JP2011095021A - Electrostatic encoder - Google Patents

Electrostatic encoder Download PDF

Info

Publication number
JP2011095021A
JP2011095021A JP2009247287A JP2009247287A JP2011095021A JP 2011095021 A JP2011095021 A JP 2011095021A JP 2009247287 A JP2009247287 A JP 2009247287A JP 2009247287 A JP2009247287 A JP 2009247287A JP 2011095021 A JP2011095021 A JP 2011095021A
Authority
JP
Japan
Prior art keywords
substrate
fixed
electrode
moving
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009247287A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagawa
敏 梁川
Masakazu Moriyama
正和 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Electronics Industries Co Ltd
Original Assignee
Koyo Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Electronics Industries Co Ltd filed Critical Koyo Electronics Industries Co Ltd
Priority to JP2009247287A priority Critical patent/JP2011095021A/en
Publication of JP2011095021A publication Critical patent/JP2011095021A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make constant the level of a signal subjected to electrostatic induction from a moving body electrode to a stator electrode even if a moving body is subjected to surface wobbling. <P>SOLUTION: An electrostatic encoder induces an electric signal indicating an amount of mechanical relative position displacement from a plurality of electrodes (moving electrodes) provided on a moving substrate 2 to an electrode (fixed electrode) provided on a fixed substrate 1 by static electricity following a change in the relative positions of the fixed substrate 1 and the moving substrate 1 both having electrodes on the mutually opposing surfaces. At least one fixed electrode is disposed at a position opposite to the moving electrode on the moving substrate 2 and at mutually symmetrical positions relative to a prescribed center of the moving substrate in the fixed substrate 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、相対向面に電極を備えた固定基板と移動基板とを備え、これらの相対移動に伴う対向電極間の静電誘導作用により、移動量や移動速度等を検出する静電型エンコーダに関するものである。   The present invention includes an electrostatic encoder that includes a fixed substrate having electrodes on opposite surfaces and a moving substrate, and detects a moving amount, a moving speed, and the like by an electrostatic induction effect between the counter electrodes accompanying the relative movement. It is about.

静電型エンコーダのうち、例えば静電型ロータリエンコーダは、固定基板と回転基板との相対回転によりこれら両基板対向面の電極間における静電誘導作用の変化により回転の機械的変位量を示す電気信号を得ると共に、この電気信号を処理して回転軸の回転量や回転速度等を検出することができるようになっている。   Among electrostatic encoders, for example, an electrostatic rotary encoder is an electrical encoder that exhibits a mechanical displacement of rotation due to a change in electrostatic induction between the electrodes on the opposing surfaces of the fixed substrate and the rotating substrate. In addition to obtaining a signal, the electrical signal can be processed to detect the amount of rotation and the rotation speed of the rotating shaft.

この静電型ロータリエンコーダの従来例を図14ないし図17を参照して説明する。図14(a)は固定基板と回転基板との配置構成を示し、図14(b)は固定基板と回転基板とを側面から見た構成を示す。図15(a)は回転基板の平面構成を示し、図15(b)は固定基板の平面構成を示す。図16は固定基板に対して回転基板が面ぶれした状態を示し、図17は固定基板に対して回転基板が上記と反対方向に面ぶれした状態を示す。   A conventional example of this electrostatic rotary encoder will be described with reference to FIGS. FIG. 14A shows an arrangement configuration of the fixed substrate and the rotating substrate, and FIG. 14B shows a configuration of the fixed substrate and the rotating substrate viewed from the side. FIG. 15A shows the planar configuration of the rotating substrate, and FIG. 15B shows the planar configuration of the fixed substrate. FIG. 16 shows a state in which the rotating substrate is deviated from the fixed substrate, and FIG. 17 shows a state in which the rotating substrate is deviated in the opposite direction to the fixed substrate.

まず、図14(a)(b)および図15(a)(b)を参照して、1は平面視円形の固定基板、2は平面視円形の回転基板である。これら両基板1,2は一定距離を隔てて互いの基板面が相対向している。固定基板1は回転軸3を中心として一定半径の円周上の一部に固定電極4を有する。回転基板2は同じく回転軸3を中心とする同一半径の円周上全周にわたり複数の回転電極5を等間隔に配置している。この固定電極4は回転電極5と容量結合する。これにより、固定基板1に対して回転基板2が回転軸3周りに回転した場合、固定基板1の固定電極4では、回転基板2の回転電極5との間での上記容量結合により起きる静電誘導作用に応じて、回転電極5に印加された電気信号例えばキャリア信号を変調して受信することができる。この変調信号は固定電極4から図示略の回路に入力され、その回路で復調されることで回転基板2の回転検出に用いることができるようになっている。   First, referring to FIGS. 14 (a) and 14 (b) and FIGS. 15 (a) and 15 (b), 1 is a fixed substrate having a circular shape in plan view, and 2 is a rotating substrate having a circular shape in plan view. These two substrates 1 and 2 are opposed to each other with a certain distance therebetween. The fixed substrate 1 has a fixed electrode 4 on a part of a circumference with a constant radius around the rotation axis 3. Similarly, the rotating substrate 2 has a plurality of rotating electrodes 5 arranged at equal intervals over the entire circumference of the same radius centered on the rotating shaft 3. The fixed electrode 4 is capacitively coupled to the rotating electrode 5. As a result, when the rotating substrate 2 rotates around the rotation axis 3 with respect to the fixed substrate 1, the static electrode 4 of the fixed substrate 1 causes electrostatic capacitance caused by the capacitive coupling with the rotating electrode 5 of the rotating substrate 2. In accordance with the inductive action, an electric signal applied to the rotating electrode 5, for example, a carrier signal can be modulated and received. The modulation signal is input to a circuit (not shown) from the fixed electrode 4 and demodulated by the circuit so that it can be used for detecting the rotation of the rotating substrate 2.

特開2005−221472号公報JP 2005-221472 A

上記静電型ロータリエンコーダにおいては、図16で示すように固定基板1に対して回転基板2が回転軸3に対して面ぶれが発生すると、回転基板2の回転電極5が固定基板1の固定電極4に接近する結果、固定基板1の固定電極4と、回転基板2の回転電極5との間の静電誘導作用が大きくなることにより、固定電極4で受信する電気信号のレベルが増大する。これとは反対に図17では回転基板2の回転電極5が固定基板1の固定電極4から離間する結果、固定基板1の固定電極4と、回転基板2の回転電極5との間の静電誘導作用が小さくなることにより、固定電極4に印加された電気信号のレベルが減少する。   In the electrostatic rotary encoder, as shown in FIG. 16, when the rotating substrate 2 is displaced relative to the rotating shaft 3 with respect to the fixed substrate 1, the rotating electrode 5 of the rotating substrate 2 fixes the fixed substrate 1. As a result of approaching the electrode 4, the electrostatic induction action between the fixed electrode 4 of the fixed substrate 1 and the rotating electrode 5 of the rotating substrate 2 is increased, thereby increasing the level of the electric signal received by the fixed electrode 4. . On the other hand, in FIG. 17, as a result of the rotating electrode 5 of the rotating substrate 2 being separated from the fixed electrode 4 of the fixed substrate 1, the static electricity between the fixed electrode 4 of the fixed substrate 1 and the rotating electrode 5 of the rotating substrate 2. As the inductive action is reduced, the level of the electric signal applied to the fixed electrode 4 is reduced.

以上により従来の静電型ロータリエンコーダでは、回転基板2が回転軸3に対して面ぶれすると、固定電極4側での電気信号が大小にレベル変化することにより、検出精度が大きく低下してしまう、という課題がある。しかしながら、回転基板2の面ぶれを簡単には防止することは困難である一方で、面ぶれ防止構造を採用することはコストもかかる、という課題がある。   As described above, in the conventional electrostatic rotary encoder, when the rotating substrate 2 is displaced from the rotating shaft 3, the electric signal on the fixed electrode 4 side changes in level, so that the detection accuracy is greatly reduced. There is a problem. However, while it is difficult to easily prevent the surface of the rotating substrate 2 from being shaken, there is a problem that it is costly to adopt the surface shake preventing structure.

上記課題は、静電型ロータリエンコーダだけでなく、固定基板と対向する基板がリニアに移動する移動基板になっている静電型リニアエンコーダにおいても派生する課題である。   The above problem is derived not only in the electrostatic rotary encoder but also in the electrostatic linear encoder in which the substrate facing the fixed substrate is a moving substrate that moves linearly.

そこで、本発明により解決すべき課題は、静電型エンコーダにおいて、固定基板に対して回転基板等の移動基板が移動の際に面ぶれしても、固定基板の固定電極において静電誘導により生成される電気信号のレベルを一定化可能とし、これによりコストがかかる面ぶれ防止構造を採ることなく高精度な検出動作を可能とすることである。   Therefore, the problem to be solved by the present invention is that, in an electrostatic encoder, even when a moving substrate such as a rotating substrate moves relative to the fixed substrate, it is generated by electrostatic induction at the fixed electrode of the fixed substrate. It is possible to make the level of the electric signal to be constant, thereby enabling a highly accurate detection operation without employing a costly anti-shake structure.

本発明第1による静電型エンコーダは、共に相対向する面に電極を備えた固定基板と移動基板との相対位置変化に伴い、上記移動基板に設けた複数の電極(移動電極)から上記固定基板に設けた電極(固定電極)へ機械的な相対位置変位量を示す電気信号を静電により誘導する静電型エンコーダにおいて、上記固定基板には、上記移動基板上の移動電極に対向する位置でかつ上記移動基板の所定中心に対して互いに対して対称な位置にそれぞれ少なくとも1つの固定電極を配置した、ことを特徴とするものである。   The electrostatic encoder according to the first aspect of the present invention is configured to fix the fixed encoder from a plurality of electrodes (moving electrodes) provided on the moving substrate in accordance with a relative position change between the fixed substrate and the moving substrate both having electrodes on opposite surfaces. In an electrostatic encoder that electrostatically induces an electrical signal indicating a mechanical relative positional displacement amount to an electrode (fixed electrode) provided on a substrate, the fixed substrate has a position facing the moving electrode on the moving substrate. And at least 1 fixed electrode is arrange | positioned in the position symmetrical with respect to each other with respect to the predetermined center of the said moving substrate, It is characterized by the above-mentioned.

本発明第1によれば、移動基板が上記所定中心において面ぶれしても、固定基板上の両固定電極に静電誘導される信号の平均レベルを一定化することができるので、この平均レベルの信号から移動量や移動速度等を検出することができる。これにより、本発明第1ではコストがかかる面ぶれ防止構造を採る必要がなくなるから、そのコストダウンを図れる。   According to the first aspect of the present invention, the average level of the signals that are electrostatically induced by the two fixed electrodes on the fixed substrate can be made constant even if the moving substrate is deviated from the predetermined center. It is possible to detect a movement amount, a movement speed, and the like from the signal. As a result, in the first aspect of the present invention, it is not necessary to adopt a costly surface blur prevention structure, and the cost can be reduced.

本発明第1において、好ましい態様は、固定基板に対して移動基板を軸周りに回転可能な回転基板としたロータリエンコーダ構成とし、上記回転基板上の移動電極を所定半径の円周方向等間隔に複数で配置すると共に、上記固定基板上の上記少なくとも両固定電極を上記回転基板の回転中心から所定半径の円周上において回転対称位置にそれぞれ配置することである。   In the first aspect of the present invention, a preferred embodiment is a rotary encoder configuration in which a moving substrate is rotatable about an axis with respect to a fixed substrate, and the moving electrodes on the rotating substrate are arranged at equal intervals in the circumferential direction with a predetermined radius. A plurality of them are arranged, and the at least both fixed electrodes on the fixed substrate are respectively arranged at rotationally symmetric positions on the circumference of a predetermined radius from the rotation center of the rotating substrate.

本発明第1において、好ましい態様は、固定基板に対して移動基板をリニアに移動可能としたリニアエンコーダ構成とし、移動基板上の上記移動電極を所定中心線に対して線対称位置にリニア方向にそれぞれ複数配置すると共に、固定基板上の上記少なくとも両固定電極を上記移動基板の所定中心線に対して線対称位置にそれぞれ配置することである。   In the first aspect of the present invention, a preferred aspect is a linear encoder configuration in which the moving substrate is linearly movable with respect to the fixed substrate, and the moving electrode on the moving substrate is linearly positioned in a line-symmetric position with respect to a predetermined center line. A plurality of them are arranged, and at least both of the fixed electrodes on the fixed substrate are arranged at positions symmetrical with respect to a predetermined center line of the movable substrate.

本発明第2によるエンコーダは、共に相対向する面に電極を備えた固定基板と移動基板との相対位置変化に伴い、上記移動基板に設けた複数の電極(移動電極)から上記固定基板に設けた電極(固定電極)へ機械的な相対位置変位量を示す電気信号を静電により誘導する静電型エンコーダにおいて、上記移動基板の両側にそれぞれ固定基板を配置すると共に、上記両固定基板には、上記移動基板の移動電極と対向する位置それぞれに少なくとも1つずつ固定電極を配置した、ことを特徴とするものである。   The encoder according to the second aspect of the present invention is provided on the fixed substrate from a plurality of electrodes (moving electrodes) provided on the moving substrate in accordance with a change in relative position between the fixed substrate and the moving substrate both having electrodes on opposite surfaces. In the electrostatic encoder that electrostatically induces an electrical signal indicating a mechanical relative positional displacement amount to a fixed electrode (fixed electrode), a fixed substrate is arranged on both sides of the moving substrate, and both the fixed substrates are At least one fixed electrode is disposed at each position of the moving substrate facing the moving electrode.

上記移動基板上の移動電極には、移動基板表裏両面それぞれに設けた移動電極に限定されず、移動基板の表面のみ、あるいは裏面のみ、あるいは移動基板の内層に少なくとも1つ配置した移動電極も含むことができる。   The moving electrodes on the moving substrate are not limited to the moving electrodes provided on both the front and back surfaces of the moving substrate, but also include at least one moving electrode disposed only on the front surface, only the back surface, or the inner layer of the moving substrate. be able to.

上記移動電極は、移動基板に対して側面視で所定中心から等距離となる対称位置それぞれに設けることが好ましい。   The moving electrode is preferably provided at each symmetrical position that is equidistant from a predetermined center in a side view with respect to the moving substrate.

本発明第2によれば、移動基板が上記所定中心において面ぶれしても、移動基板をその両側から挟む固定基板上の固定電極に静電誘導される信号の加算レベルを同一化することができるので、この加算レベルの信号から移動量や移動速度等を検出することができる。これにより、本発明第2ではコストがかかる面ぶれ防止構造を採る必要がなくなるから、そのコストダウンを図れる。   According to the second aspect of the present invention, even if the moving substrate is deviated at the predetermined center, it is possible to equalize the addition level of the electrostatic induction signal to the fixed electrode on the fixed substrate that sandwiches the moving substrate from both sides thereof. Therefore, it is possible to detect a movement amount, a movement speed, and the like from this addition level signal. As a result, in the second aspect of the present invention, it is not necessary to adopt a costly surface blur prevention structure, and the cost can be reduced.

本発明によれば、移動基板が面ぶれしても、コストがかかる面ぶれ防止構造を採る必要がなくなるから、そのコストダウンを図れる。   According to the present invention, even if the moving substrate is faced, it is not necessary to employ a costly structure for preventing face shaking, so that the cost can be reduced.

図1は本発明の実施の形態にかかる静電型ロータリエンコーダの概念的構成を示す図である。FIG. 1 is a diagram showing a conceptual configuration of an electrostatic rotary encoder according to an embodiment of the present invention. 図2(a)は回転基板の平面構成を示す図、図2(b)は固定基板の平面構成を示す図である。FIG. 2A is a diagram illustrating a planar configuration of the rotating substrate, and FIG. 2B is a diagram illustrating a planar configuration of the fixed substrate. 図3は回転基板が面ぶれしている状態を示す図である。FIG. 3 is a diagram illustrating a state where the rotating substrate is out of plane. 図4は回転基板が図3の面ぶれ方向とは逆の方向に面ぶれしている状態を示す図である。FIG. 4 is a diagram showing a state in which the rotating substrate is deviated in a direction opposite to the direction of deviating in FIG. 図5は本発明の実施の形態2にかかる静電型リニアエンコーダの平面構成を示す図である。FIG. 5 is a diagram showing a planar configuration of the electrostatic linear encoder according to the second embodiment of the present invention. 図6は図5で示す静電型リニアエンコーダの側面構成を示す図である。FIG. 6 is a diagram showing a side configuration of the electrostatic linear encoder shown in FIG. 図7は図5で示す静電型リニアエンコーダにおいてリニア移動体が面ぶれしている状態を示す図である。FIG. 7 is a diagram showing a state in which the linear moving body is moving in the electrostatic linear encoder shown in FIG. 図8は本発明の実施の形態3にかかる静電型ロータリエンコーダの概念的構成を示す図である。FIG. 8 is a diagram showing a conceptual configuration of the electrostatic rotary encoder according to the third embodiment of the present invention. 図9(a)は図8の静電型ロータリエンコーダが備える上側固定基板の平面構成を示す図、図9(b)は図8の静電型ロータリエンコーダが備える回転基板の平面構成を示す図、図9(c)は図8の静電型ロータリエンコーダが備える下側固定基板の平面構成を示す図である。9A is a diagram showing a planar configuration of an upper fixed substrate provided in the electrostatic rotary encoder of FIG. 8, and FIG. 9B is a diagram showing a planar configuration of a rotating substrate provided in the electrostatic rotary encoder of FIG. FIG. 9C is a diagram showing a planar configuration of the lower fixed substrate provided in the electrostatic rotary encoder of FIG. 図10は実施の形態3の回転基板が面ぶれしている状態を示す図である。FIG. 10 is a diagram illustrating a state where the rotating substrate of the third embodiment is out of plane. 図11は実施の形態3の変形例を示す図である。FIG. 11 is a diagram showing a modification of the third embodiment. 図12は本発明の実施の形態4にかかる静電型リニアエンコーダの平面構成を示す図である。FIG. 12 is a diagram showing a planar configuration of the electrostatic linear encoder according to the fourth embodiment of the present invention. 図13は図12で示す静電型リニアエンコーダの側面構成を示す図である。FIG. 13 is a diagram showing a side configuration of the electrostatic linear encoder shown in FIG. 図14(a)は従来の静電型ロータリエンコーダにおいて、固定基板と回転基板との外観の構成を示す図、図14(b)は固定基板と回転基板とを側面から見た構成を示す図である。FIG. 14A is a diagram showing an external configuration of a fixed substrate and a rotating substrate in a conventional electrostatic rotary encoder, and FIG. 14B is a diagram showing a configuration of the fixed substrate and the rotating substrate viewed from the side. It is. 図15(a)は回転基板の平面構成を示す図、図15(b)は固定基板の平面構成を示す図である。FIG. 15A is a diagram illustrating a planar configuration of the rotating substrate, and FIG. 15B is a diagram illustrating a planar configuration of the fixed substrate. 図16は固定基板に対して回転基板が面ぶれした状態を示す図である。FIG. 16 is a diagram illustrating a state in which the rotating substrate is displaced from the fixed substrate. 図17は固定基板に対して回転基板が上記と反対方向に面ぶれした状態を示す図である。FIG. 17 is a view showing a state in which the rotating substrate is displaced in the direction opposite to the above with respect to the fixed substrate.

以下、添付した図面を参照して、本発明の実施の形態に係る静電型エンコーダを説明する。   Hereinafter, an electrostatic encoder according to an embodiment of the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
実施の形態1を図1ないし図4を参照して説明する。実施の形態1の静電型エンコーダはロータリエンコーダであって、平面視円形で非回転固定状態の固定基板1と、平面視円形で回転可能な回転基板2とを備える。固定基板1は基板中心O1が回転軸3と一致しその回転中心O1から一定半径の円周上において、180度で対向する位置すなわち回転中心O1に対して回転対称の位置に電極(固定電極)4a,4bを少なくとも1つずつ配置している。回転基板2は同じく回転中心O2が回転軸3と一致しその回転中心O2から上記半径と同一半径の円周上全周にわたり複数の電極(回転電極)5を等間隔配置している。そして回転基板2は回転軸3と共に回転中心O2回りに回転する。静電型ロータリエンコーダはさらに、両固定電極4a,4bそれぞれの出力信号を平均処理する平均化回路を備える。
(Embodiment 1)
The first embodiment will be described with reference to FIGS. The electrostatic encoder according to the first embodiment is a rotary encoder, and includes a fixed substrate 1 that is circular and is non-rotatably fixed in a plan view, and a rotatable substrate 2 that is rotatable in a circular shape in plan view. The fixed substrate 1 is an electrode (fixed electrode) at a position where the substrate center O1 coincides with the rotation axis 3 and is opposed to the rotation center O1 at a position of 180 degrees on the circumference having a fixed radius, that is, a rotationally symmetric position with respect to the rotation center O1 4a and 4b are arranged at least one by one. Similarly, the rotation substrate 2 has a rotation center O2 coincident with the rotation axis 3, and a plurality of electrodes (rotation electrodes) 5 are arranged at equal intervals from the rotation center O2 to the entire circumference on the circumference having the same radius as the radius. The rotating substrate 2 rotates around the rotation center O2 together with the rotating shaft 3. The electrostatic rotary encoder further includes an averaging circuit that averages the output signals of both the fixed electrodes 4a and 4b.

以上の構成において、図3、図4それぞれで示すように固定基板1に対して回転基板2が回転軸3に対して面ぶれが発生すると、図3では回転基板2の回転電極5が固定基板1の固定電極4bに接近し、固定電極4aからは離間するが、図4では回転基板2の回転電極5が固定基板1の固定電極4bから離間し、固定電極4aに接近する。   3 and 4, when the rotating substrate 2 is displaced relative to the rotating shaft 3 with respect to the fixed substrate 1, the rotating electrode 5 of the rotating substrate 2 is fixed to the fixed substrate in FIG. 3. 4, the rotating electrode 5 of the rotating substrate 2 moves away from the fixed electrode 4 b of the fixed substrate 1 and approaches the fixed electrode 4 a.

その結果、図3では回転電極5と固定電極4bとの間の静電容量はC1、回転電極5と固定電極4aとの間の静電容量はC2(<C1)、図4では回転電極5と固定電極4bとの間の静電容量はC3、回転電極5と固定電極4aとの間の静電容量はC4(>C3)である。これら容量変化に対して、図1のように回転基板2が面ぶれしていないときの固定基板1の固定電極4a,4bと回転基板2の回転電極5との対向する静電容量は共にC0である。   As a result, in FIG. 3, the electrostatic capacity between the rotating electrode 5 and the fixed electrode 4b is C1, the electrostatic capacity between the rotating electrode 5 and the fixed electrode 4a is C2 (<C1), and in FIG. Between the rotating electrode 5 and the fixed electrode 4a is C3 (> C3). With respect to these capacitance changes, the opposing capacitances of the fixed electrodes 4a and 4b of the fixed substrate 1 and the rotating electrode 5 of the rotating substrate 2 when the rotating substrate 2 is not shaken as shown in FIG. It is.

そして、図1での回転電極5と固定電極4aとの距離はd0、回転電極5と固定電極4bとの距離はd0であり、合計距離は2d0である。また、図3での回転電極5と固定電極4aとの距離はd2、回転電極5と固定電極4bとの距離はd1であり、接近と離間する距離が相殺される結果、合計距離は面ぶれしていない距離と同じく、(d1+d2)=2d0である。図4での回転電極5と固定電極4aとの距離はd4、回転電極5と固定電極4bとの距離はd3であり、接近と離間する距離が相殺される結果、合計距離は面ぶれしていない距離と同じく、(d3+d4)=2d0である。   In FIG. 1, the distance between the rotating electrode 5 and the fixed electrode 4a is d0, the distance between the rotating electrode 5 and the fixed electrode 4b is d0, and the total distance is 2d0. In addition, the distance between the rotating electrode 5 and the fixed electrode 4a in FIG. 3 is d2, and the distance between the rotating electrode 5 and the fixed electrode 4b is d1, and the distance between approach and separation is offset, so that the total distance is uneven. (D1 + d2) = 2d0, which is the same as the distance that is not. In FIG. 4, the distance between the rotating electrode 5 and the fixed electrode 4a is d4, and the distance between the rotating electrode 5 and the fixed electrode 4b is d3. As with no distance, (d3 + d4) = 2d0.

したがって、図1のように面ぶれしていない場合や、図3や図4のように面ぶれしている場合も、合計距離は同じであり、したがって、図3での静電容量の平均は(C1+C2)/2=C0、図4での静電容量の平均は(C3+C4)/2=C0となる。すなわち、実施の形態では回転基板2が面ぶれしても、2つの固定電極4a,4bと、これと対向する2つの回転電極5との静電容量は平均すると、同じである。   Therefore, the total distance is the same even when the surface is not shaken as shown in FIG. 1 or when the surface is shaken as shown in FIGS. 3 and 4. Therefore, the average capacitance in FIG. (C1 + C2) / 2 = C0, and the average capacitance in FIG. 4 is (C3 + C4) / 2 = C0. In other words, in the embodiment, even if the rotating substrate 2 is fluctuated, the capacitances of the two fixed electrodes 4a and 4b and the two rotating electrodes 5 facing the fixed electrodes 4a and 4b are the same on average.

これにより、固定基板1の固定電極4a,4bそれぞれと、回転基板2の回転電極5との間の静電誘導作用により、両固定電極4a,4bが受信する電気信号のレベルは平均化回路により平均化すると、図1の場合、図3の場合、図4の場合、いずれも同一のレベルとなる。したがって、この実施の形態では、回転基板2が面ぶれしても、固定基板1の固定電極4a,4bが受信する電気信号のレベルを平均処理して一定化することができる。   Thereby, the level of the electric signal received by both the fixed electrodes 4a and 4b by the electrostatic induction action between the fixed electrodes 4a and 4b of the fixed substrate 1 and the rotating electrode 5 of the rotating substrate 2 is determined by the averaging circuit. When averaged, in the case of FIG. 1, the case of FIG. 3 and the case of FIG. 4 all become the same level. Therefore, in this embodiment, even if the rotating substrate 2 is shaken, the level of the electric signal received by the fixed electrodes 4a and 4b of the fixed substrate 1 can be averaged to be constant.

(実施の形態2)
図5ないし図7を参照して本発明の実施の形態2にかかる静電型エンコーダを説明する。図1ないし図4と対応するないし類似する部分には同一の符号を付している。この実施の形態2のエンコーダは静電型リニアエンコーダである。この静電型リニアエンコーダは、固定基板1と、図上、矢印P,Q方向にリニア移動する移動基板2と、を備える。固定基板1には移動基板2の左右方向中央線3に対して左右対称の位置に固定電極4a,4bを備える。移動基板2は、矢印P,Q方向に帯状構成の基板であり、中央線3に対して左右対称の位置すなわち中央線3から線対称位置であってかつ固定電極4a,4bにそれぞれ対向する位置に、移動電極5a,5bを備える。
(Embodiment 2)
An electrostatic encoder according to a second embodiment of the present invention will be described with reference to FIGS. Parts corresponding or similar to those in FIGS. 1 to 4 are denoted by the same reference numerals. The encoder according to the second embodiment is an electrostatic linear encoder. This electrostatic linear encoder includes a fixed substrate 1 and a moving substrate 2 that linearly moves in the directions of arrows P and Q in the drawing. The fixed substrate 1 is provided with fixed electrodes 4 a and 4 b at symmetrical positions with respect to the horizontal center line 3 of the moving substrate 2. The movable substrate 2 is a substrate having a belt-like configuration in the directions of arrows P and Q, and is a position symmetrical with respect to the center line 3, that is, a position symmetrical with respect to the center line 3 and facing the fixed electrodes 4a and 4b, respectively. In addition, the movable electrodes 5a and 5b are provided.

以上の構成において、移動基板2が面ぶれしていない場合、固定電極4aとリニア移動電極5aとの間の静電容量と、固定電極4bと移動電極5bとの間の静電容量は共にC0である。その合計容量の平均はC0である。   In the above configuration, when the moving substrate 2 is not shaken, the capacitance between the fixed electrode 4a and the linear moving electrode 5a and the capacitance between the fixed electrode 4b and the moving electrode 5b are both C0. It is. The average of the total capacity is C0.

そして、移動基板2が図7で示すように面ぶれした場合、固定電極4aと移動電極5aとの間の静電容量はC2、固定電極4bと移動電極5bとの間の静電容量は共にC1となる。そして、この場合、固定電極4aと移動電極5aとの第1距離と、固定電極4bと移動電極5bとの第2距離との合計が、面ぶれしていない場合での第1、第2距離の合計と同等であるから、その合計容量の平均(C1+C2)/2はC0となり、移動基板2が面ぶれしていない場合の合計容量の平均と同じである。   When the moving substrate 2 is displaced as shown in FIG. 7, the capacitance between the fixed electrode 4a and the moving electrode 5a is C2, and the capacitance between the fixed electrode 4b and the moving electrode 5b is both C1. In this case, the sum of the first distance between the fixed electrode 4a and the movable electrode 5a and the second distance between the fixed electrode 4b and the movable electrode 5b is the first and second distances when the surface is not shaken. Therefore, the average (C1 + C2) / 2 of the total capacity is C0, which is the same as the average of the total capacity when the moving substrate 2 is not shaken.

したがって、この実施の形態2においても、移動基板2が面ぶれしても、固定基板1の固定電極4a,4bに静電誘導される電気信号のレベルは平均処理すると一定化することができる。   Therefore, also in the second embodiment, even if the moving substrate 2 fluctuates, the level of the electrical signal electrostatically induced in the fixed electrodes 4a and 4b of the fixed substrate 1 can be made constant by averaging.

(実施の形態3)
図8ないし図10を参照して本発明の実施の形態3にかかる静電型エンコーダを説明する。この実施の形態3のエンコーダはロータリエンコーダである。図8で示すように、回転基板2を間にして固定基板1a,1bがその両側で配置されている。固定基板1a,1bは回転軸3に対してその基板面が垂直直交し、互いに平行になっていて、非回転状態に固定されている。固定基板1a,1bそれぞれの回転中心O1、O2と回転基板2の回転中心O3は回転軸3上で一致する。回転基板2は回転中心O3周りに回転可能に取り付けられている。
(Embodiment 3)
An electrostatic encoder according to a third embodiment of the present invention will be described with reference to FIGS. The encoder of the third embodiment is a rotary encoder. As shown in FIG. 8, fixed substrates 1 a and 1 b are arranged on both sides of the rotating substrate 2. The fixed substrates 1a and 1b are fixed in a non-rotating state, with their substrate surfaces perpendicular to the rotation axis 3 and parallel to each other. The rotation centers O 1 and O 2 of the fixed substrates 1 a and 1 b and the rotation center O 3 of the rotation substrate 2 coincide on the rotation axis 3. The rotary substrate 2 is attached so as to be rotatable around the rotation center O3.

図8および図9(a)で示すように、固定基板1aには、回転中心O1中心に所定半径における円周方向180度で対向して固定電極4a,4bが、図8および図9(c)で示すように、固定基板1bには、回転中心O2中心に上記半径と同一半径における円周方向180度で対向して固定電極4c,4dが配置されている。また、図8および図9(b)で示すように、回転基板2には固定基板1aに対向する面に回転中心O3から上記半径と同一半径における円周方向に複数の回転電極5aが、固定基板1bに対向する面には回転中心O3から上記半径と同一半径における円周方向に複数の回転電極5bが配置されている。   As shown in FIG. 8 and FIG. 9A, the fixed substrate 1a has fixed electrodes 4a and 4b opposed to the center of the rotation center O1 at a predetermined radius of 180 degrees in the circumferential direction, as shown in FIG. ), Fixed electrodes 4c and 4d are arranged on the fixed substrate 1b so as to face the center of rotation O2 at 180 degrees in the circumferential direction at the same radius as the above radius. Further, as shown in FIGS. 8 and 9B, a plurality of rotating electrodes 5a are fixed to the rotating substrate 2 on the surface facing the fixed substrate 1a from the rotation center O3 in the circumferential direction at the same radius as the radius. A plurality of rotating electrodes 5b are arranged on the surface facing the substrate 1b in the circumferential direction at the same radius as the radius from the rotation center O3.

まず、図8で示すように、回転基板2が面ぶれしていない場合、固定基板1aの固定電極4bと回転基板2の回転電極5aとの対向距離はd0でそれに対応する静電容量はC0であり、固定基板1bの固定電極4dと回転基板2の回転電極5bとの対向距離はd0でそれに対応する静電容量はC0である。そしてこれら静電容量の合計容量は2C0である。また、固定基板1aの固定電極4aと回転基板2の回転電極5aとの対向距離はd0でそれに対応する静電容量C0であり、固定基板1bの固定電極4cと回転基板2の回転電極5bとの対向距離はd0でそれに対応する静電容量はC0であり、これら静電容量の合計容量は2C0である。   First, as shown in FIG. 8, when the rotating substrate 2 is not shaken, the facing distance between the fixed electrode 4b of the fixed substrate 1a and the rotating electrode 5a of the rotating substrate 2 is d0, and the corresponding capacitance is C0. The facing distance between the fixed electrode 4d of the fixed substrate 1b and the rotating electrode 5b of the rotating substrate 2 is d0, and the corresponding capacitance is C0. The total capacitance of these capacitances is 2C0. Further, the opposing distance between the fixed electrode 4a of the fixed substrate 1a and the rotating electrode 5a of the rotating substrate 2 is d0 and the corresponding capacitance C0. The fixed electrode 4c of the fixed substrate 1b and the rotating electrode 5b of the rotating substrate 2 are The opposing distance is d0, the corresponding capacitance is C0, and the total capacitance of these capacitances is 2C0.

なお、上記説明では、固定基板1bの固定電極4dと回転基板2の回転電極5bとの対向距離および固定基板1aの固定電極4aと回転基板2の回転電極5aとの対向距離は、共に、d0として、静電容量は共にC0としたが、これに限らず、上記両対向距離が異なり、これにより静電容量が異なってもよい。   In the above description, the opposing distance between the fixed electrode 4d of the fixed substrate 1b and the rotating electrode 5b of the rotating substrate 2 and the opposing distance between the fixed electrode 4a of the fixed substrate 1a and the rotating electrode 5a of the rotating substrate 2 are both d0. As described above, although both the capacitances are set to C0, the present invention is not limited to this, and the two opposing distances may be different, and thus the capacitances may be different.

そして、図10で示すように、回転基板2が面ぶれした場合、固定基板1aの固定電極4bと回転基板2の回転電極5aとの対向距離が接近し、それら電極4b,5a間の静電容量はC4(>C0)であり、固定基板1bの固定電極4dと回転基板2の回転電極5bとの対向距離が離間し、それら電極4d,5b間の静電容量はC2(<C0)であり、それら静電容量の合計容量は、各対向距離は接近と離間で全体的に相殺される結果、2C0である。固定基板1aの固定電極4aと回転基板2の回転電極5aとの対向静電容量C3と、固定基板1bの固定電極4cと回転基板2の回転電極5bとの対向静電容量C1との合計容量も同様に2C0である。   Then, as shown in FIG. 10, when the rotating substrate 2 is shaken, the opposing distance between the fixed electrode 4b of the fixed substrate 1a and the rotating electrode 5a of the rotating substrate 2 approaches, and the electrostatic capacitance between the electrodes 4b and 5a approaches. The capacitance is C4 (> C0), the facing distance between the fixed electrode 4d of the fixed substrate 1b and the rotating electrode 5b of the rotating substrate 2 is separated, and the capacitance between the electrodes 4d and 5b is C2 (<C0). Yes, the total capacity of these capacitances is 2C0 as a result of each opposing distance being totally offset by approach and separation. The total capacitance of the counter capacitance C3 between the fixed electrode 4a of the fixed substrate 1a and the rotary electrode 5a of the rotary substrate 2, and the counter capacitance C1 of the fixed electrode 4c of the fixed substrate 1b and the rotary electrode 5b of the rotary substrate 2 Is 2C0 as well.

以上のように、静電容量は対向電極の投影面積が同一であれば、対向電極間距離に逆比例して変化するが、固定基板1a,1bの対向距離が一定である。したがって、回転基板2は固定基板1a,1b間に介在するので、該回転基板2がどのように面ぶれして、回転基板2に対して固定基板1a,1bの対向距離が変化しても、回転基板2に上下で対向する固定基板1a,1bとの間の静電容量の合計は一定となるからである。   As described above, if the projected area of the counter electrode is the same, the capacitance changes in inverse proportion to the distance between the counter electrodes, but the counter distance between the fixed substrates 1a and 1b is constant. Therefore, since the rotating substrate 2 is interposed between the fixed substrates 1a and 1b, no matter how the rotating substrate 2 deviates and the opposing distance of the fixed substrates 1a and 1b changes with respect to the rotating substrate 2, This is because the total capacitance between the rotating substrate 2 and the fixed substrates 1a and 1b facing the upper and lower sides is constant.

以上から、実施の形態3では回転基板2が面ぶれしても固定基板1a,1bの固定電極に静電誘導する信号を加算回路7で加算した合計値は一定となるから、この合計値の信号から移動量や移動速度等を検出することができる。これにより、本実施の形態ではコストがかかる面ぶれ防止構造を採る必要がなくなるから、そのコストダウンを図れる。   From the above, in the third embodiment, the total value obtained by adding the signals for electrostatic induction to the fixed electrodes of the fixed substrates 1a and 1b by the adder circuit 7 is constant even when the rotating substrate 2 fluctuates. It is possible to detect a movement amount, a movement speed, and the like from the signal. As a result, in this embodiment, it is not necessary to adopt a costly anti-shake structure, and the cost can be reduced.

なお、実施の形態3において、回転基板2にはその表裏両面それぞれ回転電極5a,5bを配置したが、図11で示すように、点線で示す位置に、回転基板2の表面にのみ回転電極5a1、あるいは、回転基板2の裏面にのみ回転電極5a2、あるいは回転基板2の内層にのみ回転電極5a3を配置した場合も含むことができる。   In the third embodiment, the rotating electrodes 5a and 5b are arranged on the rotating substrate 2 on both the front and back surfaces. However, as shown in FIG. 11, only the surface of the rotating substrate 2 has the rotating electrodes 5a1 at the positions indicated by the dotted lines. Alternatively, the case where the rotating electrode 5a2 is disposed only on the back surface of the rotating substrate 2 or the rotating electrode 5a3 is disposed only on the inner layer of the rotating substrate 2 can be included.

(実施の形態4)
図12および図13を参照して本発明の実施の形態4にかかる静電型エンコーダを説明する。図1ないし図4と対応するないし類似する部分には同一の符号を付している。この実施の形態4のエンコーダは静電型リニアエンコーダである。この静電型リニアエンコーダは、上下一対の固定基板1a,1b間に、図上、矢印P,Q方向にリニア移動する移動基板2を介装した構成となっている。固定基板1a,1bには移動基板2の左右方向中央線3に対して左右対称の位置に固定電極4a,4b;4c,4dを備える。移動基板2には、中央線3に対して左右対称の位置であって、固定電極4a,4bにそれぞれ対向する位置に、移動電極5a,5bを備える。また、固定電極4c,4dにそれぞれ対向する位置に、移動電極5c,5dを備える。
(Embodiment 4)
An electrostatic encoder according to the fourth embodiment of the present invention will be described with reference to FIGS. Parts corresponding or similar to those in FIGS. 1 to 4 are denoted by the same reference numerals. The encoder of the fourth embodiment is an electrostatic linear encoder. This electrostatic linear encoder has a configuration in which a movable substrate 2 that moves linearly in the directions of arrows P and Q in the figure is interposed between a pair of upper and lower fixed substrates 1a and 1b. The fixed substrates 1a and 1b are provided with fixed electrodes 4a and 4b; The moving substrate 2 is provided with moving electrodes 5a and 5b at positions symmetrical to the center line 3 and facing the fixed electrodes 4a and 4b, respectively. In addition, moving electrodes 5c and 5d are provided at positions facing the fixed electrodes 4c and 4d, respectively.

以上の構成を有する実施の形態4においても、実施の形態3と同様に、移動基板2が面ぶれしても固定基板1a,1bの固定電極に静電誘導する信号を加算した合計値は一定となる。   Also in the fourth embodiment having the above configuration, as in the third embodiment, the total value obtained by adding the signals for electrostatic induction to the fixed electrodes of the fixed substrates 1a and 1b is constant even if the moving substrate 2 fluctuates. It becomes.

1 固定基板
2 回転基板(移動基板)
3 回転軸
4 固定電極
5 回転電極
1 Fixed substrate 2 Rotating substrate (moving substrate)
3 Rotating shaft 4 Fixed electrode 5 Rotating electrode

Claims (5)

共に相対向する面に電極を備えた固定基板と移動基板との相対位置変化に伴い、上記移動基板に設けた複数の電極(移動電極)から上記固定基板に設けた電極(固定電極)へ機械的な相対位置変位量を示す電気信号を静電誘導する静電型エンコーダにおいて、
上記固定基板には、上記移動基板上の移動電極に相対向する位置でかつ上記移動基板の所定中心に対して対称な位置それぞれに少なくとも1つの固定電極を配置した、ことを特徴とする静電型エンコーダ。
The machine moves from a plurality of electrodes (moving electrodes) provided on the moving substrate to an electrode (fixed electrode) provided on the fixed substrate in accordance with a relative position change between the fixed substrate and the moving substrate provided with electrodes on opposite surfaces. In an electrostatic encoder that electrostatically induces an electrical signal indicating a relative amount of relative position displacement,
The fixed substrate has at least one fixed electrode disposed at a position opposite to the moving electrode on the moving substrate and symmetrical to a predetermined center of the moving substrate. Type encoder.
固定基板に対して移動基板を軸周りに回転可能な回転基板としたロータリエンコーダ構成とし、上記回転基板上の移動電極を所定半径の円周方向等間隔に複数で配置すると共に、
上記固定基板上の上記少なくとも両固定電極を、上記回転基板の回転中心から上記と同一半径の円周上において回転対称位置にそれぞれ配置した、ことを特徴とする請求項1に記載の静電型エンコーダ。
With a rotary encoder configuration in which a moving substrate is rotatable about an axis with respect to a fixed substrate, a plurality of moving electrodes on the rotating substrate are arranged at equal intervals in the circumferential direction of a predetermined radius, and
2. The electrostatic type according to claim 1, wherein the at least both fixed electrodes on the fixed substrate are respectively arranged at rotationally symmetric positions on a circumference having the same radius as the rotation center of the rotating substrate. Encoder.
固定基板に対して移動基板をリニアに移動可能としたリニアエンコーダ構成とし、移動基板上の上記移動電極を所定中心線に対して線対称位置にリニア方向にそれぞれ複数配置すると共に、固定基板上の上記少なくとも両固定電極を上記移動基板の所定中心線に対して線対称位置にそれぞれ配置したことを特徴とする請求項1に記載の静電型エンコーダ。   The linear encoder configuration is such that the movable substrate is linearly movable with respect to the fixed substrate, and a plurality of the movable electrodes on the movable substrate are arranged in a linear direction at line-symmetrical positions with respect to a predetermined center line, and on the fixed substrate. 2. The electrostatic encoder according to claim 1, wherein the at least both fixed electrodes are arranged at positions symmetrical with respect to a predetermined center line of the movable substrate. 共に相対向する面に電極を備えた固定基板と移動基板との相対位置変化に伴い、上記移動基板に設けた複数の電極(移動電極)から上記固定基板に設けた電極(固定電極)へ機械的な相対位置変位量を示す電気信号を静電により誘導する静電型エンコーダにおいて、
上記移動基板の両側にそれぞれ固定基板を配置すると共に、上記両固定基板には、上記移動基板の移動電極と対向する位置それぞれに少なくとも1つずつ固定電極を配置した、ことを特徴とする静電型エンコーダ。
The machine moves from a plurality of electrodes (moving electrodes) provided on the moving substrate to an electrode (fixed electrode) provided on the fixed substrate in accordance with a relative position change between the fixed substrate and the moving substrate provided with electrodes on opposite surfaces. In an electrostatic encoder that statically induces an electrical signal indicating a relative amount of relative position displacement,
A fixed substrate is disposed on each side of the movable substrate, and at least one fixed electrode is disposed on each of the fixed substrates at a position facing the movable electrode of the movable substrate. Type encoder.
上記移動電極は、上記移動基板に対して側面視で所定中心から等距離となる対称位置に設けた、ことを特徴とする請求項4に記載の静電型エンコーダ。   The electrostatic encoder according to claim 4, wherein the moving electrode is provided at a symmetrical position that is equidistant from a predetermined center in a side view with respect to the moving substrate.
JP2009247287A 2009-10-28 2009-10-28 Electrostatic encoder Pending JP2011095021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247287A JP2011095021A (en) 2009-10-28 2009-10-28 Electrostatic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247287A JP2011095021A (en) 2009-10-28 2009-10-28 Electrostatic encoder

Publications (1)

Publication Number Publication Date
JP2011095021A true JP2011095021A (en) 2011-05-12

Family

ID=44112110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247287A Pending JP2011095021A (en) 2009-10-28 2009-10-28 Electrostatic encoder

Country Status (1)

Country Link
JP (1) JP2011095021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024701A (en) * 2011-07-20 2013-02-04 Ckd Corp Position sensor, measuring system, and plane stage
JP5417555B1 (en) * 2013-03-27 2014-02-19 ワイエスエレクトロニクス株式会社 Capacitance type level adjuster

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513214Y1 (en) * 1966-12-23 1970-06-08
JPH03125917A (en) * 1989-10-12 1991-05-29 Tokin Corp Capacitance type linear encoder
JP2001249001A (en) * 2000-03-03 2001-09-14 Mitsutoyo Corp Capacitance type displacement detector
JP2008051827A (en) * 2000-09-04 2008-03-06 Ce Johansson Ab Angle transducer
JP2009037774A (en) * 2007-07-31 2009-02-19 Hosiden Corp Rotary input device, and rotation angle measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513214Y1 (en) * 1966-12-23 1970-06-08
JPH03125917A (en) * 1989-10-12 1991-05-29 Tokin Corp Capacitance type linear encoder
JP2001249001A (en) * 2000-03-03 2001-09-14 Mitsutoyo Corp Capacitance type displacement detector
JP2008051827A (en) * 2000-09-04 2008-03-06 Ce Johansson Ab Angle transducer
JP2009037774A (en) * 2007-07-31 2009-02-19 Hosiden Corp Rotary input device, and rotation angle measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024701A (en) * 2011-07-20 2013-02-04 Ckd Corp Position sensor, measuring system, and plane stage
JP5417555B1 (en) * 2013-03-27 2014-02-19 ワイエスエレクトロニクス株式会社 Capacitance type level adjuster
WO2014155552A1 (en) * 2013-03-27 2014-10-02 ワイエスエレクトロニクス株式会社 Capacitive level adjustment device

Similar Documents

Publication Publication Date Title
JP7338099B2 (en) Multi-level rotary resolver with inductive sensors
CN103542844B (en) Angular rate sensor with quadrature error compensation
JP5643174B2 (en) Capacitive displacement encoder
TWI658252B (en) Rotation rate sensor with three sensitive axes and process to manufacture a rotation rate sensor
JPH06258341A (en) Acceleration sensor
WO2013179647A2 (en) Physical amount sensor
US20140374849A1 (en) Angular rate sensor with quadrature error compensation
KR20200034698A (en) Apparatus for sesnsing rotating device
US20130047726A1 (en) Angular rate sensor with different gap sizes
JP5617205B2 (en) Encoder
JP2011095021A (en) Electrostatic encoder
US10295558B2 (en) Offset rejection electrodes
JP2008292426A (en) Electrostatic capacity type sensor
US20180188028A1 (en) Single-gap shock-stop structure and methods of manufacture for micro-machined mems devices
JP6401955B2 (en) Absolute angle detection device and magnetic encoder thereof
CN109937346B (en) Non-contact angle sensor
JP2014021188A (en) Rotary actuator
JP2017072468A (en) Input device
JP2022069261A (en) Magnetic sensor assembly and camera module including the same
KR20200012667A (en) Apparatus for sesnsing rotating device
JP2005098891A (en) Electrostatic capacity type sensor
JPS58167934A (en) Torque detecting device
JP2011047668A (en) Capacitive sensor
JP2009156589A (en) Travel direction detector of magnetic body using magnetic sensor having magnet
JP2014190807A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014