JP2011096476A - Air-permeable porous electrode, air-permeable separator, fuel cell using them, manufacturing method of them, and vehicle using fuel cell - Google Patents

Air-permeable porous electrode, air-permeable separator, fuel cell using them, manufacturing method of them, and vehicle using fuel cell Download PDF

Info

Publication number
JP2011096476A
JP2011096476A JP2009248565A JP2009248565A JP2011096476A JP 2011096476 A JP2011096476 A JP 2011096476A JP 2009248565 A JP2009248565 A JP 2009248565A JP 2009248565 A JP2009248565 A JP 2009248565A JP 2011096476 A JP2011096476 A JP 2011096476A
Authority
JP
Japan
Prior art keywords
fine particles
porous electrode
metal fine
electrode according
breathable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009248565A
Other languages
Japanese (ja)
Other versions
JP5526385B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009248565A priority Critical patent/JP5526385B2/en
Publication of JP2011096476A publication Critical patent/JP2011096476A/en
Application granted granted Critical
Publication of JP5526385B2 publication Critical patent/JP5526385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-permeable porous electrode, an air-permeable porous spacer, a fuel cell using the air-permeable porous electrode and/or the air-permeable porous spacer, and a vehicle using that fuel cell. <P>SOLUTION: The fuel cell consists of: the air-permeable porous electrode directly coupled with an air-permeable base material surface having a through-hole formed by a process in which, on a porous base material surface having the through-hole to become a carrier, paste containing reactive metal particulates covered by the film formed of a compound to contain a reactive functional group on one end and a thiol group on the other end and a solvent is coated and cured; and the air-permeable porous spacer 13 directly coupled with the air-permeable porous electrode formed by coating and curing electric insulating particulate paste formed by a similar method on the air-permeable porous electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、通気性多孔質電極と通気性セパレータ、およびそれらを用いた燃料電池とそれらの製造方法とそれを用いた乗り物に関するものである。   The present invention relates to a breathable porous electrode, a breathable separator, a fuel cell using them, a manufacturing method thereof, and a vehicle using the same.

特に、本発明において、燃料電池用の通気性多孔質電極として用いる金属には、触媒作用を有するPtやPd,Ro,Ru,V等がある。   In particular, in the present invention, examples of the metal used as a gas-permeable porous electrode for a fuel cell include Pt, Pd, Ro, Ru, and V having catalytic action.

従来、燃料電池用の通気性多孔質電極兼触媒は、触媒効率を向上させたり、使用量を低減するため、担持体の表面に触媒金属微粒子を塗布したり、担持体に触媒金属微粒子を混入する方法が用いられている。
例えば、ナノスケールサイズの触媒金属微粒子を担持体の表面の微小な任意の領域に任意の形状で分散固定する技術、あるいは表面が樹脂からなる基体と、基体上に備わり、不飽和結合部を有するシランモノマーと触媒微粒子とを含む触媒微粒子層とを有し触媒微粒子層が、シランモノマーの不飽和結合部と基体との化学結合により、基体に固定する技術に関する下記の特許文献がある。
Conventionally, breathable porous electrodes and catalysts for fuel cells have been coated with catalyst metal fine particles on the surface of the support or mixed with catalyst metal fine particles in order to improve catalyst efficiency or reduce the amount used. Method is used.
For example, a technology for dispersing and fixing nanoscale-sized catalyst metal fine particles in an arbitrary shape on the surface of the support in an arbitrary shape, or a substrate made of resin on the surface, and provided on the substrate, and having an unsaturated bond portion There are the following patent documents relating to a technique in which a catalyst fine particle layer including a silane monomer and catalyst fine particles is fixed to a substrate by a chemical bond between an unsaturated bond portion of the silane monomer and the substrate.

特開2003−80084号公報JP 2003-80084 A 特開2008−161838号公報JP 2008-161838 A

しかしながら、担持体に触媒金属微粒子を分散表面固定する方法では、露出する触媒の割合が少なくなり利用効率が悪いという課題があった。
また、シランモノマーの脱水縮合を用いる方法では、表面に水酸基を有しない純粋なPt等の貴金属の微粒子を固定できないという課題があった。
However, the method in which the catalytic metal fine particles are dispersed and fixed on the support has a problem that the ratio of the exposed catalyst is reduced and the utilization efficiency is poor.
Further, the method using dehydration condensation of a silane monomer has a problem that fine noble metal particles such as pure Pt having no hydroxyl group on the surface cannot be fixed.

本発明は、前記課題に鑑み、
(1)触媒金属微粒子と、前記触媒金属微粒子の担持体となる貫通孔を有する通気性の基材(例えば、通気性個体高分子電解質等)と、前記基材表面と反応性する官能基と触媒金属微粒子表面と反応するチオール基等の官能基を合わせ持つ物質とを用いて、
担持体となる貫通孔を有する多孔質基材表面に、一端に反応性の感応基、他端にチオール基を含む化合物より形成された被膜で覆われた反応性金属微粒子と溶媒を含むペーストを塗布する工程と硬化する工程とにより作成した貫通孔を有する通気性の基材表面に直接結合した通気性多孔質電極と
(2)同様の方法で作成した電気絶縁性微粒子ペーストを通気性多孔質電極上に塗布硬化して作成した通気性多孔質電極と直接結合した通気性多孔質セパレータを提供する。
In view of the above problems, the present invention
(1) Catalytic metal fine particles, a breathable base material (for example, a breathable solid polymer electrolyte) having a through-hole serving as a support for the catalytic metal fine particles, and a functional group reactive with the surface of the base material Using a substance having a functional group such as a thiol group that reacts with the surface of the catalytic metal fine particles,
A paste containing a reactive metal fine particle and a solvent covered with a film formed of a compound containing a reactive sensitive group at one end and a thiol group at the other end on the surface of a porous substrate having through-holes as a support. A breathable porous electrode directly bonded to a breathable substrate surface having a through-hole created by a coating step and a curing step;
(2) To provide a breathable porous separator directly bonded to a breathable porous electrode prepared by applying and curing an electrically insulating fine particle paste prepared by the same method on a breathable porous electrode.

さらに、
(3)それら通気性多孔質電極および/または通気性多孔質セパレータを用いた燃料電池(図5)を提供する。
さらにまた、その燃料電池を用いた乗り物を提供する。
further,
(3) Provide a fuel cell (FIG. 5) using the air-permeable porous electrode and / or air-permeable porous separator.
Furthermore, a vehicle using the fuel cell is provided.

以上説明したとおり、本発明によれば、通気性多孔質電極と通気性セパレータ、およびそれらを用いた燃料電池を塗布工程と硬化工程を用いて作成できる効果がある。また、それらを用いた燃料電池を低コストで提供できる格別の効果がある。   As described above, according to the present invention, there is an effect that an air permeable porous electrode, an air permeable separator, and a fuel cell using them can be formed using an application process and a curing process. In addition, there is an extraordinary effect that can provide a fuel cell using them at low cost.

図1は、触媒金属微粒子表面に直接担持体の表面と反応性する官能基を有する単分子膜を形成する工程を概念的に説明するために、分子レベルまで拡大した図である。(実施例1)FIG. 1 is an enlarged view up to the molecular level in order to conceptually explain the process of forming a monomolecular film having a functional group reactive with the surface of the support directly on the surface of the catalyst metal fine particles. Example 1

図2(a)は、活性水素を有する通気性個体高分子電解質表面に、前記通気性個体高分子電解質表面と反応性する官能基を有する単分子膜で被覆した触媒金属微粒子のペーストを塗布し硬化する工程を説明するための断面概念図であり、微粒子触媒層を形成した状態である。また、図2(b)は、さらにスぺーサー層を積層した状態を示す断面図である。(実施例3)FIG. 2 (a) shows the application of a catalyst metal fine particle paste coated with a monomolecular film having a functional group reactive with the surface of the breathable solid polymer electrolyte on the surface of the breathable solid polymer electrolyte having active hydrogen. FIG. 3 is a conceptual cross-sectional view for explaining a curing step, in a state where a fine particle catalyst layer is formed. Moreover, FIG.2 (b) is sectional drawing which shows the state which laminated | stacked the spacer layer further. (Example 3)

図3(a)は、表面に活性水素を含む通気性基材(この場合は、通気性個体高分子電解質ナフィオン)の断面図である。 図3(b)は、図2の○A部を分子レベルまで拡大した図であり、通気性個体高分子電解質表面に、前記通気性個体高分子電解質表面と結合した通気性触媒金属微粒子層を形成する工程を概念的に説明するための拡大図である。(実施例3)FIG. 3A is a cross-sectional view of a breathable substrate (in this case, a breathable solid polymer electrolyte Nafion) containing active hydrogen on the surface. FIG. 3 (b) is an enlarged view of the portion ○ A of FIG. 2 to the molecular level, and a breathable catalytic metal fine particle layer bonded to the breathable solid polymer electrolyte surface is formed on the breathable solid polymer electrolyte surface. It is an enlarged view for demonstrating the process to form notionally. (Example 3)

図4は、図2の○B部を分子レベルまで拡大した図であり、通気性個体高分子電解質表面に、通気性個体高分子電解質表面と結合した通気性触媒金属微粒子層を形成する工程と、さらに前記通気性触媒金属微粒子層と結合した通気性セパレータを形成する工程を概念的に説明するための拡大断面図である。(実施例3)FIG. 4 is an enlarged view of the portion B in FIG. 2 to the molecular level, and a step of forming a breathable catalytic metal fine particle layer bonded to the breathable solid polymer electrolyte surface on the breathable solid polymer electrolyte surface; FIG. 5 is an enlarged cross-sectional view for conceptually explaining a step of forming a breathable separator combined with the breathable catalytic metal fine particle layer. (Example 3)

図5は、本発明の燃料電池の構造を概念的に説明するために作成した斜視図である。(実施例3)FIG. 5 is a perspective view created for conceptually explaining the structure of the fuel cell of the present invention. (Example 3)

本発明は、担持体の表面と反応性する官能基と触媒金属微粒子表面と反応する官能基を持つ物質を用いて、
(1)貫通孔を有する通気性多孔質基材表面に、一端に反応性の感応基、他端にチオール基を含む化合物より形成された被膜で覆われた反応性金属微粒子と溶媒を含むペーストを塗布する工程と硬化する工程とにより、通気性多孔質電極を製造提供する。
The present invention uses a substance having a functional group that reacts with the surface of the support and a functional group that reacts with the surface of the catalytic metal fine particles,
(1) A paste containing reactive metal fine particles covered with a film formed from a compound containing a reactive sensitive group at one end and a thiol group at the other end on the surface of a breathable porous substrate having through holes, and a solvent A breathable porous electrode is manufactured and provided by the step of applying and the step of curing.

さらに、同様にして、(2)金属微粒子の代わりに電気絶縁性微粒子を用いて通気性多孔質スぺーサーを製造提供する。   In the same manner, (2) an air-permeable porous spacer is manufactured and provided using electrically insulating fine particles instead of metal fine particles.

このとき、微粒子ペーストはバインダー成分を全く含まず、微粒子は微粒子表面の互いに接触する部分の反応性の被膜を介してのみ結合硬化されるので、通気性は粒子間の空隙で十分確保される。   At this time, the fine particle paste does not contain any binder component, and the fine particles are bonded and cured only through the reactive coatings on the surfaces of the fine particles that are in contact with each other.

さらに、金属として触媒作用を有する貴金属、例えばPtを使用し、前記と同様の技術を用いて、(3)固体高分子電解質両面に通気性多孔質触媒電極と通気性多孔質スぺーサーを重ねて燃料電池単一セルを作成する工程と、このセルを複数層積層して圧着する工程とにより、スタック構造に組み立てられた燃料電池を製造提供する。   Furthermore, using a noble metal having a catalytic action, such as Pt, as the metal, and using the same technique as described above, (3) the breathable porous catalyst electrode and the breathable porous spacer are stacked on both sides of the solid polymer electrolyte. Thus, a fuel cell assembled in a stack structure is manufactured and provided by a step of producing a single fuel cell and a step of laminating and laminating a plurality of layers of the cells.

なお、複数の前記燃料電池セルを重ねて圧着加熱すると、セル表面の前記通気性多孔質スペーサー表面には、互いに反応性の官能基が残っているので、加熱するだけで前記通気性多孔質スペーサーを介して電池セルを接着できる。   When the plurality of fuel cells are stacked and heated by pressure bonding, since the functional groups reactive to each other remain on the surface of the air permeable porous spacer on the cell surface, the air permeable porous spacer can be simply heated. The battery cell can be bonded via

したがって、本発明の燃料電池では、通気性多孔質固体高分子電解質と通気性多孔質触媒電極層と通気性多孔質スペーサーと通気性多孔質触媒電極層がそれぞれ互いに共有結合しているため、耐剥離性が高く、衝撃に強く、信頼性が高い軽量且つコンパクトな燃料電池を提供できる。   Therefore, in the fuel cell of the present invention, the gas-permeable porous solid polymer electrolyte, the gas-permeable porous catalyst electrode layer, the gas-permeable porous spacer and the gas-permeable porous catalyst electrode layer are covalently bonded to each other. It is possible to provide a lightweight and compact fuel cell having high peelability, strong impact resistance, and high reliability.

なお、起電圧を高めるためには、通気性多孔質固体高分子電解質と通気性多孔質触媒電極層と通気性多孔質スペーサーとからなる燃料電池のセル単体(単一セル)を必要層数分スタック構造にして重ねて組み立てれば良い。   In order to increase the electromotive voltage, a single cell of a fuel cell (single cell) composed of a breathable porous solid polymer electrolyte, a breathable porous catalyst electrode layer, and a breathable porous spacer is provided for the required number of layers. A stack structure may be stacked and assembled.

また、このとき、通気性多孔質触媒電極層をナノ金属粒子で作成しておけば、金属微粒子は微粒子表面の互いに接触する部分の反応性の被膜を介してのみ結合硬化されるので、反応性の被膜として単分子膜状の被膜を使用すれば、微粒子間はせいぜい1〜2nmの有機被膜で隔てられるのみであり、電子は、トンネル現象で流れ、反応ガスは触媒金属微粒子表面まで拡散しうるので、通気性の金属電極でありながら、導電性はバルク並みの導電性(バルク金属の70%程度)を確保でき、且つ触媒利用効率の高い通気性多孔質触媒電極層を製造できる。なお、この単分子膜は、耐熱性は300℃程度まであるので、通常の燃料電池として使用する場合は問題はない。   At this time, if the air-permeable porous catalyst electrode layer is made of nano metal particles, the metal fine particles are bonded and cured only through the reactive coatings on the surfaces of the fine particles that are in contact with each other. If a monomolecular film is used as the coating, the fine particles are only separated by an organic film having a thickness of 1 to 2 nm, electrons flow through a tunnel phenomenon, and the reaction gas can diffuse to the surface of the catalytic metal fine particles. Therefore, while being a gas permeable metal electrode, the conductivity can be as high as that of the bulk (about 70% of the bulk metal), and a gas permeable porous catalyst electrode layer with high catalyst utilization efficiency can be produced. Since this monomolecular film has a heat resistance up to about 300 ° C., there is no problem when it is used as a normal fuel cell.

さらに、この製造方法では、スタック構造の燃料電池を印刷と圧着で製造できるため、製造コストを大幅に低減できる作用がある。   Furthermore, this manufacturing method can produce a stack-structured fuel cell by printing and pressure bonding, and thus can greatly reduce the manufacturing cost.

以下、本願発明の実施例を詳細に説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

なお、本発明において、単なるガス透過性の電極としてなら、金属微粒子には、導電性のAu、Ag、Cu、Ni等の貴金属微粒子や、透明導電性の酸化物であるZnO、ITO、FTO、あるいはそれらを含む合金が使用できた。また、触媒作用を有するガス透過性の電極としてなら、Pt、Pd、Ro、Ru、V等の貴金属微粒子、あるいはそれらを含む合金が使用できた。
以下、代表例として触媒作用を有する貴金属微粒子であるPt(白金)微粒子を取り上げて説明するが、この限りではない。
In the present invention, if it is a simple gas permeable electrode, the metal fine particles include conductive noble metal fine particles such as Au, Ag, Cu, Ni, and transparent conductive oxides such as ZnO, ITO, FTO, Alternatively, alloys containing them could be used. In addition, noble metal fine particles such as Pt, Pd, Ro, Ru, V, or alloys containing them could be used as gas permeable electrodes having a catalytic action.
Hereinafter, as a typical example, Pt (platinum) fine particles, which are noble metal fine particles having a catalytic action, will be described. However, the present invention is not limited to this.

まず、100nm程度の大きさの白金微粒子1を用意し、よく乾燥した。(図1(a)) ここで、白金以外には、Pd,Ro,Ru,V等、あるいはそれらの合金の触媒作用を有する貴金属微粒子が利用できた。また、粒径は、小さいほど単位重量あたりの表面積が大きくなり触媒効率は高くなるが、好ましくはナノメートル乃至数十ミクロンである。これより大きくなると、単位重量あたりの表面積が小さくなり触媒利用効率が悪くなる。また、これより小さくなると酸素や水素の通気性が悪くなる。   First, platinum fine particles 1 having a size of about 100 nm were prepared and dried well. Here, in addition to platinum, noble metal fine particles having catalytic action of Pd, Ro, Ru, V, etc., or alloys thereof could be used. Further, the smaller the particle size, the larger the surface area per unit weight and the higher the catalyst efficiency, but it is preferably nanometers to several tens of microns. If it is larger than this, the surface area per unit weight will be reduced, and the catalyst utilization efficiency will be worsened. On the other hand, if it is smaller than this, the breathability of oxygen and hydrogen is deteriorated.

次に、化学吸着剤として一端にチオール基、他端に反応性官能基を有する薬剤、例えば、下記化学式(化1)で示す薬剤を1重量%(好ましくい化学吸着剤の濃度は、0.05〜3重量%程度)となるように秤量し、エタノールに溶かして化学吸着液を調製した。   Next, 1 wt% of a chemical adsorbent having a thiol group at one end and a reactive functional group at the other end, for example, a chemical represented by the following chemical formula (Chemical Formula 1) (preferably the concentration of the chemical adsorbent is 0. The chemical adsorption solution was prepared by dissolving in ethanol.

この吸着液に前記100nm程度の白金微粒子1を混入撹拌して普通の空気中(相対湿度45%でも可能であったが、湿度は低いほどよい。)で2時間程度反応させた。このとき、白金微粒子表面は、前記薬剤のチオール基と直接チオレート結合2するので、前記化学吸着剤の−Si(OCH)基を表面にした反応性の単分子膜で被覆される。 The adsorbed liquid was mixed with the fine platinum particles 1 of about 100 nm and stirred, and reacted in ordinary air (relative humidity was 45%, but lower humidity is better) for about 2 hours. At this time, since the surface of the platinum fine particle directly thiolates 2 with the thiol group of the drug, it is covered with a reactive monomolecular film having the -Si (OCH 3 ) group of the chemical adsorbent as a surface.

その後、エタノール中に入れて撹拌洗浄すると、余分の吸着剤を除去でき、下記化学式(化2)で示す単分子膜状の反応性の被膜3が、白金の微粒子を被うように形成できた。(図1(b))   After that, when the mixture was placed in ethanol and washed with stirring, the excess adsorbent could be removed, and the monomolecular film-like reactive coating 3 represented by the following chemical formula (Chemical Formula 2) could be formed to cover the platinum fine particles. . (Fig. 1 (b))

なお、この処理では、被膜は、ナノメートルレベルの膜厚で極めて薄いため、粒子形状を損なうことはなかった。また、この被膜を、そのまま残しておいても酸素や水素の気体はこの被膜分子の間を自由に通過することができ、下地微粒子の触媒作用が損なわれることはなかった。   In this treatment, the coating film was extremely thin with a film thickness of nanometer level, so that the particle shape was not impaired. Further, even if this film is left as it is, oxygen or hydrogen gas can freely pass between the film molecules, and the catalytic action of the base particles was not impaired.

一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し白金粒子表面に残った化学吸着剤が粒子表面で空気中の水分と一部反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成された微粒子が得られた。
この場合は、膜厚が数十nm程度となるため、そのままでは下地微粒子の触媒作用が低下するが、耐熱性を上げるため、通気性多孔質触媒電極の微粒子を融着、あるいは焼結する場合には、分解除去できるので触媒作用に問題はなかった。
On the other hand, if it is taken out into the air without washing, the reactivity is almost unchanged, but the chemical adsorbent remaining on the platinum particle surface partially reacts with moisture in the air on the particle surface due to evaporation of the solvent, and the particle surface. Fine particles on which an ultrathin polymer film made of the chemical adsorbent was formed were obtained.
In this case, since the film thickness is about several tens of nanometers, the catalytic action of the base fine particles is reduced as it is, but in order to increase the heat resistance, the fine particles of the breathable porous catalyst electrode are fused or sintered. In this case, there was no problem in the catalytic action because it could be decomposed and removed.

次に、この微粒子を非水系の有機溶媒(例えば、オクタン)中に分散させて、表面が反応性の白金微粒子ペーストを作成した。なお、ペーストの溶媒として、非水系の有機溶媒以外にも、アルコールや水系溶媒、または水を使用できた。
また、ペースト粘度については、濃度を調整することで容易に制御可能であったので、インクジェットプリンター、スクリーン印刷装置、グラビア印刷装置等、塗布印刷装置に合わせて適宜調整すればよかった。
Next, the fine particles were dispersed in a non-aqueous organic solvent (for example, octane) to prepare a platinum fine particle paste having a reactive surface. In addition to the non-aqueous organic solvent, alcohol, an aqueous solvent, or water could be used as the paste solvent.
Further, the paste viscosity can be easily controlled by adjusting the concentration, and therefore, the paste viscosity may be appropriately adjusted in accordance with a coating printing apparatus such as an ink jet printer, a screen printing apparatus, or a gravure printing apparatus.

さらに、図2(a)で示したように、貫通孔を有する多孔質基材表面、例えば、通気性の固体電解質フィルム11(デュポン社のナフィオン等が利用できる。)の両面に数ミクロンの膜厚で塗布(塗布厚みは、必要とする性能に応じて任意に調整できる。)し、有機溶媒を蒸発させて、空気中の水分と反応させると、白金微粒子の接触部では、脱アルコール反応して化学式(化3)の様に架橋硬化して通気性の触媒微粒子被膜12を形成できた。 Furthermore, as shown in FIG. 2 (a), the surface of the porous substrate having through holes, for example, a breathable solid electrolyte film 11 (Nafion R manufactured by DuPont, etc.) can be several microns on both sides. When coating is performed with a film thickness (the coating thickness can be arbitrarily adjusted according to the required performance), the organic solvent is evaporated and reacted with moisture in the air. Then, as shown in the chemical formula (Chemical Formula 3), it was cross-linked and cured to form a gas-permeable catalyst fine particle film 12.

このとき、図3(a)に示したように、固体電解質フィルム21の表面(図2(a)の11)にもスルホン酸基由来の水酸基22が多数含まれているので、脱アルコール反応して、化学式(化4)の様な結合23が生成され、通気性の固体電解質フィルム21(例えばナフィオン等)の通気性を損なわずに、白金(触媒金属)微粒子24が共有結合23を介して硬化し、固体電解質フィルム21表面に結合固定され、触媒微粒子層25を形成できた。(図3(b))
At this time, as shown in FIG. 3 (a), since the surface of the solid electrolyte film 21 (11 in FIG. 2 (a)) also contains a large number of hydroxyl groups 22 derived from sulfonic acid groups, a dealcoholization reaction occurs. Thus, a bond 23 of the chemical formula (Chemical Formula 4) is generated, and the platinum (catalyst metal) fine particles 24 are bonded via the covalent bond 23 without impairing the air permeability of the air-permeable solid electrolyte film 21 (for example, Nafion). It was cured and bonded and fixed to the surface of the solid electrolyte film 21 to form the catalyst fine particle layer 25 . (Fig. 3 (b))

また白金微粒子24表面の非接触部の単分子膜は、空気中の水分と脱アルコール反応して、化学式(化5)の様に親水性の水酸基に変化した。   In addition, the monomolecular film on the surface of the platinum fine particle 24 in a non-contact portion was subjected to a dealcoholization reaction with moisture in the air, and changed to a hydrophilic hydroxyl group as represented by the chemical formula (Formula 5).

なお、この場合、白金微粒子24は、1ナノメートル程度の被膜で被われているだけなので、粒子間隙が損なわれることもなく通気ルート26が確保でき、反応でできた水蒸気も、微粒子間隙を自由に通過することがでた。
また、ここで、貫通孔27の大きさは、微粒子の大きさより小さい方が好ましいが、この限りではない。
In this case, since the platinum fine particles 24 are only covered with a coating of about 1 nanometer, the air gap 26 can be secured without damaging the particle gaps, and the water vapor generated by the reaction can freely pass through the fine particle gaps. Was able to pass through.
Here, the size of the through hole 27 is preferably smaller than the size of the fine particles, but is not limited thereto.

さらに、ここでは、フィルム表面と直接反応する系を用いたが、前記反応性基と直接あるいは間接に反応する他の官能基を含む被膜で、あらかじめフィルム表面を被っておいても、前記他の反応性を有する微粒子表面の被膜とフィルム表面を直接あるいは多官応の架橋剤を介して架橋反応させて、フィルム表面に微粒子を結合固定させ、通気性の触媒微粒層の耐剥離性をさらに向上できた。   Furthermore, although the system which reacts directly with the film surface is used here, even if the film surface is covered in advance with a coating containing another functional group that reacts directly or indirectly with the reactive group, the other The film coating on the surface of the reactive fine particle and the film surface are subjected to a crosslinking reaction directly or via a multi-functional cross-linking agent to bond and fix the fine particles to the film surface, further improving the peel resistance of the air-permeable catalyst fine particle layer. did it.

さらにまた、この通気性触媒微粒子層形成後、もう一度、一端にフッ化炭素基を含み他端にメトキシシリルキを含む物質、例えば、化学式(化6)で示したような物質を含む反応液を通気性触媒微粒子層の表面に塗布し反応させると、表面近傍の微粒子の表面にのみ撥水性の単分子膜を形成でき、固体電解質フィルムに近い側、すなわち、固体電解質フィルムに近い側の触媒微粒子の表面は、化学式(化5)のように水酸基が多数あるので親水性のままで、固体電解質フィルムから遠い外側の触媒微粒子のみを撥水性に加工でき、触媒微粒子膜内の反応で発生した水分の逆流を防止できた。   Furthermore, after the formation of the air-permeable catalyst fine particle layer, once again, a reaction solution containing a substance containing a fluorocarbon group at one end and methoxysilyloxy at the other end, for example, a substance represented by the chemical formula (Formula 6) When applied to the surface of the air-permeable catalyst fine particle layer and reacted, a water-repellent monomolecular film can be formed only on the surface of fine particles near the surface, and the catalyst fine particles on the side close to the solid electrolyte film, that is, on the side close to the solid electrolyte film Since the surface of the catalyst has many hydroxyl groups as shown in the chemical formula (Chemical Formula 5), it remains hydrophilic, and only the outer catalyst particles far from the solid electrolyte film can be processed to be water-repellent, and the water generated by the reaction in the catalyst particle film It was possible to prevent backflow.

次に、前述と同様の方法で作成したスペーサーとなる数十ミクロンレベルの大きさの反応性を有する電気絶縁性シリカ微粒子28(好ましい微粒子の大きさは、数百ナノメートル乃至数百ミクロンである。また、この場合は、シリカ表面は、チオール基とは反応しないので、前述のチオール基の代わりに、シリカ表面の水酸基と反応する官能基、例えば、トリメトキシシリル基やクロロシリル基の様な反応性基で置換し、他端をエポキシ基やアミノ基のような反応性基に置換した薬剤(例えば、化学式(化7や8)で表される薬剤が使用できた。)を用いて被覆した絶縁性微粒子のペーストを作成し、塗布して通気性で且つ絶縁性のスペーサー層を両面に形成すると、多孔質のスペーサー層((図2(b)の13と図4の29)を形成できた。   Next, electrically insulating silica fine particles 28 having a reactivity on the order of several tens of microns serving as spacers prepared by the same method as described above (preferably the fine particles have a size of several hundreds of nanometers to several hundreds of microns. In this case, since the silica surface does not react with the thiol group, a functional group that reacts with a hydroxyl group on the silica surface, such as a trimethoxysilyl group or a chlorosilyl group, instead of the thiol group described above. The other end was replaced with a reactive group such as an epoxy group or an amino group (for example, a chemical represented by the chemical formula (Chemical Formula 7 or 8) could be used). A porous spacer layer (13 in FIG. 2 (b) and 29 in FIG. 4) can be formed by creating a paste of insulating fine particles and applying it to form a breathable and insulating spacer layer on both sides. The

なお、末端がエポキシ基の単分子膜で被覆した場合には、トリアゾール等の多感能架橋剤を用いて、効率よく微粒子間を架橋硬化できた。
また、微粒子の材質は、電気絶縁性で且つ表面が親水性で有れば、無機物でも良いし有機物でも良かった。
さらに、このスぺーサー層は、後工程でのスタック構造に組み立て容易性と、通気量を多くするためには、両面塗布した方がよいが、必要に応じて片面でも良い。
When the terminal was coated with a monomolecular film having an epoxy group, the fine particles could be efficiently crosslinked and cured using a multi-sensitive crosslinking agent such as triazole.
The material of the fine particles may be either an inorganic material or an organic material as long as it is electrically insulating and has a hydrophilic surface.
Furthermore, this spacer layer is preferably applied on both sides in order to increase the ease of assembly into the stack structure in the subsequent process and increase the air flow rate, but it may be applied on one side as required.

さらにまた、この場合も、前述と同様に通気ルート26’を確保できた。(図4)   In this case, the ventilation route 26 'can be secured in the same manner as described above. (Fig. 4)

最後に、図5に示したように、プラス、マイナスのリード線31,32を引き出した単一セル33を必要数積み重ね、スタック構造に組合せて加熱圧着し、空気吹き込み口34と水素ガス(ダイレクトメタノール型の燃料電池の場合はメタノール)吹き込み口35、さらに反応した水取出口36の層端面を残して他の層端面を封止すると、軽量小型の積層型燃料電池37を印刷で製造できた。 Finally, as shown in FIG. 5, the required number of single cells 33 from which positive and negative lead wires 31 and 32 are drawn are stacked, combined in a stack structure, and heat-pressed, and the air inlet 34 and hydrogen gas (direct In the case of a methanol-type fuel cell, methanol) When the other layer end surfaces were sealed while leaving the layer end surface of the blow-in port 35 and the reacted water intake port 36, a lightweight and small stacked fuel cell 37 could be produced by printing. .

なお、このとき、それぞれの微粒子膜表面には、接触すると互いに脱水縮合反応する化学式(化4)、あるいは化学式(化4)類似のシラノール基が残存している。したがって、圧着加熱するだけで接触点で脱アルコール反応が生じ、単一セル間を接着積層できた。また、この様な接着層は、互いに共有結合を介して、結合しているので、反応ガスを端面から圧入しても単一セル間およびそれぞれの層間で簡単に剥がれることは無かった。   At this time, silanol groups similar to the chemical formula (Chemical Formula 4) or similar to the chemical formula (Chemical Formula 4) remain on the surface of each fine particle film. Therefore, the dealcoholization reaction occurred at the contact point only by pressure heating, and single cells could be bonded and laminated. In addition, since such adhesive layers are bonded to each other through a covalent bond, they were not easily peeled between single cells and between the respective layers even when a reaction gas was injected from the end face.

また、ここで、触媒金属微粒子やスペーサーの粒子の形状は、大きさが異なる微粒子を混合して用いていても良い、この場合、微粒子密度を向上でき通気速度を低減できる効果がある。
反対に、あらかじめ塗布微粒子ペーストに発泡剤を混入させておき、硬化時に発泡させて、前記微粒子より大きな空隙を含んだ状態で微粒子を結合固定させると、通気抵抗を低減でき流速を稼ぐことが可能となる。
Here, the shape of the catalyst metal fine particles and the spacer particles may be mixed with fine particles having different sizes. In this case, there is an effect that the fine particle density can be improved and the aeration speed can be reduced.
On the other hand, if a foaming agent is mixed in the coated fine particle paste in advance and foamed at the time of curing, and the fine particles are bonded and fixed in a state including voids larger than the fine particles, the airflow resistance can be reduced and the flow rate can be increased. It becomes.

さらに、微粒子として、同様の方法であらかじめ小さな金属微粒子で被われた大きな金属微粒子を作成しておき、それを用いても、空隙をより大きくでき、通気抵抗を低減でき流速を稼ぐことが可能となる。特に、触媒金属層形成の場合、材質が異なる大きな微粒子の表面に固定された触媒金属微粒子を用いている。例えば、大きな粒子に低コストなシリカ等の無機微粒子を用い、小さな微粒子に白金等の微粒子を用いると、触媒使用料を低減できる効果がある。
ここで、大きな微粒子が500〜1ミクロンであり、小さな金属微粒子の大きさが、前記大きな微粒子の1/5〜1/100である方が好ましい。
Furthermore, as a fine particle, a large metal fine particle previously covered with a small metal fine particle is prepared in the same manner, and even if it is used, it is possible to increase the gap, reduce the airflow resistance, and increase the flow velocity. Become. In particular, when forming a catalytic metal layer, catalytic metal fine particles fixed on the surface of large fine particles of different materials are used. For example, using inorganic fine particles such as low-cost silica for large particles and using fine particles such as platinum for small particles has an effect of reducing the catalyst usage fee.
Here, it is preferable that the large fine particles are 500 to 1 micron and the size of the small metal fine particles is 1/5 to 1/100 of the large fine particles.

さらにまた、反応性の触媒金属微粒子の表面に、一端に反応性の感応基を含み他端にチオール基を含む化合物の膜を形成する際、一端に反応性の感応基を含み他端にチオール基を含む化合物と、一端にフッ化炭素基を含み他端にチオール基を含む化合物を任意の比率で混合して形成しておくと、反応性で且つ適度に撥水性を有する被膜で被われた微粒子を作成でき、生成される水の離水性を向上できた。   Furthermore, when a film of a compound containing a reactive sensitive group at one end and a thiol group at the other end is formed on the surface of the reactive catalytic metal fine particle, a reactive sensitive group at one end and a thiol at the other end If a compound containing a group and a compound containing a fluorocarbon group at one end and a thiol group at the other end are mixed at an arbitrary ratio, the film is covered with a reactive and moderately water-repellent coating. It was possible to create fine particles and to improve the water separation of the generated water.

さらにまた、金属微粒子を単なる電極としてもう1層追加して用いる場合には、導電性のAu、Ag、Cu、Niや、透明導電性のZnO、ITO、FTOの微粒子を触媒金属表面に塗布して利用できるが、燃料電池の場合には、触媒作用を有するPt、Pd、Ro、Ru、V、あるいはそれらを含む合金そのものを用いるほうが、電極と兼用できて都合がよい。
この場合、通気性の電極の導電率は、用いる導電性の微粒子のバルク導電率に依存するが、良好に作成すれば、バルク導電率の70%程度を確保できた。
Furthermore, when another layer of metal fine particles is used as a simple electrode, conductive Au, Ag, Cu, Ni or transparent conductive ZnO, ITO, FTO fine particles are applied to the catalyst metal surface. However, in the case of a fuel cell, it is more convenient to use Pt, Pd, Ro, Ru, V having a catalytic action, or an alloy containing them, because it can also be used as an electrode.
In this case, the conductivity of the air-permeable electrode depends on the bulk conductivity of the conductive fine particles to be used, but about 70% of the bulk conductivity can be secured if it is made well.

なお、使用薬剤については、(化1)のチオール基を含む化合物の代わりに、下記一般化学式(9)で表される化学物質が使用できた。
(化9)
(AO)3Si−(CH2−T
In addition, about the chemical | medical agent used, instead of the compound containing the thiol group of (Chemical Formula 1), the chemical substance represented by the following general chemical formula (9) could be used.
(Chemical 9)
(AO) 3 Si- (CH 2 ) n -T

具体的には、下記化学式(11)〜(18)ので表される化合物が使用可能であった。
(11)HN−(CH2−T
(12)HOOC−(CH2−T
(13)EP−(CH2−T
(14)(AO)3Si−(CH2−T
(15)HS−(CH2−T
(16)HO−(C)−T
(17)HN−(C)−T
(18)HS−(C)−T
ここで、(11)〜(18)の化合物において、
Tは、SH基を含めて、トリアジンチオール(下記化学式19)基、トリアゾールチオール(下記化学式20)基等、SH基を含む官能基を表す。
また、nは0〜16の整数であり、Aはアルキル基であり、EPは、下記化学式(21)または(22)を表す。
Specifically, compounds represented by the following chemical formulas (11) to (18) could be used.
(11) H 2 N- (CH 2) n -T
(12) HOOC- (CH 2) n -T
(13) EP- (CH 2 ) n -T
(14) (AO) 3 Si- (CH 2) n -T
(15) HS- (CH 2) n -T
(16) HO- (C 6 H 4) -T
(17) H 2 N- (C 6 H 4) -T
(18) HS- (C 6 H 4) -T
Here, in the compounds of (11) to (18),
T represents a functional group containing an SH group such as a triazine thiol (following chemical formula 19) group or a triazole thiol (following chemical formula 20) group including an SH group.
N is an integer of 0 to 16, A is an alkyl group, and EP represents the following chemical formula (21) or (22).

また、上記実施例においては、フッ化炭素系化学吸着剤としてCF3(CF27(CH22SiSi(OCH)3を用いたが、上記のもの以外にも、下記(31)〜(42)に示した物質が利用できた。
(31) CF3CH2O(CH2)15Si(OCH)3
(32) CF3(CH2)Si(CH3)2(CH2)15Si(OCH)3
(33) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OCH)3
(34) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OCH)3
(35) CF3COO(CH2)15Si(OCH)3
(36) CF3(CF2)5(CH2)2Si(OCH)3
(37) CF3CH2O(CH2)15Si(OC)3
(38) CF3(CH2)Si(CH3)2(CH2)15Si(OC)3
(39) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OC)3
(40) CF3(CF2)(CH2)2Si(CH3)2(CH2)9Si(OC)3
(41) CF3COO(CH2)15Si(OC)3
(42) CF3(CF2)5(CH2)2Si(OC)3
In the above embodiment uses a CF 3 (CF 2) 7 ( CH 2) 2 SiSi (OCH 3) 3 as a fluorocarbon chemical adsorbent, besides those mentioned above, the following (31) The substances shown in (42) were available.
(31) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(32) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(33) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(34) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(35) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(36) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(37) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(38) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(39) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(40) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(41) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(42) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

さらに、エポキシ基やアミノ基を含む(化7)や(化6)の代わりに、下記一般化学式(51〜66)で表される物質が使用できた。
(51) (CHOCH)CH2O(CH2)Si(OCH)3
(52) (CHOCH)CH2O(CH2)11Si(OCH)3
(53) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(54) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(55) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(56) (CH2OCH)CH2O(CH2)Si(OC)3
(57) (CHOCH)CH2O(CH2)11Si(OC)3
(58) (CHCHOCH(CH)CH(CH2)Si(OC)3
(59) (CHCHOCH(CH)CH(CH2)Si(OC)3
(60) (CHCHOCH(CH)CH(CH2)Si(OC)3
(61) H2N (CH2)Si(OCH)3
(62) H2N (CH2)Si(OCH)3
(63) H2N (CH2)Si(OCH)3
(64) H2N (CH2)Si(OC)3
(65) H2N (CH2)Si(OC)3
(66) H2N (CH2)Si(OC)3
Furthermore, instead of (Chemical Formula 7) or (Chemical Formula 6) containing an epoxy group or an amino group, a substance represented by the following general chemical formulas (51 to 66) could be used.
(51) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OCH 3) 3
(52) (CH 2 OCH) CH 2 O (CH 2) 11 Si (OCH 3) 3
(53) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OCH 3) 3
(54) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(55) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(56) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(57) (CH 2 OCH) CH 2 O (CH 2) 11 Si (OC 2 H 5) 3
(58) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(59) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(60) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OC 2 H 5) 3
(61) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(62) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(63) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(64) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(65) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(66) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)基は、前記化学式(化21)で表される官能基を表し、(CHCHOCH(CH)CH基は、前記化学式(化22)で表される官能基を表す。 Here, the (CH 2 OCH) group represents a functional group represented by the chemical formula (Chemical Formula 21), and the (CH 2 CHOCH (CH 2 ) 2 ) CH group is represented by the chemical formula (Chemical Formula 22). Represents a functional group.

さらにまた、触媒金属微粒子およびスペーサーの微粒子の形状は、微細フィラメントやファイバーも利用可能であった。また、スペーサーの材質は、電気絶縁性の粒状のシリカ、アルミナ、セラミックス、あるいはガラス等の無機物、または有機物であることが好ましいが、これらに限定されるものではない。   Further, fine filaments and fibers could be used as the shapes of the catalyst metal fine particles and the spacer fine particles. The material of the spacer is preferably an electrically insulating granular silica, alumina, ceramics, an inorganic material such as glass, or an organic material, but is not limited thereto.

なお、この状態では、耐熱性は300℃程度である。そこで、より高温の耐熱性を必要とする場合には、触媒金属微粒子やスペーサー粒子の溶融温度以下で且つ有機膜が分解する温度以上で加熱すると、前記有機被膜は酸化あるいは分解除去されて有機膜を含まない微粒子膜を形成でき、耐熱性は触媒金属微粒子やスペーサー粒子の溶融温度以下まで向上できた。   In this state, the heat resistance is about 300 ° C. Therefore, when higher temperature heat resistance is required, the organic coating is oxidized or decomposed and removed by heating at a temperature lower than the melting temperature of the catalyst metal fine particles or spacer particles and higher than the temperature at which the organic membrane decomposes. The heat resistance can be improved to below the melting temperature of the catalyst metal fine particles and spacer particles.

また、この燃料電池は、極めて軽量且つコンパクトであるため、長時間通話が可能な携帯電話の電源や、CO負荷を低減、およびエネルギー利用効率の向上が求められる乗り物のガソリンに代わるエネルギー供給装置として組み込めば、最大限の効果を発揮できる。 In addition, since this fuel cell is extremely light and compact, it is an energy supply device that replaces the gasoline of a vehicle that is required to reduce the CO 2 load and improve the energy utilization efficiency of a mobile phone that can be used for a long time. If it is incorporated, the maximum effect can be demonstrated.

上記実施例では、通気性の触媒電極を用いた燃料電池について説明したが、本発明の通気性多孔質電極は、触媒電極に限定されるものではない。通気性を必要とされる多孔質電極としてならどのような分野にも利用可能である。   In the above embodiment, the fuel cell using a gas permeable catalyst electrode has been described. However, the gas permeable porous electrode of the present invention is not limited to the catalyst electrode. It can be used in any field as long as it requires a porous electrode.

また、通気性のスペーサーは、電気絶縁を必要とする通液性あるいは通イオン性のスペーサーとしても利用可能である。   The air-permeable spacer can also be used as a liquid-permeable or ion-permeable spacer that requires electrical insulation.

特に、本発明の燃料電池は、極めて軽量且つコンパクトであるため、電源を必要とする移動用装置、例えば携帯電話や乗り物に利用可能である。   In particular, since the fuel cell of the present invention is extremely light and compact, it can be used for a mobile device requiring a power source, such as a mobile phone or a vehicle.

1 白金微粒子
2 チオレート結合
3 反応性の被膜
11 通気性の固体電解質フィルム
12 白金微粒子
13 多孔質のスぺーサー層
21 固体電解質フィルム
22 水酸基
23 結合
24 白金微粒子
25 触媒微粒子層
26、26’ 通気ルート
27 貫通孔
28 電気絶縁性シリカ微粒子
29 多孔質のスぺーサー層
31 プラスのリード線
32 マイナスのリード線
33 単一セル
34 空気吹き込み口
35 空水素ガス吹き込み口
36 水取出口
37 燃料電池
DESCRIPTION OF SYMBOLS 1 Platinum fine particle 2 Thiolate bond 3 Reactive film 11 Breathable solid electrolyte film 12 Platinum fine particle
13 Porous Spacer Layer 21 Solid Electrolyte Film 22 Hydroxyl 23 Bond 24 Platinum Fine Particle
25 catalyst fine particle layer 26, 26 ′ vent route 27 through hole 28 electrically insulating silica fine particle 29 porous spacer layer 31 positive lead wire 32 negative lead wire 33 single cell 34 air inlet 35 air hydrogen gas inlet Mouth 36 water intake
37 fuel cell

Claims (34)

一端に反応性の感応基、他端にチオール基を含む化合物より形成された被膜で覆われた反応性金属微粒子が前記被膜を介して貫通孔を有する通気性の基材表面に結合固定されていることを特徴とする通気性多孔質電極。 Reactive metal fine particles covered with a coating formed of a compound containing a reactive sensitive group at one end and a thiol group at the other end are bonded and fixed to the surface of a breathable substrate having a through-hole through the coating. A breathable porous electrode characterized by comprising: 反応性金属微粒として、大きさが異なる微粒子を混合して用いていることを特徴とする請求項1に記載の通気性多孔質電極。 The breathable porous electrode according to claim 1, wherein fine particles having different sizes are mixed and used as the reactive metal fine particles. 反応性金属微粒子が、前記微粒子より大きな空隙を含んだ状態で結合固定されていることを特徴とする請求項1に記載の通気性多孔質電極。 The breathable porous electrode according to claim 1, wherein the reactive metal fine particles are bonded and fixed in a state including a void larger than the fine particles. 反応性金属微粒子として、小さな金属微粒子で被われた大きな金属微粒子を用いていることを特徴とする請求項1に記載の通気性多孔質電極。 2. The breathable porous electrode according to claim 1, wherein large metal fine particles covered with small metal fine particles are used as the reactive metal fine particles. 反応性の金属微粒子として、あらかじめ材質が異なる大きな微粒子の表面に固定された金属微粒子を用いていることを特徴とする請求項1に記載の通気性多孔質電極。 2. The breathable porous electrode according to claim 1, wherein metal fine particles fixed in advance on the surface of large fine particles of different materials are used as the reactive metal fine particles. 反応性の金属微粒子の表面が、一端に反応性の感応基を含み他端にチオール基を含む化合物と、一端にフッ化炭素基を含み他端にチオール基を含む化合物の混合被膜で被われていることを特徴とする請求項1〜5のいずれか1項に記載の撥水撥油通気性多孔質電極。 The surface of the reactive fine metal particles is covered with a mixed film of a compound containing a reactive sensitive group at one end and a thiol group at the other end and a compound containing a fluorocarbon group at one end and a thiol group at the other end. The water / oil repellent breathable porous electrode according to claim 1, wherein the porous electrode is water repellent and oil repellent. 前記被膜が、前記化合物の硫黄を介して直接金属微粒子表面に結合形成されていることを特徴とする請求項1〜6のいずれか1項に記載の撥水撥油通気性多孔質電極。 The water / oil / oil repellent porous electrode according to claim 1, wherein the coating is directly bonded to the surface of the metal fine particles via sulfur of the compound. 前記被膜が単分子膜であることを特徴とする請求項1〜7のいずれか1項に記載の撥水撥油通気性多孔質電極。 The water / oil / oil repellent porous electrode according to claim 1, wherein the coating is a monomolecular film. 前記金属微粒子が、導電性のAu、Ag、Cu、Ni、透明導電性のZnO、ITO、FTO、触媒作用を有するPt、Pd、Ro、Ru、V、あるいはそれらを含む合金であることを特徴とする請求項1〜8のいずれか1項に記載の通気性多孔質電極。 The metal fine particles are conductive Au, Ag, Cu, Ni, transparent conductive ZnO, ITO, FTO, catalytic Pt, Pd, Ro, Ru, V, or an alloy containing them. The breathable porous electrode according to any one of claims 1 to 8. 前記金属微粒子の大きさが、ナノメートル乃至数百ミクロンであることを特徴とする請求項1〜9のいずれか1項に記載の通気性多孔質電極。 The breathable porous electrode according to any one of claims 1 to 9, wherein the metal fine particles have a size of nanometers to several hundreds of microns. 貫通孔の大きさが微粒子の大きさより小さなことを特徴とする請求項1、2および4〜10のいずれか1項に記載の通気性多孔質電極。 The breathable porous electrode according to any one of claims 1, 2, and 4 to 10, wherein the size of the through hole is smaller than the size of the fine particles. 貫通孔を有する多孔質基材表面に、一端に反応性の感応基、他端にチオール基を含む化合物より形成された被膜で覆われた反応性金属微粒子と溶媒を含むペーストを塗布する工程と硬化する工程を含むことを特徴とする通気性多孔質電極の製造方法。 Applying a paste containing reactive metal fine particles covered with a film formed of a compound containing a reactive sensitive group at one end and a thiol group at the other end to a porous substrate surface having a through-hole, and a solvent; The manufacturing method of the air permeable porous electrode characterized by including the process to harden | cure. 反応性金属微粒として、大きさが異なる微粒子を混合して用いていることを特徴とする請求項13に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to claim 13, wherein fine particles having different sizes are mixed and used as the reactive metal fine particles. ペーストに発泡剤を混合しておき、硬化時に加熱発泡させることを特徴とする請求項12および13のいずれか1項に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to any one of claims 12 and 13, wherein a foaming agent is mixed in the paste and heated and foamed during curing. 反応性金属微粒子として、あらかじめ小さな金属微粒子で被われた大きな金属微粒子を用いることを特徴とする請求項12〜14のいずれか1項に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to any one of claims 12 to 14, wherein large metal fine particles previously covered with small metal fine particles are used as the reactive metal fine particles. 反応性の金属微粒子として、あらかじめ材質が異なる大きな微粒子の表面に固定された金属微粒子を用いることを特徴とする請求項12〜15のいずれか1項に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to any one of claims 12 to 15, wherein metal fine particles fixed on the surface of large fine particles of different materials in advance are used as the reactive metal fine particles. 反応性の金属微粒子の表面を、一端に反応性の感応基を含み他端にチオール基を含む化合物と、一端にフッ化炭素基を含み他端にチオール基を含む化合物の混合物で被うことを特徴とする請求項12〜16のいずれか1項に記載の撥水撥油通気性多孔質電極の製造方法。 Covering the surface of reactive metal fine particles with a mixture of a compound containing a reactive sensitive group at one end and a thiol group at the other end and a compound containing a fluorocarbon group at one end and a thiol group at the other end The method for producing a water / oil repellent breathable porous electrode according to any one of claims 12 to 16. 前記被膜を、前記化合物の硫黄を介して直接金属微粒子表面に結合形成することを特徴とする請求項12〜17のいずれか1項に記載の撥水撥油通気性多孔質電極の製造方法。 The method for producing a water- and oil-repellent and air-permeable porous electrode according to any one of claims 12 to 17, wherein the coating is directly bonded to the surface of the metal fine particle through sulfur of the compound. チオール基を含む化合物として、下記の化学式(11)〜(18)のいずれかで表される化合物を用いることを特徴とする請求項12〜18のいずれか1項に記載の撥水撥油通気性多孔質電極の製造方法。
(11)HN−(CH2−T
(12)HOOC−(CH2−T
(13)EP−(CH2−T
(14)(AO)3Si−(CH2−T
(15)HS−(CH2−T
(16)HO−(C)−T
(17)HN−(C)−T
(18)HS−(C)−T
なお、化学式(11)〜(18)において、
Tは、SH基、または、トリアジンチオール(下記化学式19)基、トリアゾールチオール(下記化学式20)基を表す。
また、nは0〜16の整数であり、
Aはアルキル基であり、
EPは、下記化学式3または4を表す。

The compound represented by any one of the following chemical formulas (11) to (18) is used as the compound containing a thiol group, The water / oil / oil repellent ventilation according to any one of claims 12 to 18 Of manufacturing porous porous electrode.
(11) H 2 N- (CH 2) n -T
(12) HOOC- (CH 2) n -T
(13) EP- (CH 2 ) n -T
(14) (AO) 3 Si- (CH 2) n -T
(15) HS- (CH 2) n -T
(16) HO- (C 6 H 4) -T
(17) H 2 N- (C 6 H 4) -T
(18) HS- (C 6 H 4) -T
In the chemical formulas (11) to (18),
T represents an SH group, a triazine thiol (following chemical formula 19) group, or a triazole thiol (following chemical formula 20) group.
N is an integer from 0 to 16,
A is an alkyl group,
EP represents the following chemical formula 3 or 4.

前記被膜として単分子膜を用いることを特徴とする請求項12〜19のいずれか1項に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to any one of claims 12 to 19, wherein a monomolecular film is used as the coating. 前記金属微粒子として、導電性のAu、Ag、Cu、Ni、透明導電性のZnO、ITO、FTO、触媒作用を有するPt、Pd、Ro、Ru、V、あるいはそれらを含む合金を用いることを特徴とする請求項12〜20のいずれか1項に記載の通気性多孔質電極の製造方法。 As the metal fine particles, conductive Au, Ag, Cu, Ni, transparent conductive ZnO, ITO, FTO, catalytic Pt, Pd, Ro, Ru, V, or an alloy containing them is used. The method for producing a breathable porous electrode according to any one of claims 12 to 20. 前記金属微粒子として、大きささがナノメートル乃至数百ミクロンのものを用いることを特徴とする請求項12〜121のいずれか1項に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to any one of claims 12 to 121, wherein the metal fine particles have a size of nanometers to several hundreds of microns. ペーストの溶媒として、非水系の有機溶媒、水系溶媒、または水を用いることを特徴とする請求項12〜22のいずれか1項に記載の通気性多孔質電極の製造方法。 The method for producing a breathable porous electrode according to any one of claims 12 to 22, wherein a non-aqueous organic solvent, an aqueous solvent, or water is used as a solvent for the paste. 多孔質基材表面に、前記反応性基と直接あるいは間接に反応する官能基を含む基材を用いることを特徴とする請求項12〜23のいずれか1項に記載の通気性多孔質電極の製造方法。 24. The breathable porous electrode according to any one of claims 12 to 23, wherein a substrate containing a functional group that reacts directly or indirectly with the reactive group is used on the surface of the porous substrate. Production method. 貫通孔を有する多孔質基材表面と微粒子の表面の反応性基とを直接あるいは間接に反応させることを特徴とする請求項12〜24のいずれか1項に記載の通気性多孔質電極の製造方法。 25. The production of a breathable porous electrode according to any one of claims 12 to 24, wherein the surface of the porous substrate having through holes and the reactive group on the surface of the fine particles are reacted directly or indirectly. Method. 大きな微粒子と小さな微粒子の表面に、それぞれの反応性基が互いに異なる被膜を形成しておき、互いに直接あるいは間接に反応させて小さな金属微粒子で被われた大きな金属微粒子を作成することを特徴とする請求項15に記載の通気性多孔質電極の製造方法。 It is characterized by forming large metal particles covered with small metal particles by forming films with different reactive groups on the surfaces of large particles and small particles and reacting them directly or indirectly with each other. The manufacturing method of the air permeable porous electrode of Claim 15. 前記大きな微粒子が500〜1ミクロンであり、小さな金属微粒子の大きさが、前記大きな微粒子の1/5〜1/100であることを特徴とする請求項26に記載の通気性多孔質電極の製造方法。 27. The production of a breathable porous electrode according to claim 26, wherein the large fine particles are 500 to 1 micron, and the size of the small metal fine particles is 1/5 to 1/100 of the large fine particles. Method. 請求項1乃至11において、チオール基の代わりにアルコキシシリルキを用い、金属微粒子の代わりに電気絶縁性微粒子を用いたことを特徴とする通気性多孔質スペーサー。 12. The breathable porous spacer according to claim 1, wherein alkoxysilylki is used in place of the thiol group, and electrically insulating fine particles are used in place of the metal fine particles. 電気絶縁性微粒子がシリカまたはアルミナであることを特徴とする請求項28に記載の通気性多孔質スペーサー。 The breathable porous spacer according to claim 28, wherein the electrically insulating fine particles are silica or alumina. 請求項12乃至28において、チオール基の代わりにアルコキシシリルキを用い、金属微粒子の代わりに電気絶縁性微粒子を用いることを特徴とする通気性多孔質スペーサーの製造方法。 29. The method for producing a breathable porous spacer according to claim 12, wherein alkoxysilylki is used instead of the thiol group, and electrically insulating fine particles are used instead of the metal fine particles. 電気絶縁性微粒子がシリカまたはアルミナであることを特徴とする請求項30に記載の通気性多孔質スペーサーの製造方法。 The method for producing a breathable porous spacer according to claim 30, wherein the electrically insulating fine particles are silica or alumina. 請求項1乃至11の通気性多孔質電極および/または請求項28、29の通気性多孔質スペーサーを用いたことを特徴とする燃料電池。 A fuel cell comprising the air permeable porous electrode according to claim 1 and / or the air permeable porous spacer according to claim 28 or 29. 請求項12乃至27の通気性多孔質電極の製造方法および/または請求項31、32の通気性多孔質スぺーサーの製造方法を用いたことを特徴とする燃料電池の製造方法。 A method for producing a fuel cell, wherein the method for producing a breathable porous electrode according to claims 12 to 27 and / or the method for producing a breathable porous spacer according to claims 31 and 32 is used. 請求項1乃至33を用いて製造した燃料電池を搭載した乗り物。
A vehicle equipped with a fuel cell manufactured by using any one of claims 1 to 33.
JP2009248565A 2009-10-29 2009-10-29 Breathable porous electrode, breathable separator, fuel cell using them, manufacturing method thereof, and vehicle using the same Expired - Fee Related JP5526385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248565A JP5526385B2 (en) 2009-10-29 2009-10-29 Breathable porous electrode, breathable separator, fuel cell using them, manufacturing method thereof, and vehicle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248565A JP5526385B2 (en) 2009-10-29 2009-10-29 Breathable porous electrode, breathable separator, fuel cell using them, manufacturing method thereof, and vehicle using the same

Publications (2)

Publication Number Publication Date
JP2011096476A true JP2011096476A (en) 2011-05-12
JP5526385B2 JP5526385B2 (en) 2014-06-18

Family

ID=44113195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248565A Expired - Fee Related JP5526385B2 (en) 2009-10-29 2009-10-29 Breathable porous electrode, breathable separator, fuel cell using them, manufacturing method thereof, and vehicle using the same

Country Status (1)

Country Link
JP (1) JP5526385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175175A (en) * 2013-03-08 2014-09-22 Univ Of Tokyo Electrode substrate, battery using electrode substrate and method for manufacturing electrode substrate
JP2017168385A (en) * 2016-03-18 2017-09-21 学校法人同志社 Platinum catalyst and manufacturing method thereof, and fuel cell using platinum catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210123578A (en) 2020-04-03 2021-10-14 현대자동차주식회사 electrode for membrane-electrode assembly, method for manufacturing the same, and membrane-electrode assembly using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175175A (en) * 2013-03-08 2014-09-22 Univ Of Tokyo Electrode substrate, battery using electrode substrate and method for manufacturing electrode substrate
JP2017168385A (en) * 2016-03-18 2017-09-21 学校法人同志社 Platinum catalyst and manufacturing method thereof, and fuel cell using platinum catalyst

Also Published As

Publication number Publication date
JP5526385B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP4009593B2 (en) Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell using the same
JP3679104B2 (en) PROTON CONDUCTIVE MEMBRANE, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE SAME
JP4061573B2 (en) Conductive catalyst particle manufacturing method, gas diffusing catalyst electrode manufacturing method, and apparatus used for conductive catalyst particle manufacturing method
JP3992866B2 (en) FUEL CELL ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP3565077B2 (en) Electrode for fuel cell and method for producing the same
CN1708869A (en) Porous electrode, and electrochemical element made using the same
TWI443902B (en) Membrane electrode of fuel cell
JPWO2008114688A1 (en) Electrode binder, electrode, membrane-electrode assembly, and polymer electrolyte fuel cell
CN108140860B (en) Core-shell particles and polymer electrolyte membrane comprising the same
JP5526385B2 (en) Breathable porous electrode, breathable separator, fuel cell using them, manufacturing method thereof, and vehicle using the same
JP2006054176A (en) Electrode for polymer electrolyte fuel cell, manufacturing method of electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5046307B2 (en) Fuel cell electrode using triazole modified polymer and membrane electrode composite including the same
CN1466786A (en) Fuel cell and method for preparation thereof
JP4394906B2 (en) FUEL CELL ELECTRODE, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
US20100075193A1 (en) Proton Conductive Membrane and Method for Producing it
JP2006164574A (en) Water-repellent electrode catalyst layer for solid polymer fuel cell
JP4601282B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
US8808942B2 (en) Adhesive for fuel cell and membrane-electrode assembly produced using the same
JP2003178770A (en) Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
JP2005339961A (en) Proton conductive membrane and fuel cell using it
JP4997438B2 (en) Proton conducting membrane and method for producing the same
TWI234900B (en) Liquid fuel supplying type fuel cell
JP4643132B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
JP2003308855A (en) Solid high polymer electrolyte film, and fuel cell using it
JP5112623B2 (en) Manufacturing method of fuel cell electrode and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5526385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees