JP2011093719A - Method for producing and utilizing hydrogen - Google Patents

Method for producing and utilizing hydrogen Download PDF

Info

Publication number
JP2011093719A
JP2011093719A JP2009246471A JP2009246471A JP2011093719A JP 2011093719 A JP2011093719 A JP 2011093719A JP 2009246471 A JP2009246471 A JP 2009246471A JP 2009246471 A JP2009246471 A JP 2009246471A JP 2011093719 A JP2011093719 A JP 2011093719A
Authority
JP
Japan
Prior art keywords
hydrogen
carbon dioxide
gas
producing
pyrolysis gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246471A
Other languages
Japanese (ja)
Other versions
JP5421065B2 (en
Inventor
Isamu Yasuda
勇 安田
Toshiji Amano
寿二 天野
Yoshinori Shirasaki
義則 白崎
Toru Matsui
徹 松井
Toru Takahashi
徹 高橋
Harukuni Kameda
治邦 亀田
Noriko Osaka
典子 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2009246471A priority Critical patent/JP5421065B2/en
Publication of JP2011093719A publication Critical patent/JP2011093719A/en
Application granted granted Critical
Publication of JP5421065B2 publication Critical patent/JP5421065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for producing and utilizing hydrogen, which efficiently generates high purity hydrogen from biomass as raw material and reduces the amount of carbon dioxide discharged from the whole system. <P>SOLUTION: The method for producing and utilizing hydrogen includes: a thermal decomposition gasification step of generating hydrogen-containing biogas by thermally decomposing biomass as raw material; a membrane shift reaction step in which the biogas is modified to hydrogen-rich gas in a membrane shift reactor and the hydrogen is separated; and a separation step of separating carbon dioxide from concentrated carbon dioxide-containing gas obtained by hydrogen separation. The method can achieve so-called carbon-negative. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、バイオマスを原料として水素を製造し、利用する方法に関するものである。   The present invention relates to a method for producing and using hydrogen from biomass as a raw material.

産業革命以後の化石燃料の大量消費の結果、大気中の二酸化炭素濃度が上昇し続け地球温暖化現象が引き起こされつつあり、大きな社会問題となっている。そこで化石燃料に代わるエネルギー物質として水素が注目され、安価で、大量生産を目的とした水素製造方法が研究されている。   As a result of mass consumption of fossil fuels after the industrial revolution, the concentration of carbon dioxide in the atmosphere continues to rise, causing a global warming phenomenon, which has become a major social problem. Therefore, hydrogen is attracting attention as an energy substance to replace fossil fuel, and a hydrogen production method aimed at mass production is being studied at a low cost.

水素は燃料電池の反応ガス等として利用され、発電時に生成する物質が水のみであるためクリーンなエネルギー物質とされるが、水素の製造工程においては多くの炭酸ガス排出を伴うという問題があった。そこで最近では、従来の化石燃料由来の水素に代えて、バイオマスや廃棄物を原料とする水素の製造技術が提案されており、これによっていわゆるカーボンニュートラルの実現を図っている。   Hydrogen is used as a reaction gas for fuel cells and is a clean energy substance because the only substance produced during power generation is water, but there is a problem that a large amount of carbon dioxide is emitted in the hydrogen production process. . Thus, recently, hydrogen production technology using biomass or waste as a raw material has been proposed in place of conventional fossil fuel-derived hydrogen, thereby achieving so-called carbon neutral.

例えば、(特許文献1)には、バイオマスから水素を製造する方法であって、(i)バイオマスをガス化して炭化水素と水素と一酸化炭素とを含有する混合ガスを生成する第一工程、(ii)第一工程で得られたガス混合物を精製する第二工程、(iii)第二工程で得られたガス混合物に含まれる炭化水素を、水素と一酸化炭素に転化する第三工程及び(iv)第三工程で得られたガス混合物から水素を回収する第四工程を含む方法が開示されている。   For example, (Patent Document 1) is a method for producing hydrogen from biomass, and (i) a first step of gasifying biomass to produce a mixed gas containing hydrocarbon, hydrogen and carbon monoxide, (Ii) a second step for purifying the gas mixture obtained in the first step, (iii) a third step for converting hydrocarbons contained in the gas mixture obtained in the second step into hydrogen and carbon monoxide; (Iv) A method including a fourth step of recovering hydrogen from the gas mixture obtained in the third step is disclosed.

また、(特許文献2)には、バイオマスを、水の存在下、温度600〜1200℃、圧力5気圧以下にて熱処理することを特徴とするバイオマスの熱分解方法が開示されている。   Further, (Patent Document 2) discloses a biomass pyrolysis method characterized in that biomass is heat-treated at a temperature of 600 to 1200 ° C. and a pressure of 5 atm or less in the presence of water.

上述のように、熱分解ガス化によりバイオマスから水素を生成することは可能であるが、一般に水素分圧が低いため、水性シフト反応を行って水素分圧を高める必要があり、また純水素を得るためにはPSA(Pressure Swing Adsorption)(特許文献3)や膜分離等の手段による水素精製が必要であった。さらに、バイオマス原料から取り出される水素エネルギーはカーボンニュートラルとみなされるものの、依然として二酸化炭素は排出されており、改善の余地があった。   As described above, it is possible to generate hydrogen from biomass by pyrolysis gasification. However, since the hydrogen partial pressure is generally low, it is necessary to perform an aqueous shift reaction to increase the hydrogen partial pressure. In order to obtain it, hydrogen purification by means such as PSA (Pressure Swing Adsorption) (Patent Document 3) or membrane separation was required. Furthermore, although the hydrogen energy extracted from the biomass raw material is regarded as carbon neutral, carbon dioxide is still discharged and there is room for improvement.

特開2004−182501号公報JP 2004-182501 A 特開平07−041767号公報Japanese Patent Laid-Open No. 07-041767 特開2005−177716号公報JP 2005-177716 A

そこで本発明は、上記従来の状況に鑑み、バイオマスを原料として高純度の水素を効率的に生成するとともに、システム全体から排出される二酸化炭素を低減させた、新規な水素の製造・利用方法を提供することを目的とする。   Therefore, in view of the above-described conventional situation, the present invention provides a novel method for producing and using hydrogen that efficiently generates high-purity hydrogen using biomass as a raw material and reduces carbon dioxide discharged from the entire system. The purpose is to provide.

本発明者らは、バイオマスを熱分解して得られるバイオガスを、メンブレンシフト反応器で変性させることで、水素を一段階で取り出すことができ、さらに生成する二酸化炭素を分離回収することによって上記課題を解決できることを見出し、本発明を完成した。   The present inventors can desorb the biogas obtained by pyrolyzing biomass with a membrane shift reactor, so that hydrogen can be taken out in one step, and further, the carbon dioxide produced is separated and recovered as described above. The present inventors have found that the problems can be solved and completed the present invention.

すなわち、本発明の要旨は以下の通りである。
(1)バイオマスを原料として、熱分解により水素を含むバイオガスを生成する熱分解ガス化工程と、前記バイオガスを、メンブレンシフト反応器で水素リッチガスに変性させるとともに水素を分離するメンブレンシフト反応工程と、水素を分離して得られる、濃縮された二酸化炭素を含むガスから二酸化炭素を分離する分離工程とを備える水素製造・利用方法。
(2)メンブレンシフト反応工程で分離される水素を反応ガスとする燃料電池発電工程をさらに備える上記(1)に記載の水素製造・利用方法。
(3)メンブレンシフト反応工程と分離工程との間に、濃縮された二酸化炭素を含むガスをバーナー及び/又は燃焼触媒を用いて燃焼させる燃焼工程と、燃焼させたガスから冷却及び/又は吸着により水分を除去する水分除去工程とをさらに備える上記(1)又は(2)に記載の水素製造・利用方法。
(4)熱分解ガス化工程におけるガス化剤、及び燃焼工程における酸化剤が酸素であり、水分除去工程が、二酸化炭素を分離する分離工程を兼ねる上記(3)に記載の水素製造・利用方法。
(5)熱分解ガス化工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う上記(3)又は(4)に記載の水素製造・利用方法。
(6)燃焼工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う上記(3)〜(5)のいずれかに記載の水素製造・利用方法。
That is, the gist of the present invention is as follows.
(1) Pyrolysis gasification process using biomass as a raw material to produce hydrogen-containing biogas by pyrolysis, and membrane shift reaction process for separating the biogas into hydrogen-rich gas and separating hydrogen using a membrane shift reactor And a separation step of separating carbon dioxide from a gas containing concentrated carbon dioxide obtained by separating hydrogen.
(2) The method for producing and utilizing hydrogen according to (1), further comprising a fuel cell power generation step using hydrogen separated in the membrane shift reaction step as a reaction gas.
(3) Between the membrane shift reaction step and the separation step, a combustion step of burning a gas containing concentrated carbon dioxide using a burner and / or a combustion catalyst, and cooling and / or adsorption from the burned gas The method for producing and using hydrogen according to (1) or (2), further comprising a moisture removing step for removing moisture.
(4) The method for producing and using hydrogen according to (3) above, wherein the gasifying agent in the pyrolysis gasification step and the oxidizing agent in the combustion step are oxygen, and the water removal step also serves as a separation step for separating carbon dioxide. .
(5) Using the exhaust heat obtained in the pyrolysis gasification process, preheating the gasifying agent in the pyrolysis gasification process, preheating the oxidizing agent in the combustion process, and / or dehydration when removing moisture by adsorption The method for producing and utilizing hydrogen according to (3) or (4) above, wherein heating for regeneration of the adsorbent is performed.
(6) Using the exhaust heat obtained in the combustion step, preheating the gasifying agent in the pyrolysis gasification step, preheating the oxidant in the combustion step, and / or dehydrating adsorbent when removing moisture by adsorption The method for producing and utilizing hydrogen according to any one of (3) to (5), wherein heating for regeneration is performed.

(7)メンブレンシフト反応工程と分離工程との間に、濃縮された二酸化炭素を含むガスをバーナー及び/又は燃焼触媒を用いて燃焼させる燃焼工程と、燃焼させたガスから冷却及び/又は吸着により水分を除去する水分除去工程とを備え、さらにメンブレンシフト反応工程で分離される水素を反応ガスとする燃料電池発電工程を備え、前記燃料電池発電工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う上記(1)に記載の水素製造・利用方法。
(8)バイオマスを原料として、熱分解により水素を含むバイオガスを生成する熱分解ガス化工程と、前記バイオガスを、メンブレンシフト反応器で水素リッチガスに変性させるとともに水素を分離するメンブレンシフト反応工程と、水素を分離して得られる、濃縮された二酸化炭素を含むガスから冷却及び/又は吸着により水分を除去する水分除去工程と、水分が除去されたガスから二酸化炭素を分離する分離工程とを備え、前記分離工程を経て得られる、水素を含むガスを熱分解ガス化工程及び/又はメンブレンシフト反応工程にリサイクルする水素製造・利用方法。
(9)熱分解ガス化工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う上記(8)に記載の水素製造・利用方法。
(10)メンブレンシフト反応工程で分離される水素を反応ガスとする燃料電池発電工程をさらに備える上記(8)又は(9)に記載の水素製造・利用方法。
(11)燃料電池発電工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う上記(10)に記載の水素製造・利用方法。
(12)熱分解ガス化工程で得られる排熱を用いて、メンブレンシフト反応器の昇温を行う上記(1)〜(11)のいずれかに記載の水素製造・利用方法。
(7) Between the membrane shift reaction step and the separation step, a combustion step of burning a gas containing concentrated carbon dioxide using a burner and / or a combustion catalyst, and cooling and / or adsorption from the burned gas A water removal step for removing water, and further a fuel cell power generation step using hydrogen separated in the membrane shift reaction step as a reaction gas, and using the exhaust heat obtained in the fuel cell power generation step, a pyrolysis gas Production of hydrogen as described in (1) above, wherein preheating of the gasifying agent in the conversion step, preheating of the oxidizing agent in the combustion step, and / or heating for regeneration of the adsorbent for dehydration when removing moisture by adsorption ·How to Use.
(8) Pyrolysis gasification step of producing biogas containing hydrogen by pyrolysis using biomass as a raw material, and membrane shift reaction step of separating the biogas into hydrogen-rich gas in a membrane shift reactor and separating hydrogen And a water removal step for removing water from the gas containing concentrated carbon dioxide obtained by separating hydrogen by cooling and / or adsorption, and a separation step for separating carbon dioxide from the gas from which water has been removed. A hydrogen production / utilization method comprising recycling a gas containing hydrogen obtained through the separation step to a pyrolysis gasification step and / or a membrane shift reaction step.
(9) Use of the exhaust heat obtained in the pyrolysis gasification step to preheat the gasifying agent in the pyrolysis gasification step and / or to regenerate the adsorbent for dehydration when moisture is removed by adsorption. The method for producing and utilizing hydrogen according to (8), wherein the temperature is increased.
(10) The method for producing and utilizing hydrogen according to (8) or (9), further comprising a fuel cell power generation step using hydrogen separated in the membrane shift reaction step as a reaction gas.
(11) Using the exhaust heat obtained in the fuel cell power generation process, preheating the gasifying agent in the pyrolysis gasification process and / or heating for regeneration of the adsorbent for dehydration when removing moisture by adsorption The method for producing and using hydrogen according to (10) above.
(12) The method for producing and utilizing hydrogen according to any one of the above (1) to (11), wherein the temperature of the membrane shift reactor is increased using exhaust heat obtained in the pyrolysis gasification step.

本発明によれば、バイオマスを熱分解した後にメンブレンシフト反応工程を経ることにより、燃料電池等に利用可能な水素を効率良く得ることができる。また、水素を分離した後に残る、濃縮された二酸化炭素を含むガスから二酸化炭素を分離回収することで、システム全体として、カーボンニュートラルよりも優れるいわゆるカーボンネガティブを達成することができる。   According to the present invention, hydrogen that can be used for a fuel cell or the like can be efficiently obtained by performing a membrane shift reaction step after pyrolyzing biomass. Further, by separating and recovering carbon dioxide from a gas containing concentrated carbon dioxide remaining after separating hydrogen, a so-called carbon negative superior to carbon neutral can be achieved as a whole system.

本発明の第一の実施形態を示すブロック図である。It is a block diagram which shows 1st embodiment of this invention. 本発明の第二の実施形態を示すブロック図である。It is a block diagram which shows 2nd embodiment of this invention.

以下、本発明を詳細に説明する。
まず、本発明の第一の実施形態を図1に基づき説明する。図1に示すように、本発明の水素製造・利用方法は、バイオマスを原料として、熱分解により水素を含むバイオガスを生成する熱分解ガス化工程を備える。
Hereinafter, the present invention will be described in detail.
First, a first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the hydrogen production / utilization method of the present invention includes a pyrolysis gasification step of generating biogas containing hydrogen by pyrolysis using biomass as a raw material.

熱分解に供するバイオマスとしては、生物由来の有機資源であれば適用可能であり、好ましくは、有機性廃棄物、資源作物あるいはその廃棄物等の有機性物質が用いられる。例えば、食品工業、製紙工業、農畜産業(麦わら、稲わら、砂糖きび搾汁残渣等)、林業等(木材チップ、おが屑等)における有機廃棄物等を挙げることができるが、これに限定されるものではない。上記の原料バイオマスは、小片に細断して用いることが好ましい。また、熱分解の効率を高めるため、熱分解ガス化工程に供給する前に、バイオマスを乾燥させても良い。乾燥の度合いは、特に限定されるものではないが、15〜20重量%程度の水分量となるよう乾燥させることが好ましい。   The biomass to be subjected to pyrolysis is applicable as long as it is an organic resource derived from a living organism. Preferably, an organic substance such as an organic waste, a resource crop, or its waste is used. Examples include, but are not limited to, organic waste in the food industry, paper industry, agricultural and livestock industry (wheat straw, rice straw, sugar cane juice residue, etc.), forestry, etc. (wood chips, sawdust, etc.). It is not a thing. The raw material biomass is preferably used after being cut into small pieces. Moreover, in order to increase the efficiency of thermal decomposition, the biomass may be dried before being supplied to the thermal decomposition gasification step. The degree of drying is not particularly limited, but drying is preferably performed so that the moisture content is about 15 to 20% by weight.

熱分解は従来知られた手法により行うことができ、具体的には、ガス化剤として空気又は酸素を供給し、バイオマスを、温度700〜900℃で熱処理することによりガス化させるが、これに限定されるものではない。バイオマスの熱分解により、水素、二酸化炭素、一酸化炭素、水等を含むバイオガスが生成される。ガス化剤として空気を用いた場合には、さらに窒素も含まれることとなる。   Thermal decomposition can be performed by a conventionally known method. Specifically, air or oxygen is supplied as a gasifying agent, and biomass is gasified by heat treatment at a temperature of 700 to 900 ° C. It is not limited. Biogas containing hydrogen, carbon dioxide, carbon monoxide, water and the like is generated by pyrolysis of biomass. When air is used as the gasifying agent, nitrogen is also included.

熱分解ガス化工程から発生するバイオガスは、熱交換器等からなる熱回収装置によって排熱が回収され、メンブレンシフト反応器に供給される。メンブレンシフト反応器は、Cu系(300℃程度の低温シフト反応用)、Fe−Cr系及びPt系(500℃程度の高温シフト反応用)等のCO変成触媒が、ペレット、多孔質、成型(ハニカム)、流動床等の形態で反応器内に充填され、さらに、反応器内にはPd、Pd合金、非Pd系材料(V、Nb、Ta)等からなる水素分離膜が埋め込まれている。具体的には、例えば、CO変成触媒からなる扁平な層を形成し、その層中に複数本の筒状の水素分離膜(水素分離管)を平行に配置したり、あるいはCO変成触媒からなる円筒状の層を形成し、その層中に、円筒の軸線に沿って複数本の筒状の水素分離膜を配置したりしてメンブレンシフト反応器を構成することができる。上記CO変成触媒層の中もしくは外側には、冷却水を循環させる等して、その流量や温度により水性シフト反応の温度が最適になるよう制御することが好ましい。反応器内にバイオガスが供給されると、水性シフト反応が起こり、一酸化炭素及び水から二酸化炭素と水素が生成し、水素の濃度が高い水素リッチガスに変換される。この際の反応温度は320〜450℃程度である。水素リッチガス中の水素のみが、選択的に筒状の水素分離膜の内側に透過侵入し、純度の高い水素が分離・収集されることとなる。そして、メンブレンシフト反応器からは、水素を分離した後に残る、濃縮された二酸化炭素を含むガス(少量の水素、二酸化炭素、一酸化炭素、水、窒素等からなる)が、別途設けられたオフガス出口より排出される。以上のようなメンブレンシフト反応器の構成は、特開2000−143208号公報、及び特開2000−143210号公報において詳細に述べられており、本発明でもこれらの構成を適宜採用することができる。   The biogas generated from the pyrolysis gasification step is recovered as exhaust heat by a heat recovery device including a heat exchanger and supplied to the membrane shift reactor. Membrane shift reactors consist of Cu-based (for low-temperature shift reaction at about 300 ° C.), Fe—Cr and Pt-based (for high-temperature shift reaction at about 500 ° C.), pellets, porous, molded ( (Honeycomb), fluidized bed, etc. are filled in the reactor, and a hydrogen separation membrane made of Pd, Pd alloy, non-Pd-based material (V, Nb, Ta) or the like is embedded in the reactor. . Specifically, for example, a flat layer made of a CO conversion catalyst is formed, and a plurality of cylindrical hydrogen separation membranes (hydrogen separation pipes) are arranged in parallel in the layer, or made of a CO conversion catalyst. A membrane shift reactor can be constructed by forming a cylindrical layer and arranging a plurality of cylindrical hydrogen separation membranes along the axis of the cylinder in the layer. It is preferable to control the temperature of the aqueous shift reaction to be optimal depending on the flow rate and temperature, for example, by circulating cooling water inside or outside the CO conversion catalyst layer. When biogas is supplied into the reactor, an aqueous shift reaction occurs, and carbon dioxide and hydrogen are generated from carbon monoxide and water, which are converted into a hydrogen-rich gas having a high hydrogen concentration. The reaction temperature at this time is about 320 to 450 ° C. Only hydrogen in the hydrogen-rich gas selectively permeates into the inside of the cylindrical hydrogen separation membrane, and high purity hydrogen is separated and collected. Further, from the membrane shift reactor, a gas containing concentrated carbon dioxide (consisting of a small amount of hydrogen, carbon dioxide, carbon monoxide, water, nitrogen, etc.) remaining after separation of hydrogen is separately provided off-gas. It is discharged from the exit. The configuration of the membrane shift reactor as described above is described in detail in JP-A Nos. 2000-143208 and 2000-143210, and these configurations can be appropriately employed in the present invention.

この第一の実施形態では、上記のメンブレンシフト反応工程で分離される水素を反応ガスとして燃料電池に直接供給し、発電を行う(燃料電池発電工程)。これによって、バイオマスを原料とする電力を得ることができる。あるいは製造した水素を水素ガスステーション等へ供給しても良い。   In the first embodiment, hydrogen separated in the membrane shift reaction step is directly supplied to the fuel cell as a reaction gas to generate power (fuel cell power generation step). Thereby, the electric power which uses biomass as a raw material can be obtained. Alternatively, the produced hydrogen may be supplied to a hydrogen gas station or the like.

図1に示すように、本発明の第一の実施形態は、メンブレンシフト反応器から排出される、濃縮された二酸化炭素を含むガスをバーナー又は燃焼触媒を用いて燃焼させる燃焼工程をさらに備えている。バーナー又は燃焼触媒による燃焼は、両方を組み合わせて行っても良い。また、燃焼させる際には、空気や酸素等の酸化剤が供給される。   As shown in FIG. 1, the first embodiment of the present invention further includes a combustion step of burning a gas containing concentrated carbon dioxide discharged from a membrane shift reactor using a burner or a combustion catalyst. Yes. Combustion with a burner or a combustion catalyst may be performed in combination. Further, when burning, an oxidant such as air or oxygen is supplied.

燃焼触媒を用いる方法は、貴金属等の触媒作用により低温でガスを酸化させる方法である。触媒には白金、パラジウム、ルテニウム、ロジウム、銀等の貴金属やこれらの硝酸塩、塩化物等が適用でき、通常はメタルハニカム、セラミックハニカム、ボールペレット等の構造体に坦持して使用される。   A method using a combustion catalyst is a method of oxidizing a gas at a low temperature by a catalytic action of a noble metal or the like. As the catalyst, noble metals such as platinum, palladium, ruthenium, rhodium and silver, and nitrates and chlorides thereof can be applied. Usually, they are supported by being supported on a structure such as a metal honeycomb, a ceramic honeycomb or a ball pellet.

燃焼工程において、水素、一酸化炭素等の可燃分を燃焼させることにより、ガスの組成を水、二酸化炭素に変換する。燃焼工程での酸化剤として空気を供給した場合には、燃焼後のガスに窒素も含まれることとなる。   In the combustion process, combustible components such as hydrogen and carbon monoxide are burned to convert the gas composition into water and carbon dioxide. When air is supplied as an oxidant in the combustion process, nitrogen is also included in the gas after combustion.

続いて、水分除去工程において、燃焼工程を経たガスを、冷却するか又はシリカゲル等の吸着材に接触させることにより水分を除去する。冷却及び吸着操作は、両方を組み合わせて行っても良い。   Subsequently, in the moisture removal step, the gas that has passed through the combustion step is cooled or brought into contact with an adsorbent such as silica gel to remove moisture. The cooling and adsorption operations may be performed in combination.

燃焼工程における酸化剤として空気を用いた場合、水分除去工程を経たガスは二酸化炭素とともに窒素を含んでいるため、分離工程において二酸化炭素を分離・回収する。二酸化炭素の分離方法としては、種々の方法が適用可能であり、具体的には圧縮、冷却して液化する方法、PSA(pressure swing adsorption)による精製、アミン溶液に吸収させる方法等を挙げることができ、特に限定されるものではない。このように水素の製造とともに発生する二酸化炭素を回収することにより、原料がバイオマスであるため、システム全体としてはカーボンネガティブを達成することができ、産業上非常に有利である。   When air is used as the oxidant in the combustion process, the gas that has undergone the water removal process contains nitrogen as well as carbon dioxide, so that carbon dioxide is separated and recovered in the separation process. As a carbon dioxide separation method, various methods can be applied, specifically, a method of compressing, cooling and liquefying, a purification by PSA (pressure swing adsorption), a method of absorbing in an amine solution, and the like. There is no particular limitation. By recovering the carbon dioxide generated together with the production of hydrogen in this way, the raw material is biomass, so that the system as a whole can achieve a carbon negative, which is very advantageous in industry.

なお、熱分解ガス化工程におけるガス化剤、及び燃焼工程における酸化剤として、空気に代えて酸素を用いた場合は、燃料工程を経たガスに窒素が含まれない。この場合には、二酸化炭素を分離する工程を別途設けることなく、水分除去工程が分離工程を兼ねる構成とすることができる。すなわち、水分除去工程において水分を除去すると同時に、残成分として二酸化炭素を分離回収することができる。   In addition, when oxygen is used instead of air as the gasifying agent in the pyrolysis gasification step and the oxidant in the combustion step, nitrogen is not included in the gas that has passed through the fuel step. In this case, the water removal step can also serve as the separation step without separately providing a step for separating carbon dioxide. That is, carbon dioxide can be separated and recovered as a remaining component simultaneously with the removal of moisture in the moisture removal step.

図1に示すように、熱分解ガス化工程あるいは燃焼工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行っても良い。これにより、システムの効率をより高めることができる。排熱の回収は、熱交換器等を利用して適宜行うことができる。   As shown in FIG. 1, the exhaust heat obtained in the pyrolysis gasification process or the combustion process is used to preheat the gasification agent in the pyrolysis gasification process, preheat the oxidant in the combustion process, and / or adsorb moisture. Heating may be performed for regeneration of the adsorbent for dehydration when removing water. Thereby, the efficiency of a system can be raised more. The recovery of the exhaust heat can be appropriately performed using a heat exchanger or the like.

同様に、システムの効率を高めるため、燃料電池発電工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行っても良い。   Similarly, in order to increase the efficiency of the system, the exhaust heat obtained in the fuel cell power generation process is used to remove moisture by preheating the gasifying agent in the pyrolysis gasification process, preheating the oxidant in the combustion process, and / or adsorption. You may perform the heating for reproduction | regeneration of the adsorbent for dehydration at the time of removing.

さらに、図示しないが、熱分解ガス化工程で得られる排熱を用いて、システムの起動時に、メンブレンシフト反応器の昇温を行っても良い。   Further, although not shown, the temperature of the membrane shift reactor may be increased at the time of starting the system using the exhaust heat obtained in the pyrolysis gasification step.

次に、本発明の第二の実施形態を図2に基づき説明する。図2の例では、メンブレンシフト反応工程から得られる、濃縮された二酸化炭素を含むガスを、燃焼工程を経ることなく水分除去工程に直接供給している。この実施形態では、分離工程の後に水素及び一酸化炭素等を含むガスが排出されるため、このガスを熱分解ガス化工程に供給し、リサイクルしている。図示しないが、熱分解ガス化工程に代えて、あるいはそれに加えてメンブレンシフト反応工程にリサイクルしても良い。   Next, a second embodiment of the present invention will be described with reference to FIG. In the example of FIG. 2, the gas containing the concentrated carbon dioxide obtained from the membrane shift reaction process is directly supplied to the moisture removal process without going through the combustion process. In this embodiment, since the gas containing hydrogen, carbon monoxide, and the like is discharged after the separation step, this gas is supplied to the pyrolysis gasification step and recycled. Although not shown, the membrane shift reaction step may be recycled instead of or in addition to the pyrolysis gasification step.

本発明は、上記第一及び第二の実施形態に限定されることなく、これらを適宜組み合わせて実施することができる。   The present invention is not limited to the first and second embodiments, and can be implemented by appropriately combining them.

Claims (12)

バイオマスを原料として、熱分解により水素を含むバイオガスを生成する熱分解ガス化工程と、前記バイオガスを、メンブレンシフト反応器で水素リッチガスに変性させるとともに水素を分離するメンブレンシフト反応工程と、水素を分離して得られる、濃縮された二酸化炭素を含むガスから二酸化炭素を分離する分離工程とを備える水素製造・利用方法。   A pyrolysis gasification step in which biogas containing hydrogen is generated by pyrolysis using biomass as a raw material; a membrane shift reaction step in which the biogas is denatured into a hydrogen-rich gas in a membrane shift reactor and hydrogen is separated; and hydrogen And a separation step of separating carbon dioxide from a gas containing concentrated carbon dioxide obtained by separating the gas. メンブレンシフト反応工程で分離される水素を反応ガスとする燃料電池発電工程をさらに備える請求項1に記載の水素製造・利用方法。   The method for producing and using hydrogen according to claim 1, further comprising a fuel cell power generation step using hydrogen separated in the membrane shift reaction step as a reaction gas. メンブレンシフト反応工程と分離工程との間に、濃縮された二酸化炭素を含むガスをバーナー及び/又は燃焼触媒を用いて燃焼させる燃焼工程と、燃焼させたガスから冷却及び/又は吸着により水分を除去する水分除去工程とをさらに備える請求項1又は2に記載の水素製造・利用方法。   Between the membrane shift reaction process and the separation process, a combustion process in which a gas containing concentrated carbon dioxide is burned using a burner and / or a combustion catalyst, and moisture is removed from the burned gas by cooling and / or adsorption. The hydrogen production / utilization method according to claim 1, further comprising: a moisture removing step. 熱分解ガス化工程におけるガス化剤、及び燃焼工程における酸化剤が酸素であり、水分除去工程が、二酸化炭素を分離する分離工程を兼ねる請求項3に記載の水素製造・利用方法。   The method for producing and using hydrogen according to claim 3, wherein the gasifying agent in the pyrolysis gasification step and the oxidant in the combustion step are oxygen, and the water removal step also serves as a separation step for separating carbon dioxide. 熱分解ガス化工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う請求項3又は4に記載の水素製造・利用方法。   Using the exhaust heat obtained in the pyrolysis gasification process, preheating the gasifying agent in the pyrolysis gasification process, preheating the oxidant in the combustion process, and / or desorbing adsorbent when removing moisture by adsorption The method for producing and utilizing hydrogen according to claim 3 or 4, wherein heating for regeneration is performed. 燃焼工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う請求項3〜5のいずれかに記載の水素製造・利用方法。   Use of exhaust heat obtained in the combustion process to preheat the gasifying agent in the pyrolysis gasification process, preheat the oxidant in the combustion process, and / or regenerate the adsorbent for dehydration when removing moisture by adsorption The method for producing and utilizing hydrogen according to claim 3, wherein the heating is performed. メンブレンシフト反応工程と分離工程との間に、濃縮された二酸化炭素を含むガスをバーナー及び/又は燃焼触媒を用いて燃焼させる燃焼工程と、燃焼させたガスから冷却及び/又は吸着により水分を除去する水分除去工程とを備え、さらにメンブレンシフト反応工程で分離される水素を反応ガスとする燃料電池発電工程を備え、前記燃料電池発電工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、燃焼工程における酸化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う請求項1に記載の水素製造・利用方法。   Between the membrane shift reaction process and the separation process, a combustion process in which a gas containing concentrated carbon dioxide is burned using a burner and / or a combustion catalyst, and moisture is removed from the burned gas by cooling and / or adsorption. A fuel cell power generation process using hydrogen separated in the membrane shift reaction process as a reaction gas, and using exhaust heat obtained in the fuel cell power generation process, The method for producing and utilizing hydrogen according to claim 1, wherein preheating of the gasifying agent, preheating of the oxidant in the combustion process, and / or heating for regeneration of the adsorbent for dehydration when moisture is removed by adsorption. バイオマスを原料として、熱分解により水素を含むバイオガスを生成する熱分解ガス化工程と、前記バイオガスを、メンブレンシフト反応器で水素リッチガスに変性させるとともに水素を分離するメンブレンシフト反応工程と、水素を分離して得られる、濃縮された二酸化炭素を含むガスから冷却及び/又は吸着により水分を除去する水分除去工程と、水分が除去されたガスから二酸化炭素を分離する分離工程とを備え、前記分離工程を経て得られる、水素を含むガスを熱分解ガス化工程及び/又はメンブレンシフト反応工程にリサイクルする水素製造・利用方法。   A pyrolysis gasification step in which biogas containing hydrogen is generated by pyrolysis using biomass as a raw material; a membrane shift reaction step in which the biogas is denatured into a hydrogen-rich gas in a membrane shift reactor and hydrogen is separated; and hydrogen A water removal step for removing water by cooling and / or adsorption from a gas containing concentrated carbon dioxide obtained by separating the carbon dioxide, and a separation step for separating carbon dioxide from the gas from which water has been removed, A hydrogen production / utilization method in which a gas containing hydrogen obtained through a separation step is recycled to a pyrolysis gasification step and / or a membrane shift reaction step. 熱分解ガス化工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う請求項8に記載の水素製造・利用方法。   Using the exhaust heat obtained in the pyrolysis gasification process, preheating the gasifying agent in the pyrolysis gasification process and / or heating for regeneration of the adsorbent for dehydration when moisture is removed by adsorption. The method for producing and utilizing hydrogen according to claim 8. メンブレンシフト反応工程で分離される水素を反応ガスとする燃料電池発電工程をさらに備える請求項8又は9に記載の水素製造・利用方法。   The method for producing and using hydrogen according to claim 8 or 9, further comprising a fuel cell power generation step using hydrogen separated in the membrane shift reaction step as a reaction gas. 燃料電池発電工程で得られる排熱を用いて、熱分解ガス化工程におけるガス化剤の予熱、及び/又は吸着により水分を除去する際の脱水用吸着材の再生のための加温を行う請求項10に記載の水素製造・利用方法。   Claims for preheating the gasifying agent in the pyrolysis gasification process and / or heating for regeneration of the adsorbent for dehydration when removing moisture by adsorption using the exhaust heat obtained in the fuel cell power generation process Item 11. The method for producing and utilizing hydrogen according to Item 10. 熱分解ガス化工程で得られる排熱を用いて、メンブレンシフト反応器の昇温を行う請求項1〜11のいずれかに記載の水素製造・利用方法。   The hydrogen production / utilization method according to any one of claims 1 to 11, wherein the temperature of the membrane shift reactor is increased using exhaust heat obtained in the pyrolysis gasification step.
JP2009246471A 2009-10-27 2009-10-27 Hydrogen production and usage Expired - Fee Related JP5421065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246471A JP5421065B2 (en) 2009-10-27 2009-10-27 Hydrogen production and usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246471A JP5421065B2 (en) 2009-10-27 2009-10-27 Hydrogen production and usage

Publications (2)

Publication Number Publication Date
JP2011093719A true JP2011093719A (en) 2011-05-12
JP5421065B2 JP5421065B2 (en) 2014-02-19

Family

ID=44111088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246471A Expired - Fee Related JP5421065B2 (en) 2009-10-27 2009-10-27 Hydrogen production and usage

Country Status (1)

Country Link
JP (1) JP5421065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011826A1 (en) * 2013-07-26 2015-01-29 株式会社ジャパンブルーエナジー Hydrogen collection method
JP2015168812A (en) * 2014-03-11 2015-09-28 愛知電機株式会社 Fuel gas collection method from biomass by microwave non-balanced plasma
US11273405B2 (en) 2016-08-23 2022-03-15 Japan Blue Energy Co., Ltd. Method for recovering hydrogen from biomass pyrolysis gas
CN114712984A (en) * 2022-03-16 2022-07-08 四川天采科技有限责任公司 Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production
CN114772961A (en) * 2022-05-05 2022-07-22 合肥工业大学 Process for producing cement and carbon monoxide by co-pyrolysis of cement raw meal and solid-phase carbon source

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185402A (en) * 1982-04-20 1983-10-29 Osaka Gas Co Ltd Method for increasing temperature of carbon monoxide converter
JPH06103994A (en) * 1992-09-21 1994-04-15 Toshiba Corp Fuel cell power generating system
JP2001146402A (en) * 1999-11-17 2001-05-29 Ishikawajima Harima Heavy Ind Co Ltd High-temperature shift converter for producing hydrogen and method for operating the same
JP2001223017A (en) * 2000-02-09 2001-08-17 Toyota Motor Corp Fuel gas generating system for fuel cell
JP2001240877A (en) * 2000-02-29 2001-09-04 Mitsubishi Heavy Ind Ltd Biomass-gasifying furnace and method of gasifying biomass
JP2002068710A (en) * 2000-08-31 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for removing co and apparatus for generating fuel cells using it
JP2002338976A (en) * 2001-05-15 2002-11-27 Ecomeet Solutions Co Ltd Apparatus and method for treating waste oil
JP2003007325A (en) * 2001-06-20 2003-01-10 Hitachi Ltd Combustor of fuel cell anode off-gas, hydrogen production system and fuel cell power generation system
JP2003081605A (en) * 2001-09-05 2003-03-19 Kawasaki Heavy Ind Ltd Hydrogen producing method accompanying recovery of liquefied co2
JP2004079495A (en) * 2002-08-21 2004-03-11 Fc Tekku:Kk Fuel cell power generation system using gasified refuse gas
WO2007099989A1 (en) * 2006-03-02 2007-09-07 Bio Coke Lab., Ltd. Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator
JP2007260628A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Water vapor detection membrane

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185402A (en) * 1982-04-20 1983-10-29 Osaka Gas Co Ltd Method for increasing temperature of carbon monoxide converter
JPH06103994A (en) * 1992-09-21 1994-04-15 Toshiba Corp Fuel cell power generating system
JP2001146402A (en) * 1999-11-17 2001-05-29 Ishikawajima Harima Heavy Ind Co Ltd High-temperature shift converter for producing hydrogen and method for operating the same
JP2001223017A (en) * 2000-02-09 2001-08-17 Toyota Motor Corp Fuel gas generating system for fuel cell
JP2001240877A (en) * 2000-02-29 2001-09-04 Mitsubishi Heavy Ind Ltd Biomass-gasifying furnace and method of gasifying biomass
JP2002068710A (en) * 2000-08-31 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for removing co and apparatus for generating fuel cells using it
JP2002338976A (en) * 2001-05-15 2002-11-27 Ecomeet Solutions Co Ltd Apparatus and method for treating waste oil
JP2003007325A (en) * 2001-06-20 2003-01-10 Hitachi Ltd Combustor of fuel cell anode off-gas, hydrogen production system and fuel cell power generation system
JP2003081605A (en) * 2001-09-05 2003-03-19 Kawasaki Heavy Ind Ltd Hydrogen producing method accompanying recovery of liquefied co2
JP2004079495A (en) * 2002-08-21 2004-03-11 Fc Tekku:Kk Fuel cell power generation system using gasified refuse gas
WO2007099989A1 (en) * 2006-03-02 2007-09-07 Bio Coke Lab., Ltd. Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator
JP2007260628A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Water vapor detection membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011826A1 (en) * 2013-07-26 2015-01-29 株式会社ジャパンブルーエナジー Hydrogen collection method
JP6055920B2 (en) * 2013-07-26 2016-12-27 株式会社ジャパンブルーエナジー Hydrogen recovery method
JP2015168812A (en) * 2014-03-11 2015-09-28 愛知電機株式会社 Fuel gas collection method from biomass by microwave non-balanced plasma
US11273405B2 (en) 2016-08-23 2022-03-15 Japan Blue Energy Co., Ltd. Method for recovering hydrogen from biomass pyrolysis gas
CN114712984A (en) * 2022-03-16 2022-07-08 四川天采科技有限责任公司 Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production
CN114712984B (en) * 2022-03-16 2023-03-03 四川天采科技有限责任公司 Substitution process for recycling CO2 through full-temperature-range pressure swing adsorption for amine absorption decarburization in natural gas SMB hydrogen production
CN114772961A (en) * 2022-05-05 2022-07-22 合肥工业大学 Process for producing cement and carbon monoxide by co-pyrolysis of cement raw meal and solid-phase carbon source
CN114772961B (en) * 2022-05-05 2023-09-19 合肥工业大学 Process for producing cement and carbon monoxide by co-pyrolysis of cement raw material and solid-phase carbon

Also Published As

Publication number Publication date
JP5421065B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5268471B2 (en) Polygeneration system
KR102622341B1 (en) Device and Process for simultaneous carbon dioxide capture and hydrogen production with hybrid process of hydrogen separation and carbon dioxide sorption
US7153344B2 (en) Process for the preparation and recovery of carbon dioxide from waste gas or fumes produced by combustible oxidation
Iordanidis et al. Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: concept analysis and process simulation
CN101774542B (en) Biomass gasification hydrogen-producing system and method
CN1360556A (en) Process and apparatus for production of hydrogen by gasification of combustible material and method for electric generation using fuel cell and electric power generation system using fuel cell
RU2007137645A (en) SYSTEMS AND METHODS USING A FUEL PROCESSOR WITHOUT MIXING
JP5421065B2 (en) Hydrogen production and usage
JP6977972B2 (en) Methods and equipment for improving the properties of biogas and producing hydrogen from anaerobic fermentation of biological substances
NO320939B1 (en) Process for exhaust gas treatment in fuel cell system based on solid oxides
CA2667518A1 (en) Process for producing carbon dioxide and methane by catalytic gas reaction
TW200837043A (en) A process for enhancing the operability of hot gas cleanup for the production of synthesis gas from steam-hydrogasification producer gas
WO2011021944A1 (en) Combined processes for utilizing synthesis gas at low co2 emission and high energy output
JPWO2017072891A1 (en) Hydrogen recovery method
Aniruddha et al. Sorption enhanced reforming: A potential route to produce pure H2 with in-situ carbon capture
JP2005112927A (en) Method for manufacturing hydrogen or hydrogen-containing gas from organic waste
CN104017604B (en) A kind of device and method of gasifying biomass catalytic reforming biological hydrogen
JP5442391B2 (en) Hydrogen production and usage
Nimmanterdwong et al. Emergy investigation of carbon dioxide utilization processes for methanol synthesis
RU2530066C1 (en) Method of producing hydrogen-containing gas
JP2004083340A (en) Process for recovering hydrogen from organic waste
CN210092233U (en) Molten carbonate fuel cell and calcium circulation integrated system
Fino Hydrogen production in conventional, bio-based and nuclear power plants
JPWO2020166659A1 (en) Biomass gas production method, hydrogen production method, biomass gas production system and hydrogen production system
RU72418U1 (en) SYSTEM FOR PRODUCING HYDROGEN FROM BIOGAS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5421065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees