JP2011092979A - Method for welding high-strength thin steel sheet - Google Patents

Method for welding high-strength thin steel sheet Download PDF

Info

Publication number
JP2011092979A
JP2011092979A JP2009249955A JP2009249955A JP2011092979A JP 2011092979 A JP2011092979 A JP 2011092979A JP 2009249955 A JP2009249955 A JP 2009249955A JP 2009249955 A JP2009249955 A JP 2009249955A JP 2011092979 A JP2011092979 A JP 2011092979A
Authority
JP
Japan
Prior art keywords
thin steel
mass
welding
steel sheet
strength thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009249955A
Other languages
Japanese (ja)
Other versions
JP5515629B2 (en
Inventor
Tokihiko Kataoka
時彦 片岡
Tomomasa Ikeda
倫正 池田
Moriaki Ono
守章 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009249955A priority Critical patent/JP5515629B2/en
Publication of JP2011092979A publication Critical patent/JP2011092979A/en
Application granted granted Critical
Publication of JP5515629B2 publication Critical patent/JP5515629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding method which, upon welding a high-strength thin steel sheet having a tensile strength of ≥980 MPa, a sheet thickness of ≤6.0 mm and a Pcm value of 0.250 to 0.305, suppresses the low temperature cracking of a weld zone. <P>SOLUTION: In the method for welding a high-strength thin steel sheet, the depth of penetration is controlled to ≥40% of the sheet thickness, and the Vickers hardness of a weld metal is set to ≤350. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高強度薄鋼板(特に引張強さ980MPa以上,板厚6.0mm以下かつPcm値0.250〜0.305の高強度薄鋼板)を溶接するにあたって、溶接部の低温割れを抑制し、健全な溶接構造物を得る溶接方法に関するものである。
なお、ここでは溶接金属と溶接熱影響部を総称して溶接部と記す。
The present invention suppresses the low temperature cracking of the welded part and welds well when welding high-strength thin steel sheets (particularly high-strength thin steel sheets with a tensile strength of 980 MPa or more, a thickness of 6.0 mm or less and a Pcm value of 0.250 to 0.305). The present invention relates to a welding method for obtaining a structure.
Here, the weld metal and the weld heat affected zone are collectively referred to as a weld zone.

近年、様々な分野で環境の保護や安全性の向上に関する技術が注目されている。たとえば自動車の分野では、地球温暖化の防止を目的として、CO2の排出量を削減する取組みが進められている。また、衝突時の乗員や歩行者の安全を確保するという社会的要望が高まっている。
自動車の走行によるCO2の排出量を削減するためには、車体の軽量化が多大な効果を発揮する。たとえば車体を100kg軽量化すると、ガソリン1literあたりの走行距離(いわゆる燃費)を約1km/liter向上できる。一方で自動車の安全基準は年々厳しくなっており、車体の強度の向上のみならず強度の最適な配分を達成することによって、乗員および歩行者の安全を確保する技術が求められている。
In recent years, technologies relating to environmental protection and safety improvement have attracted attention in various fields. For example, in the field of automobiles, efforts are being made to reduce CO 2 emissions for the purpose of preventing global warming. In addition, there is a growing social demand to ensure the safety of passengers and pedestrians in the event of a collision.
In order to reduce the amount of CO 2 emitted by driving a car, the weight reduction of the vehicle body has a great effect. For example, if the weight of the vehicle body is reduced by 100 kg, the mileage per 1 liter of gasoline (so-called fuel efficiency) can be improved by about 1 km / liter. On the other hand, the safety standards for automobiles are becoming stricter year by year, and there is a demand for technology for ensuring the safety of passengers and pedestrians by achieving optimal distribution of strength as well as improving the strength of the vehicle body.

多量の薄鋼板を使用して頑丈な車体を製作することで、車体の強度を高めることは可能であるが、軽量化を達成できない。そこで、引張強さを向上した薄鋼板(以下、高強度薄鋼板という)が開発されており、その高強度薄鋼板を用いて車体を製作すれば、車体の強度向上と軽量化を両立させることは可能である。ところが薄鋼板の引張強さが向上すると、薄鋼板を加工してさらに溶接する車体の製作過程で、溶接部の低温割れが発生し易くなるという問題がある。したがって、高強度薄鋼板を用いて製作した車体を実用化するためには、高強度薄鋼板を接合する際の低温割れを抑制する技術を開発する必要がある。   Although it is possible to increase the strength of the vehicle body by manufacturing a sturdy vehicle body using a large amount of thin steel plates, it is not possible to achieve weight reduction. Therefore, thin steel sheets with improved tensile strength (hereinafter referred to as high-strength thin steel sheets) have been developed, and if a vehicle body is manufactured using the high-strength thin steel sheets, it is possible to achieve both strength improvement and weight reduction of the vehicle body. Is possible. However, when the tensile strength of the thin steel plate is improved, there is a problem that cold cracking of the welded portion is likely to occur in the manufacturing process of the vehicle body in which the thin steel plate is processed and further welded. Therefore, in order to put a vehicle body manufactured using a high-strength thin steel plate into practical use, it is necessary to develop a technique for suppressing low-temperature cracking when joining the high-strength thin steel plate.

高強度薄鋼板を得るためには、溶製工程で高強度化元素(たとえばC,Si,Mn,Cu,Ni,Cr,Mo,V,B等)を添加して圧延工程で圧下量や温度を制御する技術(たとえば特許文献1参照)が知られている。そのような技術を適用して得られる引張強さ780MPa以下の薄鋼板は、溶接による低温割れは生じないので、既に実用化されている。
そして、さらなる圧延技術の進歩によって、980MPa以上の引張強さを有する高強度薄鋼板の製造が可能となってきた。そのような高強度薄鋼板は、溶接による低温割れが発生し易い。特に開先加工を施すことなく、そのまま用いられる板厚6.0mm以下の高強度薄鋼板の1パス溶接では、その傾向が顕著に現われる。溶接した後で熱処理を施すことによって低温割れを抑制することは可能であるが、熱処理によって部材の変形が生じる。しかも極めて大規模な熱処理炉を稼働させる必要があるので、省エネルギーの観点から問題がある。
In order to obtain a high-strength steel sheet, elements for increasing the strength (for example, C, Si, Mn, Cu, Ni, Cr, Mo, V, B, etc.) are added in the melting process, and the rolling amount and temperature are reduced in the rolling process. There is known a technique for controlling (see, for example, Patent Document 1). A thin steel sheet having a tensile strength of 780 MPa or less obtained by applying such a technique does not cause cold cracking due to welding, and has already been put into practical use.
Further, further progress in rolling technology has made it possible to produce high-strength steel sheets having a tensile strength of 980 MPa or more. Such high-strength thin steel sheets are susceptible to cold cracking due to welding. In particular, the tendency appears remarkably in 1-pass welding of a high-strength thin steel plate having a thickness of 6.0 mm or less that is used as it is without performing groove processing. Although it is possible to suppress low temperature cracking by performing a heat treatment after welding, deformation of the member occurs due to the heat treatment. Moreover, since it is necessary to operate an extremely large-scale heat treatment furnace, there is a problem from the viewpoint of energy saving.

したがって、引張強さ980MPa以上かつ板厚6.0mm以下の高強度薄鋼板を溶接するにあたって、溶接部の低温割れを抑制する溶接方法を開発する必要がある。   Therefore, it is necessary to develop a welding method that suppresses low-temperature cracking in the welded part when welding a high-strength thin steel sheet having a tensile strength of 980 MPa or more and a thickness of 6.0 mm or less.

特開平10-158735号公報Japanese Patent Laid-Open No. 10-158735

本発明は、引張強さ980MPa以上,板厚6.0mm以下,Pcm値0.250〜0.305の高強度薄鋼板を溶接するにあたって、溶接部の低温割れを抑制する溶接方法を提供することを目的とする。   An object of the present invention is to provide a welding method that suppresses low-temperature cracking of a welded part when welding a high-strength thin steel sheet having a tensile strength of 980 MPa or more, a plate thickness of 6.0 mm or less, and a Pcm value of 0.250 to 0.305.

発明者らは、引張強さ980MPa以上,板厚6.0mm以下かつ下記の(1)式で算出されるPcm値が0.250〜0.305の範囲内を満足する高強度薄鋼板の溶接によって低温割れが発生する原因について調査した。高強度薄鋼板を加工して製造したテスト部材を溶接して溶接熱影響部のビッカース硬さを測定したところ、360〜450と著しく高くなっており、硬く脆い状態であった。つまり、高強度薄鋼板を加工して複雑な形状の車体用部材を製造することによって加工硬化が生じ、高強度薄鋼板の硬さが大幅に増加した後で溶接を行なうことが低温割れの原因であることが分かった。   The inventors found that low-temperature cracking occurred by welding high-strength thin steel sheets satisfying a tensile strength of 980 MPa or more, a plate thickness of 6.0 mm or less, and a Pcm value calculated by the following formula (1) in the range of 0.250 to 0.305. Investigate the cause. When a test member produced by processing a high-strength thin steel plate was welded and the Vickers hardness of the weld heat-affected zone was measured, it was remarkably high at 360 to 450 and was in a hard and brittle state. In other words, work hardening occurs by processing a high-strength thin steel sheet to produce a car body member with a complicated shape, and welding after the hardness of the high-strength thin steel sheet has greatly increased is the cause of cold cracking. It turns out that.

そこで発明者らは、高強度薄鋼板の溶接による低温割れを抑制する技術について検討した。その結果、高強度薄鋼板を溶接する際に、
(A)溶込み深さを板厚の40%以上とする、
(B)溶接金属のビッカース硬さを350以下とする
ことによって、低温割れを抑制できることが判明した。
Therefore, the inventors examined a technique for suppressing low temperature cracking due to welding of a high strength thin steel sheet. As a result, when welding high strength thin steel sheet,
(A) The penetration depth is 40% or more of the plate thickness.
(B) It was found that cold cracking can be suppressed by setting the Vickers hardness of the weld metal to 350 or less.

なお、ここでは一例として自動車の車体について説明したが、本発明は、その他の溶接構造物を製作するための高強度薄鋼板の溶接にも適用できる。
本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、引張強さ980MPa以上,板厚6.0mm以下かつ下記の(1)式で算出されるPcm値が0.250〜0.305の範囲内を満足する高強度薄鋼板の溶接方法において、溶込み深さを板厚の40%以上とし、溶接金属のビッカース硬さを350以下とする高強度薄鋼板の溶接方法である。
Pcm=[%C]+[%Si]/30+[%Mn]/20+[%Cu]/20+[%Ni]/60+[%Cr]/20
+[%Mo]/15+[%V]/10+5[%B] ・・・(1)
[%C]:高強度薄鋼板のC含有量(質量%)
[%Si]:高強度薄鋼板のSi含有量(質量%)
[%Mn]:高強度薄鋼板のMn含有量(質量%)
[%Cu]:高強度薄鋼板のCu含有量(質量%)
[%Ni]:高強度薄鋼板のNi含有量(質量%)
[%Cr]:高強度薄鋼板のCr含有量(質量%)
[%Mo]:高強度薄鋼板のMo含有量(質量%)
[%V]:高強度薄鋼板のV含有量(質量%)
[%B]:高強度薄鋼板のB含有量(質量%)
本発明の高強度薄鋼板の溶接方法においては、溶接電流をI,アーク電圧をE,溶接速度をSとし、高強度薄鋼板の板厚をtとして、下記の(2)式で算出されるQ値を100以上とすることが好ましい。
Q=(I×E)/(S×t2) ・・・(2)
I:溶接電流(A)
E:アーク電圧(V)
S:溶接速度(mm/秒)
t:高強度薄鋼板の板厚(mm)
In addition, although demonstrated about the vehicle body of the motor vehicle as an example here, this invention is applicable also to the welding of the high strength thin steel plate for manufacturing another welded structure.
The present invention has been made based on these findings.
That is, the present invention relates to a high strength thin steel plate welding method that has a tensile strength of 980 MPa or more, a plate thickness of 6.0 mm or less, and a Pcm value calculated by the following formula (1) within the range of 0.250 to 0.305. This is a welding method for high-strength thin steel sheets in which the depth is 40% or more of the plate thickness and the Vickers hardness of the weld metal is 350 or less.
Pcm = [% C] + [% Si] / 30 + [% Mn] / 20 + [% Cu] / 20 + [% Ni] / 60 + [% Cr] / 20
+ [% Mo] / 15 + [% V] / 10 + 5 [% B] (1)
[% C]: C content (mass%) of high-strength thin steel sheet
[% Si]: Si content (mass%) of high-strength thin steel sheet
[% Mn]: Mn content (% by mass) of high-strength thin steel sheet
[% Cu]: Cu content (mass%) of high-strength thin steel sheet
[% Ni]: Ni content (mass%) of high-strength thin steel sheet
[% Cr]: Cr content (mass%) of high-strength thin steel sheet
[% Mo]: Mo content (mass%) of high-strength thin steel sheet
[% V]: V content (mass%) of high-strength thin steel sheet
[% B]: B content (% by mass) of high-strength thin steel sheet
In the welding method of the high strength thin steel sheet according to the present invention, the welding current is I, the arc voltage is E, the welding speed is S, and the thickness of the high strength thin steel sheet is t, which is calculated by the following equation (2). The Q value is preferably 100 or more.
Q = (I × E) / (S × t 2 ) (2)
I: Welding current (A)
E: Arc voltage (V)
S: Welding speed (mm / sec)
t: Thickness of high strength steel sheet (mm)

本発明によれば、引張強さ980MPa以上,板厚6.0mm以下かつPcm値が0.250〜0.305の高強度薄鋼板を溶接するにあたって、溶接部の低温割れを抑制し、健全な溶接構造物を得ることができる。   According to the present invention, when welding a high-strength thin steel sheet having a tensile strength of 980 MPa or more, a plate thickness of 6.0 mm or less, and a Pcm value of 0.250 to 0.305, low-temperature cracking of the weld is suppressed, and a sound welded structure is obtained. be able to.

隅肉溶接の溶接試験における高強度薄鋼板と拘束板との配置を模式的に示す平面図である。It is a top view which shows typically arrangement | positioning of the high strength thin steel plate and a restraint plate in the welding test of fillet welding.

本発明は、引張強さ980MPa以上,板厚6.0mm以下かつPcm値が0.250〜0.305の高強度薄鋼板に適用される溶接方法である。
一般に高強度薄鋼板は、C,Si,Mn,Mo,Ni等を添加して固溶強化を生じさせ、さらにTi,Nb,V,B等を添加して析出強化を生じさせるとともに、圧下量や温度を制御しつつ圧延を行なうことによって、引張強さの向上を図っている。このような高強度薄鋼板のうち、引張強さ980MPa以上、特に1180MPa以上、の高強度薄鋼板は、これらの元素の添加量を増加して固溶強化や析出強化を促進する、あるいは過酷な条件で圧延して加工硬化を促進する必要があるので、割れ感受性が増大するのは避けられない。そのため溶接構造物を製作するにあたって、溶接の条件を厳格に管理しなければならない。
The present invention is a welding method applied to a high strength thin steel sheet having a tensile strength of 980 MPa or more, a plate thickness of 6.0 mm or less, and a Pcm value of 0.250 to 0.305.
In general, high-strength thin steel sheets are added with C, Si, Mn, Mo, Ni, etc. to cause solid solution strengthening, and Ti, Nb, V, B, etc. are added to cause precipitation strengthening, and the reduction amount Further, the tensile strength is improved by rolling while controlling the temperature. Among these high-strength steel sheets, high-strength steel sheets with a tensile strength of 980 MPa or more, particularly 1180 MPa or more, increase the amount of addition of these elements to promote solid solution strengthening or precipitation strengthening, or severe Since it is necessary to roll under conditions to promote work hardening, it is inevitable that cracking susceptibility increases. Therefore, when manufacturing a welded structure, the welding conditions must be strictly controlled.

ところが本発明の溶接方法を採用すれば、引張強さ980MPa以上の高強度薄鋼板の溶接であっても、容易に低温割れを防止することが可能であり、健全な溶接構造物を安定して製作できる。ただし、高強度薄鋼板の引張強さが1530MPaを超えると、本発明を適用しても溶接による低温割れが発生する惧れがある。したがって、高強度薄鋼板の引張強さは980〜1530MPaの範囲内であることが好ましい。より好ましくは1180〜1380MPaである。   However, if the welding method of the present invention is adopted, it is possible to easily prevent cold cracking even when welding a high-strength thin steel plate having a tensile strength of 980 MPa or more, and a sound welded structure can be stably formed. Can be produced. However, if the tensile strength of the high-strength thin steel sheet exceeds 1530 MPa, cold cracking due to welding may occur even when the present invention is applied. Therefore, the tensile strength of the high-strength thin steel plate is preferably in the range of 980 to 1530 MPa. More preferably, it is 1180-1380 MPa.

また、一般に板厚6.0mm以下の高強度薄鋼板では小入熱で断続的な短い溶接が1層1パスで行なわれるので、溶接部(すなわち溶接金属,溶接熱影響部)の冷却速度が大きくなり、焼入れ効果が発現される。そのため、溶接部が著しく硬化して、低温割れが発生し易くなる。
ところが本発明の溶接方法を採用すれば、板厚6.0mm以下の高強度薄鋼板の溶接であっても、容易に低温割れを防止することが可能であり、健全な溶接構造物を安定して製作できる。ただし、高強度薄鋼板の板厚が1.2mm未満では、溶接によって高張力薄鋼板が溶落ちあるいは変形する惧れがある。したがって、高強度薄鋼板の板厚は1.2〜6.0mmの範囲内であることが好ましい。
In general, high-strength steel sheets with a thickness of 6.0 mm or less perform intermittent short welding with small heat input in one layer and one pass, so the cooling rate of the welded part (ie, weld metal, weld heat affected zone) is high. Thus, a quenching effect is exhibited. Therefore, the welded portion is markedly cured, and low temperature cracking is likely to occur.
However, if the welding method of the present invention is adopted, it is possible to easily prevent low-temperature cracking even when welding a high-strength thin steel plate having a thickness of 6.0 mm or less, and a stable welded structure can be stably formed. Can be produced. However, if the thickness of the high-strength thin steel sheet is less than 1.2 mm, the high-strength thin steel sheet may be melted or deformed by welding. Therefore, the plate thickness of the high-strength thin steel plate is preferably in the range of 1.2 to 6.0 mm.

本発明を適用して高強度薄鋼板の溶接を行なうにあたって、溶込み深さが板厚の40%未満では、形成される溶接金属が少量であるから、溶接部(すなわち溶接金属,溶接熱影響部)の冷却速度が大きくなり、焼入れ効果が生じる。そのため、溶接部が著しく硬化して、低温割れが発生し易くなる。したがって、溶込み深さは板厚の40%以上とする必要がある。好ましくは50%以上である。溶接金属が高強度薄鋼板を貫通して裏波が発生しても問題にならない溶接構造物では、溶込み深さを板厚の100%としても良い。   When welding high-strength thin steel sheets using the present invention, if the penetration depth is less than 40% of the plate thickness, a small amount of weld metal is formed. Part) is increased, and a quenching effect is produced. Therefore, the welded portion is markedly cured, and low temperature cracking is likely to occur. Therefore, the penetration depth needs to be 40% or more of the plate thickness. Preferably it is 50% or more. In a welded structure that does not cause a problem even if a weld metal penetrates a high-strength thin steel plate and a back wave is generated, the penetration depth may be 100% of the plate thickness.

本発明では溶接金属の硬さを低く抑えて、溶接構造物の溶接部を高強度薄鋼板よりも軟質にすることによって、溶接部に作用する応力負荷を軽減して、低温割れを抑制する。溶接金属のビッカース硬さが350を超えると、溶接部の硬さが高強度薄鋼板と同等、あるいはそれ以上になるので、溶接部に作用する応力負荷を軽減する効果が得られない。したがって、溶接金属のビッカース硬さは350以下とする。好ましくは270以下である。   In the present invention, the hardness of the weld metal is kept low and the welded portion of the welded structure is made softer than the high-strength thin steel sheet, thereby reducing the stress load acting on the welded portion and suppressing low-temperature cracking. When the Vickers hardness of the weld metal exceeds 350, the hardness of the welded portion is equal to or higher than that of the high-strength thin steel plate, and thus the effect of reducing the stress load acting on the welded portion cannot be obtained. Therefore, the Vickers hardness of the weld metal is 350 or less. Preferably it is 270 or less.

また本発明では、高強度薄鋼板の成分に基づいて下記の(1)式で算出されるPcm値が0.250未満では、所定の引張強さ(すなわち980MPa以上)が得ることが困難になる。一方、0.305を超えると、溶接部の低温割れが発生し易くなる。したがって、Pcm値は0.250〜0.305の範囲内とする。なお、(1)式中の[%C]はC含有量(質量%),[%Si]はSi含有量(質量%),[%Mn]はMn含有量(質量%),[%Cu]はCu含有量(質量%),[%Ni]はNi含有量(質量%),[%Cr]はCr含有量(質量%),[%Mo]はMo含有量(質量%),[%V]はV含有量(質量%),[%B]はB含有量(質量%)を指す。
Pcm=[%C]+[%Si]/30+[%Mn]/20+[%Cu]/20+[%Ni]/60+[%Cr]/20
+[%Mo]/15+[%V]/10+5[%B] ・・・(1)
本発明を適用して高強度薄鋼板を溶接するにあたって使用する溶接用ワイヤは、Cを0.10質量%以下,Siを0.95質量%以下,Mnを1.60質量%以下含有し、残部はFeおよび不可避的不純物であることが好ましい。
In the present invention, if the Pcm value calculated by the following equation (1) based on the components of the high-strength thin steel sheet is less than 0.250, it is difficult to obtain a predetermined tensile strength (that is, 980 MPa or more). On the other hand, when it exceeds 0.305, it becomes easy to generate the low temperature crack of a welding part. Therefore, the Pcm value is in the range of 0.250 to 0.305. In the formula (1), [% C] is C content (mass%), [% Si] is Si content (mass%), [% Mn] is Mn content (mass%), [% Cu ] Is the Cu content (mass%), [% Ni] is the Ni content (mass%), [% Cr] is the Cr content (mass%), [% Mo] is the Mo content (mass%), [ % V] indicates the V content (mass%), and [% B] indicates the B content (mass%).
Pcm = [% C] + [% Si] / 30 + [% Mn] / 20 + [% Cu] / 20 + [% Ni] / 60 + [% Cr] / 20
+ [% Mo] / 15 + [% V] / 10 + 5 [% B] (1)
A welding wire used for welding a high-strength thin steel sheet by applying the present invention contains C of 0.10% by mass or less, Si of 0.95% by mass or less, and Mn of 1.60% by mass or less, the balance being Fe and inevitable An impurity is preferable.

Cは、溶接金属の強度を確保するために重要な固溶強化元素である。本発明では溶接金属のビッカース硬さを350以下に抑えて、溶接構造物の溶接部を高強度薄鋼板よりも軟質にすることによって低温割れを抑制する。ところが溶接用ワイヤのC含有量が0.10質量%を超えると、溶接金属のビッカース硬さを350以下に抑えることが困難になる。したがって、溶接用ワイヤのC含有量は0.10質量%以下が好ましい。ただし、C含有量が0.03質量%未満では、溶接金属の強度が不足するので、高強度薄鋼板を採用した溶接構造物として十分な剛性が得られない。したがって、C含有量は0.03〜0.10質量%の範囲内がより好ましい。   C is a solid solution strengthening element important for securing the strength of the weld metal. In the present invention, the Vickers hardness of the weld metal is suppressed to 350 or less, and the low temperature cracking is suppressed by making the welded portion of the welded structure softer than the high-strength thin steel plate. However, when the C content of the welding wire exceeds 0.10% by mass, it becomes difficult to suppress the Vickers hardness of the weld metal to 350 or less. Therefore, the C content of the welding wire is preferably 0.10% by mass or less. However, if the C content is less than 0.03% by mass, the strength of the weld metal is insufficient, so that sufficient rigidity cannot be obtained as a welded structure employing a high-strength thin steel plate. Therefore, the C content is more preferably in the range of 0.03 to 0.10% by mass.

Siは、脱酸作用を有する元素であり、溶接金属の脱酸を促進するために不可欠な元素であり、かつ溶接金属の強度を確保するために重要な固溶強化元素である。本発明では溶接金属のビッカース硬さを350以下に抑えて、溶接構造物の溶接部を高強度薄鋼板よりも軟質にすることによって低温割れを抑制する。ところが溶接用ワイヤのSi含有量が0.95質量%を超えると、溶接金属のビッカース硬さを350以下に抑えることが困難になる。したがって、溶接用ワイヤのSi含有量は0.95質量%以下が好ましい。ただし、Si含有量が0.30質量%未満では、溶接金属の脱酸が十分に進行せず、酸化物が溶接金属に混入して種々の欠陥を引き起こす。しかも溶接金属の強度が不足するので、高強度薄鋼板を採用した溶接構造物として十分な剛性が得られない。したがって、Si含有量は0.30〜0.95質量%の範囲内がより好ましい。   Si is an element having a deoxidizing action, is an indispensable element for promoting deoxidation of the weld metal, and is an important solid solution strengthening element for ensuring the strength of the weld metal. In the present invention, the Vickers hardness of the weld metal is suppressed to 350 or less, and the low temperature cracking is suppressed by making the welded portion of the welded structure softer than the high-strength thin steel plate. However, when the Si content of the welding wire exceeds 0.95 mass%, it becomes difficult to suppress the Vickers hardness of the weld metal to 350 or less. Therefore, the Si content of the welding wire is preferably 0.95% by mass or less. However, when the Si content is less than 0.30% by mass, the deoxidation of the weld metal does not proceed sufficiently, and the oxide is mixed into the weld metal and causes various defects. Moreover, since the strength of the weld metal is insufficient, sufficient rigidity cannot be obtained as a welded structure employing a high-strength thin steel sheet. Therefore, the Si content is more preferably in the range of 0.30 to 0.95 mass%.

Mnは、Siと同様に、脱酸作用を有する元素であり、溶接金属の脱酸を促進するために不可欠な元素であり、かつ溶接金属の強度を確保するために重要な固溶強化元素である。本発明では溶接金属のビッカース硬さを350以下に抑えて、溶接構造物の溶接部を高強度薄鋼板よりも軟質にすることによって低温割れを抑制する。ところが溶接用ワイヤのMn含有量が1.60質量%を超えると、溶接金属のビッカース硬さを350以下に抑えることが困難になる。したがって、溶接用ワイヤのMn含有量は1.60質量%以下が好ましい。ただし、Mn含有量が0.80質量%未満では、溶接金属の脱酸が十分に進行せず、酸化物が溶接金属に混入して種々の欠陥を引き起こす。しかも溶接金属の強度が不足するので、高強度薄鋼板を採用した溶接構造物として十分な剛性が得られない。したがって、Mn含有量は0.80〜1.60質量%の範囲内がより好ましい。   Like Si, Mn is an element having a deoxidizing action, an element indispensable for promoting the deoxidation of the weld metal, and an important solid solution strengthening element for ensuring the strength of the weld metal. is there. In the present invention, the Vickers hardness of the weld metal is suppressed to 350 or less, and the low temperature cracking is suppressed by making the welded portion of the welded structure softer than the high-strength thin steel plate. However, when the Mn content of the welding wire exceeds 1.60% by mass, it becomes difficult to suppress the Vickers hardness of the weld metal to 350 or less. Therefore, the Mn content of the welding wire is preferably 1.60% by mass or less. However, if the Mn content is less than 0.80% by mass, deoxidation of the weld metal does not proceed sufficiently, and oxides are mixed into the weld metal and cause various defects. Moreover, since the strength of the weld metal is insufficient, sufficient rigidity cannot be obtained as a welded structure employing a high-strength thin steel sheet. Therefore, the Mn content is more preferably in the range of 0.80 to 1.60 mass%.

上記のC,Si,Mnに加えて、溶接金属の耐食性向上,靭性向上,疲労強度向上および溶接中のアーク安定性とスパッタ低減を目的として、P,S,Ca,Ti,Zr,Al,K,Mo,B,Cr,Ni,Cu,Nb,V,希土類元素(以下、REMという),Se,Te,Biを適宜加えても良い。
P:0.050質量%以下
Pは、鋼の融点を低下させるとともに電気抵抗率を向上させ、溶融効率を向上させ、正極性の溶接においてアークを安定化する作用を有する元素である。しかし0.050質量%を超えて添加すると、正極性の溶接においては、溶融メタルの粘性を低下させ、アークが不安定となり、小粒のスパッタが増加する。また、溶接金属に高温割れを生じる危険性が高まる。このため、Pは0.050質量%以下が好ましい。
In addition to the above C, Si, Mn, P, S, Ca, Ti, Zr, Al, K for the purpose of improving the corrosion resistance of weld metal, improving toughness, improving fatigue strength and reducing arc stability and spatter during welding , Mo, B, Cr, Ni, Cu, Nb, V, rare earth elements (hereinafter referred to as REM), Se, Te, Bi may be added as appropriate.
P: 0.050% by mass or less P is an element that has an action of lowering the melting point of steel and improving electric resistivity, improving melting efficiency, and stabilizing the arc in positive polarity welding. However, if added over 0.050% by mass, in positive polarity welding, the viscosity of the molten metal is lowered, the arc becomes unstable, and spatter of small grains increases. In addition, there is an increased risk of hot cracking in the weld metal. For this reason, P is preferably 0.050% by mass or less.

S:0.050質量%以下
Sは、溶融メタルの粘性を低下させ、溶接用ワイヤ先端に懸垂した溶滴の離脱を助け、正極性の溶接において低電流でのアークを安定化する働きがある。また、Sは、溶融メタルの粘性を低下させて、ビードを平坦にし、上板の溶落ちを抑制する働きも有するが、0.050質量%を超えて含有すると、小粒のスパッタが増すとともに、溶接金属の靭性が低下する。このため、Sは0.050質量%以下が好ましい。
S: 0.050% by mass or less S has a function of reducing the viscosity of the molten metal, assisting the detachment of the droplet suspended from the tip of the welding wire, and stabilizing the arc at a low current in positive polarity welding. S also has the function of lowering the viscosity of the molten metal, flattening the bead, and preventing the top plate from falling off. However, when it exceeds 0.050% by mass, the spatter of small grains increases and the weld metal The toughness of the steel decreases. For this reason, S is preferably 0.050% by mass or less.

Ca:0.0030質量%以下
Caは、製鋼および鋳造時の不純物として、あるいは伸線加工時の不純物として溶接用ワイヤに混入する。正極性の炭酸ガスシールドアーク溶接においては、アーク安定性を劣化させる作用を有する。Caが0.0030質量%を超えると、アークの安定性が阻害される。このため、Caは0.0030質量%以下が好ましい。
Ca: 0.0030 mass% or less
Ca is mixed into the welding wire as an impurity during steelmaking and casting or as an impurity during wire drawing. In the positive polarity carbon dioxide shielded arc welding, the arc stability is deteriorated. When Ca exceeds 0.0030 mass%, the stability of the arc is hindered. For this reason, Ca is preferably 0.0030% by mass or less.

Ti,Zr,Alの中から選ばれる1種または2種以上:合計0.05〜0.20質量%
Ti,ZrおよびAlは、強脱酸剤として作用し、さらに溶接金属の強度を高める元素である。これらの元素の1種または2種以上の含有量が合計0.05質量%以下では、溶接金属の脱酸による粘性向上によるビード形状の確保(溶接線方向の凹凸抑制)と溶接金属の強度確保の効果が得られない。一方、0.20質量%を超えて含有すると、溶接金属の靭性が著しく低下する。このため、Ti,Zr,Alの中から選ばれる1種または2種以上を合計0.05〜0.20質量%含有することが好ましい。
One or more selected from Ti, Zr, and Al: Total 0.05 to 0.20% by mass
Ti, Zr and Al are elements that act as strong deoxidizers and further increase the strength of the weld metal. When the content of one or more of these elements is 0.05% by mass or less, the effect of securing the bead shape (suppressing unevenness in the weld line direction) and ensuring the strength of the weld metal by improving the viscosity by deoxidation of the weld metal. Cannot be obtained. On the other hand, if the content exceeds 0.20% by mass, the toughness of the weld metal is significantly reduced. For this reason, it is preferable to contain 0.05 to 0.20 mass% in total of 1 type, or 2 or more types chosen from Ti, Zr, and Al.

K:0.0001〜0.0150質量%
Kは、正極性炭酸ガスアーク溶接でアークを広げ、溶滴のスプレー移行の低電流化を促進し、溶滴そのものを微細化する作用を有する。この効果は0.0001質量%以上の含有で認められる。一方、0.0150質量%以上の含有は、アーク長が長くなり、溶接用ワイヤ先端に懸垂した溶滴が不安定になり、スパッタの発生が増加する。このため、Kは0.0001〜0.0150質量%が好ましい。なお、より好ましくは0.0003〜0.0030質量%である。
K: 0.0001 to 0.0150 mass%
K expands the arc by positive carbon dioxide arc welding, promotes a reduction in the current of spray transfer of the droplets, and has an effect of refining the droplets themselves. This effect is recognized when the content is 0.0001% by mass or more. On the other hand, when the content is 0.0150% by mass or more, the arc length becomes long, the droplet suspended on the tip of the welding wire becomes unstable, and the occurrence of spatter increases. For this reason, K is preferably 0.0001 to 0.0150 mass%. In addition, More preferably, it is 0.0003-0.0030 mass%.

また、Kは沸点が760℃と低く、溶製段階での歩留りが著しく低いので、Kは溶製段階で添加するより、溶接用ワイヤ製造中に、溶接用ワイヤ表面にカリウム塩溶液を塗布して焼鈍を行なうことにより、溶接用ワイヤ内部にKを安定して含有させることが好ましい。
Mo:0.05〜1.5質量%,B:0.0010〜0.020質量%
Mo,Bは、いずれも溶接金属の強度を増加させる元素であり、必要に応じて選択的に含有できる。しかし、過剰な含有は、靭性の低下を招く。このため、Mo,Bを含有する場合は、Mo:0.05〜1.5質量%,B:0.0010〜0.020質量%が好ましい。
In addition, K has a boiling point as low as 760 ° C, and the yield at the melting stage is remarkably low. Therefore, K is applied to the surface of the welding wire during the production of the welding wire, rather than being added at the melting stage. It is preferable that K be stably contained in the welding wire by annealing.
Mo: 0.05-1.5 mass%, B: 0.0010-0.020 mass%
Mo and B are both elements that increase the strength of the weld metal, and can be selectively contained as necessary. However, excessive inclusion causes a decrease in toughness. For this reason, when it contains Mo and B, Mo: 0.05-1.5 mass% and B: 0.0010-0.020 mass% are preferable.

Cr:3.0質量%以下,Ni:3.0質量%以下,Cu:3.0質量以下%
Cr,Ni,Cuは、いずれも溶接金属の強度を増加させ、かつ耐候性を向上させる元素であり、必要に応じて選択的に含有できる。しかし、過剰な含有は、靭性の低下を招く。このため、Cr,Ni,Cuを含有する場合は、Cr:3.0質量%以下,Ni:3.0質量%以下,Cu:3.0質量以下%が好ましい。
Cr: 3.0 mass% or less, Ni: 3.0 mass% or less, Cu: 3.0 mass% or less
Cr, Ni, and Cu are all elements that increase the strength of the weld metal and improve the weather resistance, and can be selectively contained as necessary. However, excessive inclusion causes a decrease in toughness. For this reason, when Cr, Ni, and Cu are contained, Cr: 3.0% by mass or less, Ni: 3.0% by mass or less, and Cu: 3.0% by mass or less are preferable.

Cr:3.0質量%以下,Ni:3.0質量%以下,Cu:3.0質量以下%
Cr,Ni,Cuは、いずれも溶接金属の強度を増加させ、かつ耐候性を向上させる元素であり、必要に応じて選択的に含有できる。しかし、過剰な含有は、靭性の低下を招く。このため、Cr,Ni,Cuを含有する場合は、Cr:3.0質量%以下,Ni:3.0質量%以下,Cu:3.0質量以下%が好ましい。
Cr: 3.0 mass% or less, Ni: 3.0 mass% or less, Cu: 3.0 mass% or less
Cr, Ni, and Cu are all elements that increase the strength of the weld metal and improve the weather resistance, and can be selectively contained as necessary. However, excessive inclusion causes a decrease in toughness. For this reason, when Cr, Ni, and Cu are contained, Cr: 3.0% by mass or less, Ni: 3.0% by mass or less, and Cu: 3.0% by mass or less are preferable.

Nb:0.05質量%以下,V:0.05質量%以下
Nb,Vは、いずれも溶接金属の強度,靭性およびアークの安定性を向上させる元素である。しかし、過剰な添加は靭性の低下を招く。このため、Nb,Vを含有する場合は、Nb:0.05質量%以下,V:0.05質量%以下が好ましい。
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、O:0.030質量%以下,N:0.020質量%以下が許容できる。Oは、溶製中、あるいは溶接用ワイヤ製造中に不可避的に混入する元素であるが、溶滴の移行形態を微細化するのに効果があり、0.0030質量%以上,0.020質量%以下が好ましく、より好ましくは0.0080質量%未満である。
Nb: 0.05 mass% or less, V: 0.05 mass% or less
Nb and V are elements that improve the strength, toughness and arc stability of the weld metal. However, excessive addition causes a decrease in toughness. For this reason, when Nb and V are contained, Nb: 0.05 mass% or less and V: 0.05 mass% or less are preferable.
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, O: 0.030 mass% or less and N: 0.020 mass% or less are acceptable. O is an element that is inevitably mixed during melting or manufacturing of a welding wire, but is effective in refining the transition form of the droplet, and is preferably 0.0030% by mass or more and 0.020% by mass or less. More preferably, it is less than 0.0080 mass%.

本発明では、上記の成分を有する溶接用ワイヤを用いて、ガスシールドアーク溶接を行なうことが好ましい。その理由は、溶接用ワイヤに含有されるC,Si,Mnの酸化や窒化がシールドガスによって防止され、各元素がその効果を発揮するからである。さらに、ガスシールドアーク溶接を逆極性(すなわち溶接用ワイヤをプラス極)で行なうことが好ましい。その理由は、Si−Mn系溶接用ワイヤと通常の装置を用いた低電流の溶接において、アークが安定し、深い溶込みが得られるからである。   In the present invention, it is preferable to perform gas shielded arc welding using a welding wire having the above components. The reason is that oxidation, nitridation of C, Si, and Mn contained in the welding wire is prevented by the shielding gas, and each element exhibits its effect. Furthermore, it is preferable to perform the gas shielded arc welding with the reverse polarity (that is, the welding wire is a plus electrode). The reason is that the arc is stabilized and deep penetration is obtained in low current welding using a Si-Mn welding wire and a normal apparatus.

ガスシールドアーク溶接を行なう際に、その設定条件に基づいて下記の(2)式で算出されるQ値が100を超えると、溶接部の低温割れが発生し易くなる。したがって、Q値は100以下とすることが好ましい。なお、(2)式中のIはガスシールドアーク溶接の溶接電流(A),Eはアーク電圧(V),Sは溶接速度(mm/秒)を指し、tは高強度薄鋼板の板厚(mm)を指す。
Q=(I×E)/(S×t2) ・・・(2)
When performing gas shielded arc welding, if the Q value calculated by the following equation (2) based on the setting conditions exceeds 100, cold cracking of the welded portion is likely to occur. Therefore, the Q value is preferably 100 or less. In equation (2), I is the welding current (A) for gas shielded arc welding, E is the arc voltage (V), S is the welding speed (mm / sec), and t is the thickness of the high strength steel sheet. (Mm)
Q = (I × E) / (S × t 2 ) (2)

板厚1.6mmの高強度薄鋼板とワイヤ径1.2mmの溶接用ワイヤを用いてガスシールドアーク溶接法による隅肉溶接の溶接試験を行なった。その溶接試験の手順と結果を以下に説明する。
使用した高強度薄鋼板の成分および引張強さは表1に示す通りである。溶接用ワイヤの成分は表2に示す通りである。なお、溶接用ワイヤの表面には厚さ0.5μmのCuめっきを施し、さらに潤滑油を塗布した。潤滑油は鉱物油を使用し、その塗布量は溶接用ワイヤ10kg当たり1gとした。
Welding tests of fillet welding by gas shielded arc welding were performed using a high strength thin steel plate with a thickness of 1.6 mm and a welding wire with a wire diameter of 1.2 mm. The welding test procedure and results will be described below.
The components and tensile strength of the high-strength thin steel plates used are as shown in Table 1. The components of the welding wire are as shown in Table 2. The surface of the welding wire was plated with Cu having a thickness of 0.5 μm, and further lubricating oil was applied. The lubricating oil used was mineral oil, and the amount applied was 1 g per 10 kg of welding wire.

Figure 2011092979
Figure 2011092979

Figure 2011092979
Figure 2011092979

高強度薄鋼板(板厚1.6mm)から幅45mm,長さ90mmの溶接試験片を切り出した。さらに図1に示すように、2枚の溶接試験片1a,1bを重ね代20mmで重ね合わせて、拘束板2の中央部に全周溶接で固定して試験体を作成した。拘束板2は、板厚25mm,幅150mm,長さ250mmの厚鋼板を使用した。各試験体ごとに隅肉溶接を2回ずつ(溶接長さ20mm/回)行なった。その際、各試験体の第1回の隅肉溶接を行ない、その後6時間空冷して、その隅肉溶接部3aが室温まで冷却された後に第2回の隅肉溶接を行なった。このようにして第1回の隅肉溶接部3aの残熱が第2回の隅肉溶接部3bの特性に影響を及ぼすのを防止した。   A weld specimen of 45 mm in width and 90 mm in length was cut out from a high-strength thin steel plate (plate thickness 1.6 mm). Further, as shown in FIG. 1, two test specimens 1a and 1b were overlapped with an overlap margin of 20 mm, and fixed to the central portion of the restraint plate 2 by welding all around to prepare a test specimen. The restraint plate 2 was a thick steel plate having a thickness of 25 mm, a width of 150 mm, and a length of 250 mm. Fillet welding was performed twice for each specimen (welding length 20 mm / time). At that time, the first fillet welding of each specimen was performed, and then air cooling was performed for 6 hours. After the fillet welded portion 3a was cooled to room temperature, the second fillet welding was performed. In this way, the residual heat of the first fillet weld 3a was prevented from affecting the characteristics of the second fillet weld 3b.

試験体に供した溶接試験片(鋼板記号P1〜P5)と隅肉溶接で使用した溶接用ワイヤ(ワイヤ記号W1〜W5)の組合せは、表3に示す通りである。各組合せ(溶接番号1〜13)ごとに5個ずつ試験体を作成して合計10回の隅肉溶接を行なった。隅肉溶接は逆極性のガスシールドアーク溶接法で行ない、その溶接電流,アーク電圧,溶接速度,入熱は表3に示す通りである。なお、シールドガスはAr−20%CO2ガスを使用し、突き出し長さ15mm,トーチ角45°とした。 Table 3 shows combinations of welding test pieces (steel plate symbols P1 to P5) used for the specimen and welding wires (wire symbols W1 to W5) used in fillet welding. Five specimens were prepared for each combination (welding numbers 1 to 13), and a total of 10 fillet welds were performed. Fillet welding is performed by gas shielded arc welding with a reverse polarity. The welding current, arc voltage, welding speed, and heat input are as shown in Table 3. The shielding gas used was Ar-20% CO 2 gas, the protruding length was 15 mm, and the torch angle was 45 °.

Figure 2011092979
Figure 2011092979

隅肉溶接が終了した後、隅肉溶接部3a,3bを室温まで空冷し、得られた溶接ビードの中央部の断面をマクロ観察して、溶込み深さを測定し、さらに溶接金属や溶接熱影響部における低温割れの有無を調査した。また、溶接金属のビッカース硬さを測定した。その結果を表3に併せて示す。なお、表3に示す溶込み深さ(%)は、溶接試験片1a,1b(すなわち高強度薄鋼板)の板厚(mm)に対する溶接金属の最大深さ(mm)の比率である。また低温割れについては、10個の溶接ビードのいずれにも低温割れが認められなかったものを優(○),1〜2個の溶接ビードにて低温割れが認められたものを良(△),3個以上の溶接ビードにて低温割れが認められたものを不可(×)として評価した。   After fillet welding is completed, the fillet welds 3a and 3b are air-cooled to room temperature, the cross section of the center of the resulting weld bead is macro-observed, the penetration depth is measured, and the weld metal and weld The presence or absence of cold cracking in the heat affected zone was investigated. Further, the Vickers hardness of the weld metal was measured. The results are also shown in Table 3. The penetration depth (%) shown in Table 3 is the ratio of the maximum depth (mm) of the weld metal to the thickness (mm) of the weld specimens 1a and 1b (that is, high-strength thin steel plates). As for the low temperature cracking, excellent (◯) indicates that no cold cracking was observed in any of the ten weld beads, and indicates that low temperature cracking was observed in one or two welding beads (Δ). , 3 or more weld beads in which cold cracking was observed were evaluated as impossible (x).

表3に示す発明例(すなわち溶接番号1〜11)は、溶接金属のビッカース硬さと溶込み深さが本発明の範囲を満足する例である。比較例のうち、溶接番号12は溶接金属のビッカース硬さが本発明の範囲を外れる例,溶接番号13は溶込み深さが本発明の範囲を外れる例である。
表3から明らかなように、発明例(すなわち溶接番号1〜11)では低温割れが大幅に低減された。
The invention examples shown in Table 3 (that is, welding numbers 1 to 11) are examples in which the Vickers hardness and penetration depth of the weld metal satisfy the scope of the present invention. Among the comparative examples, weld number 12 is an example in which the Vickers hardness of the weld metal is outside the scope of the present invention, and weld number 13 is an example in which the penetration depth is outside the scope of the present invention.
As is apparent from Table 3, cold cracking was significantly reduced in the inventive examples (that is, welding numbers 1 to 11).

引張強さ980MPa以上の高張力薄鋼板を溶接するにあたって、溶接部の低温割れを抑制し、健全な溶接構造物を得ることができるので、産業上格段の効果を奏する。   When welding a high-strength thin steel sheet with a tensile strength of 980 MPa or more, it is possible to obtain a sound welded structure by suppressing low-temperature cracking of the welded portion, so that there is a remarkable industrial effect.

1a 溶接試験片
1b 溶接試験片
2 拘束板
3a 隅肉溶接部
3b 隅肉溶接部
1a Weld specimen
1b Weld specimen 2 Restraint plate
3a Fillet weld
3b Fillet weld

Claims (2)

引張強さ980MPa以上、板厚6.0mm以下、かつ下記の(1)式で算出されるPcm値が0.250〜0.305の範囲内を満足する高強度薄鋼板の溶接方法において、溶込み深さを板厚の40%以上とし、溶接金属のビッカース硬さを350以下とすることを特徴とする高強度薄鋼板の溶接方法。
Pcm=[%C]+[%Si]/30+[%Mn]/20+[%Cu]/20+[%Ni]/60+[%Cr]/20
+[%Mo]/15+[%V]/10+5[%B] ・・・(1)
[%C]:高強度薄鋼板のC含有量(質量%)
[%Si]:高強度薄鋼板のSi含有量(質量%)
[%Mn]:高強度薄鋼板のMn含有量(質量%)
[%Cu]:高強度薄鋼板のCu含有量(質量%)
[%Ni]:高強度薄鋼板のNi含有量(質量%)
[%Cr]:高強度薄鋼板のCr含有量(質量%)
[%Mo]:高強度薄鋼板のMo含有量(質量%)
[%V]:高強度薄鋼板のV含有量(質量%)
[%B]:高強度薄鋼板のB含有量(質量%)
In the welding method of high-strength thin steel sheets satisfying the tensile strength of 980 MPa or more, plate thickness of 6.0 mm or less, and the Pcm value calculated by the following formula (1) in the range of 0.250 to 0.305, the penetration depth is set to A welding method for high-strength thin steel sheets, characterized in that the thickness is 40% or more and the weld metal has a Vickers hardness of 350 or less.
Pcm = [% C] + [% Si] / 30 + [% Mn] / 20 + [% Cu] / 20 + [% Ni] / 60 + [% Cr] / 20
+ [% Mo] / 15 + [% V] / 10 + 5 [% B] (1)
[% C]: C content (mass%) of high-strength thin steel sheet
[% Si]: Si content (mass%) of high-strength thin steel sheet
[% Mn]: Mn content (% by mass) of high-strength thin steel sheet
[% Cu]: Cu content (mass%) of high-strength thin steel sheet
[% Ni]: Ni content (mass%) of high-strength thin steel sheet
[% Cr]: Cr content (mass%) of high-strength thin steel sheet
[% Mo]: Mo content (mass%) of high-strength thin steel sheet
[% V]: V content (mass%) of high-strength thin steel sheet
[% B]: B content (% by mass) of high-strength thin steel sheet
前記高強度薄鋼板の溶接を行なうにあたって、溶接電流をI、アーク電圧をE、溶接速度をSとし、前記高強度薄鋼板の板厚をtとして、下記の(2)式で算出されるQ値を100以上とすることを特徴とする請求項1に記載の高強度薄鋼板の溶接方法。
Q=(I×E)/(S×t2) ・・・(2)
I:溶接電流(A)
E:アーク電圧(V)
S:溶接速度(mm/秒)
t:高強度薄鋼板の板厚(mm)
When welding the high strength thin steel sheet, the welding current is I, the arc voltage is E, the welding speed is S, and the plate thickness of the high strength thin steel sheet is t. The method for welding high strength thin steel sheets according to claim 1, wherein the value is 100 or more.
Q = (I × E) / (S × t 2 ) (2)
I: Welding current (A)
E: Arc voltage (V)
S: Welding speed (mm / sec)
t: Thickness of high strength steel sheet (mm)
JP2009249955A 2009-10-30 2009-10-30 Welding method of high strength thin steel sheet Active JP5515629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249955A JP5515629B2 (en) 2009-10-30 2009-10-30 Welding method of high strength thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249955A JP5515629B2 (en) 2009-10-30 2009-10-30 Welding method of high strength thin steel sheet

Publications (2)

Publication Number Publication Date
JP2011092979A true JP2011092979A (en) 2011-05-12
JP5515629B2 JP5515629B2 (en) 2014-06-11

Family

ID=44110484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249955A Active JP5515629B2 (en) 2009-10-30 2009-10-30 Welding method of high strength thin steel sheet

Country Status (1)

Country Link
JP (1) JP5515629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203356A (en) * 2018-05-25 2019-11-28 日本製鉄株式会社 Steel plate floor and steel plate floor manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569043A (en) * 1991-01-22 1993-03-23 Nkk Corp Joining method for ultrahigh strength steel sheet slit coils
JP2007253160A (en) * 2006-03-20 2007-10-04 Toyota Boshoku Corp Method for arc-welding galvanized ultra-high tensile strength steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569043A (en) * 1991-01-22 1993-03-23 Nkk Corp Joining method for ultrahigh strength steel sheet slit coils
JP2007253160A (en) * 2006-03-20 2007-10-04 Toyota Boshoku Corp Method for arc-welding galvanized ultra-high tensile strength steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203356A (en) * 2018-05-25 2019-11-28 日本製鉄株式会社 Steel plate floor and steel plate floor manufacturing method
JP7052562B2 (en) 2018-05-25 2022-04-12 日本製鉄株式会社 Steel deck and steel deck manufacturing method

Also Published As

Publication number Publication date
JP5515629B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5987982B2 (en) Spot welding joint and spot welding method
EP3812079A1 (en) Method for manufacturing equal-strength steel thin-wall welding component with aluminum or aluminum-alloy plating
JP4502947B2 (en) Steel plate with excellent weldability
JP6409470B2 (en) Spot welding method
JP5299257B2 (en) Spot welding method for high strength steel sheet
JP5641158B2 (en) Spot welded joint
JP2008190035A (en) Ferritic stainless steel sheet for water heater
JP2010059451A (en) Welded joint and manufacturing method therefor
JP2013177674A (en) Base material for high-toughness clad steel plate excellent in toughness in welded part, and method for producing the clad steel plate
WO2017064817A1 (en) Spot welded joint and spot welding method
KR101764040B1 (en) Coated electrode
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP2012102370A (en) Steel sheet for spot welding which is excellent in weld zone strength after welding, and spot welded joint excellent in strength of weld zone
JP6036438B2 (en) High strength resistance welded joint and manufacturing method thereof
WO2019156073A1 (en) Method for resistance spot welding, and method for producing resistance-spot-welded joint
JP5515796B2 (en) Welding method of high strength thin steel sheet
JP5821929B2 (en) High-strength hot-rolled steel sheet with excellent material stability and weldability and method for producing the same
JP5515629B2 (en) Welding method of high strength thin steel sheet
JP2009291797A (en) Welded joint and method for producing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
KR102112172B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
KR101949025B1 (en) Cold rolled steel sheet for flux cored wire and method of manufacturing the same
JP5888119B2 (en) Thick steel plate with excellent HAZ toughness
JP7272471B2 (en) steel plate
JP5078264B2 (en) Arc welding method of steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250