JP2011093951A - Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material - Google Patents

Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material Download PDF

Info

Publication number
JP2011093951A
JP2011093951A JP2009246294A JP2009246294A JP2011093951A JP 2011093951 A JP2011093951 A JP 2011093951A JP 2009246294 A JP2009246294 A JP 2009246294A JP 2009246294 A JP2009246294 A JP 2009246294A JP 2011093951 A JP2011093951 A JP 2011093951A
Authority
JP
Japan
Prior art keywords
under
flame retardant
polystyrene resin
expandable polystyrene
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246294A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tarumoto
裕之 樽本
Ryosuke Chiumi
良輔 地海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009246294A priority Critical patent/JP2011093951A/en
Publication of JP2011093951A publication Critical patent/JP2011093951A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an under-roof heat insulation material excellent in environmental compatibility and flame-retardancy, a foamable polystyrene-based resin particle for manufacturing the under-roof heat insulation material used for the manufacturing, and a manufacturing method therefor. <P>SOLUTION: The foamable polystyrene-based resin particle for manufacturing the under-roof heat insulation material includes a flame-retardant having a bromine atom in the molecule, a bromine content of less than 70 mass% and having a benzene ring in the molecule and a 5 mass% decomposition temperature within a range of 200-300°C. The foamable polystyrene-based resin particles are obtained by a melt-extrusion method in which the flame-retardant and a foaming agent are added and kneaded to a polystyrene-based resin in a resin feeding apparatus, a melted resin containing the flame-retardant and the foaming agent is directly extruded from a small hole of a die provided on a distal end of the resin feeding apparatus into a cooling liquid, the extruded article is cut simultaneously when it is extruded, and the extruded article is cooled/solidified by contact with the liquid to obtain the foamable polystyrene-based resin particles. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、環境適合性及び難燃性に優れた屋根下断熱材、その製造に用いられる屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法に関する。本発明の屋根下断熱材は、例えば、野地板等の下地材と屋根葺き材の間に敷設する断熱材などに用いられる。   TECHNICAL FIELD The present invention relates to an underfloor heat insulating material excellent in environmental compatibility and flame retardancy, an expandable polystyrene resin particle for producing an under roof heat insulating material used in the manufacture thereof, and a method for producing the same. The underfloor heat insulating material of the present invention is used, for example, as a heat insulating material laid between a base material such as a field board and a roofing material.

従来、屋根下断熱材としては防水性、耐吸湿性、防湿性および断熱性等のほかに、直射日光などによる繰り返しの高温を受ける状態での熱劣化を起こさないこと(耐熱性)、釘やステープルを打った孔から漏水しないこと、また、温度変化によって膨張したり収縮しないこと(寸法安定性)が求められている。
屋根下断熱材に使用される断熱材は、施工の過程で作業者がその上を歩行することが起こり得るので所要の強度が必要であることに加え、屋根板の上での作業であり、作業の安全性や簡便性の観点から、可能な限り軽量であることが望まれ、10〜200mm程度の厚みのポリスチレン系樹脂発泡成形体が断熱材として用いられることが多い。
さらに、屋根下断熱材は、火災等の発生防止、火災時の延焼による火災の拡大防止等の観点から、通常、一定レベル以上の難燃性能が要求されている。ポリスチレン系樹脂発泡成形体に十分な難燃性能を付与するために、発泡成形体製造用の発泡性ポリスチレン系樹脂粒子に難燃剤を添加して使用している。
さらに、屋根下断熱材は、近年増加傾向にあるシックハウス症候群に対する対策のため、ホルムアルデヒド、トルエン、キシレン、スチレン等の揮発性有機化合物(以下、VOCと略記する場合がある)の放散量を低減することが求められている。
Conventionally, as roofing insulation, in addition to waterproofing, moisture absorption, moisture proofing, and heat insulation, it does not cause thermal degradation under repeated high temperatures due to direct sunlight (heat resistance), nails and There is a demand for not leaking water from the hole where the staples are struck and not expanding or contracting due to temperature change (dimensional stability).
Insulation used for the roof insulation is a work on the roof plate in addition to the required strength because the worker can walk on it during the construction process, From the viewpoints of work safety and simplicity, it is desired to be as light as possible, and a polystyrene resin foam molded body having a thickness of about 10 to 200 mm is often used as a heat insulating material.
Furthermore, the under-floor heat insulating material is usually required to have a certain level of flame retardant performance from the viewpoint of preventing the occurrence of fire and the like, and preventing the spread of fire due to the spread of fire in the event of a fire. In order to impart sufficient flame retardancy to a polystyrene resin foam molded article, a flame retardant is added to the expandable polystyrene resin particles for producing the foam molded article.
Further, under-the-floor heat insulating materials reduce the amount of volatile organic compounds (hereinafter sometimes abbreviated as VOC) such as formaldehyde, toluene, xylene, and styrene as countermeasures against sick house syndrome, which has been increasing in recent years. It is demanded.

従来、ポリスチレン系発泡成形体に難燃性を付与するための技術として、例えば、特許文献1〜3が提案されている。
特許文献1には、スチレン系樹脂100質量部に対して、(A)臭素系難燃剤(I)を0.1〜10質量部含有する有機溶媒液と、又は(B)臭素系難燃剤(I)と(II)とを合計0.1〜10質量部含有する有機溶媒液と、(C)発泡剤とを添加し、加熱発泡せしめることを特徴とする難燃性発泡スチレン系樹脂の製造方法が開示されている。
特許文献2には、テトラブロモビスフェノールAジアリルエーテルを界面活性剤の存在下において粒子径が50μm以下になるように分散した後、軟化剤、難燃助剤、可塑剤及び発泡剤と共にポリスチレン樹脂粒子に含浸させることを特徴とする自己消火性発泡ポリスチレン樹脂粒子の製造方法が開示されている。
特許文献3には、難燃化剤として、70重量%又はこれより多い臭素分を有する有機臭素化合物を含有し、燃焼テストB2(DIN4102による)にパスする自己消火性発泡体をもたらすように処理され得ることを特徴とする粒子状膨張性スチレン重合体が開示されている。
Conventionally, for example, Patent Documents 1 to 3 have been proposed as techniques for imparting flame retardancy to polystyrene-based foamed molded articles.
Patent Document 1 discloses (A) an organic solvent liquid containing 0.1 to 10 parts by mass of a brominated flame retardant (I), or (B) a brominated flame retardant (100 parts by mass of styrene resin). An organic solvent liquid containing 0.1 to 10 parts by mass of I) and (II), and (C) a foaming agent is added and heated and foamed to produce a flame-retardant foamed styrene resin. A method is disclosed.
In Patent Document 2, tetrabromobisphenol A diallyl ether is dispersed so as to have a particle size of 50 μm or less in the presence of a surfactant, and then a polystyrene resin particle together with a softening agent, a flame retardant aid, a plasticizer, and a foaming agent. A method for producing self-extinguishing foamed polystyrene resin particles, characterized by impregnating in a resin, is disclosed.
Patent document 3 contains an organic bromine compound having a bromine content of 70% by weight or more as a flame retardant and is treated to provide a self-extinguishing foam that passes combustion test B2 (according to DIN 4102). Particulate expandable styrene polymers are disclosed which are characterized in that they can be made.

特開昭63−172744号公報JP-A 63-172744 特開平11−130898号公報JP-A-11-130898 特表2001−525001号公報Special table 2001-525001 gazette

しかしながら、前述した従来技術には、次のような問題があった。
特許文献1では、難燃剤を有機溶媒に予め溶解することにより押出機、オートークレーブ中に供給するが、有機溶媒に溶かす工程において揮発性溶媒を用いることは環境に与える悪影響が大きく、VOCの発生の観点から好ましい物ではない。また、発泡に使用する低級脂肪族炭化水素(ブタン、ペンタン)に溶解する工程も発泡剤の揮発による火災等の恐れがあり、危険性が高い。
However, the above-described conventional technique has the following problems.
In Patent Document 1, a flame retardant is preliminarily dissolved in an organic solvent to be supplied into an extruder and an autoclave. However, the use of a volatile solvent in the step of dissolving in an organic solvent has a large adverse effect on the environment, and VOC It is not preferable from the viewpoint of generation. In addition, the process of dissolving in lower aliphatic hydrocarbons (butane and pentane) used for foaming is also dangerous because it may cause a fire due to volatilization of the foaming agent.

特許文献2に開示された従来技術は、難燃剤を界面活性剤の存在下において粒子径が50μm以下になるように分散した後、軟化剤、難燃助剤、可塑剤及び発泡剤と共にポリスチレン樹脂粒子に含浸させて難燃剤含有発泡性ポリスチレン樹脂粒子を製造しているが、このようにポリスチレン樹脂粒子に難燃剤を含浸させる方法では、ポリスチレン樹脂粒子の表面付近に難燃剤が含浸されるものの、樹脂粒子中心付近には難燃剤が存在しないか、含有量が低い難燃剤含有発泡性ポリスチレン樹脂粒子しか得られず、このような樹脂粒子を予備発泡し、更に得られた予備発泡粒子を型内発泡成形して得られる難燃性ポリスチレン系樹脂発泡成形体の機械強度が劣り、成形性や外観が悪くなる問題がある。   In the prior art disclosed in Patent Document 2, a flame retardant is dispersed in the presence of a surfactant so that the particle diameter is 50 μm or less, and then a polystyrene resin together with a softener, a flame retardant aid, a plasticizer, and a foaming agent. Although the flame retardant-containing expandable polystyrene resin particles are produced by impregnating the particles, the method of impregnating the polystyrene resin particles with the flame retardant in this way impregnates the flame retardant near the surface of the polystyrene resin particles, There is no flame retardant near the center of the resin particles, or only low-content flame retardant-containing expandable polystyrene resin particles can be obtained. Such resin particles are pre-expanded, and the obtained pre-expanded particles are put into the mold. There is a problem that the flame-retardant polystyrene-based resin foam molded article obtained by foam molding is inferior in mechanical strength and has poor moldability and appearance.

さらに、特許文献3ではヘキサブロモシクロドデカン(HBCD)等の臭素系難燃剤を用いているが、ヘキサブロモシクロドデカンは化学物質審査規制法第1種監視化学物質であり、経済産業省の既存化学物質安全性点検で難分解・高濃縮が指摘され、さらに欧州リスクアセス評価対象に該当するなど、その安全性には問題があることから、その使用を無くすことが望まれている。   Furthermore, in Patent Document 3, a brominated flame retardant such as hexabromocyclododecane (HBCD) is used. Hexabromocyclododecane is a first-class monitoring chemical substance in the Chemical Substances Examination Regulation Law, and the existing chemistry of METI. Since there is a problem in safety such as difficulty decomposition and high concentration pointed out in the material safety inspection and it falls under the scope of European risk assessment assessment, it is desired to eliminate its use.

本発明は、前記事情に鑑みてなされ、環境や生物に対する安全性が高い難燃剤を用いて十分な難燃性能を有し、機械強度・寸法安定性にも優れた屋根下断熱材の提供を目的とする。   The present invention has been made in view of the above circumstances, and provides a roof insulation material having sufficient flame retardancy using a flame retardant that is highly safe for the environment and living organisms, and excellent in mechanical strength and dimensional stability. Objective.

前記目的を達成するため、本発明は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子であって、
前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内であり、
樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子溶融押出法により得られたものであることを特徴とする屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を提供する。
In order to achieve the above-mentioned object, the present invention is an expandable polystyrene resin particle for producing an under-floor heat insulating material having a polystyrene resin containing a flame retardant and a foaming agent as particles,
The flame retardant has a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a 5% by mass decomposition temperature of the flame retardant of 200 to 300 ° C. Within the range of
A flame retardant and foaming agent are added to and kneaded with polystyrene resin in the resin supply device, and the molten resin containing the flame retardant / foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. For extruding under the roof, characterized by cutting the extrudate at the same time as extruding, and cooling and solidifying the extrudate by contact with a liquid to obtain the foamed polystyrene resin particle melt extrusion method Expandable polystyrene resin particles are provided.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有総量が500ppm未満であることが好ましい。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the total content of aromatic organic compounds consisting of styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, benzene is less than 500 ppm. Is preferred.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上であることが好ましい。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the flame retardant is preferably one or more selected from the group consisting of tetrabromobisphenol A or a derivative thereof.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、前記難燃剤が、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the flame retardant is tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2 , 3-dibromopropyl ether), tetrabromobisphenol A-bis (allyl ether), and preferably one or more selected from the group consisting of tetrabromobisphenol A-bis (allyl ether).

また本発明は、前記屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を加熱して得られた屋根下断熱材製造用予備発泡粒子を提供する。   Moreover, this invention provides the pre-expanded particle for roof under heat insulation manufacture obtained by heating the said foamable polystyrene-type resin particle for roof under heat insulation manufacture.

また本発明は、前記屋根下断熱材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010〜0.050g/cmの範囲である屋根下断熱材を提供する。 Moreover, the present invention provides a roof having a density in the range of 0.010 to 0.050 g / cm 3 obtained by filling the pre-expanded particles for manufacturing the under-floor heat insulating material into a cavity of a mold and heating and foaming. Provide lower insulation.

また本発明は、前記屋根下断熱材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数50倍の発泡成形体について、気泡の平均弦長が50〜350μmの範囲である屋根下断熱材を提供する。   Further, the present invention is obtained by filling the pre-expanded particles for producing the under-floor heat insulating material in a cavity of a molding die and heating and foaming. The foamed molded product having a foam expansion factor of 50 times has an average chord length of the bubbles of 50. Provide an under roof insulation that is in the range of ~ 350 μm.

また本発明は、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに発泡性ポリスチレン系樹脂粒子を得ることを特徴とする屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法を提供する。   Further, the present invention provides a polystyrene resin in a resin supply apparatus having a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and the flame retardant. A flame retardant and a foaming agent having a 5 mass% decomposition temperature in the range of 200 to 300 ° C. are added and kneaded, and the flame retardant / foaming agent-containing molten resin is directly from the small hole of the die attached to the tip of the resin supply device. In the method of extruding into a cooling liquid, cutting the extrudate at the same time as extruding, and cooling and solidifying the extrudate by contact with the liquid to produce expandable polystyrene resin particles, styrene monomer, ethylbenzene, isopropylbenzene, A roof characterized by obtaining expandable polystyrene resin particles without using an aromatic organic compound comprising normal propylbenzene, xylene, toluene and benzene To provide a method of manufacturing a heat insulating material for producing expandable polystyrene resin particles.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法において、前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上であることが好ましい。   In the method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material according to the present invention, the flame retardant is preferably one or more selected from the group consisting of tetrabromobisphenol A or a derivative thereof. .

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法において、前記難燃剤が、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。   In the method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material according to the present invention, the flame retardant is tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-. One or more selected from the group consisting of bis (2,3-dibromopropyl ether) and tetrabromobisphenol A-bis (allyl ether) are preferred.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法において、樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、該装置内で溶融混練することが好ましい。   In the method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, a master batch material containing the flame retardant at a predetermined concentration in a resin is supplied into a resin supply device together with the polystyrene resin, and the device It is preferable to melt-knead in the inside.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤を含有している。前記難燃剤は、環境や生物に対する安全性が高いものであり、特に、テトラブロモビスフェノールA誘導体は、ポリスチレン系樹脂発泡成形体に添加した場合に十分な難燃性能を付与でき、環境や生物に対する安全性が高いので、安全性に優れた屋根下断熱材を提供することができる。
本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られたものなので、樹脂粒子中に難燃剤が均一に存在しており、樹脂粒子中に難燃剤が不均一に存在しているものと比べ、得られる屋根下断熱材の機械強度が高くなり、寸法安定性や成形性にも優れた屋根下断熱材が得られる。
The expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention have a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and the difficulty. It contains a flame retardant having a 5 mass% decomposition temperature in the range of 200 to 300 ° C. The flame retardant is highly safe for the environment and organisms. In particular, the tetrabromobisphenol A derivative can impart sufficient flame retardant performance when added to a polystyrene resin foamed molded article, and is safe for the environment and organisms. Since the safety is high, it is possible to provide a roof under heat insulating material excellent in safety.
The expandable polystyrene resin particles for producing an under-floor heat insulating material according to the present invention are prepared by adding a flame retardant and a foaming agent to a polystyrene resin in a resin supply device, kneading, and adding a flame retardant / foaming agent-containing molten resin to the resin supply device. Extrusion directly into the cooling liquid from the small hole of the die attached to the tip, and simultaneously extruding, cutting the extrudate, and cooling and solidifying the extrudate by contact with the liquid to obtain expandable polystyrene resin particles Since the flame retardant is uniformly present in the resin particles, the mechanical strength of the obtained under-floor insulation is higher than that obtained when the flame retardant is unevenly present in the resin particles. The roof under heat insulating material which becomes high and has excellent dimensional stability and formability can be obtained.

本発明の屋根下断熱材は、前記屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を加熱して予備発泡させ、更に、得られた予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたものなので、環境や生物に対する安全性が高い難燃剤を用いて十分な難燃性能を有し、機械強度・寸法安定性にも優れた屋根下断熱材を提供することができる。   The under-floor heat insulating material of the present invention heats and expands the expandable polystyrene resin particles for manufacturing the under-floor heat insulating material, and further heats the obtained pre-expanded particles in a mold cavity. Since it is obtained by foaming, it is possible to provide a roof insulation material that has sufficient flame retardancy using a flame retardant that is highly safe for the environment and living organisms, and that has excellent mechanical strength and dimensional stability. it can.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法によれば、前述したように優れた効果を有する屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。特に、本発明の製造方法によれば、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有量が低い屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を高効率で製造することができる。
また、本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法において、樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、該装置内で溶融混練することによって、難燃剤をより均一に樹脂粒子に含有させることができる。
According to the method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, it is possible to efficiently produce expandable polystyrene resin particles for producing an under-floor heat insulating material having an excellent effect as described above. it can. In particular, according to the production method of the present invention, an expandable polystyrene system for producing an under-floor heat insulating material having a low content of an aromatic organic compound composed of a styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, and benzene. Resin particles can be produced with high efficiency.
Further, in the method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, a master batch material containing the flame retardant at a predetermined concentration in the resin is supplied into the resin supply apparatus together with the polystyrene resin. By melt-kneading in the apparatus, the flame retardant can be more uniformly contained in the resin particles.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the expandable polystyrene-type resin particle for roof bottom heat insulating material manufacture of this invention.

以下、図面を参照して本発明の実施形態を説明する。
本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法は、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに発泡性ポリスチレン系樹脂粒子を得ることを特徴としている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention has a bromine atom in a molecule and a bromine content of less than 70% by mass in a polystyrene resin in a resin supply apparatus. A flame retardant / foaming agent-containing molten resin having a benzene ring in the molecule and adding and kneading a flame retardant and a foaming agent having a 5 mass% decomposition temperature within the range of 200 to 300 ° C. Is extruded into the cooling liquid directly from the small hole of the die attached to the tip of the resin supply device, and at the same time the extrudate is cut, the extrudate is cooled and solidified by contact with the liquid, and expandable polystyrene resin particles Without using an aromatic organic compound consisting of styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, benzene. It is characterized by obtaining the foam polystyrene resin particles.

図1は、本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図であり、本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性粒子を冷却水と分離すると共に脱水乾燥して発泡性粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性粒子を貯留する貯留容器11とを備えて構成されている。   FIG. 1 is a configuration diagram showing an example of a production apparatus used in the method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material according to the present invention. The production apparatus of this example is an extruder as a resin supply apparatus. 1, a die 2 having a large number of small holes attached to the tip of an extruder 1, a raw material supply hopper 3 for introducing a resin raw material or the like into the extruder 1, and a foaming agent supply to the molten resin in the extruder 1 A high-pressure pump 4 for press-fitting a foaming agent through a port 5, a cutting chamber 7 provided so that cooling water is brought into contact with a resin discharge surface provided with a small hole in the die 2, and into which cooling water is circulated and supplied; The cutter 6 is rotatably provided in the cutting chamber 7 so that the resin extruded from the small hole of the die 2 can be cut, and the foamable particles carried along with the flow of cooling water from the cutting chamber 7 are cooled. Separation from water and dehydration A dehydrating dryer 10 with a solid-liquid separation function for drying to obtain expandable particles, a water tank 8 for storing cooling water separated by the dehydrating dryer 10 with a solid-liquid separation function, and the cooling water in the water tank 8 are cut. A high-pressure pump 9 for feeding to the chamber 7 and a storage container 11 for storing expandable particles dehydrated and dried by a dehydrator / dryer 10 with a solid-liquid separation function are provided.

なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。   As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the polystyrene resin is not particularly limited. For example, styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene. Homopolymers of styrene monomers such as dimethyl styrene and bromo styrene or copolymers thereof, and the like. Polystyrene resins containing 50% by mass or more of styrene are preferable, and polystyrene is more preferable.

また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。   Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。   If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料の中から、重量平均分子量Mwが12万〜40万の範囲となる原料を適宜選択し、又は重量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, as a polystyrene resin used as a raw material, a polystyrene system newly produced by a method such as a commercially available normal polystyrene resin or suspension polymerization method. In addition to a polystyrene-based resin (virgin polystyrene) that is not a recycled material, such as a resin, a recycled material obtained by regenerating a used polystyrene-based resin foam molding can be used. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method. A raw material having a weight average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different weight average molecular weights Mw can be used in appropriate combination.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、難燃剤としては、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤が用いられ、前記難燃剤の1種又は2種以上を混合して、或いは、前記難燃剤を主体として、それに他の難燃剤を組み合わせて使用してもよい。
臭素分含有量が70質量%を超え、分子内にベンゼン環を有さない難燃剤は、環境や生物に対する安全性が高い難燃剤となり難く、また機械強度・成形性・寸法安定性にも優れた屋根下断熱材を提供するという本発明の効果を達成し難くなる。臭素分含有量の下限は特に限定しないが50質量%以上であれば難燃効率が良いので好ましい。臭素分含有量のより好ましい範囲は55〜69質量%である。
また、該難燃剤の5質量%分解温度が200℃未満であると、難燃剤とポリスチレン系樹脂とを押出機1内で溶融混練する際に、難燃剤が分解して難燃効果が得られなくなる恐れがある。5質量%分解温度が300℃を超える難燃剤を用いた場合には、得られる屋根下断熱材の難燃性が低下してしまう。該難燃剤の5質量%分解温度の好ましい範囲は230〜300℃であり、より好ましい範囲は240〜295℃であり、最も好ましい範囲は265〜290℃である。
In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the flame retardant has a bromine atom in the molecule, a bromine content of less than 70% by mass, and a benzene ring in the molecule. In addition, a flame retardant having a 5 mass% decomposition temperature within the range of 200 to 300 ° C of the flame retardant is used, and one or more of the flame retardants are mixed, or the flame retardant is mainly used. As such, it may be used in combination with other flame retardants.
A flame retardant with a bromine content of more than 70% by mass and no benzene ring in the molecule is unlikely to be a flame retardant that is highly safe for the environment and organisms, and has excellent mechanical strength, moldability, and dimensional stability. Therefore, it is difficult to achieve the effect of the present invention that provides a heat insulating material under the roof. The lower limit of the bromine content is not particularly limited, but 50% by mass or more is preferable because the flame retardancy is good. A more preferable range of bromine content is 55 to 69 mass%.
Further, when the 5 mass% decomposition temperature of the flame retardant is less than 200 ° C., when the flame retardant and polystyrene resin are melt-kneaded in the extruder 1, the flame retardant decomposes and a flame retardant effect is obtained. There is a risk of disappearing. When a flame retardant having a 5 mass% decomposition temperature exceeding 300 ° C. is used, the flame retardance of the obtained under-floor heat insulating material is lowered. The preferable range of 5 mass% decomposition temperature of this flame retardant is 230-300 degreeC, The more preferable range is 240-295 degreeC, The most preferable range is 265-290 degreeC.

本発明において、好ましい難燃剤としては、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上が挙げられる。これらの難燃剤の中でも、特に、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。5%分解温度が高いテトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)がより好ましく、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)が最も好ましい。
本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、前記難燃剤の添加量は、屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の樹脂分100質量部に対して0.5〜8.0質量%の範囲とすることが好ましく、1.0〜6.0質量%の範囲が更に好ましい。難燃剤の添加量が前記範囲未満であると、得られる屋根下断熱材の難燃性が低下してしまう。難燃剤の添加量が前記範囲を超えると、得られる屋根下断熱材の機械強度・成形性・寸法安定性が劣化してしまう恐れがある。
In the present invention, preferred flame retardants include one or more selected from the group consisting of tetrabromobisphenol A or derivatives thereof. Among these flame retardants, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A- It is preferable that it is 1 type, or 2 or more types selected from the group consisting of bis (allyl ether). Tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) having a high 5% decomposition temperature are more preferred, and tetrabromobisphenol A- Bis (2,3-dibromopropyl ether) is most preferred.
In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the amount of the flame retardant added is 0.5 to 100 parts by mass of the resin content of the expandable polystyrene resin particles for producing an under-roof heat insulating material. It is preferable to set it as the range of 8.0 mass%, and the range of 1.0-6.0 mass% is still more preferable. When the addition amount of the flame retardant is less than the above range, the flame resistance of the obtained under-floor heat insulating material is lowered. When the amount of the flame retardant added exceeds the above range, the mechanical strength, formability, and dimensional stability of the obtained under-floor heat insulating material may be deteriorated.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、発泡剤としては特に限定されないが、例えば、ノルマルペンタン、イソペンタン、シクロペンタン、シクロペンタジエン等を単独で、もしくは2種以上混合して使用することができる。また、前記ペンタン類を主成分として、ノルマルブタン、イソブタン、プロパン等を混合して使用することもできる。特にペンタン類は、ダイの小孔から水流中に吐出される際の樹脂粒子の発泡を抑制しやすいので好適に用いられる。ポリスチレン系樹脂に含有させる前記発泡剤の量は、ポリスチレン系樹脂100質量部に対し、3〜10質量部の範囲であり、より好ましくは4〜7質量部の範囲である。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the foaming agent is not particularly limited. For example, normal pentane, isopentane, cyclopentane, cyclopentadiene, etc. are used alone or in combination of two or more. Can be used. Further, normal butane, isobutane, propane and the like can be mixed and used with the pentane as a main component. In particular, pentanes are preferably used because they easily suppress foaming of the resin particles when discharged into the water stream from the small holes of the die. The amount of the foaming agent contained in the polystyrene resin is in the range of 3 to 10 parts by mass, more preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、必要に応じて前記難燃剤及び発泡剤以外にも、発泡性ポリスチレン系樹脂粒子の製造において一般的に使用されている他の添加剤、例えば、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、ジフェニルアルカン、ジフェニルアルケン等の難燃助剤、カーボンブラック、酸化鉄、グラファイト等の着色剤、フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等の酸化防止剤、ヒンダードアミン類等の安定剤、紫外線吸収剤、酸化防止剤などの添加剤を、ポリスチレン系樹脂中に添加することができる。   In addition to the flame retardant and the foaming agent, the foamable polystyrene resin particles for producing an under-floor heat insulating material according to the present invention may include other additives generally used in the production of expandable polystyrene resin particles. Agents, for example, talc, calcium silicate, synthetic or naturally produced silicon dioxide, ethylene bisstearic acid amide, methacrylic acid ester copolymer and other foam nucleating agents, diphenylalkane, diphenylalkene and other flame retardant aids, Colorants such as carbon black, iron oxide and graphite, phenolic antioxidants, sulfur antioxidants, antioxidants such as phosphorus antioxidants, stabilizers such as hindered amines, UV absorbers, antioxidants, etc. These additives can be added to the polystyrene resin.

図1に示す製造装置を用い、本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料のポリスチレン系樹脂、前記難燃剤、発泡核剤、必要に応じて添加される所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。   In order to produce the expandable polystyrene resin particles for the production of the under-the-air insulation material of the present invention using the production apparatus shown in FIG. 1, first, the raw material polystyrene resin, the flame retardant, the foam nucleating agent, and as necessary. The desired additive to be added is weighed and charged into the extruder 1 from the raw material supply hopper 3. The raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.

本発明の好ましい実施形態において、前記難燃剤を添加する場合、樹脂中に所定濃度で難燃剤を含むマスターバッチ材を用い、これをポリスチレン系樹脂とともに樹脂供給装置内に供給し、該装置内で溶融混練することが好ましい。樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、該装置内で溶融混練することによって、難燃剤をより均一に樹脂粒子に含有させることができる。   In a preferred embodiment of the present invention, when the flame retardant is added, a masterbatch material containing a flame retardant at a predetermined concentration in the resin is used, and this is supplied into the resin supply apparatus together with the polystyrene-based resin. It is preferable to melt and knead. A master batch material containing the flame retardant at a predetermined concentration in the resin is supplied into the resin supply apparatus together with the polystyrene resin, and melt-kneaded in the apparatus so that the flame retardant is more uniformly contained in the resin particles. Can do.

押出機1内にポリスチレン系樹脂と難燃剤、さらに発泡助剤やその他の添加剤を供給後、樹脂を加熱溶融し、その難燃剤含有溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入し、難燃剤含有溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。   After supplying polystyrene-based resin and flame retardant, further foaming aid and other additives into the extruder 1, the resin is heated and melted, and the flame retardant-containing molten resin is transferred to the die 2 side while supplying the foaming agent supply port. The foaming agent is press-fitted with a high-pressure pump 4 from 5, the foaming agent is mixed with the flame retardant-containing molten resin, and the melt is further kneaded through a foreign matter removing screen provided in the extruder 1 as necessary. The melted material added with the blowing agent is pushed out from the small hole of the die 2 attached to the tip of the extruder 1.

ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子となる。   The resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7. A cutter 6 is provided so as to be rotatable. Extruding the melt with the blowing agent added through a small hole in the die 2 attached to the tip of the extruder 1 causes the melt to be cut into granules, and at the same time, brought into contact with cooling water and rapidly cooled to solidify while suppressing foaming. Thus, expandable polystyrene-based resin particles for producing an under-floor insulation material are obtained.

形成された屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。   The formed expandable polystyrene resin particles for manufacturing an under-the-floor heat insulating material are transferred from the cutting chamber 7 to the flow of the cooling water and carried to the dehydrating dryer 10 with a solid-liquid separation function. The expandable polystyrene resin particles are separated from the cooling water and dehydrated and dried. The dried expandable polystyrene-based resin particles for producing an under-floor heat insulating material are stored in the storage container 11.

前述したように製造された屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなり、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内であることを特徴とする。   The expandable polystyrene resin particles for manufacturing an under-the-sheath insulating material manufactured as described above are in the form of particles of a polystyrene resin containing a flame retardant and a foaming agent, and the flame retardant has a bromine atom in the molecule. The bromine content is less than 70 mass%, the molecule has a benzene ring, and the 5 mass% decomposition temperature of the flame retardant is in the range of 200 to 300 ° C.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、前記難燃剤が樹脂粒子内に均一に含有されている。本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子において、均一に含有されていないと、得られる発泡成形体(屋根下断熱材)の機械強度、成形性、寸法安定性及び難燃性が劣る恐れがある。   In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, the flame retardant is uniformly contained in the resin particles. In the expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention, if not uniformly contained, the mechanical strength, moldability, dimensional stability and flame retardancy of the obtained foamed molded body (under-the-roof heat insulating material) are obtained. May be inferior.

本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子に用いる前記難燃剤は、環境や生物に対する安全性が高いものであり、特に、テトラブロモビスフェノールA誘導体は、ポリスチレン系樹脂発泡成形体に添加した場合に十分な難燃性能を付与でき、環境や生物に対する安全性が高い。
本発明の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、樹脂粒子中に難燃剤が均一に存在しており、樹脂粒子中に難燃剤が不均一に存在しているものと比べ、得られる難燃性ポリスチレン系樹脂発泡成形体の機械強度が高くなり、成形性や寸法安定性にも優れた屋根下断熱材が得られる。
The flame retardant used in the expandable polystyrene resin particles for producing an under-floor heat insulating material according to the present invention has high safety to the environment and living organisms. In particular, the tetrabromobisphenol A derivative is applied to a polystyrene resin foam molded article. When added, it can provide sufficient flame retardancy and is highly safe for the environment and organisms.
The expandable polystyrene resin particles for producing an under-floor heat insulating material of the present invention are obtained in comparison with those in which the flame retardant is uniformly present in the resin particles and the flame retardant is non-uniformly present in the resin particles. The mechanical strength of the flame-retardant polystyrene-based resin foam molded article to be obtained is increased, and an under-roof heat insulating material excellent in moldability and dimensional stability can be obtained.

本発明に係る製造方法において、原料であるポリスチレン系樹脂として、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有量が低い樹脂原料を選択すれば、製造工程中で前記芳香族有機化合物を混入させることなく発泡性ポリスチレン系樹脂粒子を得ることができるので、得られた屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、前記芳香族有機化合物の含有総量を500ppm未満とすることができる。前記芳香族有機化合物の含有総量は、450ppm以下であることがより好ましく、400ppm以下であることが更に好ましい。前記芳香族有機化合物の含有総量が低ければ、近年要望されているシックハウス症候群への対応が可能となり、屋根下断熱材製造用途に好適なものとなる。   In the production method according to the present invention, a resin raw material having a low content of an aromatic organic compound composed of a styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, and benzene is selected as a polystyrene resin as a raw material. For example, the expandable polystyrene resin particles can be obtained without mixing the aromatic organic compound in the manufacturing process. The total content of the compound can be less than 500 ppm. The total content of the aromatic organic compound is more preferably 450 ppm or less, and still more preferably 400 ppm or less. If the total content of the aromatic organic compound is low, it is possible to cope with sick house syndrome, which has been recently requested, and it is suitable for use in the production of a heat insulating material under a roof.

なお、本発明において、前記芳香族有機化合物の含有総量は、次の<揮発性有機化合物(VOC)含有量の測定方法>により測定した値である。
<揮発性有機化合物(VOC)含有量の測定方法>
発泡性ポリスチレン系樹脂粒子1gを精秤し、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1mlを内部標準液として加えた後、更にジメチルホルムアミド溶液にジメチルホルムアミドを加えて25mlとして測定溶液を作製し、この測定溶液1.8μlを230℃の試料気化室に供給してガスクロマトグラフで検出された各揮発性有機化合物のチャートを得た。そして予め測定しておいた、各揮発性有機化合物の検量線に基づいて、各チャートから揮発性有機化合物量をそれぞれ算出し、発泡性ポリスチレン樹脂粒子中の揮発性有機化合物量を算出した。
なお、本発明では、前述した揮発性有機化合物(VOC)含有量のうち、前記芳香族有機化合物に該当する各揮発性有機化合物量の合計量を「芳香族有機化合物の含有総量」としている。
In the present invention, the total content of the aromatic organic compound is a value measured by the following <Measurement method of volatile organic compound (VOC) content>.
<Measurement method of volatile organic compound (VOC) content>
Weigh accurately 1 g of expandable polystyrene resin particles, add 1 ml of a dimethylformamide solution containing 0.1% by volume of cyclopentanol as an internal standard solution, and then add dimethylformamide to the dimethylformamide solution to measure 25 ml. A solution was prepared, and 1.8 μl of this measurement solution was supplied to a 230 ° C. sample vaporization chamber to obtain a chart of each volatile organic compound detected by a gas chromatograph. And based on the calibration curve of each volatile organic compound measured beforehand, the amount of volatile organic compounds was calculated from each chart, and the amount of volatile organic compounds in the expandable polystyrene resin particles was calculated.
In the present invention, among the volatile organic compound (VOC) contents described above, the total amount of each volatile organic compound corresponding to the aromatic organic compound is defined as “total amount of aromatic organic compound”.

前述した本発明に係る製造方法により得られた屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、屋根下断熱材製造用予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010〜0.050g/cmの範囲内とし、0.015〜0.025g/cmの範囲内とするのが好ましい。 The expandable polystyrene-based resin particles for producing an under-floor heat insulating material obtained by the production method according to the present invention described above are preliminarily heated by steam heating or the like using a well-known apparatus and method in the production field of foamed resin molded bodies. It expands and it is set as the pre-expanded particle (henceforth a pre-expanded particle) for roof bottom heat insulating material manufacture. The pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured. In the present invention, its bulk density is not limited, usually in the range of 0.010~0.050g / cm 3, preferably in the range of 0.015~0.025g / cm 3.

なお、本発明において予備発泡粒子の嵩密度とは、次のようにして測定されたものをいう。
<予備発泡粒子の嵩密度と嵩発泡倍数>
先ず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させた後、メスシリンダーの底をたたいて試料の見掛け体積(V)cmを一定にし、その質量と体積を測定し、下記式に基づいて予備発泡粒子の嵩密度を測定する。
嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
また、予備発泡粒子の嵩発泡倍数は次式により算出される数値である。
嵩発泡倍数(倍)=1/嵩密度(g/cm
In the present invention, the bulk density of the pre-expanded particles is measured as follows.
<Bulk density and bulk expansion ratio of pre-expanded particles>
First, Wg was sampled from pre-expanded particles as a measurement sample, and this measurement sample was allowed to fall naturally into a graduated cylinder, and then the apparent volume (V) cm 3 of the sample was made constant by tapping the bottom of the graduated cylinder. And the volume is measured, and the bulk density of the pre-expanded particles is measured based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample (W) / volume of measurement sample (V)
The bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following formula.
Bulk foam multiple (times) = 1 / bulk density (g / cm 3 )

前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、該予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、難燃性ポリスチレン系樹脂発泡成形体からなる屋根下断熱材を製造する。
本発明の屋根下断熱材の密度は特に限定されないが、通常は0.010〜0.050g/cmの範囲内とし、0.015〜0.025g/cmの範囲内とするのが好ましい。
The pre-expanded particles can be obtained by filling the pre-expanded particles into a cavity of a molding die using a well-known apparatus and technique in the field of manufacturing a foamed resin molded body, and heating them by steam heating or the like to perform in-mold foam molding. Manufactures an under-the-sheath insulating material made of a flame-retardant polystyrene-based resin foam molding.
Although the density of the roof under the heat insulating material of the present invention is not particularly limited, usually in the range of 0.010~0.050g / cm 3, preferably in the range of 0.015~0.025g / cm 3 .

なお、本発明において屋根用下地材の密度とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度と発泡倍数>
50cm以上(半硬質および軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm)=試験片質量(g)/試験片体積(cm
試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数(倍)=1/密度(g/cm
In addition, the density of the base material for roofs in this invention is a foaming molding density measured by the method of JISK7122: 1999 "Measurement of foamed plastic and rubber-apparent density".
<Density and expansion ratio of foamed molded product>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
Test piece condition adjustment and measurement test pieces were cut out from samples that had passed 72 hours or more after molding, and were subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5%. It has been left for more than an hour.
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming multiple (times) = 1 / density (g / cm 3 )

本発明の屋根下断熱材は、発泡倍数50倍の発泡成形体について、気泡の平均弦長が50〜350μmの範囲であることが好ましく、60〜300μmの範囲がより好ましい。なお、本発明において気泡の平均弦長とは、下記の方法で測定した発泡成形体の気泡の平均弦長のことである。
<平均弦長>
発泡成形体の気泡の平均弦長は、ASTM D2842−69の試験方法に準拠して測定されたものをいう。具体的には、発泡成形体を略二等分となるように切断し、切断面を走査型電子顕微鏡(日立製作所社製 商品名「S−3000N])を用いて100倍に拡大して撮影する。撮影した画像をA4用紙に印刷し、任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式より算出する。
平均弦長t=60/(気泡数×写真の倍率)
なお、直線を描くにあたり、直線が気泡に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することもなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。更に、撮影した画像の任意の5箇所において上述と同様の要領で平均弦長を算出し、これらの平均弦長の相加平均値を発泡成形体の気泡の平均弦長とする。
In the under-roof heat insulating material of the present invention, the foamed molded body having a foaming ratio of 50 times preferably has an average chord length of bubbles in the range of 50 to 350 μm, and more preferably in the range of 60 to 300 μm. In addition, in this invention, the average chord length of a bubble is an average chord length of the bubble of a foaming molding measured by the following method.
<Average string length>
The average chord length of the bubbles of the foam molded article refers to that measured according to the test method of ASTM D2842-69. Specifically, the foamed molded body is cut into approximately equal halves, and the cut surface is photographed at a magnification of 100 times using a scanning electron microscope (trade name “S-3000N” manufactured by Hitachi, Ltd.). The photographed image is printed on A4 paper, and a straight line having a length of 60 mm is drawn at an arbitrary position, and the average chord length (t) of the bubbles is calculated from the following formula from the number of bubbles existing on the straight line.
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, if the straight line is in point contact with the bubble, this bubble is included in the number of bubbles, and both ends of the straight line are not penetrating the bubble and are in the bubble. In this case, the bubbles in which both ends of the straight line are positioned are included in the number of bubbles. Further, the average chord length is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic mean value of these average chord lengths is set as the average chord length of the bubbles of the foam molded body.

[実施例1]
(発泡性ポリスチレン系樹脂粒子の製造)
基材樹脂としてポリスチレン樹脂(東洋スチレン社製、商品名「HRM−10N」)と、スチレン−メタクリル酸共重合樹脂(東洋スチレン社製、商品名「T−080」)を質量比50:50で配合した樹脂100質量部に対して、難燃剤としてテトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)(第一工業製薬社製)を50質量%含むポリスチレン樹脂マスターバッチ7質量部(難燃剤量で3.5質量部相当)、微粉末タルク0.3質量部を、予めタンブラーミキサーにて均一に混合したものを、時間当たり160kg/hrの割合で口径90mmの単軸押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して6質量部のイソペンタンを押出機途中より圧入した。そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が190℃となるように冷却しながら、押出機に連接しヒーターにより320℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイスを通して、50℃の冷却水が循環するチャンバー内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径は1.1mmであった。
得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
[Example 1]
(Manufacture of expandable polystyrene resin particles)
As a base resin, a polystyrene resin (manufactured by Toyo Styrene Co., Ltd., trade name “HRM-10N”) and a styrene-methacrylic acid copolymer resin (manufactured by Toyo Styrene Co., Ltd., trade name “T-080”) are used at a mass ratio of 50:50. Polystyrene resin masterbatch 7 containing 50% by mass of tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) as a flame retardant with respect to 100 parts by mass of the blended resin. A single shaft having a diameter of 90 mm at a rate of 160 kg / hr per hour is obtained by uniformly mixing mass parts (equivalent to 3.5 parts by mass of flame retardant) and 0.3 parts by mass of fine powder talc in advance with a tumbler mixer. After feeding into the extruder and heating and melting the resin, 6 parts by mass of isopentane was injected from the middle of the extruder as a foaming agent with respect to 100 parts by mass of the resin. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 190 ° C., it is connected to the extruder and held at 320 ° C. by a heater, diameter 0.6 mm Then, through a granulation die having 200 nozzles with a land length of 3.0 mm, it is extruded into a chamber in which cooling water at 50 ° C. circulates, and at the same time, a high-speed rotary cutter having 10 blades in the circumferential direction is used as the die. Adhered, cut at 3000 rpm, dehydrated and dried to obtain spherical expandable polystyrene resin particles. The obtained expandable polystyrene resin particles had no deformation, no whiskers, and the average particle size was 1.1 mm.
Polyethylene glycol 0.03 parts by mass, zinc stearate 0.15 parts by mass, stearic acid monoglyceride 0.05 parts by mass, hydroxystearic acid triglyceride 0.05 parts by mass with respect to 100 parts by mass of the obtained expandable polystyrene resin particles. The part was uniformly coated on the entire surface of the expandable polystyrene resin particles.

(発泡成形体の製造)
前記の通り製造した発泡性ポリスチレン系樹脂粒子は、15℃の保冷庫中に入れ、72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.1MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.020g/cm(嵩発泡倍数50倍)であった。続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ25mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧1.0MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.15MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。得られた発泡成形体は、密度0.020g/cm(成形倍数50倍)であった。
(Manufacture of foam moldings)
The expandable polystyrene resin particles produced as described above were placed in a 15 ° C. cool box and allowed to stand for 72 hours, then supplied to a cylindrical batch type pre-foaming machine, and steam with a blowing pressure of 0.1 MPa. To obtain pre-expanded particles. The obtained pre-expanded particles had a bulk density of 0.020 g / cm 3 (bulk expansion ratio: 50 times). Subsequently, the pre-expanded particles obtained were allowed to stand at room temperature for 24 hours, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 25 mm. Thereafter, the inside of the mold cavity is heated with water vapor at a gauge pressure of 1.0 MPa for 20 seconds, and then cooled until the pressure in the mold cavity becomes 0.15 MPa, and then the mold is Opened, a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out. The obtained foamed molded article had a density of 0.020 g / cm 3 (molding factor: 50 times).

前述した通り製造した実施例1の発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体について、以下の評価試験を行った。   The following evaluation tests were performed on the expandable polystyrene resin particles, pre-expanded particles, and expanded molded articles of Example 1 produced as described above.

<難燃剤の分解温度の測定>
難燃剤を20mg採取して試料とし、示差熱・熱量同時測定装置 TG/DTA 300型(セイコー電子工業社製)を用いて、窒素ガス量30ミリリットル/分、加熱温度10℃/分、測定温度30〜800℃の条件下にて試料の質量減少率を測定し、縦軸に試料の質量減少率を、横軸に温度をとったグラフを得る。そして、得られたグラフに基づいて、試料の質量減少率が5%に達した時の温度を5質量%分解温度とした。
<Measurement of flame retardant decomposition temperature>
20 mg of flame retardant was sampled and used as a sample, using a differential heat and calorie simultaneous measurement device TG / DTA 300 (Seiko Electronics Co., Ltd.), nitrogen gas amount 30 ml / min, heating temperature 10 ° C./min, measurement temperature The mass reduction rate of the sample is measured under the conditions of 30 to 800 ° C., and a graph is obtained with the mass reduction rate of the sample on the vertical axis and the temperature on the horizontal axis. And based on the obtained graph, the temperature when the mass reduction rate of the sample reached 5% was defined as a 5 mass% decomposition temperature.

<発泡性ポリスチレン系樹脂粒子中の揮発性有機化合物(VOC)含有量の測定>
発泡性ポリスチレン系樹脂粒子1gを精秤し、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1mlを内部標準液として加えた後、更にジメチルホルムアミド溶液にジメチルホルムアミドを加えて25mlとして測定溶液を作製し、この測定溶液1.8μlを230℃の試料気化室に供給して下記測定条件にてガスクロマトグラフ(島津製作所社製、商品名「GC−14A」で検出された各揮発性有機化合物のチャートを得た。そして予め測定しておいた、各揮発性有機化合物の検量線に基づいて、各チャートから揮発性有機化合物量をそれぞれ算出し、発泡性ポリスチレン粒子中の揮発性有機化合物量を算出した。
検出器 :FID
カラム :ジーエルサイエンス製 (3mmφ×2.5m)
液相;PEG−20M PT 25%
担体;Chromosorb W AW−DMCS
メッシュ:60/80
カラム温度:100℃
検出器温度:230℃
DET温度:230℃
キャリアーガス(窒素)
キャリヤーガス流量(40ml/min)
<Measurement of volatile organic compound (VOC) content in expandable polystyrene resin particles>
Weigh accurately 1 g of expandable polystyrene resin particles, add 1 ml of a dimethylformamide solution containing 0.1% by volume of cyclopentanol as an internal standard solution, and then add dimethylformamide to the dimethylformamide solution to measure 25 ml. A solution was prepared, and 1.8 μl of this measurement solution was supplied to a 230 ° C. sample vaporization chamber, and each volatile organic compound detected by a gas chromatograph (manufactured by Shimadzu Corporation, trade name “GC-14A”) under the following measurement conditions. Based on the calibration curve of each volatile organic compound measured in advance, the amount of volatile organic compound was calculated from each chart, and the volatile organic compound in the expandable polystyrene particles was obtained. The amount was calculated.
Detector: FID
Column: GL Sciences (3mmφ × 2.5m)
Liquid phase: PEG-20M PT 25%
Carrier; Chromosorb W AW-DMCS
Mesh: 60/80
Column temperature: 100 ° C
Detector temperature: 230 ° C
DET temperature: 230 ° C
Carrier gas (nitrogen)
Carrier gas flow rate (40ml / min)

<ビーズ発泡性の評価>
実施例(及び比較例)で得られた発泡性ポリスチレン系樹脂粒子を15℃の保冷庫に72時間保管した後、これを円筒型バッチ式予備発泡機に供給して、吹き込み蒸気圧0.1MPaの水蒸気により3分間に亘って加熱し、得られた予備発泡粒子の嵩発泡倍数を下記の通り測定し、次の評価基準:
嵩発泡倍数50倍以上を○、
嵩発泡倍数40倍以上50倍未満を△、
嵩発泡倍数40倍未満を×、に照らし、ビーズ発泡性の評価を行った。
<Evaluation of bead foamability>
After the expandable polystyrene resin particles obtained in Examples (and Comparative Examples) were stored in a 15 ° C. cool box for 72 hours, they were supplied to a cylindrical batch type pre-foaming machine, and the blowing vapor pressure was 0.1 MPa. The pre-expanded particles obtained were heated for 3 minutes with water vapor and the bulk expansion ratio of the pre-expanded particles was measured as follows, and the following evaluation criteria:
The bulk foaming factor is 50 times or more.
A bulk foaming ratio of 40 times or more and less than 50 times is Δ,
The foam foaming property was evaluated by evaluating the foam foaming factor of less than 40 times with x.

<難燃性>
発泡成形体から200mm×25mm×10mmの大きさの試験サンプル5個をバーチカルカッターにて切り出し、60℃オーブンで1日間養生後、JISA9511−2006の測定方法Aに準じて測定を行い、5個の平均値を求め、消炎時間とした。なお、このJIS規格では消炎時間が3秒以内である必要があり、2秒以内であればより好ましく、1秒以内であればさらに好ましい。
○(合格) ・・・ 消炎時間が3秒以内であり、5個のサンプル全てにおいて、残じんがなく燃焼限界指示線を超えて燃焼しない。
×(不合格)・・・ 消炎時間が3秒を超えているか、サンプルの1個でも残じんがあるか燃焼限界指示線を超えて燃焼する。
<Flame retardance>
Cut foam from the molded body of 200 mm × 25 mm × 10 mm size of the test sample 5 a in vertical cutter, after 1 day aging at 60 ° C. oven was measured according to measurement method A of JISA9511 -2006, five of The average value was determined and used as the extinguishing time. In this JIS standard, the flame extinguishing time must be within 3 seconds, more preferably within 2 seconds, and even more preferably within 1 second.
○ (Acceptance) ... The flame extinguishing time is within 3 seconds, and all five samples have no residue and do not burn beyond the combustion limit indicator line.
X (failure) ... The flame extinguishing time exceeds 3 seconds, or even one of the samples has residue, or burns beyond the combustion limit indicating line.

<発泡成形体の外観評価>
上記ポリスチレン系樹脂予備発泡粒子を発泡成形機の金型に充填し、水蒸気を用いて二次発泡させることによって長さ400mm、幅300mm、厚み50mmの直方体状の発泡成形体を得た。
発泡成形体の外観を目視観察し、下記の基準に基づいて評価をした。
◎(極めて良):発泡粒子間の間隙がなく、表面が極めて平滑な状態である。
○(良):発泡粒子間の間隙がなく、表面が平滑な状態である。
△(やや良):発泡粒子間の間隙が少なく、表面の平滑が少し劣る。
×(不良):発泡粒子間の間隙が大きく、表面の平滑がかなり劣る。
<Appearance evaluation of foam molding>
The polystyrene resin pre-expanded particles were filled into a mold of a foam molding machine and subjected to secondary foaming using water vapor to obtain a rectangular foam-shaped foam molded body having a length of 400 mm, a width of 300 mm, and a thickness of 50 mm.
The appearance of the foamed molded product was visually observed and evaluated based on the following criteria.
A (very good): There is no gap between the expanded particles, and the surface is very smooth.
○ (good): There is no gap between the expanded particles, and the surface is smooth.
Δ (slightly good): There are few gaps between the expanded particles, and the surface smoothness is slightly inferior.
X (Poor): The gap between the expanded particles is large, and the smoothness of the surface is considerably inferior.

<加熱寸法変化率>
長さ400mm、幅300mm、厚み25mmの平板形状の発泡成形体を成形金型から取り出し、温度23℃、相対湿度50%の恒温恒湿室(JIS−K7100の標準温湿度状態)に24時間放置した後、この発泡成形体の中央部から上下面が平行で正方形状の平板(長さ150mm、巾150mm、厚み25mm)を切り出し、その中央部に縦及び横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるように記入して、JIS−K6767に従う試験片とした。この試験片の寸法(加熱前寸法:L2)を測定した後、90℃に保った熱風循環式乾燥機の中に水平に置き、168時間加熱した後に取り出し、再び恒温恒湿室に1時間放置し、試験片の寸法(加熱後寸法:L2)を測定した。加熱試験の前後における寸法測定はJIS−K6767に従って行い、寸法変化率は次の式に従って求めた。
寸法変化率(%)=(L2−L1)×100/L1
(但し、L1は、型内成形後に23℃、相対湿度50%で24時間放置された発泡成形体から得られた試験片の寸法、L2は該成形体を90℃で168時間加熱した後の試験片の寸法である)
なお、寸法とは、発泡成形体から得られた試験片に記入した縦横それぞれ3本の直線の長さの平均値である。
加熱寸法変化率は、−0.5%以上、+0.5%未満が良(○)、−1.0%以上、−0.5%未満がやや良(△)、+0.5%以上、+1.0%未満がやや良(△)、−1.0%未満が不良(×)、+1.0%以上が不良(×)として評価した。
<Heating dimensional change rate>
A flat foam molded body having a length of 400 mm, a width of 300 mm, and a thickness of 25 mm is taken out of the mold and left in a constant temperature and humidity chamber (standard temperature and humidity state of JIS-K7100) at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. After that, a square flat plate (length: 150 mm, width: 150 mm, thickness: 25 mm) is cut out from the center portion of the foamed molded body in parallel with each other in the vertical and horizontal directions. A straight line was written at intervals of 50 mm to obtain a test piece according to JIS-K6767. After measuring the dimensions of this test piece (dimension before heating: L2), place it horizontally in a hot air circulating dryer maintained at 90 ° C., heat it for 168 hours, take it out, and again leave it in a constant temperature and humidity room for 1 hour. Then, the dimension of the test piece (dimension after heating: L2) was measured. The dimensional measurement before and after the heating test was performed according to JIS-K6767, and the dimensional change rate was determined according to the following equation.
Dimensional change rate (%) = (L2-L1) × 100 / L1
(However, L1 is the size of the test piece obtained from the foamed molded product that was allowed to stand for 24 hours at 23 ° C. and 50% relative humidity after in-mold molding, and L2 is the value after heating the molded product at 90 ° C. for 168 hours. It is the size of the test piece)
In addition, a dimension is the average value of the length of three straight lines each written in the test piece obtained from the foaming molding.
The heating dimensional change rate is -0.5% or more, less than + 0.5% is good (◯), -1.0% or more, less than -0.5% is slightly good (Δ), + 0.5% or more, Less than + 1.0% was evaluated as slightly good (Δ), less than −1.0% was evaluated as defective (×), and + 1.0% or more was evaluated as defective (×).

<総合評価>
前記<ビーズ発泡性の評価>、<難燃性>、<発泡成形体の外観評価>及び<加熱寸法変化率>の各評価項目について、不良(×)が無いものを良(○)とし、1つ以上不良(×)が有るものを不良(×)として総合評価した。
<Comprehensive evaluation>
For each evaluation item of <Bead Foaming Evaluation>, <Flame Retardancy>, <Appearance Evaluation of Foam Molded Product>, and <Heating Dimension Change Rate> Those having one or more defects (x) were comprehensively evaluated as defects (x).

[実施例2]
難燃剤として、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡倍数50倍の発泡成形体を製造した。
[Example 2]
As the flame retardant, foam molding of 50 times expansion ratio was performed in the same manner as in Example 1 except that the same amount of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) was used. The body was manufactured.

[実施例3]
難燃剤として、テトラブロモビスフェノールA−ビス(アリルエーテル)(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡倍数50倍の発泡成形体を製造した。
[Example 3]
As a flame retardant, a foamed molded article having a 50-fold expansion ratio was produced in the same manner as in Example 1 except that the same amount of tetrabromobisphenol A-bis (allyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) was used.

[実施例4]
難燃剤として、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)3.2質量部、テトラブロモビスフェノールA−ビス(アリルエーテル)0.3質量部を混合して用いたこと以外は、実施例1と同様にして発泡倍数50倍の発泡成形体を製造した。
[Example 4]
Except that 3.2 parts by mass of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and 0.3 parts by mass of tetrabromobisphenol A-bis (allyl ether) were used as flame retardants, In the same manner as in Example 1, a foamed molded article having a expansion ratio of 50 times was produced.

[比較例1]
難燃剤として、ヘキサブロモシクロドデカン(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[Comparative Example 1]
A foamed molded article was produced in the same manner as in Example 1 except that the same amount of hexabromocyclododecane (Daiichi Kogyo Seiyaku Co., Ltd.) was used as the flame retardant.

[比較例2]
難燃剤として、トリス−(2,3−ジブロモプロピル)イソシアヌレート(日本化成社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[Comparative Example 2]
A foamed molded article was produced in the same manner as in Example 1 except that the same amount of tris- (2,3-dibromopropyl) isocyanurate (Nihon Kasei Co., Ltd.) was used as the flame retardant.

[比較例3]
難燃剤として、ペンタブロモベンジルアクリレート(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[Comparative Example 3]
A foamed molded article was produced in the same manner as in Example 1 except that the same amount of pentabromobenzyl acrylate (Daiichi Kogyo Seiyaku Co., Ltd.) was used as the flame retardant.

[比較例4]
難燃剤として、トリス(トリブロモネオペンチル)フォスフェート(大八化学社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[Comparative Example 4]
A foamed molded article was produced in the same manner as in Example 1 except that the same amount of tris (tribromoneopentyl) phosphate (manufactured by Daihachi Chemical Co., Ltd.) was used as a flame retardant.

前記実施例1〜4及び比較例1〜4で用いた難燃剤の臭素分含有量、難燃剤分子中ベンゼン環の有無、5質量%分解温度を表1にまとめて記す。
また、前記実施例1〜4及び比較例1〜4の測定・評価結果を表2にまとめて記す。
Table 1 summarizes the bromine content of the flame retardants used in Examples 1 to 4 and Comparative Examples 1 to 4, the presence or absence of a benzene ring in the flame retardant molecule, and the 5 mass% decomposition temperature.
The measurement and evaluation results of Examples 1 to 4 and Comparative Examples 1 to 4 are collectively shown in Table 2.

Figure 2011093951
Figure 2011093951

Figure 2011093951
Figure 2011093951

表1,2の結果より、実施例分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤A〜Cを用いた、本発明に係る実施例1〜4は、ビーズ発泡性、難燃性、発泡成形体の外観及び加熱寸法変化率がいずれも良好であった。
一方、臭素分含有量が75質量%と多く、分子中にベンゼン環の無い難燃剤Dを用いた比較例1は、ビーズ発泡性が不良であった。
また、分子中にベンゼン環の無い難燃剤Eを用いた比較例2は、ビーズ発泡性、発泡成形体の外観が不良となった。
また、臭素分含有量が75質量%と多く、5質量%分解温度が300℃を超える難燃剤Fを用いた比較例3は、難燃性及び加熱寸法変化率が不良となった。
また、臭素分含有量が75質量%と多く、分子中にベンゼン環が無く、5質量%分解温度が300℃を超える難燃剤Gを用いた比較例4は、ビーズ発泡性、難燃性、発泡体の外観が不良となった。
From the results of Tables 1 and 2, the examples have bromine atoms in the molecule, the bromine content is less than 70% by mass, the molecule has a benzene ring, and the flame retardant has a 5% by mass decomposition temperature. Examples 1 to 4 according to the present invention using flame retardants A to C in the range of 200 to 300 [deg.] C. are not limited in bead foamability, flame retardancy, appearance of the foamed molded product, and heating dimensional change rate. Was also good.
On the other hand, Comparative Example 1 using the flame retardant D having a high bromine content of 75% by mass and having no benzene ring in the molecule had poor bead foaming properties.
In Comparative Example 2 using the flame retardant E having no benzene ring in the molecule, the bead foaming property and the appearance of the foamed molded product were poor.
Further, Comparative Example 3 using the flame retardant F having a high bromine content of 75% by mass and a 5% by mass decomposition temperature exceeding 300 ° C. was poor in flame retardancy and heating dimensional change rate.
Comparative Example 4 using a flame retardant G having a high bromine content of 75% by mass, no benzene ring in the molecule and a 5% by mass decomposition temperature exceeding 300 ° C. The appearance of the foam was poor.

本発明は、環境適合性及び難燃性に優れた屋根下断熱材、その製造に用いられる屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法に関する。本発明の屋根下断熱材は、例えば、野地板等の下地材と屋根葺き材の間に敷設する断熱材などに用いられる。   TECHNICAL FIELD The present invention relates to an underfloor heat insulating material excellent in environmental compatibility and flame retardancy, an expandable polystyrene resin particle for producing an under roof heat insulating material used in the manufacture thereof, and a method for producing the same. The underfloor heat insulating material of the present invention is used, for example, as a heat insulating material laid between a base material such as a field board and a roofing material.

1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。   DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.

Claims (11)

難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子であって、
前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内であり、
樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られたものであることを特徴とする屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子。
Expandable polystyrene resin particles for the production of under-floor heat insulating material, which are made into a particulate polystyrene resin containing a flame retardant and a foaming agent,
The flame retardant has a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a 5% by mass decomposition temperature of the flame retardant of 200 to 300 ° C. Within the range of
A flame retardant and foaming agent are added to and kneaded with polystyrene resin in the resin supply device, and the molten resin containing the flame retardant / foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device. A heat insulating material under roof characterized by being obtained by a melt extrusion method in which extrudates are cut simultaneously with extrusion and the extrudates are cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles. Expandable polystyrene resin particles for production.
スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有総量が500ppm未満である請求項1に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles for producing an under-the-air insulation material according to claim 1, wherein the total content of aromatic organic compounds comprising styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, benzene is less than 500 ppm. . 前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項1又は2に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子。   The expandable polystyrene resin particles for manufacturing an under-the-air insulation material according to claim 1 or 2, wherein the flame retardant is one or more selected from the group consisting of tetrabromobisphenol A or a derivative thereof. 前記難燃剤が、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項1〜3のいずれか1項に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子。   The flame retardant is tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (allyl ether) The expandable polystyrene resin particles for producing an under-the-sheath insulating material according to any one of claims 1 to 3, wherein the expandable polystyrene resin particles are one or more selected from the group consisting of: 請求項1〜4のいずれか1項に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を加熱して得られた屋根下断熱材製造用予備発泡粒子。   The pre-expanded particle for roof under heat insulation manufacture obtained by heating the expandable polystyrene-type resin particle for roof under heat insulation manufacture of any one of Claims 1-4. 請求項5に記載の屋根下断熱材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010〜0.050g/cmの範囲である屋根下断熱材。 A roof having a density in the range of 0.010 to 0.050 g / cm 3 obtained by filling the pre-expanded particles for producing an under-sheath insulating material according to claim 5 into a cavity of a mold, heating and foaming. Lower insulation material. 請求項5に記載の屋根下断熱材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数50倍の発泡成形体について、気泡の平均弦長が50〜350μmの範囲である屋根下断熱材。   The pre-expanded particles for producing an under-the-air insulation material according to claim 5 are filled in a cavity of a mold, heated and foamed, and the foamed molded body having a foam expansion factor of 50 times has an average cell string length of 50. Under roof insulation that is in the range of ~ 350 μm. 樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ該難燃剤の5質量%分解温度が200〜300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに請求項1又は2に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子を得ることを特徴とする屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法。   In the resin feeder, the polystyrene-based resin has a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a 5% by mass decomposition temperature of the flame retardant. Add and knead the flame retardant and foaming agent in the range of 200 to 300 ° C., and add the flame retardant / foaming agent-containing molten resin directly into the cooling liquid from the small hole of the die attached to the tip of the resin feeder In the method of extruding, cutting the extrudate at the same time as extrusion, and cooling and solidifying the extrudate by contact with a liquid to produce expandable polystyrene resin particles, styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene Expandable polystyrene-based resin particles for the production of a thermal insulation material under roofs according to claim 1 or 2, without using an aromatic organic compound comprising toluene, benzene Method of manufacturing a roofing under thermal insulator for producing expandable polystyrene resin particles characterized by obtaining. 前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項8に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法。   The method for producing expandable polystyrene resin particles for producing an under-the-air insulation material according to claim 8, wherein the flame retardant is one or more selected from the group consisting of tetrabromobisphenol A or a derivative thereof. 前記難燃剤が、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項9に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法。   The flame retardant is tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (allyl ether) The method for producing expandable polystyrene resin particles for producing an under-floor heat insulating material according to claim 9, which is one or more selected from the group consisting of: 樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、該装置内で溶融混練する請求項8〜10のいずれか1項に記載の屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法。   The underbath according to any one of claims 8 to 10, wherein a master batch material containing the flame retardant at a predetermined concentration in a resin is supplied into a resin supply apparatus together with the polystyrene resin, and is melt-kneaded in the apparatus. The manufacturing method of the expandable polystyrene-type resin particle for heat insulating material manufacture.
JP2009246294A 2009-10-27 2009-10-27 Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material Pending JP2011093951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246294A JP2011093951A (en) 2009-10-27 2009-10-27 Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246294A JP2011093951A (en) 2009-10-27 2009-10-27 Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material

Publications (1)

Publication Number Publication Date
JP2011093951A true JP2011093951A (en) 2011-05-12

Family

ID=44111243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246294A Pending JP2011093951A (en) 2009-10-27 2009-10-27 Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material

Country Status (1)

Country Link
JP (1) JP2011093951A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11255946A (en) * 1998-03-12 1999-09-21 Hitachi Chem Co Ltd Foamable styrene-based resin particle having flame retardance and its production
JP2004075952A (en) * 2002-08-22 2004-03-11 Teijin Chem Ltd Flame-retardant expandable polystyrene-based resin composition and molded products of the same
JP2007009018A (en) * 2005-06-29 2007-01-18 Jsp Corp Process for producing expandable styrenic resin particle, expandable styrenic resin particle and molded product of styrenic resin expanded particle
JP2007169408A (en) * 2005-12-21 2007-07-05 Sekisui Plastics Co Ltd Styrenic resin expandable particle, method for producing the same and in-mold expansion molded product
JP2009138146A (en) * 2007-12-07 2009-06-25 Sekisui Plastics Co Ltd Foamable resin particle, its producing method, and foamed molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11255946A (en) * 1998-03-12 1999-09-21 Hitachi Chem Co Ltd Foamable styrene-based resin particle having flame retardance and its production
JP2004075952A (en) * 2002-08-22 2004-03-11 Teijin Chem Ltd Flame-retardant expandable polystyrene-based resin composition and molded products of the same
JP2007009018A (en) * 2005-06-29 2007-01-18 Jsp Corp Process for producing expandable styrenic resin particle, expandable styrenic resin particle and molded product of styrenic resin expanded particle
JP2007169408A (en) * 2005-12-21 2007-07-05 Sekisui Plastics Co Ltd Styrenic resin expandable particle, method for producing the same and in-mold expansion molded product
JP2009138146A (en) * 2007-12-07 2009-06-25 Sekisui Plastics Co Ltd Foamable resin particle, its producing method, and foamed molding

Similar Documents

Publication Publication Date Title
TWI439503B (en) Expandable polystyrene type resin pellets and production method thereof, polystyrene type resin pre- expanded particle, polystyrene type resin expanded form, insulator for building material, banking material, and interior material for vehicle
EP1945700B1 (en) Expandable granulates based on vinylaromatic polymers having an improved expandability and process for the preparation thereof
JP5750221B2 (en) Flame retardant containing expandable polystyrene resin particles and method for producing the same, flame retardant polystyrene resin pre-expanded particles, and flame retardant polystyrene resin foam molding
JP4774293B2 (en) Styrenic resin expandable particles, production method thereof, and in-mold foam-molded product
KR20120107114A (en) Flame-protected polymer foams
JP5410803B2 (en) Expandable thermoplastic resin particles and method for producing the same, pre-expanded particles and foamed molded body
JP6473675B2 (en) Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof
KR20180051564A (en) Foamable styrene-based resin particles, pre-expanded particles of styrene-based resin, styrene-based resin expanded molded article, and manufacturing method of expandable resin particles
JP5620406B2 (en) Low bromine content polymer foam
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
US20160229974A1 (en) Foamable polystyrene resin particles and polystyrene resin prefoamed particles
JP2011093953A (en) Foamable polystyrene-based resin particle for manufacturing heat insulation material for floor heating and manufacturing method therefor, pre-foamed particle for manufacturing heat insulation material for floor heating, heat insulation material for floor heating, and floor-heating apparatus
JP2011093948A (en) Foamable polystyrene resin particles for production of heat-insulating material for building material and process for production thereof, prefoamed particles for production of heat-insulating material for building material, and heat-insulating material for building material
JP2012188634A (en) Polystyrene based expandable resin particle, polystyrene based expanded resin particle and polystyrene based expanded resin molded article
JP6407113B2 (en) Styrenic resin foam molding, method for producing the same, and use thereof
JP2011093951A (en) Foamable polystyrene-based resin particle for manufacturing under-roof heat insulation material, manufacturing method therefor, pre-foamed particle for under-roof heat insulation material, and under-roof heat insulation material
JP6854669B2 (en) Effervescent polystyrene resin particles, pre-expanded particles, molded article
JP2011093950A (en) Foamable polystyrene resin particles for production of vehicle interior material and process for production thereof, prefoamed particles for production of vehicle interior material, and vehicle interior material
JP5641846B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2011093952A (en) Foamable polystyrene-based resin particle for manufacturing heat insulation material for hot water storage tank and manufacturing method therefor, pre-foamed particle for manufacturing heat insulation material for hot water storage tank, and heat insulation material for hot water storage tank
JP2011094024A (en) Incombustible agent-containing expandable polystyrene resin particle and method for producing the same, incombustible polystyrene resin pre-expanded particle, and incombustible polystyrene resin expanded molded article
US10358538B2 (en) Foamable polystyrene resin particles and polystyrene resin prefoamed particles
JP2011093949A (en) Foamable polystyrene resin particles for production of banking member and process for production thereof, prefoamed particles for production of banking member, and banking member
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Effective date: 20130827

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140114