVAD法(Vapor phase axial deposition method、気相軸付け法)と同様の方法によっておこなうことができる。すなわち、水素と酸素の混合気体の火炎中で、SiCl4やGeCl4などの原料物質を燃焼させることにより、酸化物を形成し、気化した酸化物を種となる心棒の上に積もらせ、心棒を移動させることによりスートを作製する。このスートは酸化物ナノ粒子の緩やかな凝集体である。本発明における微粒子凝集体スートの作製には、例えば、特開平6−127966号公報の図1に記載の光ファイバ母材製造装置を用い、クラッドバーナの火炎中で合成した酸化物微粒子を、回転しつつ引上げる種棒の下端に堆積させることにより行うことができる。 In the present invention, as a means for spraying a vaporized source material onto a mandrel to generate oxide particles and depositing them on the mandrel surface, a VAD method (Vapor phase axial deposition method, gas used in the production of optical fiber preforms in the past) It can be performed by the same method as the phase axis method. That is, by burning a raw material such as SiCl 4 or GeCl 4 in a flame of a mixed gas of hydrogen and oxygen, an oxide is formed, and the vaporized oxide is stacked on a seed mandrel. The soot is made by moving. This soot is a loose aggregate of oxide nanoparticles. In the production of the fine particle aggregate soot in the present invention, for example, using the optical fiber preform manufacturing apparatus shown in FIG. 1 of JP-A-6-127966, oxide fine particles synthesized in a flame of a clad burner are rotated. However, it can be carried out by depositing on the lower end of the seed rod that is pulled up.
以下、シリカを例に説明すると、バーナの条件は、下記のようにすることが好ましい。
H2は好ましくは0.5〜50L/min、さらに好ましくは1.0〜10L/minである。
O2は好ましくは0.5〜50L/min、さらに好ましくは1.0〜10L/minである。
原料物質(SiCl4)は好ましくは50〜1000cm3/min、さらに好ましくは100〜500cm3/minである。
バーナの炎温度は、好ましくは2000〜3500℃、さらに好ましくは2500〜3000℃である。
Hereinafter, the silica will be described as an example. The burner conditions are preferably as follows.
H 2 is preferably 0.5~50L / min, more preferably 1.0~10L / min.
O 2 is preferably 0.5 to 50 L / min, more preferably 1.0 to 10 L / min.
The raw material (SiCl 4 ) is preferably 50 to 1000 cm 3 / min, more preferably 100 to 500 cm 3 / min.
The flame temperature of the burner is preferably 2000 to 3500 ° C, more preferably 2500 to 3000 ° C.
本発明においては、上記スートを破砕して粉体状にする。粉砕には例えば、ヘラやハンマーなどを用いて行うことができる。 In the present invention, the soot is crushed into powder. The crushing can be performed using, for example, a spatula or a hammer.
本発明で得られる粉体状の粒子は、かさ密度が低く、ふんわり感がある。粉体のかさ密度は0.01〜0.5g/cm3が好ましく、0.05〜0.2g/cm3がさらに好ましい。
この粉体は、平均粒径が好ましくは10〜1000nm、さらに好ましくは100〜500nmである。平均粒径は次のようにして測定した。粉体の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とした。場所を変えて粒子200個を観察し、その平均値をもって平均粒径とした。
The powdery particles obtained by the present invention have a low bulk density and a soft feeling. The bulk density of the powder is preferably from 0.01 to 0.5 g / cm 3, more preferably from 0.05 to 0.2 g / cm 3 .
This powder preferably has an average particle size of 10 to 1000 nm, more preferably 100 to 500 nm. The average particle size was measured as follows. The particles of the powder were observed with a scanning electron microscope, and the diameter of the circle circumscribing the particles was defined as the particle size. 200 particles were observed at different locations, and the average value was taken as the average particle size.
本発明では、上記の方法で得られた、破砕された粉体を液体中で、さらに超音波を照射することで、一次粒子にまで破砕され、良好な分散性を有する分散コロイド溶液を得ることができる。
超音波処理の条件としては、超音波の周波数は好ましくは5〜30MHz、さらに好ましくは15〜25MHz、超音波の強度は好ましくは50〜200W/cm2、さらに好ましくは100〜200W/cm2である。超音波照射時間は1〜100minが好ましく、10〜50minがさらに好ましい。超音波処理には、通常の超音波分散機を用いることができる。
In the present invention, the crushed powder obtained by the above method is crushed into primary particles by irradiating with ultrasonic waves in a liquid to obtain a dispersed colloidal solution having good dispersibility. Can do.
The conditions for the ultrasonic treatment, the frequency of the ultrasound is preferably 5~30MHz, more preferably 15~25MHz, intensity of the ultrasonic wave is preferably 50~200W / cm 2, more preferably at 100 to 200 W / cm 2 is there. The ultrasonic irradiation time is preferably 1 to 100 min, and more preferably 10 to 50 min. A normal ultrasonic disperser can be used for the ultrasonic treatment.
本発明の分散コロイド溶液におけるζ電位の絶対値は、好ましくは30mV以上、さらに好ましくは40mV以上である。ζ電位の絶対値は、親水性の指標となり、すなわち、水中での分散性の指標となる。
本発明の分散コロイド溶液のζ電位の絶対値は、気相合成のものとしては、例外的に大きく、単分散性の高いものであり、リチウムイオン電池、太陽電池、燃料電池の電極、電子部品、液晶、研磨材、光触媒、塗料、化粧品、蛍光材料の原料として好適なものである。
The absolute value of the ζ potential in the dispersed colloidal solution of the present invention is preferably 30 mV or more, more preferably 40 mV or more. The absolute value of the ζ potential is an index of hydrophilicity, that is, an index of dispersibility in water.
The absolute value of the ζ potential of the dispersed colloidal solution of the present invention is exceptionally large and high in monodispersity for vapor phase synthesis, and is used for lithium ion batteries, solar cells, fuel cell electrodes, and electronic components. It is suitable as a raw material for liquid crystals, abrasives, photocatalysts, paints, cosmetics and fluorescent materials.
本発明の方法において、シリカ以外の酸化物、例えばチタニアは、上記のシリカの製造方法において、原料物質のSiCl4を、TiCl4とすることで製造することができる。得られたチタニアの粉体のかさ密度は0.01〜0.5g/cm3が好ましく、0.05〜0.2g/cm3がさらに好ましい。
また、チタニアの分散コロイド溶液は、上記の方法において破砕された粉体を液体中で、さらに超音波を照射する工程を、同程度の照射強度とすることで製造することができる。得られたチタニアの分散コロイド溶液におけるζ電位の絶対値は、好ましくは30mV以上、さらに好ましくは40mV以上である。
In the method of the present invention, an oxide other than silica, such as titania, can be produced by changing the raw material SiCl 4 to TiCl 4 in the silica production method described above. The bulk density of the powder of the resulting titania is preferably 0.01 to 0.5 g / cm 3, more preferably 0.05 to 0.2 g / cm 3.
Further, a titania-dispersed colloidal solution can be produced by setting the irradiation intensity to the same level in the step of irradiating the powder crushed by the above method in a liquid and further irradiating ultrasonic waves. The absolute value of the ζ potential in the obtained colloidal solution of titania is preferably 30 mV or more, and more preferably 40 mV or more.
以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
実施例1
<シリカナノ粒子>
(VAD法によるスート作製)
特開平6−127966号公報の図1に記載の光ファイバ母材製造装置を用いて、バーナの火炎中で合成したシリカ微粒子を、回転しつつ引上げるシリカガラスの種棒の下端に堆積させてシリカ微粒子凝集体の製造を行った。バーナの条件は、下記のようにした。
H2:5L/min
O2:5L/min
SiCl4:300cm3/min
炎温度:2800℃
バーナから供給されるシリカ微粒子が堆積し、微粒子凝集体を形成することができた。
Example 1
<Silica nanoparticles>
(Soot production by VAD method)
Using the optical fiber preform manufacturing apparatus shown in FIG. 1 of JP-A-6-127966, silica fine particles synthesized in the flame of a burner are deposited on the lower end of a silica glass seed rod that is pulled up while rotating. A silica fine particle aggregate was produced. The burner conditions were as follows.
H 2 : 5 L / min
O 2 : 5 L / min
SiCl 4 : 300 cm 3 / min
Flame temperature: 2800 ° C
Silica fine particles supplied from the burner were deposited, and fine particle aggregates could be formed.
微粒子凝集体からヘラで削り取ることにより、顆粒状の粉体を回収した。回収された顆粒状の粉体の粒径は1〜10μmであり、かさ密度は0.1であった。
次いで、この顆粒状の粉体を0.1mass%となるように水に分散させ、超音波分散機(株式会社エスエムテー製UH−600SRF)を用いて30分間分散処理を行い実施例1のシリカ粒子およびその分散コロイド溶液を得た。
Granular powder was recovered by scraping the fine particle aggregate with a spatula. The particle size of the collected granular powder was 1 to 10 μm, and the bulk density was 0.1.
Next, this granular powder is dispersed in water so as to be 0.1 mass%, and is subjected to a dispersion treatment for 30 minutes using an ultrasonic disperser (UH-600SRF manufactured by SMT Co., Ltd.). And its dispersed colloidal solution.
(ζ電位)
実施例1の処理後の溶液を約0.01wt%となるよう希釈し、Malvern Instruments製ZETASIZER NANO ZEN3600を用いてζ電位を測定した。また、他の気相法で得られた粒子又は市販品(比較例1,3〜5)と液相法(ゾルゲル法)で得られた粒子(比較例6)についても同様にζ電位を測定した。結果を図1に示す。また、実施例1、比較例1および2については、その値を表1に合わせて示した。実施例1のVAD製粒子は液相法(比較例6)と同様の値約−50mVが得られ、他の気相法(比較例1〜5)ではいずれも絶対値が小さかった。なお、比較例1のJVD(Jacketed vapor desosition)法、および比較例2のFCM(Flash creation method)はともにその常法に従いシリカナノ粒子を製造したものである。
(Ζ potential)
The solution after the treatment of Example 1 was diluted to about 0.01 wt%, and the ζ potential was measured using ZETASIZER NANO ZEN 3600 manufactured by Malvern Instruments. Similarly, the ζ potential was measured for particles obtained by other gas phase methods or particles (comparative examples 1 and 3 to 5) and particles obtained by the liquid phase method (sol-gel method) (comparative example 6). did. The results are shown in FIG. The values of Example 1 and Comparative Examples 1 and 2 are shown in Table 1. The VAD particles of Example 1 had a value of about −50 mV similar to the liquid phase method (Comparative Example 6), and the other gas phase methods (Comparative Examples 1 to 5) all had small absolute values. The JVD (Jacked Vapor Deposition) method of Comparative Example 1 and the FCM (Flash Creation Method) of Comparative Example 2 both produce silica nanoparticles according to the conventional method.
(不純物定量分析)
実施例1、比較例1,3〜5で得られたシリカ粒子の粉体を弗酸で溶解し、ICP発光分析装置で不純物金属の定量を行なった。その結果を表2に示す。
表1の純度の欄において「◎」は表2における金属不純物元素の濃度が20ng/g未満であることを示し、「△」は表2における金属不純物元素の濃度が20ng/g以上であることを示す。
その結果、他の気相法の比較例に対して実施例1のVAD法によるシリカ粒子に含まれる不純物はいずれも少なく、純度が高いことが示された。
(Quantitative analysis of impurities)
The silica particle powders obtained in Example 1 and Comparative Examples 1 and 3 to 5 were dissolved in hydrofluoric acid, and impurity metals were quantified with an ICP emission spectrometer. The results are shown in Table 2.
In the column of purity in Table 1, “◎” indicates that the concentration of the metal impurity element in Table 2 is less than 20 ng / g, and “Δ” indicates that the concentration of the metal impurity element in Table 2 is 20 ng / g or more. Indicates.
As a result, it was shown that the impurities contained in the silica particles by the VAD method of Example 1 were less than those of other gas phase method comparative examples, and the purity was high.
(粒径)
実施例1、比較例2、4〜6について走査型電子顕微鏡写真により粒径を測定した、結果を表1および2に示す。実施例1では、比較例に比べ真球度の高い粒子であった。
(Particle size)
The particle diameter was measured by scanning electron micrographs for Example 1 and Comparative Examples 2, 4 to 6, and the results are shown in Tables 1 and 2. In Example 1, the particles had a higher sphericity than the comparative example.
(親水性)
実施例1、比較例1〜2の親水性を Malvern Instruments製ZETASIZER NANO ZEN3600を用いてζ電位により測定した。結果を表1に示す。表1の親水性の欄において「○」はζ電位の絶対値が30mV以上を示し、「×」は30mV未満を示す。
(Hydrophilic)
The hydrophilicity of Example 1 and Comparative Examples 1 and 2 was measured by ζ potential using ZETASIZER NANO ZEN 3600 manufactured by Malvern Instruments. The results are shown in Table 1. In the hydrophilicity column of Table 1, “◯” indicates that the absolute value of the ζ potential is 30 mV or more, and “x” indicates less than 30 mV.
(スループット評価)
実施例1、比較例1〜2のスループットを単位時間当たりの酸化物ナノ粒子の生成量により評価した。結果を表1に示す。表1のスループットの欄において「○」は単位時間当たりの生成量が3kg/h以上であることを示し、「△」は3kg/hを下回ることを示す。
(Throughput evaluation)
The throughputs of Example 1 and Comparative Examples 1 and 2 were evaluated based on the amount of oxide nanoparticles produced per unit time. The results are shown in Table 1. In the column of throughput in Table 1, “◯” indicates that the production amount per unit time is 3 kg / h or more, and “Δ” indicates that it is less than 3 kg / h.
(ハンドリング評価)
実施例1、比較例1〜2のハンドリング性能評価を表1に合わせて示した。
(Handling evaluation)
Table 1 shows the handling performance evaluation of Example 1 and Comparative Examples 1 and 2.
表1および2に示されるとおり、実施例1では各比較例に比べ、親水性の高い粒子が安価で大量に合成でき、スループットが非常に高く、純度が非常に高く、また、ハンドリングが容易で安全である。 As shown in Tables 1 and 2, in Example 1, particles having high hydrophilicity can be synthesized in a large amount at a low cost, and the throughput is very high, the purity is very high, and the handling is easy as compared with each comparative example. It is safe.
実施例1において超音波照射前後の溶液を基板上で乾燥させ、走査型電子顕微鏡による顕微観察を行なった。その顕微鏡写真を図2に示す。照射前(図2(a))は粒子が堆積し1つの凝集体を形成していたが、照射後は一次粒子の状態へ分散化していることが確認できた。 In Example 1, the solution before and after the ultrasonic irradiation was dried on the substrate, and microscopic observation was performed with a scanning electron microscope. The micrograph is shown in FIG. Prior to irradiation (FIG. 2 (a)), particles were deposited to form one aggregate, but it was confirmed that the particles were dispersed into primary particles after irradiation.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009253488A JP5566662B2 (en) | 2009-11-04 | 2009-11-04 | Silica nanoparticles, silica nanoparticle-dispersed colloidal liquid, and production methods thereof. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009253488A JP5566662B2 (en) | 2009-11-04 | 2009-11-04 | Silica nanoparticles, silica nanoparticle-dispersed colloidal liquid, and production methods thereof. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011098849A true JP2011098849A (en) | 2011-05-19 |
JP5566662B2 JP5566662B2 (en) | 2014-08-06 |
Family
ID=44190359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009253488A Active JP5566662B2 (en) | 2009-11-04 | 2009-11-04 | Silica nanoparticles, silica nanoparticle-dispersed colloidal liquid, and production methods thereof. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5566662B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60826A (en) * | 1983-06-18 | 1985-01-05 | Canon Inc | Method and apparatus for manufacturing ultrafine particle |
JPS61261201A (en) * | 1985-05-14 | 1986-11-19 | Fuji Electric Co Ltd | Method for producing metal oxide fine powder and apparatus therefor |
JPS62102827A (en) * | 1985-10-29 | 1987-05-13 | Natl Res Inst For Metals | Production of metallic or ceramic fine grain |
JPS6451307A (en) * | 1987-08-20 | 1989-02-27 | Furukawa Electric Co Ltd | Production of oxide superconductor |
JPH04160005A (en) * | 1990-10-22 | 1992-06-03 | Matsushita Electric Ind Co Ltd | Production of superconducting oxide |
JP2000167384A (en) * | 1998-11-26 | 2000-06-20 | Degussa Huels Ag | Method and device for manufacturing solid matter product manufactured by thermal decomposition and its use |
JP2005246339A (en) * | 2004-03-08 | 2005-09-15 | Masayoshi Murata | Method and apparatus for manufacturing nanoparticle |
JP2006508885A (en) * | 2002-12-06 | 2006-03-16 | テクナ・プラズマ・システムズ・インコーポレーテッド | Plasma synthesis of metal oxide nanopowders and apparatus therefor |
JP2006075696A (en) * | 2004-09-08 | 2006-03-23 | Fujikura Ltd | Photocatalyst supported silica soot body, its manufacturing method, air cleaner, exhaust gas treatment apparatus, wastewater treatment apparatus and water purifying apparatus |
-
2009
- 2009-11-04 JP JP2009253488A patent/JP5566662B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60826A (en) * | 1983-06-18 | 1985-01-05 | Canon Inc | Method and apparatus for manufacturing ultrafine particle |
JPS61261201A (en) * | 1985-05-14 | 1986-11-19 | Fuji Electric Co Ltd | Method for producing metal oxide fine powder and apparatus therefor |
JPS62102827A (en) * | 1985-10-29 | 1987-05-13 | Natl Res Inst For Metals | Production of metallic or ceramic fine grain |
JPS6451307A (en) * | 1987-08-20 | 1989-02-27 | Furukawa Electric Co Ltd | Production of oxide superconductor |
JPH04160005A (en) * | 1990-10-22 | 1992-06-03 | Matsushita Electric Ind Co Ltd | Production of superconducting oxide |
JP2000167384A (en) * | 1998-11-26 | 2000-06-20 | Degussa Huels Ag | Method and device for manufacturing solid matter product manufactured by thermal decomposition and its use |
JP2006508885A (en) * | 2002-12-06 | 2006-03-16 | テクナ・プラズマ・システムズ・インコーポレーテッド | Plasma synthesis of metal oxide nanopowders and apparatus therefor |
JP2005246339A (en) * | 2004-03-08 | 2005-09-15 | Masayoshi Murata | Method and apparatus for manufacturing nanoparticle |
JP2006075696A (en) * | 2004-09-08 | 2006-03-23 | Fujikura Ltd | Photocatalyst supported silica soot body, its manufacturing method, air cleaner, exhaust gas treatment apparatus, wastewater treatment apparatus and water purifying apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5566662B2 (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kallawar et al. | Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges | |
Gundiah et al. | Hydrogel route to nanotubes of metal oxides and sulfates | |
Sun et al. | Mesocrystals for photocatalysis: a comprehensive review on synthesis engineering and functional modifications | |
Pan et al. | Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis | |
Horváth et al. | Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave | |
Wen et al. | Synthesis of high-reactive facets dominated anatase TiO 2 | |
Razak et al. | Agricultural and industrial waste-derived mesoporous silica nanoparticles: A review on chemical synthesis route | |
Ayuk et al. | A review on synthetic methods of nanostructured materials | |
CN110194480B (en) | Nano cerium oxide and preparation method thereof | |
Zhao et al. | Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst | |
Wang et al. | Simple route to self-assembled BiOCl networks photocatalyst from nanosheet with exposed (001) facet | |
JP4780635B2 (en) | Method for producing titanium oxide dispersion | |
JP2009161425A (en) | Manufacturing method of dysprosium oxide nanoparticles and manufacturing method of dysprosium oxide nanosole | |
Charinpanitkul et al. | Review of recent research on nanoparticle production in Thailand | |
Voon et al. | Synthesis and preparation of metal oxide powders | |
Wang et al. | Photoluminescence properties of the rare-earth ions in the TiO2 host nanofibers prepared via electrospinning | |
Zaki et al. | Acceleration of ammonium phosphate hydrolysis using TiO 2 microspheres as a catalyst for hydrogen production | |
Rachmaniar et al. | Prevention of particle agglomeration in sol–gel synthesis of TiO2 nanoparticles via addition of surfactant | |
JP5446052B2 (en) | Zinc oxide ultrafine particle dispersion solution, method for producing the zinc oxide ultrafine particle dispersion solution, and zinc oxide thin film | |
TWI522318B (en) | Titanium oxide particles and methods for producing the same | |
Guo et al. | Synthesis and characterization of hierarchical TiO 2 microspheres composed of nanorods: effect of reaction conditions on nanorod density | |
Pei et al. | Cd2Ge2O6 nanowires grown by a simple hydrothermal route | |
Prakash et al. | An investigation on optimization of instantaneous synthesis of TiO2 nanoparticles and it’s thermal stability analysis in PP-TiO2 nanocomposite | |
Tani et al. | Evolution of the morphology of zinc oxide/silica particles made by spray combustion | |
Darbandi et al. | Nanoscale engineering of TiO2 nanoparticles: Evolution of the shape, phase, morphology, and facet orientation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140618 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5566662 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |