JP2011096502A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2011096502A
JP2011096502A JP2009248973A JP2009248973A JP2011096502A JP 2011096502 A JP2011096502 A JP 2011096502A JP 2009248973 A JP2009248973 A JP 2009248973A JP 2009248973 A JP2009248973 A JP 2009248973A JP 2011096502 A JP2011096502 A JP 2011096502A
Authority
JP
Japan
Prior art keywords
bellows
vacuum
vacuum valve
insulating gas
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009248973A
Other languages
Japanese (ja)
Other versions
JP5397160B2 (en
JP2011096502A5 (en
Inventor
Tomokazu Yoshida
友和 吉田
Shinichi Miki
真一 三木
Hiromi Koga
博美 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009248973A priority Critical patent/JP5397160B2/en
Publication of JP2011096502A publication Critical patent/JP2011096502A/en
Publication of JP2011096502A5 publication Critical patent/JP2011096502A5/ja
Application granted granted Critical
Publication of JP5397160B2 publication Critical patent/JP5397160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum valve having a bellows machine open-close lifetime usable not only in high pressure environment but also in high voltage without large-sizing of the vacuum valve. <P>SOLUTION: In the vacuum valve mounted on a vacuum breaker and a vacuum open-close equipment assembled in a tank filled with an insulating gas, internal pressure type bellows are doubled, a cylindrical shock absorber having both deformation property and cushion property represented by a sponge is sealed in between those bellows, the inner diameter of the shock absorber is made a mountain diameter or less of an insulation side bellows, the outer diameter of the shock absorber is made a valley diameter or more of a vacuum side bellows, the end plate is fixed and adhered to a flange side of a vacuum container movable side in an insulating gas side bellows, and the space between the bellows is made an airtight space by its end plate being joined with the movable side flange. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、この発明は、電気回路を開閉する真空遮断器の消弧室を構成する真空バルブに関し、特に絶縁性ガスを充填した容器内に配置される真空バルブに関するものである。   The present invention relates to a vacuum valve constituting an arc extinguishing chamber of a vacuum circuit breaker that opens and closes an electric circuit, and more particularly to a vacuum valve disposed in a container filled with an insulating gas.

従来の真空バルブの構成を図1に示す。真空バルブ100は、真空気密した容器内に電流を開閉する電極5、6が電極棒2、7に固着されており、容器内部の真空気密を保ちつつ可動側電極6とこれを支持する電極棒7を電極5、6が接離する方向にスライドできるように伸縮可能なベローズ22が設けられている。このベローズ22は、真空バルブ内にコンパクトに収容できるように一般的に内径側の圧力が外径側の圧力よりも高い内圧形ベローズを使用している(例えば特許文献1参照)。   The configuration of a conventional vacuum valve is shown in FIG. In the vacuum valve 100, electrodes 5 and 6 for opening and closing a current are fixed to the electrode rods 2 and 7 in a vacuum-tight container, and the movable electrode 6 and the electrode rod for supporting the electrode are supported while maintaining the vacuum-tightness inside the container. A bellows 22 that can be expanded and contracted is provided so that the electrode 7 can be slid in the direction in which the electrodes 5 and 6 come in contact with and away from each other. The bellows 22 uses an internal pressure type bellows in which the pressure on the inner diameter side is generally higher than the pressure on the outer diameter side so that the bellows 22 can be accommodated compactly in the vacuum valve (see, for example, Patent Document 1).

特開昭60−205926号公報(第3図)JP-A-60-205926 (Fig. 3)

真空遮断器の高電圧化において、真空バルブ100を収納した接地タンク(図示せず)内にSF6ガスやドライエアといった絶縁性ガスを充填して、タンク内と真空バルブ100の外沿面の耐電圧性能を確保したガス絶縁方式の真空遮断器がある。この真空遮断器では、充填した絶縁性ガスは大気圧以上であって真空バルブ100のベローズ22内外の圧力差が大きいため、高圧力環境下で使用可能なベローズとするため、ベローズの肉厚増大化、山数増、材質の見直しが必要となるが、内圧形ベローズでは内外圧の圧力差が大きいと座屈現象が発生するため、使用圧力の上限が出てくる。 In order to increase the voltage of the vacuum circuit breaker, a grounding tank (not shown) in which the vacuum valve 100 is housed is filled with an insulating gas such as SF6 gas or dry air, and the withstand voltage performance in the tank and the outer surface of the vacuum valve 100 is There is a gas-insulated vacuum circuit breaker. In this vacuum circuit breaker, since the filled insulating gas is at atmospheric pressure or higher and the pressure difference between the inside and outside of the bellows 22 of the vacuum valve 100 is large, the bellows can be used in a high pressure environment. However, the internal pressure bellows causes a buckling phenomenon if the pressure difference between the internal and external pressures is large, resulting in an upper limit for the working pressure.

このような高圧力環境下での真空バルブの使用に関わる先行技術文献として特許文献1があり、ベローズを二重構造としベローズ間の気密空間を外部圧力より低い圧力にすることでベローズ両側の圧力差を減らし、高圧力環境下でのベローズの機械的開閉寿命を長寿命化する構造が開示されている。この先行技術文献の構造においては、ベローズが並列してあるためベローズ同士の干渉による破損を防ぐために十分な間隔をベローズ間に確保しておく必要があり、ベローズの設置スペースが大きくなり、これに伴い真空バルブが大型化するという問題があった。また、遮断器が高電圧化すると、真空バルブの耐電圧性能や遮断性能といった絶縁性能を確保するために、接点の開極速度の高速化や開閉ストロークの長ギャップ化必要になり、これに耐え得るベローズ強度が必要となるが、絶縁性ガスの高圧力化の目的である高耐電圧化に伴うベローズへのストレス増加に対して有効な方策が見出せていなかった。 There is Patent Document 1 as a prior art document related to the use of a vacuum valve in such a high pressure environment, and the pressure on both sides of the bellows is made by making the bellows a double structure and making the airtight space between the bellows lower than the external pressure. A structure for reducing the difference and extending the mechanical opening / closing life of the bellows under a high pressure environment is disclosed. In the structure of this prior art document, since the bellows are arranged in parallel, it is necessary to secure a sufficient space between the bellows in order to prevent damage due to interference between the bellows, which increases the installation space of the bellows. Along with this, there was a problem that the vacuum valve was enlarged. In addition, when the circuit breaker voltage increases, it is necessary to increase the contact opening speed and increase the opening / closing stroke gap in order to ensure the insulation performance such as the withstand voltage performance and breaking performance of the vacuum valve. Although the required bellows strength is required, an effective measure has not been found for increasing the stress on the bellows due to the increased withstand voltage, which is the purpose of increasing the pressure of the insulating gas.

この発明は、上記の問題点を解決するためになされたもので、高圧力環境下で内圧形ベローズを使用しても内外圧の圧力差に伴う座屈現象を生じにくくしたコンパクトな真空バルブを得るものである。   The present invention has been made to solve the above-described problems, and is a compact vacuum valve that hardly causes a buckling phenomenon due to a pressure difference between the internal and external pressures even when an internal pressure type bellows is used in a high pressure environment. To get.

真空容器内において回路を開閉する固定側及び可動側電極と、前記真空容器の一端を貫通して前記可動側電極を支持し開閉駆動する電極棒と、前記電極棒の真空容器の貫通部に前記電極棒と前記真空容器間を伸縮自在でかつ気密に接続するベローズとを備えた真空バルブにおいて、前記ベローズは同軸上に平行して配置した第1のベローズと第2のベローズの間に気密空間を形成して前記気密空間の圧力を前記第1のベローズ外周の圧力と、前記第のベローズの内径側の圧力との中間値にするとともに、前記密閉空間内に緩衝材を配置した。 A fixed side and a movable side electrode for opening and closing a circuit in the vacuum vessel, an electrode rod that passes through one end of the vacuum vessel to support the movable side electrode and is driven to open and close, and a through-hole of the vacuum vessel in the electrode rod In a vacuum valve comprising an electrode rod and a bellows that is extendable and airtightly connectable between the vacuum vessel, the bellows is an airtight space between a first bellows and a second bellows arranged coaxially in parallel. And the pressure in the airtight space is set to an intermediate value between the pressure on the outer periphery of the first bellows and the pressure on the inner diameter side of the first bellows, and a cushioning material is disposed in the sealed space.

第1のベローズと第2のベローズの間に気密空間を形成して前記気密空間の圧力を前記第1のベローズ外周の圧力と、前記第のベローズの内径側の圧力との中間値にするとともに、前記密閉空間内に緩衝材を配置したので、各ベローズの内外圧の差を小さくすることが可能となり、ベローズの座屈を生じにくくすることができる。このため内圧形ベローズを用いてもコンパクトな真空バルブを得ることができる。 An airtight space is formed between the first bellows and the second bellows, and the pressure in the airtight space is set to an intermediate value between the pressure on the outer periphery of the first bellows and the pressure on the inner diameter side of the first bellows. Since the buffer material is disposed in the sealed space, the difference between the internal and external pressures of the bellows can be reduced, and the bellows can be prevented from buckling. For this reason, a compact vacuum valve can be obtained even if an internal pressure type bellows is used.

この発明の実施の形態1による真空バルブの断面図である。It is sectional drawing of the vacuum valve by Embodiment 1 of this invention. 図1のベローズ部の断面図である。It is sectional drawing of the bellows part of FIG. 図1のベローズ部の断面図である。It is sectional drawing of the bellows part of FIG. この発明の実施の形態2による真空バルブの断面図である。It is sectional drawing of the vacuum valve by Embodiment 2 of this invention. 図4の緩衝材の斜視図である。It is a perspective view of the shock absorbing material of FIG. この発明の実施の形態3を示す真空バルブの断面図である。It is sectional drawing of the vacuum valve which shows Embodiment 3 of this invention. この発明の実施の形態4を示す真空バルブの断面図である。It is sectional drawing of the vacuum valve which shows Embodiment 4 of this invention. この発明の実施の形態5を示す断面図である。It is sectional drawing which shows Embodiment 5 of this invention. この発明の実施の形態6を示す断面図である。It is sectional drawing which shows Embodiment 6 of this invention. 従来の真空バルブの構造を示す図である。It is a figure which shows the structure of the conventional vacuum valve.

実施の形態1.
図1は、実施の形態1による真空バルブ100の構成図である。絶縁容器1と金属容器4を組み合わせて両端部をフランジ3と12で封止して真空容器を形成し、この真空容器内に電流を開閉する電極5、6が電極棒2、7に固着されており、容器内部の真空気密を保ちつつ可動側電極6とこれを支持する電極棒7を電極5、6が接離する方向にスライドできるように伸縮可能に配置している。可動側の電極棒7は真空容器の一端のフランジ12を貫通してスライド可能に配置されており、電極棒7とフランジ12間を真空側ベローズ9と絶縁性ガス側ベローズ10で接続して真空を維持した状態でスライド可能にしている。電極棒7とフランジ12間を真空側ベローズ9と絶縁性ガス側ベローズ10の接続部には、電極5、6の開閉時に発生する金属蒸気から保護するため真空側ベローズ9と絶縁性ガス側ベローズ10の端部外周を覆うベローズ保護シールド8を配置している。ベローズは、外周側に真空側ベローズ9を、その内周側に絶縁性ガス側ベローズ10を同心状に配置し、真空側ベローズ9の一端は前記ベローズ保護シールド8に固着し、他端部はフランジ12に固着している。また絶縁性ガス側ベローズ10の一端は前記ベローズ保護シールド8に固着し、他端部は円盤状の端版13に固着している。絶縁性ガス側ベローズ10と電極棒7の隙間には樹脂製のガイド14を挿入し、電極棒7の動作時の軸振れを防止するようにしている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a vacuum valve 100 according to the first embodiment. The insulating container 1 and the metal container 4 are combined and both ends are sealed with flanges 3 and 12 to form a vacuum container, and the electrodes 5 and 6 for opening and closing the current are fixed to the electrode rods 2 and 7 in the vacuum container. The movable side electrode 6 and the electrode rod 7 that supports the movable side electrode 6 and the electrode rod 7 that supports the movable side electrode 6 are slidably arranged in a direction in which the electrodes 5 and 6 come in contact with and away from each other while keeping the vacuum airtight inside the container. The movable electrode rod 7 is slidably disposed through the flange 12 at one end of the vacuum vessel, and the electrode rod 7 and the flange 12 are connected by a vacuum side bellows 9 and an insulating gas side bellows 10 to form a vacuum. It is possible to slide while maintaining Between the electrode rod 7 and the flange 12, a vacuum side bellows 9 and an insulating gas side bellows are connected to a connection portion between the vacuum side bellows 9 and the insulating gas side bellows 10 to protect from metal vapor generated when the electrodes 5 and 6 are opened and closed. A bellows protective shield 8 covering the outer periphery of the end portion of 10 is disposed. The bellows has a vacuum side bellows 9 on the outer peripheral side and an insulative gas side bellows 10 on the inner peripheral side thereof. One end of the vacuum side bellows 9 is fixed to the bellows protective shield 8 and the other end is The flange 12 is fixed. One end of the insulating gas side bellows 10 is fixed to the bellows protective shield 8, and the other end is fixed to a disc-shaped end plate 13. A resin guide 14 is inserted into the gap between the insulating gas side bellows 10 and the electrode rod 7 so as to prevent shaft runout during operation of the electrode rod 7.

真空側ベローズ9と絶縁性ガス側ベローズ10の間に形成された気密空間15の中に緩衝材11を封入している。この緩衝材11は、円筒形状をしており、その材質としては変形性とクッション性を併せ持った樹脂があり、例えばスポンジのような発砲成形材料を使用しており、その緩衝材11の外径は真空側ベローズ9の谷径以上、その緩衝材11の内径は絶縁性ガス側ベローズ10の山径以下とすることで、真空バルブ組入状態において両ベローズ9、10と接した状態に配置する。
なお、緩衝材11の挿入は、緩衝材11が樹脂性で変形が容易であるため、絶縁性ガス側ベローズ10の端版13側を少し引き出すようにベローズ10を変形させ拡大した隙間に緩衝材11を変形させながら差し込むことで挿入を可能としている。
絶縁性ガス側ベローズ10には、真空容器可動側フランジ12側の端面に端板13が固着されている。図2に示すように、この端板13は、緩衝材11をベローズ9、10間に封入した後、フランジ12と気密に接合する。この接合は端板13に穴を設けネジ30をフランジ12に設けたネジ穴にねじ込むことでネジ30とパッキン31による締結固定を行う他、図3に示すように溶接32によるものでよい。この端板13とベローズ9,10によって密閉される気密空間15は、絶縁性ガスの圧力よりも低い圧力にしている。
A buffer material 11 is enclosed in an airtight space 15 formed between the vacuum side bellows 9 and the insulating gas side bellows 10. The cushioning material 11 has a cylindrical shape, and the material thereof is a resin having both deformability and cushioning properties. For example, a foaming molding material such as sponge is used, and the outer diameter of the cushioning material 11 is Is not less than the valley diameter of the vacuum side bellows 9 and the inner diameter of the buffer material 11 is not more than the peak diameter of the insulating gas side bellows 10, so that it is placed in contact with both bellows 9, 10 when the vacuum valve is assembled. .
The buffer material 11 is inserted into the gap formed by deforming and expanding the bellows 10 so that the end plate 13 side of the insulating gas side bellows 10 is slightly pulled out because the buffer material 11 is resinous and easily deformed. Insertion is possible by inserting 11 while deforming.
An end plate 13 is fixed to the insulating gas side bellows 10 on the end surface of the vacuum vessel movable side flange 12 side. As shown in FIG. 2, the end plate 13 seals the cushioning material 11 between the bellows 9 and 10 and then airtightly joins the flange 12. This joining may be performed by welding 32 as shown in FIG. 3 in addition to fastening by screws 30 and packing 31 by forming holes in the end plate 13 and screwing screws 30 into screw holes provided in the flange 12. The airtight space 15 sealed by the end plate 13 and the bellows 9 and 10 is set to a pressure lower than the pressure of the insulating gas.

この形態の真空バルブにおいては、緩衝材11があることで、真空バルブ開閉動作時にベローズ9、10に発生する振動エネルギーは緩衝材11によって吸収されて消散するため、ベローズ9、10の疲労破壊を抑制することができる。すなわち、高電圧化に伴うベローズ9、10のストレス増加を抑制することができる。ベローズ9、10間に配置した緩衝材11がベローズ9、10相互が接触して損傷することを防止するため、ベローズ9、10相互間を近接させて小型化することができる。緩衝材11以外の部材を高温下での真空ロウ付けによって固着した後に、緩衝材11をベローズ9、10間に挿入し、その後端板13を可動側フランジ12に接合することでベローズ9,10間を気密空間にすることができる。以上により、本実施の形態の真空バルブにおいては、小型化した真空バルブを得ることができる。 In the vacuum valve of this form, since the buffer material 11 is present, vibration energy generated in the bellows 9 and 10 when the vacuum valve is opened and closed is absorbed by the buffer material 11 and dissipated. Can be suppressed. That is, the increase in stress of the bellows 9 and 10 accompanying the increase in voltage can be suppressed. Since the cushioning material 11 disposed between the bellows 9 and 10 prevents the bellows 9 and 10 from coming into contact with each other and being damaged, the bellows 9 and 10 can be brought close to each other for miniaturization. After fixing the members other than the cushioning material 11 by vacuum brazing at a high temperature, the cushioning material 11 is inserted between the bellows 9 and 10, and the rear end plate 13 is joined to the movable flange 12 to thereby form the bellows 9 and 10. The space can be made an airtight space. As described above, in the vacuum valve of the present embodiment, a downsized vacuum valve can be obtained.

実施の形態2.
図4は実施の形態2による真空バルブの構成を示す断面図である。本形態は、実施の形態1において、図3のように緩衝材16の片側にひだ16aを付けた形状とし、そのひだ16aの山径が真空側ベローズ9の谷径以上であり、緩衝材16が両ベローズ9,10と接触していることに加えて、ひだ16aが真空側ベローズ9の谷に入り込んでいる。図5に緩衝材16の外形を斜視図で示す。図4ではひだ16aは外径側にあるが、ひだ16aは緩衝材16の内径側に設けてもよい。ひだ16aを内側に設けた場合、緩衝材16の山径は絶縁性ガス側ベローズ10の谷径以上とする。また、ひだ16aの形状は図4中の円径形の他、のこぎり型であってもよい。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing the configuration of the vacuum valve according to the second embodiment. In this embodiment, a pleat 16a is attached to one side of the cushioning material 16 as shown in FIG. 3 in the first embodiment, and the crest 16a has a peak diameter equal to or larger than the valley diameter of the vacuum side bellows 9. Is in contact with both bellows 9, 10, and the pleat 16 a enters the valley of the vacuum side bellows 9. FIG. 5 is a perspective view showing the outer shape of the cushioning material 16. In FIG. 4, the pleats 16 a are on the outer diameter side, but the pleats 16 a may be provided on the inner diameter side of the cushioning material 16. When the pleat 16a is provided on the inner side, the crest diameter of the cushioning material 16 is equal to or greater than the trough diameter of the insulating gas side bellows 10. Further, the shape of the pleats 16a may be a saw type other than the circular shape in FIG.

この形態の真空バルブにおいては、緩衝材16自体が変形可能な柔軟性を持っており、ベローズ9,10間に封入可能でかつ封入した緩衝材16はベローズ9、19と接する面が増えるため、ベローズ9、10の振動エネルギーの消散作用が多くなり、ベローズ9、10の更なる機械的開閉寿命を向上させる効果がある。 In the vacuum valve of this form, the cushioning material 16 itself has a deformable flexibility. Since the cushioning material 16 that can be enclosed between the bellows 9 and 10 has more surfaces in contact with the bellows 9 and 19, The dissipating action of the vibration energy of the bellows 9 and 10 is increased, and the mechanical opening / closing life of the bellows 9 and 10 is further improved.

実施の形態3.
図6は実施の形態3による真空バルブの構成図である。本形態は、真空側ベローズ17の谷の頂上位置と絶縁ガス側ベローズ18の山の底位置を合わせている。
Embodiment 3 FIG.
FIG. 6 is a block diagram of a vacuum valve according to the third embodiment. In this embodiment, the top position of the valley of the vacuum side bellows 17 and the bottom position of the peak of the insulating gas side bellows 18 are matched.

この形態の真空バルブにおいては、ベローズ間の緩衝材11を封入する空間において、最も狭い箇所が真空側ベローズ17の谷の底位置と絶縁ガス側ベローズ18の山の頂上位置で形成されるため、緩衝材11は両ベローズ17、18の端面で押し付けられる状態になるため、緩衝材11とベローズ17、18との接触状態が安定するので、ベローズの振動エネルギー消散作用を安定して得ることができる。加えて、緩衝材を押し入れて封入することが容易になり組立作業性が良くなる。 In the vacuum valve of this form, the narrowest part is formed at the bottom position of the valley of the vacuum side bellows 17 and the top position of the peak of the insulating gas side bellows 18 in the space that encloses the buffer material 11 between the bellows. Since the cushioning material 11 is pressed against the end surfaces of the bellows 17 and 18, the contact state between the cushioning material 11 and the bellows 17 and 18 is stable, so that the vibration energy dissipation action of the bellows can be stably obtained. . In addition, the cushioning material can be easily pushed in and sealed, and the assembly workability is improved.

実施の形態4.
図7は実施の形態4による真空バルブの構成図である。本形態は、緩衝材19が両側にひだが付いた形状となっており、その外径側ひだの径は真空側ベローズ17の谷径以上とし、その内径側ひだの径は絶縁性ガス側ベローズ18の山径以下として、緩衝材19が両ベローズ17、18と接触していることに加えて、その緩衝材のひだが真空側ベローズ17の山と絶縁性ガス側ベローズ18の谷に入り込んでいる。
Embodiment 4 FIG.
FIG. 7 is a configuration diagram of a vacuum valve according to the fourth embodiment. In this embodiment, the cushioning material 19 has a pleated shape on both sides, the outer diameter side fold diameter is equal to or larger than the valley diameter of the vacuum side bellows 17, and the inner diameter side fold diameter is the insulating gas side bellows. In addition to being in contact with both bellows 17, 18, the cushioning material 19 enters the ridges of the vacuum bellows 17 and the valleys of the insulating gas side bellows 18. Yes.

この形態の真空バルブにおいては、実施の形態2と同様、緩衝材自体の変形柔軟性でベローズ間に封入可能でかつ封入した緩衝材はベローズと接する面が増えるため、ベローズの振動エネルギーの消散作用が多くなり、ベローズの更なる機械開閉寿命信頼性の向上に効果がある。 In the vacuum valve of this form, as in the second embodiment, the cushioning material itself can be enclosed between the bellows by the deformation flexibility of the cushioning material, and the enclosed cushioning material increases the surface in contact with the bellows. This is effective in further improving the mechanical open / close life reliability of the bellows.

実施の形態5.
図8は実施の形態5による真空バルブの構成図である。本形態は、端板20の外径が絶縁ガス側ベローズ10の山径より小さく、その端板10と可動側フランジ12を円盤状の板材21で接合している。
Embodiment 5 FIG.
FIG. 8 is a configuration diagram of a vacuum valve according to the fifth embodiment. In this embodiment, the outer diameter of the end plate 20 is smaller than the mountain diameter of the insulating gas side bellows 10, and the end plate 10 and the movable side flange 12 are joined by a disk-shaped plate material 21.

この形態の真空バルブにおいては、端板20の外径が緩衝材11の内径より小さいため、緩衝材11を端板20に干渉することなく緩衝材を変形して破損することなく封入することができるので組立作業性が良くなる。 In the vacuum valve of this form, since the outer diameter of the end plate 20 is smaller than the inner diameter of the buffer material 11, the buffer material 11 can be sealed without interfering with the end plate 20 without deforming and damaging the buffer material. As a result, assembly workability is improved.

実施の形態6.
図9は実施の形態6による真空バルブの構成図である。本形態は、伸縮機能のない緩衝材22を真空側ベローズ9と絶縁ガス側ベローズ10の間に挿入したものであり、緩衝材22の長さをベローズ9、10よりも短くしたものである。
この形態の真空バルブにおいては、緩衝材22を伸縮のないものしているため、ベローズ9、10の動作時に谷に緩衝材22が入り込まないため、組立て時の挿入が容易となり組立作業性が良くなる。
Embodiment 6 FIG.
FIG. 9 is a configuration diagram of a vacuum valve according to the sixth embodiment. In this embodiment, a cushioning material 22 having no expansion / contraction function is inserted between the vacuum side bellows 9 and the insulating gas side bellows 10, and the length of the cushioning material 22 is shorter than the bellows 9 and 10.
In the vacuum valve of this embodiment, since the cushioning material 22 is not expanded and contracted, the cushioning material 22 does not enter the valley when the bellows 9 and 10 are operated, so that the insertion at the time of assembly becomes easy and the assembly workability is good. Become.

1 絶縁容器
2 固定側電極棒
3 固定側フランジ
4 金属容器
5 固定側電極棒
6 可動側電極棒
7 可動側電極棒
8 ベローズ保護シールド
9 真空側ベローズ(第1のベローズ)
10 絶縁性ガス側ベローズ(第2のベローズ)
11 緩衝材
12 真空容器可動側フランジ
13 端板
14 ガイド
15 気密空間
16 緩衝材
16a ひだ
17 真空側ベローズ
18 絶縁性ガス側ベローズ
19 緩衝材
20 端版
21 板材
22 緩衝材
30 ネジ
31 パッキン
33 溶接
100 真空バルブ
DESCRIPTION OF SYMBOLS 1 Insulation container 2 Fixed side electrode rod 3 Fixed side flange 4 Metal container 5 Fixed side electrode rod 6 Movable side electrode rod 7 Movable side electrode rod 8 Bellows protection shield 9 Vacuum side bellows (first bellows)
10 Insulating gas side bellows (second bellows)
11 Buffer material 12 Vacuum container movable side flange 13 End plate 14 Guide 15 Airtight space 16 Buffer material 16a Fold 17 Vacuum side bellows 18 Insulating gas side bellows 19 Buffer material 20 End plate 21 Plate material 22 Buffer material 30 Screw 31 Packing 33 Welding 100 Vacuum valve

Claims (1)

真空容器内において回路を開閉する固定側及び可動側電極と、前記真空容器の一端を貫通して前記可動側電極を支持し開閉駆動する電極棒と、前記電極棒の真空容器の貫通部に前記電極棒と前記真空容器間を伸縮自在でかつ気密に接続するベローズとを備えた真空バルブにおいて、前記ベローズは同軸上に平行して配置した第1のベローズと第2のベローズの間に気密空間を形成して前記気密空間の圧力を前記第1のベローズ外周の圧力と、前記第のベローズの内径側の圧力との中間値にするとともに、前記密閉空間内に緩衝材を配置したことを特徴とする真空バルブ。   A fixed side and a movable side electrode for opening and closing a circuit in the vacuum vessel, an electrode rod that passes through one end of the vacuum vessel to support the movable side electrode and is driven to open and close, and a through-hole of the vacuum vessel in the electrode rod In a vacuum valve comprising an electrode rod and a bellows that is extendable and airtightly connected between the vacuum vessel, the bellows is an airtight space between a first bellows and a second bellows arranged coaxially in parallel. The pressure in the airtight space is set to an intermediate value between the pressure on the outer periphery of the first bellows and the pressure on the inner diameter side of the first bellows, and a cushioning material is disposed in the sealed space. A vacuum valve.
JP2009248973A 2009-10-29 2009-10-29 Vacuum valve Active JP5397160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248973A JP5397160B2 (en) 2009-10-29 2009-10-29 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248973A JP5397160B2 (en) 2009-10-29 2009-10-29 Vacuum valve

Publications (3)

Publication Number Publication Date
JP2011096502A true JP2011096502A (en) 2011-05-12
JP2011096502A5 JP2011096502A5 (en) 2012-11-15
JP5397160B2 JP5397160B2 (en) 2014-01-22

Family

ID=44113216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248973A Active JP5397160B2 (en) 2009-10-29 2009-10-29 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5397160B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074775A (en) * 2016-11-15 2018-05-25 上海雷博司电气股份有限公司 A kind of pole and its production method for outdoor pole top switch
KR20190044373A (en) 2017-10-20 2019-04-30 한국전력공사 Vacuum interrupter with buckling and expansion prevention function of bellows

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321359U (en) * 1976-08-02 1978-02-23
JPS53157864U (en) * 1977-05-18 1978-12-11
JPS5432763U (en) * 1977-08-10 1979-03-03
JPS5575932U (en) * 1978-11-21 1980-05-26
JPS55161314A (en) * 1979-06-02 1980-12-15 Meidensha Electric Mfg Co Ltd Vacuum breaker
JPS56127858A (en) * 1980-03-13 1981-10-06 Meidensha Electric Mfg Co Ltd Multilayer type bellows
JPS60205926A (en) * 1984-03-30 1985-10-17 株式会社日立製作所 Vacuum switching device
JPH0612947A (en) * 1992-04-17 1994-01-21 Mitsubishi Electric Corp Closed type switch
JPH07176242A (en) * 1991-12-17 1995-07-14 Mitsubishi Electric Corp Sealed switch
JP2011054504A (en) * 2009-09-04 2011-03-17 Toshiba Corp Vacuum valve and tap switching device for gas insulation load

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321359U (en) * 1976-08-02 1978-02-23
JPS53157864U (en) * 1977-05-18 1978-12-11
JPS5432763U (en) * 1977-08-10 1979-03-03
JPS5575932U (en) * 1978-11-21 1980-05-26
JPS55161314A (en) * 1979-06-02 1980-12-15 Meidensha Electric Mfg Co Ltd Vacuum breaker
JPS56127858A (en) * 1980-03-13 1981-10-06 Meidensha Electric Mfg Co Ltd Multilayer type bellows
JPS60205926A (en) * 1984-03-30 1985-10-17 株式会社日立製作所 Vacuum switching device
JPH07176242A (en) * 1991-12-17 1995-07-14 Mitsubishi Electric Corp Sealed switch
JPH0612947A (en) * 1992-04-17 1994-01-21 Mitsubishi Electric Corp Closed type switch
JP2011054504A (en) * 2009-09-04 2011-03-17 Toshiba Corp Vacuum valve and tap switching device for gas insulation load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108074775A (en) * 2016-11-15 2018-05-25 上海雷博司电气股份有限公司 A kind of pole and its production method for outdoor pole top switch
KR20190044373A (en) 2017-10-20 2019-04-30 한국전력공사 Vacuum interrupter with buckling and expansion prevention function of bellows

Also Published As

Publication number Publication date
JP5397160B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
AU2015375779B2 (en) Vacuum circuit breaker
US7193172B2 (en) Gas-insulated switchgear tank
JP5183831B2 (en) Gas insulated switchgear
JP2007306701A (en) Tank-like vacuum breaker
JP5348318B2 (en) Vacuum valve
JP6462973B1 (en) Gas insulated switchgear
JP5397160B2 (en) Vacuum valve
KR102517402B1 (en) Circuit interrupting device
CN215183822U (en) Arc extinguishing device of circuit breaker
CN201274254Y (en) Bellow component for vacuum circuit breaker
CN105914097B (en) Vacuum interrupter
JP5885429B2 (en) Vacuum valve
JP2011048997A (en) Mold vacuum valve
JP2006049329A (en) Switch gear
WO2011117914A1 (en) Vacuum valve and switchgear equipped with said vacuum valve
US20210057890A1 (en) Gas-insulated switching device
JP2017060244A (en) Gas-insulated switchgear
JP4861549B2 (en) Current introduction terminal and substrate support device
JP2007087845A (en) Vacuum valve
CN112038166B (en) High-voltage insulating ceramic vacuum switch tube
JP2012217252A (en) Pressure discharging device for gas insulation apparatus
US11515110B2 (en) Nozzle for high or medium voltage circuit breaker
JP2012146407A (en) Vacuum valve
NZ732949A (en) Vacuum circuit breaker
JP2010267592A (en) Vacuum interrupter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5397160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250