JP2011094055A - Method for producing phenol resin - Google Patents

Method for producing phenol resin Download PDF

Info

Publication number
JP2011094055A
JP2011094055A JP2009250293A JP2009250293A JP2011094055A JP 2011094055 A JP2011094055 A JP 2011094055A JP 2009250293 A JP2009250293 A JP 2009250293A JP 2009250293 A JP2009250293 A JP 2009250293A JP 2011094055 A JP2011094055 A JP 2011094055A
Authority
JP
Japan
Prior art keywords
formaldehyde
mass
resin
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009250293A
Other languages
Japanese (ja)
Other versions
JP5472711B2 (en
Inventor
Tomi Shin
東美 申
Tadayuki Inoue
唯之 井上
Shijun Hou
シジュン ホウ
Fengu Sun
フェング スン
Dong Liang
ドング リアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2009250293A priority Critical patent/JP5472711B2/en
Publication of JP2011094055A publication Critical patent/JP2011094055A/en
Application granted granted Critical
Publication of JP5472711B2 publication Critical patent/JP5472711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resol-type phenol resin, which has excellent water-dilutability and is reduced in the amount of remaining monomer. <P>SOLUTION: First, a reaction product (α) is obtained by reacting formaldehyde (F) and an alkanone (A) in a ratio that the molar ratio (formaldehyde(F)/alkanone(A)) of formaldehyde (F) to alkanone (A) is 3/1 to 8/1. Then, the reaction product (α), phenols (P) and formaldehyde (F') are reacted in the presence of an alkali catalyst in a ratio that the mass ratio (reaction product (α)/phenols (P)/formaldehyde (F')) is 10/100/15 to 230/100/100. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水希釈性が良好であり、かつ、残存モノマーの少ない環境負荷が軽減されたレゾール型フェノール樹脂の製造方法に関する。   The present invention relates to a method for producing a resol type phenolic resin having good water reducibility and reduced environmental burden with little residual monomer.

フェノール樹脂は、耐熱性、接着性、機械的特性、電気的特性、価格優位性等に優れることから、摩擦材用結合剤、発泡成形体、研削材用結合剤、木材用接着剤、積層材用結合剤、鋳型用結合剤、鋳物中子用結着剤、コーティング剤、エポキシ樹脂硬化剤等として幅広く使用されている。斯かるフェノール樹脂は、フェノール類とアルデヒド類とを反応させて得られるものであり、触媒としてアルカリ金属あるいはアルカリ土類金属の水酸化物を用いるアルカリレゾール樹脂、またアンモニアを用いるアンモニアレゾール樹脂、2価金属塩を用いるハイオルソ型樹脂、触媒として酸類を用いたノボラック樹脂等が一般的に知られている。   Phenolic resins are excellent in heat resistance, adhesiveness, mechanical properties, electrical properties, price advantages, etc., so friction material binders, foam moldings, abrasive binders, wood adhesives, laminates It is widely used as a binder for molds, a binder for molds, a binder for casting cores, a coating agent, an epoxy resin curing agent and the like. Such a phenol resin is obtained by reacting phenols and aldehydes, and an alkali resole resin using an alkali metal or alkaline earth metal hydroxide as a catalyst, or an ammonia resole resin using ammonia, 2 High-ortho type resins using valent metal salts, novolak resins using acids as catalysts, and the like are generally known.

近年、環境負荷軽減の観点、安全性の点から有機溶剤使用量を用いない、或いは有機溶剤使用量の少ない材料が求められており、この点から水希釈性の高いレゾール樹脂が求められている。しかしながら、かかるレゾール樹脂の水希釈性は、通常、レゾール樹脂の分子量が小さくなるにつれて向上するため、低分子量化により水希釈性を高めようとする場合、硬化物強度や耐熱性が低下してしまうという問題がある他、フェノールとホルマリンとの重縮合反応において反応が十分に進行していない、或いは、フェノールに対してホルマリンを過剰に使用する必要から残存フェノールや、揮発性の残存ホルマリンが多くなり、やはり環境負荷を増大させるものであった。とりわけ、レゾール樹脂は、水性化が可能であるものの、自己硬化型の熱硬化性樹脂であるために高温下での蒸留ができず、未反応フェノール類、アルデヒド類、或いは1核体成分などの残存モノマーが樹脂中に残存し易いものであった。   In recent years, there has been a demand for materials that do not use an organic solvent usage amount or a low organic solvent usage amount from the viewpoint of reducing environmental impact and safety. From this point, a resol resin having a high water dilution property is required. . However, the water-reducibility of such a resole resin usually improves as the molecular weight of the resole resin decreases, so that when the water-reducibility is increased by lowering the molecular weight, the strength and heat resistance of the cured product are reduced. In addition, the reaction does not proceed sufficiently in the polycondensation reaction between phenol and formalin, or there is an increase in residual phenol and volatile residual formalin due to the need to use formalin in excess of phenol. After all, it increased the environmental load. In particular, although resole resins can be made water-based, they cannot be distilled at high temperatures because they are self-curing thermosetting resins, such as unreacted phenols, aldehydes, or mononuclear components. Residual monomers were likely to remain in the resin.

従来より、環境負荷軽減の観点からレゾール樹脂の残存モノマーを低減する手段としては、例えば、ホルマリンとフェノールとを反応させてレゾール樹脂を得た後に、エチレン尿素を加え系内に残存する未反応ホルムアルデヒドと反応させることによって未反応ホルムアルデヒド量を低減させる技術が知られている(下記特許文献1参照)。然し乍ら、斯かる技術は残存モノマー量を低減させるには有効な手段ではあるものの、水希釈性を向上させる効果はない。レゾール樹脂の水希釈性を高めるには、反応時間を短くして分子量が小さくなるようにすればよいが、この場合、多量の未反応ホルムアルデヒドが残存する為、高価なエチレン尿素を多量に加える必要があり、経済性に劣る他、機械的強度の低下などの弊害が生じるものであった。   Conventionally, as a means for reducing the residual monomer of the resole resin from the viewpoint of reducing environmental impact, for example, after reacting formalin and phenol to obtain a resole resin, unreacted formaldehyde remaining in the system by adding ethylene urea There is known a technique for reducing the amount of unreacted formaldehyde by reacting with (see Patent Document 1 below). However, although such a technique is an effective means for reducing the amount of residual monomer, it does not have an effect of improving water dilutability. In order to increase the water-dilutability of the resole resin, the reaction time should be shortened to reduce the molecular weight. In this case, a large amount of unreacted formaldehyde remains, so a large amount of expensive ethylene urea must be added. In addition to being inferior in economic efficiency, there are problems such as a decrease in mechanical strength.

このように、レゾール樹脂の分野では、残存モノマー量の低減を図りながら、水希釈性を向上させる技術が存在しないのが現状であった。   As described above, in the field of resol resins, there is currently no technology for improving water dilutability while reducing the amount of residual monomer.

特開2009−13298号公報JP 2009-13298 A

本発明が解決しようとする課題は、優れた水希釈性を有し、かつ、残存モノマー量が低減されたレゾール型フェノール樹脂の製造方法を提供することにある。   The problem to be solved by the present invention is to provide a method for producing a resol type phenolic resin having excellent water reducibility and a reduced amount of residual monomers.

本発明者等は鋭意検討を重ねた結果、フェノール類、ホルムアルデヒド、及びアセトンを、所定割合で混合し、アルカリ触媒存在下に反応させることにより、高粘度であり乍らも水希釈性に優れ、かつ、揮発成分が少ないレゾール型のフェノール樹脂が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventors mixed phenols, formaldehyde, and acetone at a predetermined ratio, and reacted in the presence of an alkali catalyst, thereby having high viscosity and excellent water reducibility. And it discovered that the resol type phenol resin with few volatile components was obtained, and came to complete this invention.

即ち、本発明は、ホルムアルデヒド(F)及びアルカノン(A)を、アルカノン(A)に対するホルムアルデヒド(F)のモル比[ホルムアルデヒド(F)/アルカノン(A)]が3/1〜8/1となる割合で反応させて反応生成物(α)を得、次いで、該反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)とを、アルカリ触媒の存在下、これらの質量比[該反応生成物(α)/フェノール類(P)/ホルムアルデヒド(F’)]が10/100/15〜230/100/100となる割合で反応させることを特徴とするフェノール樹脂の製造方法に関する。   That is, in the present invention, the molar ratio of formaldehyde (F) to alkanone (A) of formaldehyde (F) and alkanone (A) [formaldehyde (F) / alkanone (A)] is 3/1 to 8/1. The reaction product (α) is reacted at a ratio, and then the reaction product (α), phenols (P) and formaldehyde (F ′) are added in the presence of an alkali catalyst in the mass ratio [the The reaction product (α) / phenols (P) / formaldehyde (F ′)] is reacted at a ratio of 10/100/15 to 230/100/100.

本発明によれば、高粘度でありながら優れた水希釈性を有し、かつ、残存モノマー量が低減されたレゾール型のフェノール樹脂の製造方法を提供することにある。   According to the present invention, there is provided a method for producing a resol type phenolic resin having excellent water reducibility while having a high viscosity and having a reduced amount of residual monomers.

本発明の製造方法は、具体的には、先ず、ホルムアルデヒド(F)とアルカノン(A)とを、両者のモル比[ホルムアルデヒド(F)/アルカノン(A)]が3/1〜8/1となる割合で反応させて反応生成物(α)を得る。ここで、アルカノン(A)に対するホルムアルデヒド(F)のモル比[ホルムアルデヒド(F)/アルカノン(A)]が、8を超える場合には、最終的に得られるレゾール型のフェノール樹脂中の残存ホルムアルデヒド量が多くなる。他方、3を下回る場合には、最終的に得られるレゾール型のフェノール樹脂の水希釈性が低くなる。該反応は、アルカリ触媒存在下に行うことができ、また、反応温度は25℃〜80℃の範囲で行うことができる。反応終了後は、室温まで冷却して反応生成物(α)を得ることができる。   Specifically, in the production method of the present invention, first, formaldehyde (F) and alkanone (A) are mixed at a molar ratio [formaldehyde (F) / alkanone (A)] of 3/1 to 8/1. The reaction product (α) is obtained by reacting at a ratio of Here, when the molar ratio of formaldehyde (F) to alkanone (A) [formaldehyde (F) / alkanone (A)] exceeds 8, the amount of residual formaldehyde in the resol type phenol resin finally obtained Will increase. On the other hand, if it is less than 3, the water-reducibility of the finally obtained resol type phenolic resin will be low. The reaction can be carried out in the presence of an alkali catalyst, and the reaction temperature can be carried out in the range of 25 ° C to 80 ° C. After completion of the reaction, the reaction product (α) can be obtained by cooling to room temperature.

次いで、得られた反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)とを、アルカリ触媒の存在下、これらの質量比[該反応生成物(α)/フェノール類(P)/ホルムアルデヒド(F’)]が10/100/15〜230/100/100となる割合で反応させることにより目的とするフェノール樹脂を得ることができる。   Next, the obtained reaction product (α), phenols (P) and formaldehyde (F ′) are mixed in the presence of an alkali catalyst in the mass ratio [the reaction product (α) / phenols (P). / Formaldehyde (F ′)] can be reacted at a ratio of 10/100/15 to 230/100/100 to obtain a target phenol resin.

ここで、前記反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)との反応比率である質量比[該反応生成物(α)/フェノール類(P)/ホルムアルデヒド(F’)]において、フェノール類(P)100質量部に対して前記反応生成物(α)の質量が10質量部未満の場合には、最終的に得られるレゾール型のフェノール樹脂の水希釈性が低くなり、また、230質量部を上回る場合には、該フェノール樹脂の分子量が低くなり、硬化物強度や耐熱性が低下する。これらの水希釈性と硬化物の物性とのバランスに優れる点から、特に15〜110質量部の範囲であることが好ましい。   Here, the mass ratio which is the reaction ratio of the reaction product (α), phenols (P) and formaldehyde (F ′) [the reaction products (α) / phenols (P) / formaldehyde (F ′) ], When the mass of the reaction product (α) is less than 10 parts by mass with respect to 100 parts by mass of the phenols (P), the water-reducibility of the finally obtained resol-type phenol resin becomes low. Moreover, when it exceeds 230 mass parts, the molecular weight of this phenol resin will become low, and hardened | cured material intensity | strength and heat resistance will fall. From the point of being excellent in the balance between these water dilutability and the physical properties of the cured product, it is particularly preferably in the range of 15 to 110 parts by mass.

一方、フェノール類(P)100質量部に対するホルムアルデヒド(F’)の量が15質量部未満の場合には、最終的に得られるレゾール型のフェノール樹脂の水希釈性が低くなることに加え、分子量も高くならず十分な硬化物強度や耐熱性が得られないものとなる。また、フェノール類(P)100質量部に対するホルムアルデヒド(F’)の量が100質量部を超える場合には、最終的に得られるレゾール型のフェノール樹脂中の残存ホルムアルデヒド量が多くなる。   On the other hand, when the amount of formaldehyde (F ′) is less than 15 parts by mass with respect to 100 parts by mass of the phenols (P), the water-reducibility of the finally obtained resol-type phenol resin becomes low, and the molecular weight However, the cured product does not have a sufficient strength and heat resistance. Further, when the amount of formaldehyde (F ′) exceeds 100 parts by mass with respect to 100 parts by mass of the phenols (P), the amount of residual formaldehyde in the finally obtained resol type phenol resin increases.

前記反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)との反応は、を反応させる際の温度条件は、アルカリ触媒存在下で40〜90℃の温度条件下に行うことができる。   The reaction between the reaction product (α), phenols (P) and formaldehyde (F ′) is carried out under a temperature condition of 40 to 90 ° C. in the presence of an alkali catalyst. it can.

ここで用いるフェノール類(P)としては、フェノール;ビスフェノールA、ビスフェノールF等のビスフェノール類;クレゾール、キシレノール、エチルフェノール、ブチルフェノール、オクチルフェノールなどのアルキルフェノール類;レゾルシン、カテコールなどの多価フェノール類;平均核体数3〜10のレゾール樹脂又は平均核体数3〜10のノボラック樹脂、ハロゲン化フェノール、フェニルフェノール、アミノフェノール等が挙げられる。また、これらのフェノール類は、その使用にあたって1種類のみに限定されるものではなく、2種以上を併用してもよい。これらのなかでも特にフェノール、アルキルフェノール、ビスフェノール、平均核体数3〜10のレゾール樹脂、及び平均核体数3〜10のノボラック樹脂が実用性の点から好ましく、特に、最終的に得られるレゾール型のフェノール樹脂の水希釈性、及び反応性の点からフェノール及びクレゾールが好ましい。   The phenols (P) used here include phenol; bisphenols such as bisphenol A and bisphenol F; alkylphenols such as cresol, xylenol, ethylphenol, butylphenol, and octylphenol; polyhydric phenols such as resorcin and catechol; Examples thereof include resole resins having 3 to 10 bodies, novolak resins having an average nucleus number of 3 to 10, halogenated phenols, phenylphenols, aminophenols, and the like. In addition, these phenols are not limited to one type in use, and two or more types may be used in combination. Among these, phenol, alkylphenol, bisphenol, a resole resin having an average number of nuclei of 3 to 10 and a novolak resin having an average number of nuclei of 3 to 10 are preferable from the viewpoint of practicality. Phenol and cresol are preferable from the viewpoint of water dilution and reactivity of the phenol resin.

また、ホルムアルデヒド(F)のホルムアルデヒド源としては、例えば、ホルマリン、パラホルムアルデヒド、トリオキサン等が挙げられる。ここで、ホルマリンは水希釈性や製造時の作業性の点から35〜60質量%のホルマリンであることが好ましい。   Examples of the formaldehyde source of formaldehyde (F) include formalin, paraformaldehyde, and trioxane. Here, it is preferable that formalin is 35-60 mass% formalin from the point of water reducibility and workability | operativity at the time of manufacture.

本発明で用いるアルカノン(A)は、具体的には、アセトン、メチルエチルケトンが挙げられるが、反応性が良好で分子量がより高くなる点からアセトンであることが好ましい。   Specific examples of the alkanone (A) used in the present invention include acetone and methyl ethyl ketone, and acetone is preferable from the viewpoint of good reactivity and higher molecular weight.

前記したホルムアルデヒド(F)とアルカノン(A)との反応、及び、反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)との反応に用いられるアルカリ触媒としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属の水酸化物、カルシウム、マグネシウム、バリウム等のアルカリ土類金属の酸化物及び水酸化物、アンモニア、モノエタノールアミン等の第1級アミン、ジエタノールアミン等の第2級アミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン、ジアザビシクロウンデセン等の第3級アミン等のアミン系化合物、あるいはナトリウムリン酸塩、カリウムリン酸塩、炭酸ナトリウム、炭酸カリウム、テトラメチルアンモニウムヒドロキシド、ヘキサメチレンテトラミン等のアルカリ性物質等が挙げられる。   Examples of the alkali catalyst used in the reaction between the formaldehyde (F) and the alkanone (A) and the reaction between the reaction product (α), the phenol (P) and the formaldehyde (F ′) include, for example, hydroxylation. Alkali metal hydroxides such as sodium, lithium hydroxide and potassium hydroxide, alkaline earth metal oxides and hydroxides such as calcium, magnesium and barium, primary amines such as ammonia and monoethanolamine, diethanolamine Secondary amines such as trimethylamine, triethylamine, triethanolamine, tertiary amines such as diazabicycloundecene, or sodium phosphate, potassium phosphate, sodium carbonate, potassium carbonate, tetra Methyl ammonium hydroxide, hexamethylene tetra Alkaline substance such as emissions and the like.

これらのなかでも高い水希釈性が得られる点からアルカリ金属の水酸化物が好ましい。また、前記した反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)との反応における、前記アルカリ触媒の使用量は、反応系のpHが7.5〜11となる範囲であることが反応性の点から好ましい。   Among these, alkali metal hydroxides are preferable from the viewpoint that high water reducibility can be obtained. Moreover, the usage-amount of the said alkali catalyst in reaction with an above described reaction product ((alpha)), phenols (P), and formaldehyde (F ') is the range from which the pH of a reaction system will be 7.5-11. It is preferable from the viewpoint of reactivity.

前記した反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)との反応は、ホルムアルデヒド量が固形分中1質量%未満、特に0.5質量%未満、残留フェノール類(P)量が2質量%未満、特に1質量%未満となるまで行うことが好ましい。本発明ではこのように未反応成分量が著しく低減されるまで反応をおこなっても水希釈性が損なわれることがなく、寧ろ優れた水希釈性が発現されることは特筆すべき点である。また、本発明の製造方法における反応時間は約4〜9時間程度であり、生産性が極めて良好である。このように従来に比べ遜色のない反応時間で高分子量、低モノマー、かつ、高水希釈性のレゾール型のフェノール樹脂を得ることができる。   The reaction of the reaction product (α), phenols (P) and formaldehyde (F ′) described above has a formaldehyde content of less than 1% by mass, particularly less than 0.5% by mass, and residual phenols (P). It is preferable to carry out until the amount is less than 2% by mass, particularly less than 1% by mass. In the present invention, it is worthy of special mention that even if the reaction is carried out until the amount of unreacted components is remarkably reduced, the water dilutability is not impaired and rather excellent water dilutability is exhibited. The reaction time in the production method of the present invention is about 4 to 9 hours, and the productivity is very good. As described above, a resol type phenol resin having a high molecular weight, a low monomer, and a high water reducibility can be obtained with a reaction time comparable to that of the prior art.

反応終了後、必要により酸性物質を加え中和を行っても良い。ここで用いる酸性物質としては、ホウ酸、乳酸、硫酸、塩酸等が挙げられるが、アルカリ触媒として、アルカリ金属の水酸化物を用いた場合、該酸性物質としてホウ酸を用いることにより、得られるレゾール型のフェノール樹脂の水希釈性を高めることができる点から好ましい。   After completion of the reaction, neutralization may be performed by adding an acidic substance if necessary. Examples of the acidic substance used here include boric acid, lactic acid, sulfuric acid, hydrochloric acid, and the like. When an alkali metal hydroxide is used as the alkali catalyst, it can be obtained by using boric acid as the acidic substance. It is preferable from the point that the water reducibility of a resol type phenol resin can be improved.

また、本発明で得られるレゾール型のフェノール樹脂は残存モノマーが充分に低減されているものであるが、必要によりホルマリン捕捉剤を併用してもよい。ホルマリン捕捉剤としては、レゾルシン、尿素、メラミン、ビューレット等が挙げられる。   Moreover, although the residual monomer is sufficiently reduced in the resol type phenol resin obtained in the present invention, a formalin scavenger may be used in combination as necessary. Examples of the formalin scavenger include resorcin, urea, melamine, burette and the like.

このようにして得られるレゾール型のフェノール樹脂は、樹脂中の残留モノマー成分が極めて少なくなると共に水希釈性を飛躍的に高めることができる。具体的には、前記フェノール樹脂の水希釈性は200質量%以上となる。特にアルカリ触媒としてアルカリ金属の水酸化物を用い、かつ、中和剤としてホウ酸を用いた場合には、水希釈性は1000質量%以上となる。ここで、水希釈性とは、該フェノール樹脂中に溶解し得る水の量を意味し、該フェノール樹脂に徐徐に水を加えていって、系内が白濁した時点での系内の水分量を系内の樹脂量を基準にして表したものである。具体的には、下記式で表すことができる。よって、前記フェノール樹脂は優れた水希釈性を有する為、有機溶剤を全く用いない完全水系の組成物とすることができる。   The resol-type phenol resin thus obtained can drastically increase water reducibility while extremely reducing the residual monomer component in the resin. Specifically, the water reducibility of the phenol resin is 200% by mass or more. In particular, when an alkali metal hydroxide is used as the alkali catalyst and boric acid is used as the neutralizing agent, the water dilutability is 1000% by mass or more. Here, the water dilutability means the amount of water that can be dissolved in the phenol resin, and the amount of water in the system at the time when the system becomes cloudy when water is gradually added to the phenol resin. Is expressed on the basis of the amount of resin in the system. Specifically, it can be represented by the following formula. Therefore, since the phenol resin has excellent water reducibility, it can be a completely water-based composition using no organic solvent.

水希釈性(質量%)=[(水質量/樹脂質量)×100] Water reducibility (mass%) = [(water mass / resin mass) × 100]

本発明の製造方法によって得られたレゾール型のフェノール樹脂は、未反応成分の除去工程を行わなくも、残存ホルムアルデヒド量、残留フェノール類(P)量が充分に低いものであるが、必要に応じて、溶剤抽出等の常法により未反応原料成分を除去してもよい。   The resol-type phenolic resin obtained by the production method of the present invention has a sufficiently low amount of residual formaldehyde and residual phenols (P) without performing a step of removing unreacted components. The unreacted raw material components may be removed by a conventional method such as solvent extraction.

このようにして得られたレゾール型のフェノール樹脂は、通常、水溶液の状態で用いることができ、取扱いの容易さから、不揮発分濃度が50〜60質量%の範囲であることが好ましい。また、そのpHは5〜8の範囲であることが好ましい。更に、該フェノール樹脂は水への溶解性に優れることから不揮発分濃度が高い割に水溶液にした場合の粘度は低くなる。具体的には、不揮発分濃度が50〜60質量%の水溶液における粘度が50〜1000mPa・sの範囲となる。   The resol-type phenolic resin thus obtained can be usually used in the form of an aqueous solution, and the concentration of nonvolatile content is preferably in the range of 50 to 60% by mass for ease of handling. Moreover, it is preferable that the pH is the range of 5-8. Furthermore, since the phenol resin is excellent in solubility in water, the viscosity when it is made into an aqueous solution for a high non-volatile content is low. Specifically, the viscosity in an aqueous solution having a nonvolatile content concentration of 50 to 60% by mass is in the range of 50 to 1000 mPa · s.

また、該フェノール樹脂は、優れた硬化性を有しており、150℃のホットプレート上でのゲルタイムにおいて通常のレゾール型のフェノール樹脂に比べ、20〜50%の時間となる。また、15℃での貯蔵安定性に優れる他、硬化物の機械強度にも優れる。   The phenol resin has excellent curability, and the gel time on a hot plate at 150 ° C. is 20 to 50% as compared with a normal resol type phenol resin. In addition to excellent storage stability at 15 ° C., the cured product has excellent mechanical strength.

以上詳述した本発明の製造方法によって得られるレゾール型のフェノール樹脂は、優れた水希釈性と低揮発成分とを兼備していることから、接着剤、塗料、鋳型用結合剤、鋳物中子用結着剤、摩擦材用結合剤、耐火物用結着剤、発泡成形体等に用いられている。   Since the resol type phenolic resin obtained by the production method of the present invention described in detail above has both excellent water dilutability and low volatile components, it can be used for adhesives, paints, mold binders, casting cores. It is used for binders for friction, binders for friction materials, binders for refractories, foamed molded products and the like.

これらのなかで、接着剤、塗料用途しては、具体的には、水性塗料のビヒクル樹脂、水性インキのバインダー樹脂として利用することができる他、合板用水性接着剤、各種プラスチック用水性接着剤、パルプ、ガラス繊維等の繊維状物質及び木粉、セルロースパウダー、セラミック等の粒子状物質のバインダーとしても有用である。   Among these, for adhesives and coatings, specifically, it can be used as a vehicle resin for water-based paints, a binder resin for water-based inks, water-based adhesives for plywood, and water-based adhesives for various plastics. It is also useful as a binder for fibrous substances such as pulp and glass fiber and particulate substances such as wood powder, cellulose powder and ceramic.

これらの接着剤、塗料に用いる場合には、水性エポキシ樹脂、水性メラミン樹脂、水性ブロックイソシアネート、水性反応性ウレタン樹脂等の架橋材を併用してもよい。   When these adhesives and paints are used, a crosslinking material such as an aqueous epoxy resin, an aqueous melamine resin, an aqueous blocked isocyanate, or an aqueous reactive urethane resin may be used in combination.

また、本発明で得られるレゾール型のフェノール樹脂は前記した通り、溶媒を全く含まない完全水系で塗料・接着剤とすることができるが、用途に応じ、また、乾燥時の水分の蒸発速度を向上させるためにアルコール等の乾燥促進成分を組成物中0.01〜15質量%の割合で配合してもよい。その他、用途・要求特性に応じて防錆顔料、着色顔料、体質顔料等の顔料類、チキソ剤、粘度調整剤、流動助剤、表面調整剤、一次防錆剤、消泡剤、防腐剤、防かび剤等の各種添加剤を加えても良い。   In addition, as described above, the resol type phenolic resin obtained in the present invention can be used as a paint / adhesive in a completely aqueous system that does not contain any solvent. In order to improve it, you may mix | blend drying acceleration | stimulation components, such as alcohol, in the ratio of 0.01-15 mass% in a composition. In addition, pigments such as rust preventive pigments, colored pigments, extender pigments, thixotropic agents, viscosity modifiers, flow aids, surface modifiers, primary rust preventive agents, antifoaming agents, antiseptics, etc. Various additives such as fungicides may be added.

また、鋳型用結合剤、鋳物中子用結着剤として用いる場合には、例えば前記レゾール型のフェノール樹脂を必要により硬化剤と共に鋳砂と混合、所定形状に硬化造形して使用することができる。   Further, when used as a binder for a mold or a binder for a casting core, for example, the resol type phenol resin can be mixed with a molding sand together with a curing agent if necessary, and cured and shaped into a predetermined shape. .

また、摩擦材用結合剤として用いる場合、天然ダイヤモンド砥粒、人造ダイヤモンド砥粒、アルミナ質砥粒、炭化ケイ素質砥粒等の砥粒を前記レゾール型のフェノール樹脂に共に配合・分散させ、硬化させることにより研磨剤を得ることができる。   In addition, when used as a binder for friction materials, natural diamond abrasive grains, artificial diamond abrasive grains, alumina abrasive grains, silicon carbide abrasive grains, etc. are blended and dispersed together with the resol type phenolic resin, and cured. By doing so, an abrasive can be obtained.

耐火物用結着剤として用いる場合、前記フェノール樹脂を耐火物用骨材とを混練して耐火物煉瓦等の成形品を得ることができる。ここで、耐火物用骨材としては、例えば、SiO、MgO、Al、黒鉛等を含有するものが挙げられる。 When used as a refractory binder, the phenol resin can be kneaded with a refractory aggregate to obtain a molded product such as a refractory brick. Examples of the refractory aggregate for, e.g., SiO 2, MgO, Al 2 O 3, include those containing graphite.

発泡成形体は、前記フェノール樹脂に発泡剤を溶融混練後、発泡成形して得ることができる。ここで用いる発泡剤としては、例えばブタン、ペンタン、シクロペンタン、イソペンタン、ヘキサンなどの炭化水素、塩化メチレン、塩化プロパンなどのハロゲン化炭化水素、パーフルオロヘキサン、パーフルオロペンタンなどのパーフルオロアルカン、パーフルオロブチルメチルエーテル、パーフルオロブチルエチルエーテルなどのハイドロフルオロエーテル、ジフルオロメタン、テトラフルオロエタン、ペンタフルオロエタンなどのハイドロフルオロカーボン、ジクロロエタン、トリクロロエタン、テトラクロロメタン、ジクロロモノフルオロエタン、ジクロロトリフルオロエタン、ジクロロペンタフルオロプロパンなどのハイドロクロロフルオロカーボン、パーフルオロモルホリン、パーフルオロメチルモルホリンなどのフルオロアミンなどが挙げられる。発泡剤の使用量は前記レゾール型のフェノール樹脂100質量部当り0.3〜10質量部の範囲であることが好ましい。   The foamed molded product can be obtained by melt-kneading a foaming agent in the phenol resin and then foam-molding. Examples of the blowing agent used here include hydrocarbons such as butane, pentane, cyclopentane, isopentane, and hexane, halogenated hydrocarbons such as methylene chloride and propane chloride, perfluoroalkanes such as perfluorohexane and perfluoropentane, and perfluoropentane. Hydrofluoroethers such as fluorobutyl methyl ether and perfluorobutyl ethyl ether, hydrofluorocarbons such as difluoromethane, tetrafluoroethane, and pentafluoroethane, dichloroethane, trichloroethane, tetrachloromethane, dichloromonofluoroethane, dichlorotrifluoroethane, dichloro Fluoroamines such as hydrochlorofluorocarbons such as pentafluoropropane, perfluoromorpholine and perfluoromethylmorpholine And the like. The amount of the blowing agent used is preferably in the range of 0.3 to 10 parts by mass per 100 parts by mass of the resol type phenol resin.

以下、実施例により本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

残存フェノール量の測定:残存フェノール量はGPCにより測定。
残存ホルムアルデヒド量はHPLCにより測定
水希釈性の測定:得られたフェノール樹脂に徐徐に水を加えていって、系内が白濁した時点での系内の水分量を系内の樹脂量を基準にして測定した。
Measurement of residual phenol amount: The residual phenol amount was measured by GPC.
The amount of residual formaldehyde is measured by HPLC. Water dilution measurement: Water is gradually added to the obtained phenolic resin, and the amount of water in the system when the system becomes cloudy is used as a reference for the amount of resin in the system. Measured.

[HPLCの測定法]
装置:ウォータース・コーポレーション製「Waters HPLC system」
カラム:「Waters Symmetry C18; 5μm、4.6×250mm」
カラム温度:30℃
溶離液:メタノール/水=43/57
流量:0.8秒/分
検出波長:200−400nm
注入量:5μm
[HPLC measurement method]
Equipment: “Waters HPLC system” manufactured by Waters Corporation
Column: “Waters Symmetry C18; 5 μm, 4.6 × 250 mm”
Column temperature: 30 ° C
Eluent: methanol / water = 43/57
Flow rate: 0.8 sec / min Detection wavelength: 200-400 nm
Injection volume: 5 μm

[GPC測定条件]
カラム:昭和電工製「Shodex KF803」
昭和電工製「Shodex KF802」
昭和電工製「Shodex KF802」
昭和電工製「Shodex KF801」
検出器: RI(示差屈折径)
測定条件: カラム温度40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 分子量が既知の単分散ポリスチレン
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液(25μl)。
[GPC measurement conditions]
Column: Showa Denko "Shodex KF803"
Showa Denko "Shodex KF802"
Showa Denko "Shodex KF802"
Showa Denko "Shodex KF801"
Detector: RI (Differential refraction diameter)
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: Monodispersed polystyrene with a known molecular weight Sample: 1.0 mass% tetrahydrofuran solution (25 μl) in terms of resin solid content.

実施例1
42質量%のホルマリン516g、アセトン70gを1000ml反応容器に入れ、30質量%水酸化ナトリウム8gを加え、30〜40℃で30分反応させた。次いで、50℃に加熱し30分間保持し、30質量%水酸化ナトリウム2gを加え、更に1.5時間保持した後、室温まで冷却し、アセトン−ホルマリン付加体を得た。
得られたアセトン−ホルマリン付加体300gとフェノール300gと42質量%ホルマリン256gを混合し、次いで30質量%水酸化ナトリウムを加えpH9.5−10に調整し、75℃に加熱し、水分散性が200質量%、粘度100−200mPa・sとなるまで反応を行った。次いで冷却し、レゾルシン10gを加えた。室温にて粉末状のホウ酸2〜4gを加え十分に攪拌を行った。
得られたレゾール型のフェノール樹脂は不揮発分濃度54−56質量%、水分散性300質量%、pH6−8、粘度200−300mPa・sであった。未反応フェノールは約1質量%、未反応ホルマリンは約0.5質量%であった。
Example 1
42 mass% formalin 516 g and acetone 70 g were put into a 1000 ml reaction vessel, 30 mass% sodium hydroxide 8 g was added and reacted at 30 to 40 ° C. for 30 minutes. Subsequently, it heated at 50 degreeC and hold | maintained for 30 minutes, after adding 2 mass of 30 mass% sodium hydroxide, and also hold | maintaining for 1.5 hours, it cooled to room temperature and obtained the acetone- formalin adduct.
300 g of the obtained acetone-formalin adduct, 300 g of phenol and 256 g of 42% by mass formalin are mixed, then 30% by mass sodium hydroxide is added to adjust the pH to 9.5-10, and the mixture is heated to 75 ° C. The reaction was carried out until the mass became 200% by mass and the viscosity became 100 to 200 mPa · s. It was then cooled and 10 g resorcin was added. At room temperature, 2-4 g of powdered boric acid was added and sufficiently stirred.
The obtained resol type phenol resin had a nonvolatile content concentration of 54 to 56 mass%, a water dispersibility of 300 mass%, a pH of 6-8, and a viscosity of 200 to 300 mPa · s. Unreacted phenol was about 1% by mass, and unreacted formalin was about 0.5% by mass.

比較例1
フェノール342g、42質量%のホルマリン390gを1000mlの反応容器に入れ、攪拌し、次いで、48質量%水酸化ナトリウム水溶液10gを加え、80℃に昇温させ、該温度にて6時間保持した。次いで、室温に冷却した。
このようにして得られたレゾール型のフェノール樹脂は、不揮発分濃度56質量%、分子量約700、水希釈性10−20質量%、pH約8.5、粘度150mPa・sであった。
未反応フェノールは0.3質量%、未反応ホルムアルデヒドは5質量%、150℃ホットプレートでのゲルタイムは100sであった。
Comparative Example 1
342 g of phenol and 390 g of 42% by mass formalin were placed in a 1000 ml reaction vessel and stirred. Then, 10 g of a 48% by mass aqueous sodium hydroxide solution was added, the temperature was raised to 80 ° C., and the temperature was maintained for 6 hours. It was then cooled to room temperature.
The resol type phenol resin thus obtained had a nonvolatile content concentration of 56% by mass, a molecular weight of about 700, a water dilutability of 10-20% by mass, a pH of about 8.5, and a viscosity of 150 mPa · s.
The unreacted phenol was 0.3% by mass, the unreacted formaldehyde was 5% by mass, and the gel time on a 150 ° C. hot plate was 100 s.

比較例2
フェノール376g、42質量%のホルマリン206g(フェノール1モルに対して0.72モル)を1000mlの反応容器に入れ、攪拌し、シュウ酸1.1gを加え、100℃まで昇温し、1時間保持した。次いで、シュウ酸1.1gを加え、更に1時間反応を継続させた。
次いで、42質量%ホルマリンの228.5gを反応容器に加え、48質量%水酸化ナトリウムを加えてpHを8.5−9に調整し、75−80℃に加熱し、この温度で3−5時間保持した。
次いで、室温に冷却した。
このようにして得られたレゾール型のフェノール樹脂は、不揮発分濃度56質量%、分子量約700以上、水希釈性10−20質量%、pH約8.5、粘度約500mPa・sであった。
未反応フェノールは1質量%、未反応ホルムアルデヒドは3質量%であった。
Comparative Example 2
376 g of phenol and 206 g of 42% by mass of formalin (0.72 mol with respect to 1 mol of phenol) are placed in a 1000 ml reaction vessel, stirred, added with 1.1 g of oxalic acid, heated to 100 ° C. and held for 1 hour. did. Next, 1.1 g of oxalic acid was added and the reaction was continued for another hour.
Next, 228.5 g of 42% by mass formalin was added to the reaction vessel, 48% by mass sodium hydroxide was added to adjust the pH to 8.5-9, and the mixture was heated to 75-80 ° C. Held for hours.
It was then cooled to room temperature.
The resol-type phenol resin thus obtained had a nonvolatile content concentration of 56% by mass, a molecular weight of about 700 or more, a water dilutability of 10-20% by mass, a pH of about 8.5, and a viscosity of about 500 mPa · s.
Unreacted phenol was 1% by mass, and unreacted formaldehyde was 3% by mass.

比較例3
フェノール565g、42質量%のホルマリン280g(フェノール1モルに対して0.65モル)を1000mlの反応容器に入れ、攪拌し、シュウ酸2.0gを加え、100℃まで昇温し、1時間保持した。次いで、シュウ酸2.0gを加え、更に1時間反応を継続させ、更に180℃に加熱し3時間保持した。未反応フェノールを減圧にて除去し、室温に冷却しノボラック樹脂を得た。
この様にして得られたノボラック樹脂の312gにメタノール220g、42質量%ホルマリン145%を加え、更に、水酸化ナトリウムを加えてpHを約9に調整し、ついで75℃にまで昇温し、粘度が300−600mPa・sになるまで反応を行った。
このようにして得られたレゾール型のフェノール樹脂は、不揮発分濃度51〜53質量%、分子量約800以上、水希釈性50−80質量%、pH8−10、未反応フェノールは1質量%、未反応ホルムアルデヒドは2質量%以上であった。
Comparative Example 3
565 g of phenol and 280 g of formalin of 42% by mass (0.65 mol with respect to 1 mol of phenol) are placed in a 1000 ml reaction vessel, stirred, 2.0 g of oxalic acid is added, and the temperature is raised to 100 ° C. and held for 1 hour did. Next, 2.0 g of oxalic acid was added, the reaction was continued for another hour, further heated to 180 ° C. and held for 3 hours. Unreacted phenol was removed under reduced pressure and cooled to room temperature to obtain a novolak resin.
To 312 g of the novolac resin thus obtained, 220 g of methanol and 145% of formalin 145% were added, and sodium hydroxide was added to adjust the pH to about 9, and then the temperature was raised to 75 ° C. The reaction was continued until 300 to 600 mPa · s.
The resol-type phenol resin thus obtained has a non-volatile concentration of 51 to 53% by mass, a molecular weight of about 800 or more, a water dilutability of 50-80% by mass, pH 8-10, 1% by mass of unreacted phenol, The reaction formaldehyde was 2% by mass or more.

比較例4
フェノール400g、42質量%のホルマリン676gを2000mlの反応容器に入れ、攪拌し、48%水酸化ナトリウム水溶液21.2gを加え、80℃に昇温させ、該温度にて4時間保持した。反応温度を50℃に下げ、エチレン尿素14gを加え、30分攪拌し室温に冷却した。得られた樹脂は、不揮発分濃度53〜57%、分子量約500以上、水希釈性180質量%、pH8−10、未反応フェノールは3質量%、未反応ホルムアルデヒドは、0.8質量%であった。
Comparative Example 4
400 g of phenol and 676 g of 42% by mass of formalin were put in a 2000 ml reaction vessel, stirred, 21.2 g of 48% aqueous sodium hydroxide solution was added, the temperature was raised to 80 ° C., and the temperature was maintained for 4 hours. The reaction temperature was lowered to 50 ° C., 14 g of ethylene urea was added, and the mixture was stirred for 30 minutes and cooled to room temperature. The resulting resin had a non-volatile concentration of 53 to 57%, a molecular weight of about 500 or more, a water dilution of 180% by mass, pH 8-10, 3% by mass of unreacted phenol, and 0.8% by mass of unreacted formaldehyde. It was.

Claims (4)

ホルムアルデヒド(F)及びアルカノン(A)を、アルカノン(A)に対するホルムアルデヒド(F)のモル比[ホルムアルデヒド(F)/アルカノン(A)]が3/1〜8/1となる割合で反応させて反応生成物(α)を得、次いで、該反応生成物(α)とフェノール類(P)とホルムアルデヒド(F’)とを、アルカリ触媒の存在下、これらの質量比[該反応生成物(α)/フェノール類(P)/ホルムアルデヒド(F’)]が10/100/15〜230/100/100となる割合で反応させることを特徴とするフェノール樹脂の製造方法。 Reaction by reacting formaldehyde (F) and alkanone (A) at a ratio of formaldehyde (F) to alkanone (A) [formaldehyde (F) / alkanone (A)] of 3/1 to 8/1. A product (α) is obtained, and then the reaction product (α), phenols (P) and formaldehyde (F ′) are mixed in the presence of an alkali catalyst in the mass ratio [the reaction product (α). / Phenols (P) / formaldehyde (F ′)] is reacted at a ratio of 10/100/15 to 230/100/100. 前記フェノール類(P)が、フェノール、アルキルフェノール、ビスフェノール、平均核体数3〜10のレゾール樹脂、及び平均核体数3〜10のノボラック樹脂からなる群から選択されるものである請求項5記載のフェノール樹脂の製造方法。 6. The phenols (P) are selected from the group consisting of phenol, alkylphenol, bisphenol, a resole resin having an average nucleus number of 3 to 10, and a novolak resin having an average nucleus number of 3 to 10. Of producing phenolic resin. 反応終了後、更にホウ酸を加える請求項1記載のフェノール樹脂の製造方法。 The method for producing a phenol resin according to claim 1, wherein boric acid is further added after completion of the reaction. 前記アルカリ触媒が、アルカリ金属水酸化物である請求項3記載のフェノール樹脂の製造方法。 The method for producing a phenol resin according to claim 3, wherein the alkali catalyst is an alkali metal hydroxide.
JP2009250293A 2009-10-30 2009-10-30 Method for producing phenolic resin Active JP5472711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250293A JP5472711B2 (en) 2009-10-30 2009-10-30 Method for producing phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250293A JP5472711B2 (en) 2009-10-30 2009-10-30 Method for producing phenolic resin

Publications (2)

Publication Number Publication Date
JP2011094055A true JP2011094055A (en) 2011-05-12
JP5472711B2 JP5472711B2 (en) 2014-04-16

Family

ID=44111337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250293A Active JP5472711B2 (en) 2009-10-30 2009-10-30 Method for producing phenolic resin

Country Status (1)

Country Link
JP (1) JP5472711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573772A (en) * 2022-03-11 2022-06-03 中国科学院合肥物质科学研究院 Preparation method of phenolic resin shielding material with high boron content

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538884A (en) * 1947-07-18 1951-01-23 Union Carbide & Carbon Corp Acetone-formaldehyde resins
US2538883A (en) * 1947-07-18 1951-01-23 Union Carbide & Carbon Corp Phenol-modified acetone resins
JPS51116894A (en) * 1975-03-17 1976-10-14 Weyerhaeuser Co Acetoneeformaldehydeeresorcinol resin composition and adhesive obtained from its composition
JPH06220149A (en) * 1993-01-27 1994-08-09 Taoka Chem Co Ltd Production of acetone-formaldehyde condenate
JP2001253924A (en) * 2000-03-13 2001-09-18 Sumitomo Durez Co Ltd Phenolic resin composition
JP2004307815A (en) * 2003-03-24 2004-11-04 Sumitomo Bakelite Co Ltd Resol type phenol resin emulsion for papermaking, and its production method
JP2009149904A (en) * 1997-07-15 2009-07-09 Saint-Gobain Isover Phenolic resin for sizing composition, preparation method and sizing composition containing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538884A (en) * 1947-07-18 1951-01-23 Union Carbide & Carbon Corp Acetone-formaldehyde resins
US2538883A (en) * 1947-07-18 1951-01-23 Union Carbide & Carbon Corp Phenol-modified acetone resins
JPS51116894A (en) * 1975-03-17 1976-10-14 Weyerhaeuser Co Acetoneeformaldehydeeresorcinol resin composition and adhesive obtained from its composition
JPH06220149A (en) * 1993-01-27 1994-08-09 Taoka Chem Co Ltd Production of acetone-formaldehyde condenate
JP2009149904A (en) * 1997-07-15 2009-07-09 Saint-Gobain Isover Phenolic resin for sizing composition, preparation method and sizing composition containing same
JP2001253924A (en) * 2000-03-13 2001-09-18 Sumitomo Durez Co Ltd Phenolic resin composition
JP2004307815A (en) * 2003-03-24 2004-11-04 Sumitomo Bakelite Co Ltd Resol type phenol resin emulsion for papermaking, and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573772A (en) * 2022-03-11 2022-06-03 中国科学院合肥物质科学研究院 Preparation method of phenolic resin shielding material with high boron content

Also Published As

Publication number Publication date
JP5472711B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
AU699446B2 (en) Phenolic resin compositions with improved impact resistance
Pilato Phenolic resins: 100 Years and still going strong
MXPA97008801A (en) Compositions of phenolic resins with improved resistance to impa
CA2012052C (en) Phenolic resin compositions
KR101770354B1 (en) Silicic ester modified phenol/formaldehyde novolaks and their use for the production of resin coated substrates
TW200932823A (en) Liquid resin composition for abrasive articles
JP5376238B2 (en) Method for producing phenolic resin
WO2016159218A1 (en) Modified phenolic resole resin composition, method for producing same, and adhesive
JP2011515524A (en) Composition comprising a blend of resins
US3538040A (en) Foundry sand compositions containing room temperature curing resin
JP5472711B2 (en) Method for producing phenolic resin
JP5387299B2 (en) Method for producing phenolic resin
JP2019516819A (en) Method of coating a support with a modified reactive resin composition, coated support means and use of the coated support means in the fracking method
US10894905B2 (en) Halogen and polyhalide mediated phenolic polymerization
JP2006257136A (en) Method for producing novolak type phenol resin
US3499861A (en) Room temperature curing resin and foundry sand composition containing same
KR102520634B1 (en) Catalyst system for curing phenolic resole resin
JP2011515525A (en) Composition comprising a polyol
JP4013111B2 (en) Method for producing resole resin
JP2005240026A (en) Resin composition for molding, and molding material containing the same
JP4129508B2 (en) Refractory binder
JP2009242472A (en) Thermosetting resin composition and thermosetting resin molding material
JP2009096982A (en) Novolac type phenolic resin, novolac type phenolic resin composition, and thermosetting resin molding material
JP3341852B2 (en) Synthetic resin composition and molded article obtained by curing the same
KR850001271B1 (en) Pheno resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5472711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250