JP2011098262A - Pressure dehydrator and pressure dehydration method - Google Patents

Pressure dehydrator and pressure dehydration method Download PDF

Info

Publication number
JP2011098262A
JP2011098262A JP2009253045A JP2009253045A JP2011098262A JP 2011098262 A JP2011098262 A JP 2011098262A JP 2009253045 A JP2009253045 A JP 2009253045A JP 2009253045 A JP2009253045 A JP 2009253045A JP 2011098262 A JP2011098262 A JP 2011098262A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
liquid
pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009253045A
Other languages
Japanese (ja)
Other versions
JP5327000B2 (en
Inventor
Tetsuya Imura
哲也 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2009253045A priority Critical patent/JP5327000B2/en
Publication of JP2011098262A publication Critical patent/JP2011098262A/en
Application granted granted Critical
Publication of JP5327000B2 publication Critical patent/JP5327000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure dehydrator designed for device miniaturization and low power consumption, as well as a pressure dehydration method. <P>SOLUTION: This pressure dehydrator operates as follows: first, a stock solution which is intended for filtration, is forced into a filtration chamber 134 formed between a plurality of juxtaposed filter plates 130 and filter plates 132 with a diaphragm and then, dehydrated. Thereafter, a filter press 1 takes over to perform the job, that is, to inflate the diaphragm 131 installed on one side of the filtration chamber 134 by giving a compression pressure to the diaphragm 131, and thereby, dehydrate a dehydration cake remaining in the filtration chamber 134 by compression. In addition, the pressure dehydrator is equipped with a pump 2 which supplies water to the diaphragm 131, a compression tank 3 which applies a compression pressure to the diaphragm 131 by pressurizing the water supplied to the diaphragm 131 by a pump 2 and an air compressor 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加圧されたダイヤフラムにより脱水ケーキを圧搾脱水して原液をろ過脱水する加圧脱水装置および加圧脱水方法に関する。   The present invention relates to a pressure dehydration apparatus and a pressure dehydration method in which a dehydrated cake is squeezed and dehydrated by a pressurized diaphragm to filter and dehydrate the stock solution.

従来、多数並列したろ板間に形成されたろ過室内に汚泥等を圧入脱水した後、その脱水ケーキをろ過室の一方側に設けられたダイヤフラムで圧搾脱水するようにしたフィルタープレスにおいて、ダイヤフラムは圧搾水または圧搾空気により膨張し、この膨張により汚泥等の原液が注入されたろ過室の容積を狭めていた。このときに、ダイヤフラムには、1.5〜2.0MPa程度の高圧の圧搾圧力が20〜60分程度の時間与えられていた。   Conventionally, in a filter press in which sludge or the like is pressed and dehydrated into a filtration chamber formed between a plurality of parallel filter plates, the dehydrated cake is squeezed and dehydrated with a diaphragm provided on one side of the filtration chamber. It expanded with compressed water or compressed air, and the volume of the filtration chamber into which undiluted liquids, such as sludge, were injected by this expansion was narrowed. At this time, a high pressure of about 1.5 to 2.0 MPa was applied to the diaphragm for about 20 to 60 minutes.

このように、ダイヤフラムを用いて圧搾脱水するフィルタープレスにおいて、小型のものでは、ダイヤフラムに与える圧搾圧力として圧搾空気を供給しているものがある。一方、中型〜大型のものでは、ダイヤフラムに与える圧搾圧力が小型のものに比べて高圧となるため、圧縮性流体の空気の安全性や圧搾空気を供給するエアーコンプレッサが大型化する等を考慮して、圧搾空気に代えて圧搾水を採用していた。   Thus, in the filter press which squeezes and dehydrates using a diaphragm, there exists a thing which supplies compressed air as a pressing pressure given to a diaphragm in a small thing. On the other hand, in the medium to large size, the compression pressure applied to the diaphragm is higher than that of the small size, so the safety of the compressed fluid air and the size of the air compressor that supplies the compressed air are increased. In addition, compressed water was employed instead of compressed air.

例えば、以下に示す特許文献1に記載されたフィルタープレスにおいては、ダイヤフラムに3〜5kg/cm(0.3〜0.5MPa)程度の圧搾空気を注入し、次いで10〜20kg/cm(1〜2MPa)程度の圧搾水を注入してケーキを圧搾する技術が採用されている。このような技術では、ダイヤフラムに圧搾水を注入する際の圧搾圧力が高圧であるため、大容量の圧搾ポンプが必要になり、装置が大型化していた。また、大容量の圧搾ポンプを用いることで、多くの消費電力が費やされることになる。 For example, in the filter press described in Patent Document 1 shown below, compressed air of about 3 to 5 kg / cm 2 (0.3 to 0.5 MPa) is injected into the diaphragm, and then 10 to 20 kg / cm 2 ( A technique for compressing cake by injecting compressed water of about 1 to 2 MPa) is employed. In such a technique, since the squeezing pressure at the time of injecting the squeezed water into the diaphragm is high, a large-capacity squeeze pump is required, and the apparatus has been enlarged. Moreover, much power consumption is consumed by using a large capacity squeezing pump.

一方、以下に示す特許文献2に記載されたフィルタープレスでは、ろ過室に原液を注入する前に予めダイヤフラムに空気や水の圧力流体を注入し、次いでろ過室に原液を注入した後、ダイヤフラムにさらに高圧の圧力流体をポンプで注入する技術が採用されている。このような技術でも、ダイヤフラムに高圧の空気や水といった圧力流体をポンプで供給しているため、上述したと同様に、大容量の圧搾ポンプが必要になり、装置が大型化していた。また、大容量の圧搾ポンプを用いることで、多くの消費電力が費やされることになる。   On the other hand, in the filter press described in Patent Document 2 shown below, air or water pressure fluid is injected into the diaphragm in advance before injecting the stock solution into the filtration chamber, and then the stock solution is injected into the filtration chamber and then into the diaphragm. Furthermore, a technique for injecting high-pressure fluid with a pump is employed. Even in such a technique, since a pressurized fluid such as high-pressure air or water is supplied to the diaphragm by a pump, a large-capacity squeeze pump is required as described above, and the apparatus has been enlarged. Moreover, much power consumption is consumed by using a large capacity squeezing pump.

また、以下に示す特許文献3に記載されたフィルタープレスでは、ダイヤフラムに与える圧搾圧力として加圧空気を採用している。このような技術では、上述したように、空気は圧縮性流体であるためその安全性を考慮して、加圧空気の圧力は比較的低圧に設定されていた。このため、短時間で圧搾処理を行う比較的小型のフィルタープレスにしか適用できなかった。一方、長時間の圧搾処理を要する比較的大型のフィルタープレスで低圧の圧搾空気をダイヤフラムに供給して圧搾を行おうとすると、圧搾処理に多大な時間が必要になっていた。さらに、加圧空気を高圧にした場合には、加圧空気を供給するエアーコンプレッサが大型化することに加えて、多くの消費電力が費やされることになる。   Moreover, in the filter press described in the patent document 3 shown below, pressurized air is employ | adopted as the pressing pressure given to a diaphragm. In such a technique, as described above, since air is a compressive fluid, the pressure of pressurized air is set to a relatively low pressure in consideration of safety. For this reason, it was applicable only to a relatively small filter press that performs the pressing process in a short time. On the other hand, when a low pressure compressed air is supplied to the diaphragm with a relatively large filter press that requires a long time pressing process, a large amount of time is required for the pressing process. Further, when the pressurized air is increased in pressure, a large amount of power is consumed in addition to an increase in the size of the air compressor that supplies the pressurized air.

特公平2−12122号公報Japanese Patent Publication No.2-12122 特開昭61−82815号公報JP-A-61-82815 特開2001−54704号公報JP 2001-54704 A

以上説明したように、ダイヤフラムを採用した従来のフィルタープレスにおいては、ダイヤフラムを膨張させる圧搾圧力として気体や液体の圧力流体を使用し、この圧力流体をポンプにより直接所定の圧力まで加圧してダイヤフラムに供給していた。   As described above, in a conventional filter press employing a diaphragm, a gas or liquid pressure fluid is used as a squeezing pressure for expanding the diaphragm, and this pressure fluid is directly pressurized to a predetermined pressure by a pump to form a diaphragm. I was supplying.

このため、ダイヤフラムに供給する高圧の圧搾圧力を短時間で得るためには、大型のポンプが必要となり、装置の大型化を招いていた。さらに、ポンプの大型化により消費電力が増大するといった不具合も招くことになる。   For this reason, in order to obtain a high pressing pressure to be supplied to the diaphragm in a short time, a large pump is required, which leads to an increase in the size of the apparatus. Furthermore, the problem that power consumption increases by the enlargement of a pump will also be caused.

そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、装置の小型化ならびに低消費電力化を図った加圧脱水装置および加圧脱水方法を提供することにある。   Accordingly, the present invention has been made in view of the above, and an object of the present invention is to provide a pressure dehydration apparatus and a pressure dehydration method that achieve downsizing and low power consumption of the apparatus. .

上記目的を達成するために、請求項1に記載の発明は、複数並列したろ板間に形成されたろ過室内にろ過しようとする原液を圧入して脱水した後、ろ過室の一方側に設けられたダイヤフラムに圧搾圧力を与えてダイヤフラムを膨張させ前記ろ過室に残留する脱水ケーキを圧搾脱水するフィルタープレスを備えた加圧脱水装置において、ダイヤフラムに液体を供給するポンプと、ポンプによりダイヤフラムに供給された液体を圧力気体により加圧して、ダイヤフラムに圧搾圧力を与える圧搾圧力供給手段とを有することを特徴とする。   In order to achieve the above object, the invention according to claim 1 is provided on one side of the filtration chamber after the stock solution to be filtered is pressed into the filtration chamber formed between the filter plates arranged in parallel and dehydrated. In a pressure dehydration apparatus equipped with a filter press that applies a pressure to the diaphragm and expands the diaphragm to squeeze and dehydrate the dewatered cake remaining in the filtration chamber, a pump that supplies liquid to the diaphragm, and a pump that supplies the diaphragm to the diaphragm It is characterized by having a pressing pressure supply means for pressurizing the liquid with a pressure gas and applying a pressing pressure to the diaphragm.

請求項2に記載の発明は、請求項1に記載の発明において、圧搾圧力供給手段は、ダイヤフラムに供給されると同等の液体を貯留する圧搾タンクと、圧力気体により圧搾タンク内の気体の圧力を高めて貯留された液体を加圧する気体圧縮機と、圧搾タンクとダイヤフラムとを選択的に連通制御し、圧縮タンク内の液体を加圧することでダイヤフラムに供給された液体を選択的に加圧制御する制御バルブとを有することを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the pressing pressure supply means stores the equivalent liquid when supplied to the diaphragm, and the pressure of the gas in the pressing tank by the pressure gas. Selectively pressurize the liquid supplied to the diaphragm by selectively controlling the communication between the gas compressor that pressurizes the stored liquid by increasing the pressure, the squeezing tank and the diaphragm, and pressurizing the liquid in the compression tank And a control valve for controlling.

請求項3に記載の発明は、請求項2に記載の発明において、圧搾タンクは、ポンプによりダイヤフラムに供給される液体を貯留する受水槽からポンプにより液体が供給されて貯留されることを特徴とする。   The invention described in claim 3 is characterized in that, in the invention described in claim 2, the squeezing tank is supplied with a liquid from a water receiving tank for storing the liquid supplied to the diaphragm by the pump and stored. To do.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の発明において、液体は水であり、圧力気体は空気であることを特徴とする。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the liquid is water and the pressure gas is air.

請求項5に記載の発明は、複数並列したろ板間に形成されたろ過室内にろ過しようとする原液を圧入して脱水した後、ろ過室の一方側に設けられたダイヤフラムに圧搾圧力を与えてダイヤフラムを膨張させろ過室に残留する脱水ケーキを圧搾脱水する加圧脱水方法において、ダイヤフラムに液体を供給した後、ダイヤフラムに供給された液体を圧力気体により加圧して、圧力気体により加圧された圧力液体によりダイヤフラムに圧搾圧力を与えることを特徴とする。   In the invention according to claim 5, after the stock solution to be filtered is pressed into a filtration chamber formed between a plurality of parallel filter plates and dehydrated, a compression pressure is applied to a diaphragm provided on one side of the filtration chamber. In the pressurized dehydration method in which the diaphragm is expanded and the dewatered cake remaining in the filtration chamber is squeezed and dehydrated, after the liquid is supplied to the diaphragm, the liquid supplied to the diaphragm is pressurized by the pressure gas and then pressurized by the pressure gas. The pressure is applied to the diaphragm by the pressurized liquid.

本発明によれば、ダイヤフラムに供給された液体を圧搾気体により加圧することで、ダイヤフラムに圧搾圧力を与えるようにしたので、ダイヤフラムに圧搾圧力を与える際の消費電力を低減することが可能になることに加えて、構成を小型化することができる。   According to the present invention, the liquid supplied to the diaphragm is pressurized with the compressed gas, so that the compression pressure is applied to the diaphragm. Therefore, it is possible to reduce the power consumption when the compression pressure is applied to the diaphragm. In addition, the configuration can be reduced in size.

本発明の第1の実施形態に係る加圧脱水装置の構成を示す図である。It is a figure which shows the structure of the pressure dehydration apparatus which concerns on the 1st Embodiment of this invention. 脱水ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of a dehydration unit. 脱水工程における閉板工程ならびに圧入工程を示す工程図である。It is process drawing which shows the closing board process and press-fit process in a dehydration process. 脱水工程における圧搾工程ならびに開板工程を示す工程図である。It is process drawing which shows the pressing process in a dehydration process, and an open plate process. 脱水工程におけるケーキ剥離工程ならびにろ布洗浄工程を示す工程図である。It is process drawing which shows the cake peeling process and filter cloth washing | cleaning process in a spin-drying | dehydration process.

以下、図面を用いて本発明を実施するための実施形態を説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は本発明の第1の実施形態に係る加圧脱水装置の構成を示す図である。図1に示す加圧脱水装置は、原液を脱水する脱水機として機能するフィルタープレス1と、ポンプ2、圧搾タンク3ならびに空気圧縮機(エアーコンプレッサ)4を備えて構成されている。
(First embodiment)
FIG. 1 is a diagram showing a configuration of a pressure dehydration apparatus according to a first embodiment of the present invention. The pressure dehydrating apparatus shown in FIG. 1 includes a filter press 1 that functions as a dehydrator for dehydrating a stock solution, a pump 2, a squeezing tank 3, and an air compressor (air compressor) 4.

フィルタープレス1は、フロントフレーム10とリアフレーム11に支架されたガイドレール12上に複数の脱水ユニット13が水平方向に並列に配置されている。複数の脱水ユニット13は、ガイドレール12上を移動自在に支持され、ガイドレール12に沿って例えば電動シリンダー14や油圧シリンダーの駆動力により往復移動する押圧部材15により締め付けられる。このようなフィルタープレス1としては、従来公知であるが例えば特開2001−104714号公報や特開2004−174304号公報に記載されたものが知られている。   In the filter press 1, a plurality of dewatering units 13 are arranged in parallel in a horizontal direction on a guide rail 12 supported by a front frame 10 and a rear frame 11. The plurality of dewatering units 13 are movably supported on the guide rail 12 and are fastened by a pressing member 15 that reciprocates along the guide rail 12 by the driving force of, for example, an electric cylinder 14 or a hydraulic cylinder. As such a filter press 1, conventionally known, for example, those described in Japanese Patent Application Laid-Open Nos. 2001-104714 and 2004-174304 are known.

脱水ユニット13は、例えば図2の斜視図に示すように構成されている。図2において、脱水ユニット13は、ろ板130とダイヤフラム131が内側に設けられたダイヤフラム付ろ板132とが対向して配置され、ろ板130とダイヤフラム付ろ板132とが対向する側にろ過室134が形成される。ろ過室134の内側のろ板130ならびにダイヤフラム付ろ板132にはそれぞれのろ布133が配設され、ろ板130とろ布133との間、ならびにダイヤフラム付ろ板132とろ布133との間にろ過床135が形成される。   The dehydration unit 13 is configured, for example, as shown in the perspective view of FIG. In FIG. 2, the dehydrating unit 13 is arranged such that a filter plate 130 and a diaphragm-attached filter plate 132 provided with a diaphragm 131 are opposed to each other, and the filter plate 130 and the diaphragm-attached filter plate 132 are filtered to the opposite side. A chamber 134 is formed. Each filter cloth 133 is disposed on the filter plate 130 inside the filtration chamber 134 and the filter plate 132 with the diaphragm, and between the filter plate 130 and the filter cloth 133 and between the filter plate 132 with the diaphragm and the filter cloth 133. A filter bed 135 is formed.

ろ過室134の上部には、脱水しようとするスラリー等の原液をろ過室134に注入する際の原液供給路136が設けられている。ダイヤフラム付ろ板132には、ダイヤフラム付ろ板132を貫通してダイヤフラム131に至る圧搾水注入路137が形成されている。ろ板130ならびにダイヤフラム付ろ板132の下部には、ろ過床135に連通して、ろ布133を介してろ過室134からしみ出したろ液を外部に排出するろ液排出路138が設けられている。このような脱水ユニットとしては、従来公知であるが例えば特開2002−292211号公報に記載されたものが知られている。   A stock solution supply path 136 for injecting a stock solution such as slurry to be dehydrated into the filtration chamber 134 is provided in the upper part of the filtration chamber 134. The diaphragm-attached filter plate 132 is formed with a compressed water injection passage 137 that penetrates the diaphragm-attached filter plate 132 and reaches the diaphragm 131. At the lower part of the filter plate 130 and the diaphragm-attached filter plate 132, a filtrate discharge path 138 is provided which communicates with the filter bed 135 and discharges the filtrate exuded from the filtration chamber 134 through the filter cloth 133 to the outside. Yes. As such a dehydration unit, a conventionally known one, for example, one described in JP-A No. 2002-292221 is known.

図1に戻って、ポンプ2は、脱水ユニット13のダイヤフラム付ろ板132に形成された圧搾水注入路137に連通した圧搾水供給路5aを介して受水槽6に貯留された水をダイヤフラム131に供給する。また、ポンプ2は、圧搾水供給路5bを介して受水槽6に貯留された水を圧搾タンク3に供給する。   Returning to FIG. 1, the pump 2 uses the diaphragm 131 to store the water stored in the water receiving tank 6 through the compressed water supply path 5 a communicated with the compressed water injection path 137 formed in the diaphragm-attached filter plate 132 of the dehydration unit 13. To supply. The pump 2 supplies the water stored in the water receiving tank 6 to the compressed tank 3 through the compressed water supply path 5b.

ポンプ2と脱水ユニット13の圧搾水注入路137とを連通する圧搾水供給路5aには、脱水ユニット13側ならびに圧搾タンク3側からポンプ2側への圧搾水の逆流を防止する逆止バルブ7、ならびに圧搾水の流路を開閉制御する第1バルブV1、第2バルブV2が設けられている。   A check valve 7 for preventing the backflow of the compressed water from the dewatering unit 13 side and the squeezing tank 3 side to the pump 2 side is provided in the compressed water supply path 5 a that connects the pump 2 and the compressed water injection path 137 of the dehydrating unit 13. The 1st valve V1 and the 2nd valve V2 which control opening and closing of the flow path of compressed water are provided.

圧搾タンク3は、ダイヤフラム131に圧搾圧力を与える圧搾水を貯留する。この貯留される圧搾水は、ポンプ2によって受水槽6から圧搾水供給路5aならびに圧搾水供給路5bを介して供給される。圧搾水供給路5bは、第1バルブV1と第2バルブV2との間の圧搾水供給路5aと圧搾タンク3とを連通し、圧搾水の流路を開閉制御する第3バルブV3が設けられている。圧搾タンク3には、1〜2MPa程度、例えば1.5MPa程度の圧力の圧搾空気が供給される。圧搾タンク3に貯留された水はこの圧搾空気により加圧される。圧搾タンク3は、上記2MPa程度の圧力に耐えられる例えば鋼板製円筒漕の第二種圧力容器で構成される。圧搾タンク3には、圧搾タンク3内の圧力を大気に開放制御する第4バルブV4が連結されている。   The squeezing tank 3 stores squeezed water that applies a squeezing pressure to the diaphragm 131. The stored compressed water is supplied by the pump 2 from the water receiving tank 6 through the compressed water supply path 5a and the compressed water supply path 5b. The compressed water supply path 5b is provided with a third valve V3 that communicates the compressed water supply path 5a between the first valve V1 and the second valve V2 and the compressed tank 3, and controls the opening and closing of the flow path of the compressed water. ing. The compressed tank 3 is supplied with compressed air having a pressure of about 1 to 2 MPa, for example, about 1.5 MPa. The water stored in the compression tank 3 is pressurized by this compressed air. The squeezing tank 3 is composed of, for example, a second type pressure vessel made of a steel plate cylindrical rod capable of withstanding the pressure of about 2 MPa. The pressure tank 3 is connected to a fourth valve V4 that controls the pressure in the pressure tank 3 to open to the atmosphere.

空気圧縮機4は、圧搾タンク3に連結されて圧搾タンク3に高圧の圧搾空気を供給して、圧搾タンク3に貯留された水を圧搾し、ダイヤフラム131を加圧する圧搾水を生成する。空気圧縮機4と圧搾タンク3との間には、圧搾空気の流路を開閉制御する第5バルブV5が設けられている。なお、第1バルブV1〜第5バルブV5は、外部からの開閉指令に基づいて空気や電気的に開閉制御され制御弁で構成される。   The air compressor 4 is connected to the squeezing tank 3 to supply high-pressure squeezed air to the squeezing tank 3, squeezes the water stored in the squeezing tank 3, and generates compressed water that pressurizes the diaphragm 131. Between the air compressor 4 and the compression tank 3, the 5th valve V5 which controls opening and closing of the flow path of compressed air is provided. The first valve V <b> 1 to the fifth valve V <b> 5 are configured by control valves that are controlled to open and close by air or electrically based on an open / close command from the outside.

次に、図3〜図5のフィルタープレス1における脱水工程図を参照して、上記加圧脱水装置における脱水工程を説明する。   Next, with reference to the dehydration process diagrams in the filter press 1 of FIGS.

先ずはじめに実施する閉板工程(図3(a))では、電動シリンダー14を駆動して押圧部材15をフロントフレーム10側に移動させて複数の各脱水ユニット13のろ板130とダイヤフラム付ろ板132を締め付けろ過室134を形成する。   First, in the closing plate step (FIG. 3A) to be performed first, the electric cylinder 14 is driven to move the pressing member 15 to the front frame 10 side, and the filter plate 130 and the diaphragm-attached filter plate of each of the dehydrating units 13. 132 is tightened to form a filtration chamber 134.

次に実施する圧入工程(図3(b))では、原液供給路136を介して脱水しようとするスラリー等の原液をろ過室134に圧入する。ろ過室134に圧入された原液の水分はろ布133を介してろ板130ならびにダイヤフラム付ろ板132側のろ過床135にしみだしてろ液排出路138から外部に排出される。これにより、ろ過室134に圧入された原液はろ過され、原液中の固形成分は脱水ケーキとしてろ過室134に残留する一方、原液の水分はろ液として外部に取り出される。   In the next press-fitting step (FIG. 3B), a stock solution such as slurry to be dehydrated is press-fitted into the filtration chamber 134 through the stock solution supply path 136. Moisture of the stock solution press-fitted into the filtration chamber 134 oozes out through the filter cloth 133 into the filter plate 130 and the filter bed 135 on the diaphragm-attached filter plate 132 side, and is discharged from the filtrate discharge passage 138 to the outside. As a result, the stock solution press-fitted into the filtration chamber 134 is filtered, and the solid components in the stock solution remain in the filtration chamber 134 as a dehydrated cake, while the water in the stock solution is taken out as a filtrate.

続いて実施する圧搾工程(図4(a))では、先ず第1バルブV1を開状態、第2バルブV2を閉状態、第3バルブV3を開状態、第4バルブV4を開状態、第5バルブV5を閉状態に制御した後、ポンプ2を駆動する。これにより、受水槽6に貯留された貯留水を圧搾タンク3に給水して圧搾タンク3に圧搾水を貯留し、貯留後ポンプ2の駆動を停止する。なお、この貯留処理は、この圧搾工程の前に予め実施してもよい。   In the subsequent pressing step (FIG. 4A), first, the first valve V1 is opened, the second valve V2 is closed, the third valve V3 is opened, the fourth valve V4 is opened, After the valve V5 is controlled to be closed, the pump 2 is driven. Thereby, the stored water stored in the water receiving tank 6 is supplied to the squeezing tank 3, the squeezed water is stored in the squeezing tank 3, and the drive of the pump 2 after storage is stopped. In addition, you may implement this storage process previously before this pressing process.

続いて、第2バルブV2を閉状態から開状態、第3バルブV3を開状態から閉状態、第4バルブV4を開状態から閉状態、第5バルブV5を閉状態から開状態に制御した後、ポンプ2を駆動して各脱水ユニット13のダイヤフラム131内に受水槽6に貯留された水を供給して充填する。このとき、ダイヤフラム131に受水槽6に貯留された水を圧入する必要はなく、単に水が供給されて充填される程度の圧力が水に加えられればよい。このため、ポンプ2の駆動能力は、ダイヤフラム131に1MPa以上の圧搾水を圧入する場合に比べて格段に小さいもので構成することが可能である。さらに、ダイヤフラム131への水の供給と同時に、空気圧縮機4を駆動して圧搾タンク3内の空気を加圧して圧搾タンク内の圧力を増圧する。   Subsequently, after controlling the second valve V2 from the closed state to the open state, the third valve V3 from the open state to the closed state, the fourth valve V4 from the open state to the closed state, and the fifth valve V5 from the closed state to the open state. The pump 2 is driven to supply and fill the water stored in the water receiving tank 6 into the diaphragm 131 of each dehydration unit 13. At this time, it is not necessary to press-fit the water stored in the water receiving tank 6 into the diaphragm 131, and it is only necessary to apply pressure to the water so that water is supplied and filled. For this reason, the drive capability of the pump 2 can be configured to be much smaller than that when the compressed water of 1 MPa or more is pressed into the diaphragm 131. Furthermore, simultaneously with the supply of water to the diaphragm 131, the air compressor 4 is driven to pressurize the air in the squeezing tank 3 to increase the pressure in the squeezing tank.

続いて、ポンプ2の駆動を停止し、第1バルブV1を開状態から閉状態、第3バルブV3を閉状態から開状態に制御した後、圧搾タンク3に貯留されて引き続き駆動されている空気圧縮機4により生成されている圧搾空気により圧搾されている圧搾水でダイヤフラム131内に充填された水に圧力を加える。このとき、圧搾水の圧力は、1〜2MPaの間の例えば1.5MPa程度に設定される。したがって、圧搾タンク3内の高圧の圧搾水でダイヤフラム131が加圧される。これにより、加圧されたダイヤフラム131は膨張してろ過室134の容積を狭め、圧入工程後にろ過室134に残留している脱水ケーキはさらに圧搾脱水されて、脱水ケーキの固形分濃度が高められ含水率の極めて低い脱水ケーキが生成される。このようにして、脱水ケーキの水分が限りなく少なくなった後、空気圧縮機4の駆動を停止し、第2バルブV2を開状態から閉状態、第3バルブV3を開状態から閉状態、第4バルブV4を閉状態から開状態、第5バルブV5を開状態から閉状態に制御した後、圧搾タンク3内の圧力を大気に開放して、圧搾工程を終了する。   Subsequently, the drive of the pump 2 is stopped, the first valve V1 is controlled from the open state to the closed state, and the third valve V3 is controlled from the closed state to the open state, and then stored in the squeezing tank 3 and continuously driven. Pressure is applied to the water filled in the diaphragm 131 with the compressed water compressed by the compressed air generated by the compressor 4. At this time, the pressure of the compressed water is set to, for example, about 1.5 MPa between 1 and 2 MPa. Therefore, the diaphragm 131 is pressurized with high-pressure compressed water in the compression tank 3. As a result, the pressurized diaphragm 131 expands to reduce the volume of the filtration chamber 134, and the dehydrated cake remaining in the filtration chamber 134 after the press-fitting step is further squeezed and dehydrated, increasing the solid content concentration of the dehydrated cake. A dehydrated cake with a very low moisture content is produced. In this way, after the moisture of the dewatered cake has become extremely small, the driving of the air compressor 4 is stopped, the second valve V2 is closed from the open state, the third valve V3 is closed from the open state, After controlling the 4 valve V4 from the closed state to the open state and the fifth valve V5 from the open state to the closed state, the pressure in the squeezing tank 3 is released to the atmosphere, and the squeezing process is completed.

次に実施する開板工程(図4(b))では、電動シリンダー14を駆動して、押圧部材15をリアフレーム11側に移動させすべての脱水ユニット13の締め付けを解除する。これにより、すべての脱水ユニット13のろ板130とダイヤフラム付ろ板132とを開く。   In the next plate opening process (FIG. 4B), the electric cylinder 14 is driven, the pressing member 15 is moved to the rear frame 11 side, and the tightening of all the dehydrating units 13 is released. As a result, the filter plates 130 and the diaphragm-attached filter plates 132 of all the dehydration units 13 are opened.

続いて実施するケーキ剥離工程(図5(a))では、すべての脱水ユニット13のろ板130とダイヤフラム付ろ板132とが所定の距離だけ離間して開くと、脱水ケーキ30を保持していたすべての脱水ユニット13のろ布133は一斉に下方へ走行を始める一方、脱水ケーキはろ布133から剥離される。   In the subsequent cake peeling step (FIG. 5 (a)), when the filter plates 130 of all the dehydration units 13 and the diaphragm-attached filter plates 132 are opened apart by a predetermined distance, the dehydrated cake 30 is held. The filter cloth 133 of all the dewatering units 13 starts to travel downward at the same time, while the dewatered cake is peeled off from the filter cloth 133.

最後に実施されるろ布洗浄工程(図5(b))では、脱水ケーキがろ布133から剥離されると、ろ布133は一斉に上方に走行を始めて再度元の位置に復帰する。その復帰途中において、ろ布洗浄用のポンプ(図示せず)で脱水ユニット13の下方に設けられた洗浄水管31から供給された洗浄水が噴出してろ布133を洗浄し、ろ布133の目詰まりを防止する。これにより、上記一連の脱水工程が完了する。   In the last filter cloth cleaning step (FIG. 5B), when the dehydrated cake is peeled off from the filter cloth 133, the filter cloth 133 starts traveling all at once and returns to the original position again. In the middle of the return, washing water supplied from a washing water pipe 31 provided below the dehydrating unit 13 is jetted by a filter cloth washing pump (not shown) to wash the filter cloth 133, and the filter cloth 133 Prevent clogging. Thereby, the above-described series of dehydration steps is completed.

このように、上記実施形態においては、ダイヤフラム131を膨張させて原液を圧搾脱水する際に、先ずダイヤフラム131に水を供給注入した後、供給注入した水を圧搾空気で加圧するようにしている。このため、ダイヤフラム131に水を供給注入するときには、水に加える圧力はダイヤフラム131に水が供給される程度の圧力でよいので、ダイヤフラム131に水を供給するポンプ2は長時間高圧の圧力を確保できる駆動能力を必要としない。したがって、ポンプによりダイヤフラムに圧搾水を供給する従来技術に比べてポンプ2の容量を格段に小さくすることができ、構成を小型化することが可能となる。また、圧搾工程を行っている長時間の間中ポンプ2を駆動し続ける必要はなく、ダイヤフラム131に水が行き渡る短時間だけ駆動すればよいので、ポンプ2の使用電力量を削減することが可能となる。   As described above, in the above embodiment, when the diaphragm 131 is expanded and the stock solution is squeezed and dehydrated, water is first supplied and injected into the diaphragm 131, and then the supplied and injected water is pressurized with compressed air. For this reason, when water is supplied and injected into the diaphragm 131, the pressure applied to the water may be a pressure at which water is supplied to the diaphragm 131. Therefore, the pump 2 that supplies water to the diaphragm 131 ensures a high pressure for a long time. It doesn't need the driving ability. Therefore, the capacity | capacitance of the pump 2 can be made remarkably small compared with the prior art which supplies compressed water to a diaphragm with a pump, and it becomes possible to reduce a structure. In addition, it is not necessary to continue to drive the pump 2 for a long time during the squeezing process, and it is only necessary to drive the diaphragm 131 for a short time during which water reaches the diaphragm 131, so that the power consumption of the pump 2 can be reduced. It becomes.

なお、空気圧縮機4を設けることで、従来に比べて空気圧縮機4を運転する際の電力は必要となるが、空気圧縮機4は圧搾タンク3内の空気を加圧するだけでよいので、消費電力が例えば11kW程度のポンプ2を必要となるような仕様の加圧脱水装置では、空気圧縮機4の消費電力は例えば3.7kW程度となり、ポンプ2の消費電力に比べて大幅に少なくて済む。したがって、圧搾処理工程において、ダイヤフラム131に水を供給した後ポンプ2の駆動を停止し、ポンプ2の駆動に代えて空気圧縮機4を駆動することで、圧搾処理中ポンプを駆動していた従来に比べて、消費電力を概ね75%程度削減することが可能となり、低消費電力化が図られ省エネルギーを達成することができる。特に、長い圧搾時間が必要とする大型の加圧脱水装置に対しては削減効果が大きくなる。   In addition, since the electric power at the time of driving | running the air compressor 4 is needed by providing the air compressor 4 compared with the past, since the air compressor 4 only needs to pressurize the air in the compression tank 3, In a pressure dehydration apparatus that requires a pump 2 with a power consumption of, for example, about 11 kW, the power consumption of the air compressor 4 is, for example, about 3.7 kW, which is significantly less than the power consumption of the pump 2. That's it. Therefore, in the compression processing step, after supplying water to the diaphragm 131, the driving of the pump 2 is stopped, and the air compressor 4 is driven instead of driving the pump 2, thereby driving the pump during the pressing process. Compared to the above, the power consumption can be reduced by about 75%, so that the power consumption can be reduced and energy saving can be achieved. In particular, the reduction effect is large for a large pressure dehydrating apparatus that requires a long pressing time.

また、ダイヤフラム131を直接圧搾空気で加圧する場合に比べて、ダイヤフラム131内は水で満たされているので、高圧の圧搾空気により危険性は回避される。さらに、圧搾タンク3に与えられる圧搾空気の圧力は5MPa以下に設定されるので、5MPa以上の圧搾空気に関して定められた高圧ガス保安法の法的規制を受けないため、加圧脱水装置全体の設備(仕様)を簡便にすることができる。   Moreover, since the inside of the diaphragm 131 is filled with water compared with the case where the diaphragm 131 is directly pressurized with compressed air, danger is avoided by the high-pressure compressed air. Furthermore, since the pressure of the compressed air given to the compressed tank 3 is set to 5 MPa or less, it is not subject to the legal regulations of the High Pressure Gas Safety Law established for compressed air of 5 MPa or more. (Specification) can be simplified.

また、ポンプ2は上述したように大容量を必要としないので、ろ布133を洗浄する洗浄水を供給するろ布洗浄用ポンプよりも小型な構成となり、ろ布洗浄用ポンプと兼用することが可能となる。これにより、装置を小型化するかことができることに加えて、設備費用を削減することが可能となる。   Further, since the pump 2 does not require a large capacity as described above, the pump 2 has a smaller configuration than the filter cloth cleaning pump that supplies cleaning water for cleaning the filter cloth 133, and can also be used as a filter cloth cleaning pump. It becomes possible. Thereby, in addition to being able to reduce the size of the apparatus, it is possible to reduce equipment costs.

本実施例はろ布走行式のフィルタープレスについて説明しているが、ろ布固定式のフィルタープレスにも適用可能である。   The present embodiment describes a filter press of a filter cloth traveling type, but it can also be applied to a filter press of a filter cloth fixed type.

1…フィルタープレス
2…ポンプ
3…圧搾タンク
4…空気圧縮機
5a,5b…圧搾水供給路
6…受水槽
7…逆止バルブ
10…フロントフレーム
11…リアフレーム
12…ガイドレール
13…脱水ユニット
14…電動シリンダー
15…押圧部材
30…脱水ケーキ
31…洗浄水管
130…ろ板
131…ダイヤフラム
132…ダイヤフラム付ろ板
133…ろ布
134…ろ過室
135…ろ過床
136…原液供給路
137…圧搾水注入路
138…ろ液排出路
V1…第1バルブ
V2…第2バルブ
V3…第3バルブ
V4…第4バルブ
V5…第5バルブ
DESCRIPTION OF SYMBOLS 1 ... Filter press 2 ... Pump 3 ... Pressure tank 4 ... Air compressor 5a, 5b ... Pressurized water supply path 6 ... Water receiving tank 7 ... Check valve 10 ... Front frame 11 ... Rear frame 12 ... Guide rail 13 ... Dehydration unit 14 ... Electric cylinder 15 ... Pressing member 30 ... Dehydrated cake 31 ... Washing water tube 130 ... Filter plate 131 ... Diaphragm 132 ... Diaphragm filter plate 133 ... Filter cloth 134 ... Filtration chamber 135 ... Filtration bed 136 ... Undiluted solution supply path 137 ... Pressure water injection Path 138 ... Filtrate discharge path V1 ... First valve V2 ... Second valve V3 ... Third valve V4 ... Fourth valve V5 ... Fifth valve

Claims (5)

複数並列したろ板間に形成されたろ過室内にろ過しようとする原液を圧入して脱水した後、前記ろ過室の一方側に設けられたダイヤフラムに圧搾圧力を与えて前記ダイヤフラムを膨張させ前記ろ過室に残留する脱水ケーキを圧搾脱水するフィルタープレスを備えた加圧脱水装置において、
前記ダイヤフラムに液体を供給するポンプと、
前記ポンプにより前記ダイヤフラムに供給された液体を圧力気体により加圧して、前記ダイヤフラムに圧搾圧力を与える圧搾圧力供給手段と
を有することを特徴とする加圧脱水装置。
After the stock solution to be filtered is pressed into a filtration chamber formed between a plurality of parallel filter plates and dehydrated, the diaphragm is expanded by applying a squeezing pressure to a diaphragm provided on one side of the filtration chamber. In a pressure dewatering device equipped with a filter press for squeezing and dewatering the dewatered cake remaining in the chamber,
A pump for supplying liquid to the diaphragm;
A pressure dehydrating apparatus comprising: a pressure supply means for applying pressure to the diaphragm by pressurizing the liquid supplied to the diaphragm by the pump with a pressure gas.
前記圧搾圧力供給手段は、
前記ダイヤフラムに供給されると同等の液体を貯留する圧搾タンクと、
圧力気体により前記圧搾タンク内の気体の圧力を高めて貯留された液体を加圧する気体圧縮機と、
前記圧搾タンクと前記ダイヤフラムとを選択的に連通制御し、前記圧搾タンク内の液体を加圧することで前記ダイヤフラムに供給された液体を選択的に加圧制御する制御バルブと
を有することを特徴とする請求項1に記載の加圧脱水装置。
The pressing pressure supply means is
A squeeze tank that stores liquid equivalent to that supplied to the diaphragm;
A gas compressor that pressurizes the stored liquid by increasing the pressure of the gas in the squeezing tank with pressure gas; and
A control valve that selectively controls the communication between the squeezing tank and the diaphragm and selectively pressurizes the liquid supplied to the diaphragm by pressurizing the liquid in the squeezing tank. The pressure dehydration apparatus according to claim 1.
前記圧搾タンクは、前記ポンプにより前記ダイヤフラムに供給される液体を貯留する受水槽から前記ポンプにより液体が供給されて貯留される
ことを特徴とする請求項2に記載の加圧脱水装置。
The pressure dehydration apparatus according to claim 2, wherein the squeezing tank is supplied with the liquid from the water receiving tank storing the liquid supplied to the diaphragm by the pump and stored.
前記液体は水であり、前記圧力気体は空気である
ことを特徴とする請求項1〜3のいずれか1項に記載の加圧脱水装置。
The pressure dehydration apparatus according to any one of claims 1 to 3, wherein the liquid is water and the pressure gas is air.
複数並列したろ板間に形成されたろ過室内にろ過しようとする原液を圧入して脱水した後、前記ろ過室の一方側に設けられたダイヤフラムに圧搾圧力を与えて前記ダイヤフラムを膨張させ前記ろ過室に残留する脱水ケーキを圧搾脱水する加圧脱水方法において、
前記ダイヤフラムに液体を供給した後、前記ダイヤフラムに供給された液体を圧力気体により加圧して、圧力気体により加圧された圧力液体により前記ダイヤフラムに圧搾圧力を与える
ことを特徴とする加圧脱水方法。
After the stock solution to be filtered is pressed into a filtration chamber formed between a plurality of parallel filter plates and dehydrated, the diaphragm is expanded by applying a squeezing pressure to a diaphragm provided on one side of the filtration chamber. In the pressure dehydration method of pressing and dewatering the dewatered cake remaining in the chamber,
A pressure dehydration method comprising: supplying a liquid to the diaphragm, pressurizing the liquid supplied to the diaphragm with a pressurized gas, and applying a pressing pressure to the diaphragm with the pressurized liquid pressurized with the pressurized gas .
JP2009253045A 2009-11-04 2009-11-04 Pressure dehydration apparatus and pressure dehydration method Active JP5327000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253045A JP5327000B2 (en) 2009-11-04 2009-11-04 Pressure dehydration apparatus and pressure dehydration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253045A JP5327000B2 (en) 2009-11-04 2009-11-04 Pressure dehydration apparatus and pressure dehydration method

Publications (2)

Publication Number Publication Date
JP2011098262A true JP2011098262A (en) 2011-05-19
JP5327000B2 JP5327000B2 (en) 2013-10-30

Family

ID=44189895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253045A Active JP5327000B2 (en) 2009-11-04 2009-11-04 Pressure dehydration apparatus and pressure dehydration method

Country Status (1)

Country Link
JP (1) JP5327000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007156A1 (en) * 2011-07-12 2013-01-17 江西稀有稀土金属钨业集团有限公司 Solid-liquid separation apparatus and method
JP2014033653A (en) * 2012-08-09 2014-02-24 Honda Motor Co Ltd Production method of saccharification solution
JP2014138913A (en) * 2013-01-21 2014-07-31 Tsukishima Kikai Co Ltd Pressure dehydration apparatus and pressure dehydration method
CN114560613A (en) * 2022-03-21 2022-05-31 太原市润民环保节能有限公司 Plate frame mud pressing system and method for stabilizing water content of mud cakes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230216063A1 (en) 2020-03-23 2023-07-06 N.E. Chemcat Corporation Electrode catalyst production system and production method
JPWO2021193664A1 (en) 2020-03-23 2021-09-30

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393476A (en) * 1977-01-27 1978-08-16 Senhoku Kankiyou Seibi Shisets Squeeze dehydration method in filter press
JPS58193706A (en) * 1982-05-06 1983-11-11 Kubota Ltd Method for charging sludge into pressure dehydrator
JPS596911A (en) * 1982-07-02 1984-01-14 Kubota Ltd Method for controlling operation of press dehydrator
JPS6182815A (en) * 1984-09-27 1986-04-26 Ishigaki Kiko Kk Method for expressing cake in filter press
JPS62121612A (en) * 1985-11-20 1987-06-02 Tsukishima Kikai Co Ltd Operating method and apparatus of single type filter press
JPS6241049B2 (en) * 1980-04-30 1987-09-01 Tsukishima Kikai Co
JPH01203008A (en) * 1988-02-10 1989-08-15 Tsukishima Kikai Co Ltd Treatment process and device for sludge or the like

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393476A (en) * 1977-01-27 1978-08-16 Senhoku Kankiyou Seibi Shisets Squeeze dehydration method in filter press
JPS6241049B2 (en) * 1980-04-30 1987-09-01 Tsukishima Kikai Co
JPS58193706A (en) * 1982-05-06 1983-11-11 Kubota Ltd Method for charging sludge into pressure dehydrator
JPS596911A (en) * 1982-07-02 1984-01-14 Kubota Ltd Method for controlling operation of press dehydrator
JPS6182815A (en) * 1984-09-27 1986-04-26 Ishigaki Kiko Kk Method for expressing cake in filter press
JPS62121612A (en) * 1985-11-20 1987-06-02 Tsukishima Kikai Co Ltd Operating method and apparatus of single type filter press
JPH01203008A (en) * 1988-02-10 1989-08-15 Tsukishima Kikai Co Ltd Treatment process and device for sludge or the like

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007156A1 (en) * 2011-07-12 2013-01-17 江西稀有稀土金属钨业集团有限公司 Solid-liquid separation apparatus and method
JP2014033653A (en) * 2012-08-09 2014-02-24 Honda Motor Co Ltd Production method of saccharification solution
US9328365B2 (en) 2012-08-09 2016-05-03 Honda Motor Co., Ltd. Process for producing saccharified solution
JP2014138913A (en) * 2013-01-21 2014-07-31 Tsukishima Kikai Co Ltd Pressure dehydration apparatus and pressure dehydration method
CN114560613A (en) * 2022-03-21 2022-05-31 太原市润民环保节能有限公司 Plate frame mud pressing system and method for stabilizing water content of mud cakes

Also Published As

Publication number Publication date
JP5327000B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5327000B2 (en) Pressure dehydration apparatus and pressure dehydration method
JP4911369B2 (en) Filter press with built-in large capacity diaphragm
CN107998707B (en) Electromagnetic force filter pressing dewatering device for sewage and sludge
CN205095490U (en) Big unfamiliar self -discharging formula pressure filter
CN107382009A (en) Super-pressure sludge high-drying degree dewatering
CN102432150A (en) Deep sludge dehydrator
CN105561645B (en) A kind of dentation formula pressurize filter-pressing method
CN107013526B (en) Filter press hydraulic control circuit
CN111288031B (en) Alternating hydraulic pressure generating device and filter press
JP2006289149A (en) Apparatus and method for dehydration of slurry
CN108529848B (en) Split type filter-pressing sludge dewatering method
CN102500147B (en) Variable-chamber-containing box filter plate of box filter press
JP5755666B2 (en) Pressure dehydration apparatus and pressure dehydration method
CN104260399A (en) Squeezing device in cloth grass squeezing machine
JP7022280B2 (en) How to operate the filter press
CN203417507U (en) High-pressure deep sludge dewatering machine with high efficiency and low consumption
CN208236820U (en) A kind of electric energy dewaterer energy-saving hydraulic device
DE102005029985B4 (en) String filter press
JP2003175303A (en) Filter press apparatus and sludge dehydration method
CN107324630A (en) Super-pressure sludge high-drying degree dehydration device
JP2002292210A (en) Filter press type dehydrating system and its controlling method
JPS6115711A (en) Water draining method of diaphragm in filter press
JP2000153103A (en) Filter press apparatus and sludge dewatering
JP2000176498A (en) Displacement type sludge dehydrating device
JP7390580B2 (en) How to clean filter press cake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5327000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250