JP2011094942A - Gas cycle type external combustion engine - Google Patents

Gas cycle type external combustion engine Download PDF

Info

Publication number
JP2011094942A
JP2011094942A JP2009264361A JP2009264361A JP2011094942A JP 2011094942 A JP2011094942 A JP 2011094942A JP 2009264361 A JP2009264361 A JP 2009264361A JP 2009264361 A JP2009264361 A JP 2009264361A JP 2011094942 A JP2011094942 A JP 2011094942A
Authority
JP
Japan
Prior art keywords
compressor
expander
heat
working medium
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009264361A
Other languages
Japanese (ja)
Inventor
Fusao Terada
房夫 寺田
Junichi Terada
淳一 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERATEKKU KK
Terra Tec Co Ltd
Original Assignee
TERATEKKU KK
Terra Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERATEKKU KK, Terra Tec Co Ltd filed Critical TERATEKKU KK
Priority to JP2009264361A priority Critical patent/JP2011094942A/en
Publication of JP2011094942A publication Critical patent/JP2011094942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and feasible consumer-use heat engine capable of using a high efficient heat engine durable at a middle and high temperature for power generation or cogeneration by using a refrigerant such as HFC, HC or CO<SB>2</SB>widely used for refrigeration and air conditioning as an operation medium. <P>SOLUTION: The operation medium such as HFC is compressed in a superheated state by a compressor, and is heated by a middle and high temperature heat source, and then, adiabatically expanded in an expander to obtain power. Net output power is obtained by subtracting input required for compression from the obtained power. As a compression process approaches isothermal compression, the power required for driving is reduced to improve the heat efficiency, and thereby, a multistage compressor with intermediate cooling or a single-stage compressor with special structure improvement is used. As the practical application, a two-stage compressor with an intermediate cooler is used, the whole of a driving part such as the expander is integrally stored in a pressure container to be easily used, and heat efficiency is improved further by a heat regenerator. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は従来利用が困難なため廃棄されていた200℃から300℃前後の中高温度熱源(中高温熱)を有効に再生活用して出力を得ようとする全く新規のガスサイクルによる外燃式熱機関(外燃機関)に関する。従来家庭用ないし小型業務用あるいは車両用空調機器に通常用いられるHFC(フロン)系やHC(炭化水素)系あるいは二酸化炭素(CO2)等の冷媒(作動媒体)用容積型圧縮機構を基盤に中高温で作動可能にした容積型膨張機と組み合わせ主に1ないし10kW級出力のシステムを構成した省エネルギー性の高い民生用熱機関を実現する。本熱機関は作動媒体を過熱蒸気(ガス)状態で断熱膨張させ最大駆動力を得ると同時に圧縮も過熱蒸気(ガス)状態で略等温もしくは等エンタルピー状態で行わせ必要動力を最小とし、効率の高い正味出力を発生させるガスサイクルを構成する。このため車両やガスエンジンヒートポンプ(GHP)等の内燃機関、マイクロガスタービン、SOFC等高温型燃料電池あるいは工場等から排出される排熱はもちろん、太陽熱、バイオ燃料燃焼熱等から得られる中高温熱をシステム外部からの加熱用熱源として活用し発電や軸動力等の出力を得ると同時にさらにその排熱を給湯や暖房にも併用できるコー・ジェネ等高効率なクリーン・エネルギー関連機器として広く応用できる。Since the present invention is difficult to use in the past, the external combustion type heat generated by a completely new gas cycle that effectively recycles the medium-to-high temperature heat source (mid-high temperature heat) around 200 ° C. to 300 ° C., which has been discarded. Regarding the engine (external combustion engine). Based on volumetric compression mechanisms for refrigerants (working media) such as HFC (fluorocarbon), HC (hydrocarbon), or carbon dioxide (CO2), which are conventionally used in conventional home or small business or vehicle air conditioning equipment Combined with a positive displacement expander capable of operating at high temperatures, a highly energy-saving consumer heat engine that mainly constitutes a 1 to 10 kW class output system is realized. This heat engine adiabatically expands the working medium in the superheated steam (gas) state to obtain the maximum driving force, and at the same time, the compression is performed in the superheated steam (gas) state in a substantially isothermal or isoenthalpy state to minimize the required power and improve the efficiency. Configure a gas cycle that produces a high net output. For this reason, not only exhaust heat exhausted from internal combustion engines such as vehicles and gas engine heat pumps (GHP), micro gas turbines, high-temperature fuel cells such as SOFC or factories, but also mid-high temperature heat obtained from solar heat, biofuel combustion heat, etc. It can be widely used as a high-efficiency clean energy-related device such as co-generation that can be used as a heat source for heating from outside the system to obtain output such as power generation and shaft power, and at the same time use the exhaust heat also for hot water supply and heating.

多様な中高温の廃熱を高温側加熱用熱源として駆動させる熱機関にはスターリング機関やランキン機関等外燃機関が知られている。ただ、実態的には民生用市場においてはいずれもほとんど実用化されていない。前者のスターリング機関は作動媒体に高圧水素やヘリウム等を用いるため躯体内外での漏れを防いだり熱の授受を向上したりするための構造が複雑になりかつ作動媒体が往復動で高速化に不向きなため小型化が困難で躯体が大きく重くしたがって高価になりやすく普及しにくかった。また後者のランキン機関は作動媒体と膨張機構とのマッチングから中高温に不適とみなされてきたことおよび液状態の作動媒体の低圧から高圧への昇圧に特殊なポンプを要すること等から中高温廃熱への応用が進んでいない。近時、車両の排熱を回収して発電しようとする試みは報告されているが実用化には至っていない。External combustion engines such as Stirling engines and Rankine engines are known as heat engines that drive various medium and high temperature waste heat as a heat source for high temperature side heating. However, practically none of them are practically used in the consumer market. The former Stirling engine uses high-pressure hydrogen, helium, etc. as the working medium, so the structure for preventing leakage inside and outside the housing and improving heat transfer is complicated, and the working medium is not suitable for high speed due to reciprocating motion. Therefore, it is difficult to reduce the size and the casing is large and heavy, so that it is likely to be expensive and difficult to spread. The latter Rankine engine has been regarded as unsuitable for medium to high temperatures due to the matching of the working medium and the expansion mechanism, and requires a special pump to raise the pressure of the liquid working medium from low pressure to high pressure. Application to heat is not progressing. Recently, attempts have been reported to recover the exhaust heat of vehicles and generate electricity, but they have not been put into practical use.

従来のランキン機関は作動媒体を高圧下加熱器で熱サイクルでの最高温度に加熱した過熱ガスを膨張機で断熱膨張させ低圧低温になるときの作動媒体のエンタルピー差を動力に変換し、その後冷却し液化して液ポンプで低圧から高圧に昇圧し再び加熱器に戻し一巡する熱サイクルで構成される。これを中高温熱源で用いる際従来冷凍空調に用いられるHFC(フロン)系やHC(炭化水素)系あるいは二酸化炭素(CO2)等の冷媒(作動媒体)は過熱ガスとして通常の冷凍サイクルで断熱圧縮により到達するよりもさらに高エンタルピー状態に達し、これが膨張後液化されるためには多大な冷却工程を要する。この冷却工程を効率よく行うため熱再生器を用いて液状態で昇圧後の作動媒体と熱交換しこれが低温にあるときだけ冷却される代わりに相手を加熱し熱の授受を行うことが可能であるが温度差の存在する同工程の一部にしか有効でない。加熱工程でも同様で工程の一部の改善にとどまる。また熱再生器自体到達最高温度に比例して大きな容量ものが必要となる。また該液ポンプは理論上等エンタルピー変化で作動媒体へのエネルギー入力は不要でも実機では機械摩擦損失や流体損失が大きく耐久性や効率に実用上の困難が伴った。この結果中高温を熱源として動力回生できる有効で実用的な手段は存在していない。The conventional Rankine engine converts the enthalpy difference of the working medium when the working medium is heated to the maximum temperature in the heat cycle with a high-pressure heater and adiabatic expansion with an expander to low pressure and low temperature, and then cools. It is composed of a heat cycle that is liquefied and increased from a low pressure to a high pressure by a liquid pump and returned to the heater again. When this is used as a medium / high temperature heat source, refrigerants (working media) such as HFC (fluorocarbon), HC (hydrocarbon) or carbon dioxide (CO2), which are conventionally used in refrigeration and air conditioning, are adiabatically compressed as a superheated gas in a normal refrigeration cycle. In order to reach a higher enthalpy state than that achieved by this, and to be liquefied after expansion, a large cooling step is required. In order to efficiently perform this cooling process, it is possible to exchange heat by using a heat regenerator and exchanging heat with the pressurized working medium in a liquid state, instead of being cooled only when it is at a low temperature, to exchange heat. It is effective only for a part of the process where there is a temperature difference. The same applies to the heating process, and only part of the process is improved. Also, a large capacity is required in proportion to the maximum temperature reached by the heat regenerator itself. In addition, the liquid pump has a theoretical equal enthalpy change and energy input to the working medium is unnecessary. However, in the actual machine, mechanical friction loss and fluid loss are large, and durability and efficiency are practically difficult. As a result, there is no effective and practical means that can regenerate power by using medium and high temperatures as a heat source.

本発明は前述のような従来の熱機関の有する課題を作動媒体が常に加熱ガス状態のもとで作動する全く新規の熱サイクル(ガスサイクル)で解決するもので、略等温圧縮された過熱ガスを中高温熱でサイクル外部から加熱しその後断熱膨張させ冷却後再度圧縮させる熱サイクル工程を基本とする。圧縮に要する動力を膨張で得られる出力から差し引いた出力が本熱サイクルの正味出力となり、既存の機器技術を基盤に簡易なシステムを実現する。略等温圧縮を得るために圧縮機はその内部や外部に冷却機構を配設したり、多段圧縮で各段の中間にそれぞれ中間冷却器を有したりする構成とし必要な圧縮動力量が最小となるようにし、膨張は断熱膨張で膨張動力量を最大得られるようにして熱効率向上を図る。必要に応じて熱再生器を設け膨張後の過熱ガスの有する熱で圧縮後のより低温の過熱ガスの加熱に用い、同時に前者の過熱ガス自身は後者の過熱ガスにより冷却されるようにして更に高い熱効率向上を得ることも可能である。The present invention solves the problems of the conventional heat engine as described above with a completely new heat cycle (gas cycle) in which the working medium always operates under a heated gas state. The heat cycle is basically heated from the outside of the cycle with medium and high temperature heat, then adiabatically expanded, cooled and compressed again. The output obtained by subtracting the power required for compression from the output obtained by expansion becomes the net output of this thermal cycle, and a simple system is realized based on the existing equipment technology. In order to obtain approximately isothermal compression, the compressor is provided with a cooling mechanism inside or outside, or has an intermediate cooler in the middle of each stage in multistage compression, and the required amount of compression power is minimized. In order to improve the thermal efficiency, the expansion can be obtained by adiabatic expansion to obtain the maximum amount of expansion power. If necessary, a heat regenerator is provided to heat the lower temperature superheated gas after compression with the heat of the expanded superheated gas. At the same time, the former superheated gas itself is further cooled by the latter superheated gas. It is also possible to obtain a high thermal efficiency improvement.

本発明は前述のような手段を用いることにより従来の課題を解決できる。具体的には本案の根幹をなす作動媒体が全て過熱ガス状態であるため膨張機には中高温熱を与えても圧縮機との温度差は液化を必要とするランキン機関のようには多大にならないため熱再生容量は最小限でよく、また圧縮機へ供給される作動媒体の温度は例えば給湯などに必要な100度以上でもよいため冷却工程はコー・ジェネシステムではそのまま給湯水の加熱に使える。また本システムの主たる構成要素である圧縮機、膨張機および電動機や発電機は同軸に連結して共通の容器に収納することも可能で高圧のガス容器として一体的に取り扱えコンパクトで便利になり得る。特に圧縮機、膨張機にローリングピストン式、スイングピストン式等ロータリー式やマルチベーン式あるいはスクロール式等の回転型を用いる時は連結が容易で、各機構要素の駆動軸間に速度や位相の調整装置をそれぞれ設ければ容量のマッチングや制御の自由度が向上する。また、潤滑機構も共用したり潤滑剤を同一容器内に収納したりすることも可能となる。外燃機関であるので既述のように熱源を多様に選定できるのみならず作動媒体が閉サイクルのため開放サイクルのような排気が無く静粛な運転となり、熱源に燃焼熱を用いる場合は内燃機関のような爆発的な不連続燃焼でなく一般燃焼器のように最適状態での連続燃焼状態で排気が最大限に清浄化され環境対応に大きく寄与できる。The present invention can solve the conventional problems by using the above-described means. Specifically, since all the working medium that forms the basis of the present plan is in a superheated gas state, even if medium and high temperature heat is applied to the expander, the temperature difference from the compressor is not as great as in a Rankine engine that requires liquefaction. Therefore, the heat regeneration capacity may be minimized, and the temperature of the working medium supplied to the compressor may be, for example, 100 degrees or more necessary for hot water supply, so that the cooling process can be used as it is for heating hot water in the co-generation system. The main components of the system, the compressor, expander, motor and generator, can be coaxially connected and housed in a common container, which can be handled as a high-pressure gas container and can be made compact and convenient. . Especially when using a rotary type such as a rolling piston type, swing piston type, etc. for a compressor or an expander, a rotary type such as a multi-vane type or a scroll type is easy to connect, and the speed and phase can be adjusted between the drive shafts of each mechanism element. If each device is provided, capacity matching and freedom of control are improved. In addition, it is possible to share the lubrication mechanism or store the lubricant in the same container. Since it is an external combustion engine, not only can the heat source be selected variously as described above, but the working medium is a closed cycle, so there is no exhaust as in the open cycle, and the operation is quiet and the internal combustion engine is used when combustion heat is used as the heat source. Exhaust discontinuous combustion like the above, but the exhaust gas is cleaned to the maximum in the continuous combustion state in the optimum state like a general combustor, and can greatly contribute to environmental measures.

回転型圧縮機を2段に用い第1段圧縮機の吸入作動ガスは主冷却器で、第2段圧縮機の吸入作動ガスは第1段及び第2段各圧縮機の中間に設ける中間圧縮機でそれぞれ冷却して吸入圧縮される。第2段圧縮機から吐出される高圧ガスは熱再生器及び加熱器で加熱され膨張機に入る。ここに該熱再生器は膨張行程終了後膨張機より吐出される作動ガスの熱により前記高圧ガスを加熱し、加熱器は中高温熱源によりこれを更に加熱する。膨張機は回転型で前記作動ガスを吸入し所定の膨張比で断熱膨張し軸動力を発生するとともに該作動ガスを低圧で吐出する。この作動ガス温度は断熱膨張で相当量低下しているが前述のように熱再生器に送られ圧縮直後の作動ガスの加熱に供せる程度の温度があれば活用される。この後主冷却器に入り冷却されて再び圧縮工程に戻りサイクルを一巡する。この圧縮工程に要する必要動力が最小ですむように圧縮は前述のように2段圧縮とし各段ごとに予め冷却して熱サイクル的に等温圧縮に近づくよう格段での圧縮量、圧縮比および冷却量を設定し第1段圧縮機への作動ガス吸入温度と第2段吐出作動ガスの温度差(後者の温度から前者の温度を差し引いた温度)が最小となるようにする。圧縮機、膨張機併せて電動機および発電機もしくは電動機兼発電機等の回転機構部を同軸で連結し駆動機構をまとめて一体的に圧力容器に収納すると取り扱いが容易で便利になる。また必要に応じて相互の能力が変換でき負荷変動等に対応して出力変化等が出来るように相互の軸間に装置を設け連結することも可能である。なお、圧縮と膨張各駆動機構の周辺圧力、温度、潤滑機構あるいは制作上の都合により圧縮機と電動機および膨張機と発電機をそれぞれに組み合わせて個別の容器内に収納しても良い。特に既存の容器収納型の機器を転用する場合便利である。A rotary compressor is used in two stages, the suction working gas of the first stage compressor is the main cooler, and the suction working gas of the second stage compressor is intermediate compression provided between the first stage and second stage compressors. Each is cooled by a machine and compressed by suction. The high pressure gas discharged from the second stage compressor is heated by the heat regenerator and the heater and enters the expander. Here, the heat regenerator heats the high-pressure gas with the heat of the working gas discharged from the expander after the expansion stroke is completed, and the heater further heats the high-pressure gas with a medium / high temperature heat source. The expander is a rotary type, sucks the working gas, adiabatically expands at a predetermined expansion ratio, generates shaft power, and discharges the working gas at a low pressure. Although this working gas temperature has decreased considerably due to adiabatic expansion, it can be utilized if there is a temperature that can be sent to the heat regenerator and used for heating the working gas immediately after compression. After that, it enters the main cooler, is cooled, returns to the compression process again, and completes the cycle. In order to minimize the power required for this compression process, compression is performed in two stages as described above, and the amount of compression, compression ratio, and amount of cooling are greatly reduced so that each stage is cooled in advance and approaches thermal isothermal compression. The temperature difference between the working gas suction temperature to the first stage compressor and the second stage discharge working gas (the temperature obtained by subtracting the former temperature from the latter temperature) is minimized. When the compressor and the expander are combined together and the rotating mechanism such as the electric motor and the generator or the electric motor / generator are connected coaxially and the driving mechanism is integrated and housed in the pressure vessel, the handling becomes easy and convenient. It is also possible to connect and connect devices between the shafts so that the mutual capabilities can be converted as required and the output can be changed in response to load fluctuations. Note that the compressor and electric motor, and the expander and generator may be combined and stored in separate containers depending on the peripheral pressure, temperature, lubrication mechanism, and production convenience of each drive mechanism. This is particularly convenient when diverting existing container-housing equipment.

以下、本発明の実施例を図1の作動媒体のモリエル線図(圧力−エンタルピー線図)、図2の基本構造およびシステム図および図3の基本構造およびシステム図(図2の例を基本に変化させた例)に基づき説明する。各図における▲1▼から順次▲8▼及び▲9▼等までの数字は本発明の熱サイクルにおける各工程中の作動ガス状態とシステム中の相当する位置をそれぞれ対応して示す。図1は本発明の骨子であるガスサイクルにつき例として作動媒体にHFC−134a(フロン)のモリエル線図を用いて示したもので縦軸に作動媒体の圧力(P)、横軸に同エンタルピー(h)を、また左辺に該作動媒体の飽和蒸気曲線を表す。該線図右辺に示される閉じた矩形相似の線図は本ガスサイクルの状態変化を表し▲1▼、▲2▼、▲3▼、▲4▼、▲5▼、▲6▼、▲7▼、▲8▼と変移して再び▲1▼に戻り一巡完結する。本実施例は2段圧縮による略等温圧縮を用いており、▲1▼はその第1段圧縮の出発点であり状態は最も低圧のP1,エンタルピーは最小のh1でこれを、第1段圧縮機(1)で断熱圧縮して作動媒体は▲2▼の状態の中間圧力P2,エンタルピーh4に変化させる。▲2▼の状態は▲1▼の状態の絶対温度T1より若干高い温度になっているがこれを中間冷却器(7)に通し冷却を行い▲3▼で示すように圧力はP2のままで温度のみ当初のほぼT1まで低下させる。この時エンタルピーはほぼh1に等しいが、作動媒体の特性によりそれぞれ異なる。▲3▼の状態の作動媒体を第2段圧縮機(2)で再度断熱圧縮し▲4▼の状態の最高圧力P4に昇圧する。これによりエンタルピーは増加するがほぼh4程度になるよう調整する。この結果作動媒体の温度はT4に上昇する。圧縮に要する動力は摩擦、漏れ等の各種損失を除けば、エンタルピーh4とh1の差に相当する。この作動媒体を熱再生器(12)に導き▲5▼の温度T7近傍まで加熱するが、この熱源は後述する膨張機(3)から吐出された温度T7の作動媒体との熱交換により、いわば後段の加熱の予熱に相当するものである。この後作動媒体はさらに加熱器(5)で▲5▼から▲6▼の状態に加熱されるがこの熱源にシステム外部の中高温熱を有する排熱や燃焼熱等が用いられる。状態▲6▼の作動媒体は圧力ほぼP4、温度T6でエンタルピーh6の最大エネルギーを有して膨張機(3)に入り断熱膨張され状態▲7▼の圧力P1、温度T7、エンタルピーh7に変化する。このエンタルピーh6からh7への減少分が各種損失分を除けば出力用動力相当に変換される。このあと作動媒体は熱再生器(12)で▲7▼の状態から▲8▼の状態の温度ほぼT4まで前述のように▲4▼の作動媒体と熱交換し相手に熱を与えて予熱してこちらは冷却、すなわち予冷され冷却器(7)に至る。相互の熱交換はガスとガスの顕熱交換で温度差が必要なため▲5▼はT7よりやや低め、▲8▼はT4よりやや高めの温度で工程を終えるが、この熱再生器(12)おける熱の授受により大幅に▲5▼から▲6▼の加熱熱量や▲8▼から▲1▼の冷却熱量を節約でき効率向上への寄与は大きい。なお、図2、図3において該熱再生器(12)は作図上別々に表されているが実質は一体として構成される。また、熱サイクル構成上T7とT4の温度差が小さい時は該熱再生器(12)を省略しても良い。1 is a Mollier diagram (pressure-enthalpy diagram) of the working medium of FIG. 1, a basic structure and system diagram of FIG. 2, and a basic structure and system diagram of FIG. 3 (based on the example of FIG. 2). A description will be given based on a changed example. The numbers from (1) to (8) and (9) and so on in the respective figures indicate the working gas state during each step in the thermal cycle of the present invention and the corresponding position in the system. FIG. 1 shows an example of a gas cycle, which is the gist of the present invention, using a Mollier diagram of HFC-134a (Freon) as a working medium. The vertical axis represents the pressure (P) of the working medium, and the horizontal axis represents the same enthalpy. (H) is shown, and the saturated vapor curve of the working medium is shown on the left side. The closed rectangular similar diagram shown on the right side of the diagram represents the state change of this gas cycle (1), (2), (3), (4), (5), (6), (7) , Change to (8), return to (1) again and complete a round. This embodiment uses substantially isothermal compression by two-stage compression. (1) is the starting point of the first-stage compression, and the state is the lowest pressure P1, the enthalpy is the minimum h1, and this is the first-stage compression. Adiabatic compression is performed by the machine (1), and the working medium is changed to the intermediate pressure P2 and the enthalpy h4 in the state (2). The state of (2) is slightly higher than the absolute temperature T1 in the state of (1), but this is passed through the intercooler (7) to cool, and the pressure remains at P2 as indicated by (3). Only the temperature is reduced to about the initial T1. At this time, the enthalpy is approximately equal to h1, but differs depending on the characteristics of the working medium. The working medium in the state (3) is adiabatically compressed again by the second stage compressor (2), and the pressure is increased to the maximum pressure P4 in the state (4). As a result, the enthalpy increases but is adjusted to about h4. As a result, the temperature of the working medium rises to T4. The power required for compression corresponds to the difference between the enthalpies h4 and h1, except for various losses such as friction and leakage. This working medium is led to the heat regenerator (12) and heated to the temperature T7 vicinity of (5). This heat source is so-called by heat exchange with the working medium at the temperature T7 discharged from the expander (3) described later. This corresponds to preheating for subsequent heating. Thereafter, the working medium is further heated from the state (5) to the state (6) by the heater (5), and exhaust heat or combustion heat having medium to high temperature heat outside the system is used for this heat source. The working medium in state (6) has the maximum energy of enthalpy h6 at pressure P4 and temperature T6, enters the expander (3), and is adiabatically expanded to change to pressure P1, temperature T7, and enthalpy h7 in state (7). . The reduction from the enthalpy h6 to h7 is converted into the power for output except for various losses. After that, the working medium is preheated with the heat regenerator (12) by exchanging heat with the working medium of (4) as described above from the state of (7) to the temperature of about (8) to about T4. This is cooled, that is, precooled and reaches the cooler (7). Since mutual heat exchange requires a difference in temperature between gas and sensible heat, (5) is slightly lower than T7, and (8) is slightly higher than T4, but this heat regenerator (12 ) Heat transfer in (5) to (6) and cooling heat (8) to (1) can be saved greatly by the transfer of heat in this case, and the contribution to efficiency improvement is great. In FIG. 2 and FIG. 3, the heat regenerator (12) is shown separately in the drawing, but is substantially configured integrally. Further, when the temperature difference between T7 and T4 is small due to the heat cycle configuration, the heat regenerator (12) may be omitted.

参考として以上の熱サイクルをフロンHFC−134aを作動媒体に用いた設計例の主な状態点に付き下表に示す。

Figure 2011094942
なお本熱サイクルではシステムの簡略化のため熱再生器(12)を用いないものとしている。この熱サイクルにおける理論熱効率は((膨張機出力)−(圧縮機入力))÷(熱入力)なので(h6−h7)−(h4−h1)/((h6−h4)=(605−550)−(550−520)/(605−550)=25/55=0.45とほぼ45%程度が期待できる。実用機においては機械摩擦や漏れ損失、熱損失、電動機あるいは発電機系の電気損失等が不可避のため前記効率への達成率は通常50%程度の20%強程度と見込まれるが、従来ランキン熱機関で報告されている例は最高温度が同程度では14%前後で本熱機関は十分高効率で大きな優位性を有している。For reference, the thermal cycle described above is shown in the table below with the main state points of the design example using Freon HFC-134a as the working medium.
Figure 2011094942
In this heat cycle, the heat regenerator (12) is not used to simplify the system. Since the theoretical thermal efficiency in this thermal cycle is ((expander output)-(compressor input)) / (heat input), (h6-h7)-(h4-h1) / ((h6-h4) = (605-550) -(550-520) / (605-550) = 25/55 = 0.45, which is expected to be about 45% .In practical machines, mechanical friction, leakage loss, heat loss, electric loss of electric motor or generator system The achievement rate for the efficiency is usually expected to be about 20%, which is about 50%. However, the example reported in the Rankine heat engine is about 14% at the same maximum temperature. Is sufficiently efficient and has great advantages.

参考文献References

研究論文「ランキンサイクルを用いた車載用廃熱回生システムの研究」自動車技術開会論文集Vol.38,No.4,July2007.Research paper “Study on in-vehicle waste heat regeneration system using Rankine cycle” Vol. 38, no. 4, July 2007.

図2は図1で示す熱サイクルを具体化した構成例を示す。第1段圧縮機(1)、第2段圧縮機(2)、膨張機(3)の駆動部分は共通軸(8)で相互に連結されこれに電動機兼発電機(4)も結合される。この時各駆動機構部の作動媒体駆動能力を相互にその回転速度や位相等を変化させて調整制御する必要のある場合は制御機構(11)をそれぞれの連結部分に介在させる。たとえば一般的に第1段圧縮機の圧縮比P2/P1は第2段圧縮機の圧縮比P4/P2と略等しくなるよう設定され、この際各段における吸入作動媒体の比容積に応じた圧縮容量が設定されるが、同軸において同一回転の場合第1段と第2段の吸入容積の差が過大で構成上不都合なときはその必要容積が大きくなる第1段の容積を回転速度を第2段より大きくすることにより小容積としたり、逆に第2段を減速して実効容積を第1段に適応させたりして調整制御する。一般的に吐出弁のある圧縮機と異なり膨張機は1段の一定膨張比で膨張するため排除容積は大きくなる傾向にあり小型化のためやはり回転速度を調整制御できるようにすると都合よい。なお、ここに各駆動機構は既述の回転型を基本としており圧縮機はほとんど従来の圧縮機構を流用でき、膨張機は回転型圧縮機の吐出弁を排除して圧縮の逆に作用するように吐出側から高圧(本例でP4)の作動媒体を供給することで原則的に得られるが潤滑ならびに中高温度耐熱性には配慮が必要となる。図2はこれらの駆動機構全般をひとつの耐圧力容器(9)に収納し熱交換機器とは容器壁を通じて作動媒体用配管で結合し、該容器(9)内は最小圧力P1となるようにしたものである。膨張後冷却されて▲1▼の状態になった作動媒体が容器(9)に戻りその後第1段圧縮機(1)に容器(9)内部で吸引される以外は各駆動機器の吸入、吐出口はそれぞれこの容器(9)の壁面を貫通する配管で結ばれる。潤滑油(図示せず)はこの容器(9)に封入し駆動機器に共通して供給できる。また膨張機(3)は中高温の作動媒体が流入するため周囲は昇温して比較的高温になりやすく圧縮機や電動機兼発電機(4)を加熱する不都合が生じる懸念がある場合隔壁(10)を両者のあいだに設け熱遮断すると良い。なお、電動機兼発電機(4)は本熱機関が始動時電動機として主に圧縮機の駆動力を発生し、熱システムが定格に近づくにつれ膨張機で発生する動力が大きくなって正味軸出力が発生すれば発電機として電力を生ずるもので、電動機と発電機に個別に設けてももちろん同機能を発揮する。また該隔壁(10)は膨張機(3)周辺のみ圧力環境を他の駆動機構と分離すべき時は圧力隔壁としても設けられる。FIG. 2 shows a configuration example embodying the thermal cycle shown in FIG. The drive parts of the first stage compressor (1), the second stage compressor (2), and the expander (3) are connected to each other by a common shaft (8), and an electric motor / generator (4) is also coupled thereto. . At this time, if it is necessary to adjust and control the working medium drive capability of each drive mechanism section by changing the rotational speed, phase, etc., a control mechanism (11) is interposed in each connecting portion. For example, in general, the compression ratio P2 / P1 of the first stage compressor is set to be substantially equal to the compression ratio P4 / P2 of the second stage compressor. At this time, the compression according to the specific volume of the suction working medium in each stage The capacity is set, but when the same rotation is performed on the same axis, if the difference between the suction volumes of the first stage and the second stage is excessive and inconvenient in configuration, the required volume becomes larger. Adjustment control is performed by making the volume smaller than the second stage, or conversely decelerating the second stage and adapting the effective volume to the first stage. In general, unlike a compressor having a discharge valve, an expander expands at a constant expansion ratio of one stage, so that the displacement volume tends to be large, and it is convenient that the rotational speed can be adjusted and controlled for miniaturization. Here, each drive mechanism is based on the rotary type described above, and the compressor can use almost the same conventional compression mechanism, and the expander acts to reverse the compression by eliminating the discharge valve of the rotary compressor. In principle, it can be obtained by supplying a working medium of high pressure (P4 in this example) from the discharge side, but it is necessary to consider lubrication and heat resistance at medium and high temperatures. FIG. 2 shows that these drive mechanisms are housed in a single pressure-resistant vessel (9) and are connected to the heat exchange device through the vessel wall through a working medium pipe so that the inside of the vessel (9) has a minimum pressure P1. It is a thing. The working medium, which has been cooled after expansion and brought to the state (1), returns to the container (9) and is then sucked into the first stage compressor (1) inside the container (9). The outlets are each connected by a pipe penetrating the wall surface of the container (9). Lubricating oil (not shown) can be enclosed in this container (9) and supplied in common to the drive equipment. In the expander (3), since the medium and high temperature working medium flows in, the surroundings are likely to be heated to a relatively high temperature and there is a concern that the compressor and the motor / generator (4) may be heated. 10) should be provided between the two to cut off the heat. The motor / generator (4) mainly generates the driving force of the compressor as the starting motor when the heat engine is started. As the heat system approaches the rating, the power generated by the expander increases and the net shaft output increases. If generated, it will generate electric power as a generator, and of course the same function can be achieved even if the motor and generator are provided separately. The partition wall (10) is also provided as a pressure partition wall when the pressure environment is to be separated from other drive mechanisms only around the expander (3).

図3は前記図2の例における容器(9)内圧力を第1段圧縮機(1)からの戻り作動媒体の圧力P2の中間圧力に変化させた例である。従来冷凍空調用途で作動媒体にCO2等を10MPa以上の高圧に圧縮する際ロータリー式あるいはスクロール式の2段圧縮機を用い本例と同様に容器(9)内部を中間圧力に保ち周囲の大気圧力との差を低減して耐圧性を向上させ内部の潤滑や電動機等の冷却性能の改善を図っている例があるが、本例における目的も同様でシステム構成が容易になり得る。FIG. 3 shows an example in which the pressure in the container (9) in the example of FIG. 2 is changed to an intermediate pressure of the pressure P2 of the return working medium from the first stage compressor (1). In conventional refrigeration and air conditioning applications, when compressing CO2 or the like as a working medium to a high pressure of 10 MPa or more, a rotary or scroll type two-stage compressor is used and the inside of the container (9) is kept at an intermediate pressure as in this example, and the ambient atmospheric pressure There is an example in which the pressure resistance is improved to improve the internal lubrication and the cooling performance of the electric motor or the like, but the purpose in this example is also the same, and the system configuration can be simplified.

図1における破線で示す▲1▼から▲9▼への作動媒体の状態変化はエンタルピーh1がほぼ一定で略等温圧縮である場合を示す。理想的にはこの破線に沿って圧縮することが圧縮必要動力を最小とし熱機関の出力を最大にさせるものであるが、実機においてこれを実現することは困難である。一部このための試みもあるが、圧縮途中の作動媒体を冷却するため圧縮機構に大幅な改造を加えることが必要とされ小型、簡易、安価であるべき民生用機器に適応しにくい。本発明は既述例に示すごとく基本的には従来既存の容積型圧縮機を基本に適宜改造、選択し組み合わせて実現可能である2段圧縮で等温圧縮に近づけ必要駆動動力の低減を図っている。また200℃から300℃程度の中高温での膨張機も従来の圧縮機の耐熱が200℃未満であるためそのままでは転用が困難である。スクロール式ではブレードの変形や潤滑機構に課題があるが、マルチベーン式やロータリー式は材料、構造の改善で実現可能である。また、作動媒体は既述のHFC−134a以外のフロン系やHC(炭化水素)系あるいは二酸化炭素(CO2)等でも過熱ガス状態で同様に適用できる。
特開2009−185681 特開2001−132675
The change in the state of the working medium from (1) to (9) indicated by the broken line in FIG. 1 indicates the case where the enthalpy h1 is substantially constant and the isothermal compression is performed. Ideally, the compression along the broken line minimizes the power required for compression and maximizes the output of the heat engine, but it is difficult to realize this in an actual machine. Although some attempts have been made for this purpose, it is necessary to make a significant modification to the compression mechanism in order to cool the working medium in the middle of compression, and it is difficult to adapt to consumer equipment that should be small, simple, and inexpensive. As shown in the above-mentioned examples, the present invention is basically two-stage compression that can be realized by appropriately modifying, selecting, and combining conventional positive displacement compressors, and reducing the required driving power by approaching isothermal compression. Yes. Further, an expander at a medium to high temperature of about 200 ° C to 300 ° C is difficult to divert as it is because the heat resistance of a conventional compressor is less than 200 ° C. The scroll type has problems in blade deformation and lubrication mechanism, but the multi-vane type and rotary type can be realized by improving the material and structure. In addition, the working medium can be similarly applied in a superheated gas state using a chlorofluorocarbon, HC (hydrocarbon), or carbon dioxide (CO2) other than the above-described HFC-134a.
JP2009-185681 JP 2001-132675 A

実用新案文献Utility model literature

実願2009−5754Actual application 2009-5754

なお、既述のごとく必要に応じて圧縮機と電動機および膨張機と発電機をそれぞれに組み合わせてそれぞれ個別の容器内に収納するか圧縮機と電動機のみを共通容器に収納しても良い(図示せず)。特に膨張機と発電機を一体的に共通容器に収納すると周囲温度が中高温となり耐熱用に特別の配慮が必要と懸念されるような場合がその例である。この際は該電動機と該発電機は電気的に制御可能なように結合し互いの機能を連携して始動から運転及び停動させる。As described above, a compressor and an electric motor and an expander and an electric generator may be combined and stored in separate containers as necessary, or only the compressor and the electric motor may be stored in a common container. Not shown). In particular, when the expander and the generator are integrally stored in a common container, the ambient temperature becomes a medium high temperature, and there is a concern that special consideration is required for heat resistance. At this time, the electric motor and the generator are coupled so as to be electrically controllable, and their functions are linked to start and stop operation from the start.

以上説明したように、本発明によれば比較的簡単な構造で実用性の高い高性能なガスサイクル式外燃機関が可能となり従来エネルギー回生が困難であった中高温排熱や燃焼熱が動力として有効に活用され冒頭に述べたごとく多くのクリーンで高効率な民生用エネルギー機器やその応用技術分野への展開が可能となる。As described above, according to the present invention, a high-performance gas cycle type external combustion engine having a relatively simple structure and high practicality is possible, and medium-to-high temperature exhaust heat and combustion heat, which has been difficult to regenerate energy conventionally, are driven by power. As described in the introduction, it is possible to deploy to many clean and highly efficient consumer energy devices and their applied technology fields.

作動媒体のモリエル線図(圧力−エンタルピー線図)Mollier diagram of working medium (pressure-enthalpy diagram) 基本構造およびシステム図Basic structure and system diagram 図2のシステムを基本にして変化させた構造および応用システム図Structure and application system diagram changed based on the system of FIG.

(1)第1段圧縮機 (2)第2段圧縮機
(3)膨張機 (4)電動機兼発電機
(5)加熱器 (6)主冷却器
(7)中間冷却器 (8)軸
(9)容器 (10)隔壁
(11)制御機構 (12)熱再生器
(1) First stage compressor (2) Second stage compressor (3) Expander (4) Motor / generator (5) Heater (6) Main cooler (7) Intermediate cooler (8) Shaft ( 9) Container (10) Bulkhead (11) Control mechanism (12) Heat regenerator

Claims (10)

過熱状態の作動媒体を容積型圧縮機で略等温圧縮し、加熱器で加熱後、容積型膨張機で略断熱膨張させた後冷却して再び当初の圧縮工程に復する熱サイクルを構成し、該膨張機の軸出力が該圧縮機の軸動力を上回る分を正味軸出力として取り出せるように構成してなるガスサイクル式外燃機関。The overheated working medium is compressed almost isothermally with a positive displacement compressor, heated with a heater, then substantially adiabatic expansion with a positive displacement expander, and then cooled to return to the original compression process again. A gas cycle type external combustion engine configured such that a shaft output of the expander exceeding a shaft power of the compressor can be taken out as a net shaft output. 過熱状態の作動媒体を2段以上の多段で各段の中間に中間冷却器を設けて冷却する容積型多段圧縮機で圧縮し、さらに加熱器で加熱後、1段の容積型膨張機で膨張させその後冷却して再び当初の圧縮工程に復する熱サイクルを構成し、該膨張機の軸出力が該圧縮機の軸動力を上回る分を正味軸出力として取り出せるように構成してなるガスサイクル式外燃機関。The working medium in an overheated state is compressed by a positive displacement multistage compressor that is cooled in two or more stages by providing an intermediate cooler in the middle of each stage, further heated by a heater, and then expanded by a one stage positive displacement expander A gas cycle system in which the heat cycle is cooled and then restored to the original compression process, and the shaft output of the expander exceeds the shaft power of the compressor so that the net shaft output can be taken out. External combustion engine. 請求項1および(あるいは)請求項2におけるガスサイクル式外燃機関において該圧縮機、該圧縮機駆動用電動機、該膨張機、該膨張機出力取出用発電機または前記電動機と前記発電機の替わりに両者の機能を兼用する電動機兼発電機を共通軸で結合する機構を構成すること。3. The gas cycle type external combustion engine according to claim 1 and / or claim 2, wherein the compressor, the compressor driving motor, the expander, the expander output extraction generator, or the motor and the generator are replaced. In addition, a mechanism that combines an electric motor / generator that serves both functions with a common shaft is configured. 請求項3における共通軸で結合される該圧縮機、該膨張機および該電動機および発電機または電動機兼発電機を共通の容器に収納する構成とすること。The compressor, the expander, the electric motor, and the generator or the electric motor / generator coupled with a common shaft according to claim 3 are housed in a common container. 請求項3において該圧縮機、該膨張機および該電動機および発電機または電動機兼発電機の各軸間に相互の回転速度および(あるいは)位相を変換、制御できる装置を適宜設けて連結する機構を構成すること。A mechanism for appropriately connecting and connecting a device capable of converting and controlling the mutual rotational speed and / or phase between the shafts of the compressor, the expander, the electric motor and the generator or the electric motor / generator according to claim 3. Make up. 請求項4における該容器内に該膨張機から吐出後冷却された作動媒体を導き該圧縮機の吸入に供するよう構成すること。The working medium cooled after being discharged from the expander is introduced into the container according to claim 4 so as to be used for suction of the compressor. 請求項4における該容器内に、請求項2における該多段圧縮方式を供する場合、該圧縮機の第1段から吐出後中間冷却された作動媒体を導き該圧縮機の第2段目の吸入に供するよう構成すること。When the multistage compression system according to claim 2 is provided in the container according to claim 4, the working medium that has been intercooled after discharge from the first stage of the compressor is guided to the second stage suction of the compressor. Configure to serve. 請求項4において該容器内で該膨張機のみ他の該構成要素と熱的におよび(あるいは)圧力的に遮断する隔壁を設けること。5. The partition according to claim 4, wherein only the expander is thermally and / or pressure-isolated from the other components in the container. 請求項1および(あるいは)請求項2における該圧縮機の吐出作動媒体の有する熱と該膨張機の吐出作動媒体の有する熱を熱再生器で熱交換し、後者は前者を予熱し前者は後者を予冷するように出来るよう構成すること。The heat of the discharge working medium of the compressor and the heat of the discharge working medium of the expander in claim 1 and / or claim 2 are heat-exchanged by a heat regenerator, the latter preheats the former, and the former To be able to pre-cool. 請求項4において該膨張機と該発電機のみ該容器から除外し、該圧縮機用電動機とは電気回路で制御可能なように結合する機構を構成すること。5. The mechanism according to claim 4, wherein only the expander and the generator are excluded from the container, and the compressor motor is configured so as to be controlled by an electric circuit.
JP2009264361A 2009-10-29 2009-10-29 Gas cycle type external combustion engine Pending JP2011094942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264361A JP2011094942A (en) 2009-10-29 2009-10-29 Gas cycle type external combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264361A JP2011094942A (en) 2009-10-29 2009-10-29 Gas cycle type external combustion engine

Publications (1)

Publication Number Publication Date
JP2011094942A true JP2011094942A (en) 2011-05-12

Family

ID=44112047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264361A Pending JP2011094942A (en) 2009-10-29 2009-10-29 Gas cycle type external combustion engine

Country Status (1)

Country Link
JP (1) JP2011094942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248590A1 (en) * 2019-06-13 2020-12-17 李华玉 Reverse single-working-media steam combined cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248590A1 (en) * 2019-06-13 2020-12-17 李华玉 Reverse single-working-media steam combined cycle
GB2601642A (en) * 2019-06-13 2022-06-08 Li Huayu Reverse single-working-media steam combined cycle
GB2601642B (en) * 2019-06-13 2023-03-29 Li Huayu Reverse single-working-media steam combined cycle

Similar Documents

Publication Publication Date Title
US8820083B2 (en) Thermodynamic cycle with compressor recuperation, and associated systems and methods
US9964004B2 (en) Apparatus, systems, and methods for low grade waste heat management
WO2011058832A1 (en) Engine waste heat recovery power-generating turbo system and reciprocating engine system provided therewith
WO2010027511A1 (en) Closed loop scroll expander engine
JP4649268B2 (en) Natural refrigerant heat pump system
GB2501685A (en) Apparatus for storing energy
CN101988397A (en) Low-grade heat-flow prime mover, generating system and method thereof
US20160377025A1 (en) Thermal Energy Recovery System
JP2014517189A (en) Hot air engine
JP2009270559A (en) Rotary type external combustion engine
CN106839485A (en) CO 2 cross-critical cooling cycle system based on Driven by Solar Energy auxiliary supercooling
CN106677850B (en) The device externally to be done work using environment thermal energy
JP2009144598A (en) External combustion engine
JP2011094942A (en) Gas cycle type external combustion engine
CN206942822U (en) The device externally to be done work using environment thermal energy
JP2008163931A (en) Scroll type external combustion engine
JP2011038503A (en) Co-generation system with external combustion engine
KR102479057B1 (en) System for generation able to stirling engine
US20080098751A1 (en) Stirling system and freezer system using the same
JP4997462B2 (en) Stirling regenerative external combustion system and refrigerator system using the same
JP2004036942A (en) Volumetric rankine engine
JP5628118B2 (en) Vane rotary type heating and cooling equipment
JP2011137432A (en) External combustion engine having lubricating oil circuit
JP2009115435A (en) Air conditioning system
CN103174543A (en) Rotor-type Stirling engine