JP2011092622A - Oxygen enriching device - Google Patents

Oxygen enriching device Download PDF

Info

Publication number
JP2011092622A
JP2011092622A JP2009252057A JP2009252057A JP2011092622A JP 2011092622 A JP2011092622 A JP 2011092622A JP 2009252057 A JP2009252057 A JP 2009252057A JP 2009252057 A JP2009252057 A JP 2009252057A JP 2011092622 A JP2011092622 A JP 2011092622A
Authority
JP
Japan
Prior art keywords
adsorption
compressor
purge
oxygen
adsorption cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009252057A
Other languages
Japanese (ja)
Other versions
JP5524574B2 (en
Inventor
Yurika Hotani
百合香 穂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2009252057A priority Critical patent/JP5524574B2/en
Publication of JP2011092622A publication Critical patent/JP2011092622A/en
Application granted granted Critical
Publication of JP5524574B2 publication Critical patent/JP5524574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen enriching device capable of restraining a load of a compressor at the time when the device stops, capable of restraining a noise and vibration from being generated, capable of restraining therein an adsorbent from being deteriorated with moisture adsorption after the device stops, and provided thereby with a function for discharging surely, to an outside, adsorbed water staying in a piping system and dew-condensed water in a pipe. <P>SOLUTION: This oxygen enriching device carries out sequentially controls of (1) executing an operation at a regular sequence until finishing a purge generation process or until finishing a purge exhaustion process, when recognizing an operation stop signal of the device, (2) operating the compressor 102 under the condition where closing an equalizer valve 107, where opening supply valves 104a, 104b and exhaust valves 104c, 104d of purge generation process side adsorption cylinders 105a, 105b, and where closing supply valves 104a, 104b of purge exhaustion process side adsorption cylinders 105a, 105b and opening exhaust valves 104c, 104d thereof, and (3) stopping the compressor 102 under the condition where opening all of the supply valves 104a, 104b and the exhaust valves 104c, 104d. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、大気中から酸素を分離して使用するための酸素濃縮装置に関する。   The present invention relates to an oxygen concentrator for separating and using oxygen from the atmosphere.

近年、肺気腫、肺結核後遺症や慢性気管支炎などの慢性呼吸器疾患に苦しむ患者が増加する傾向にあるが、かかる患者に対する治療方法として、高濃度酸素を吸入させる酸素吸入療法が行われている。酸素吸入療法とは前記疾病患者に対して酸素ガス若しくは酸素濃縮ガスを吸入させる治療法である。治療用の酸素ガス或いは酸素濃縮ガスの供給源としては、高圧酸素ボンベ、液体酸素ボンベ、酸素濃縮装置等の使用が挙げられるが、長時間の連続使用に耐えることができ、また使い勝手が良いなどの理由により、酸素濃縮装置を使用するケースが増加している。   In recent years, the number of patients suffering from chronic respiratory diseases such as pulmonary emphysema, pulmonary tuberculosis sequelae and chronic bronchitis tends to increase. As a treatment method for such patients, oxygen inhalation therapy for inhaling high concentration oxygen is performed. Oxygen inhalation therapy is a treatment method in which the diseased patient is inhaled with oxygen gas or oxygen-enriched gas. Examples of the supply source of therapeutic oxygen gas or oxygen-enriched gas include the use of high-pressure oxygen cylinders, liquid oxygen cylinders, oxygen concentrators, etc., which can withstand long-term continuous use and are easy to use. For this reason, cases of using oxygen concentrators are increasing.

酸素濃縮装置は空気中の酸素を分離し、濃縮することを可能にした装置である。かかる酸素濃縮装置としては、90%以上の高濃度の酸素が得られるという観点で、空気中の窒素を選択的に吸着し得る吸着剤を吸着筒に充填した圧力変動吸着型酸素濃縮装置が広く知られ使用されている。かかる装置は通常窒素を選択的に吸着する吸着剤を充填させた複数の吸着床に対して、コンプレッサから圧縮空気を供給し、吸着床内を加圧状態にして窒素を吸着させ、未吸着の高濃度の酸素を得る吸着工程と、吸着床内を減圧して窒素を脱着させる脱着工程からなり、これを一定サイクルで繰り返すことで、高濃度の酸素を得る装置である。圧力変動吸着法には、脱着工程を大気圧まで減圧するPSA(Pressure Swing Adsorption)法、吸着剤の再生効率を高める為にコンプレッサを用いて吸着筒を真空圧まで減圧するVPSA(Vacuum Pressure Swing Adsorption)法があり、医療用酸素濃縮装置として採用されている。   The oxygen concentrator is an apparatus that can separate and concentrate oxygen in the air. As such an oxygen concentrator, a pressure fluctuation adsorption type oxygen concentrator in which an adsorbent capable of selectively adsorbing nitrogen in the air is filled in an adsorption cylinder is widely used from the viewpoint that high concentration oxygen of 90% or more can be obtained. Known and used. Such an apparatus usually supplies compressed air from a compressor to a plurality of adsorbent beds filled with an adsorbent that selectively adsorbs nitrogen, adsorbs nitrogen by applying pressure to the inside of the adsorbent bed, It is an apparatus that obtains high concentration oxygen by repeating an adsorption step for obtaining high concentration oxygen and a desorption step for desorbing nitrogen by depressurizing the inside of the adsorption bed. The pressure fluctuation adsorption method includes the PSA (Pressure Swing Adsorption) method for reducing the desorption process to atmospheric pressure, and the VPSA (Vacuum Pressure Swing Adsorption) for reducing the adsorption cylinder to a vacuum pressure using a compressor in order to increase the regeneration efficiency of the adsorbent. ) And is used as a medical oxygen concentrator.

特開2003-79735号公報Japanese Patent Laid-Open No. 2003-79735 特開2003-235982号公報Japanese Patent Laid-Open No. 2003-235982 特開2000-281315号公報JP 2000-281315 A 特開2008-228970号公報JP 2008-228970 A

かかる装置は、通常、窒素を選択的に吸着する吸着剤を充填させた1個或いは複数の吸着床に対して、コンプレッサから圧縮空気を供給して吸着床内を加圧状態にし、窒素を吸着させて未吸着の酸素を得る吸着工程と、吸着床内を減圧して、吸着した窒素を脱着させ再生する脱着工程を一定サイクルで繰り返すことで、高濃度の酸素を得る装置である。   Such an apparatus normally adsorbs nitrogen by supplying compressed air from a compressor to one or a plurality of adsorption beds filled with an adsorbent that selectively adsorbs nitrogen to pressurize the inside of the adsorption bed. This is an apparatus for obtaining high concentration oxygen by repeating an adsorption process for obtaining unadsorbed oxygen and a desorption process for desorbing and regenerating the adsorbed nitrogen by depressurizing the inside of the adsorption bed.

かかる装置は、基本的に患者が飲食時や就寝時などを問わず使用され、特に重症の呼吸器疾患患者の場合には終日連続使用される場合がある。装置は患者の傍らに設置され場合が多く、かかる装置から発生する騒音や振動は、直接患者、患者の家族等の耳に入り、不快感を与える恐れがある。特に就寝時などは騒音の与える影響が大きく、患者、或いは患者の家族の睡眠を妨げ、メンタルヘルスにも悪影響を及ぼすことが懸念される。圧力変動吸着型酸素濃縮装置の最大の騒音および振動の発生要素はコンプレッサである。   Such a device is basically used regardless of whether the patient is eating or drinking or going to bed, and may be used continuously throughout the day, particularly in the case of severe respiratory disease patients. In many cases, a device is installed beside a patient, and noise and vibration generated from such a device may directly enter the ears of the patient, the patient's family, etc. and cause discomfort. Especially when sleeping, the influence of noise is large, and there is a concern that the patient or the family of the patient may be disturbed and adversely affect mental health. The largest noise and vibration generating element of the pressure fluctuation adsorption type oxygen concentrator is a compressor.

コンプレッサの騒音低減、振動防止のために医療用酸素濃縮装置には各種の対策が採られている。例えば、コンプレッサそのものの発生する騒音を低減する方法として、特開2003-79735号公報には、低騒音のヘリカルコンプレッサを搭載した酸素濃縮装置が記載されている。騒音を消音させる対策としては、特開2003-235982号公報には、コンプレッサへ空気を送る吸気ライン上に共鳴型消音器を備えた酸素濃縮装置が記載されている。更に、特開2000-281315号公報には、筐体内の各手段のうち、振動の発生源になっている手段とその振動の影響を受ける手段とを個々独立に、防振部材により宙に配置して弾性的に保持していることを特徴とする酸素濃縮装置が開示されている。   Various measures have been taken for medical oxygen concentrators to reduce compressor noise and prevent vibration. For example, as a method for reducing noise generated by the compressor itself, Japanese Patent Laid-Open No. 2003-79735 describes an oxygen concentrator equipped with a low noise helical compressor. As a countermeasure for silencing noise, Japanese Patent Laid-Open No. 2003-235982 describes an oxygen concentrator equipped with a resonance silencer on an intake line that sends air to a compressor. Furthermore, in Japanese Patent Laid-Open No. 2000-281315, among the means in the housing, the means that is the source of vibration and the means that is affected by the vibration are individually arranged in the air by a vibration isolating member. Thus, an oxygen concentrating device characterized in that it is held elastically is disclosed.

上記のハード面での騒音、防振対策の他に、ソフト面での対応として、VPSA型酸素濃縮装置の停止時の運転シーケンスを改良し、特開2008-228970号公報には、装置停止指令信号を受信した後、均圧弁を開き、吸着筒内圧が所定圧以下となったの時点でコンプレッサの駆動を停止する制御を行うことで、コンプレッサの停止時の振動を抑えることが出来ることが記載されている。   In addition to the above-mentioned hardware noise and anti-vibration measures, the operation sequence at the time of stopping the VPSA type oxygen concentrator was improved as a software response. JP 2008-228970 A discloses a device stop command. After receiving the signal, the pressure equalizing valve is opened, and the control to stop the compressor drive when the pressure in the suction cylinder falls below the specified pressure can be controlled to suppress vibration when the compressor stops. Has been.

このように、コンプレッサにかかる負荷を減らすことで、装置停止時のコンプレッサの騒音、振動発生を防ぐことが出来る。そのためには、装置停止時の吸着筒内圧力を下げる操作が必要となるが、長期の酸素濃縮性能を維持するためには、装置停止時の吸着剤の再生操作も同時に必要となる。しかし、圧力変動吸着方法では、一方の吸着筒を加圧して酸素を生成している間に、他方の吸着筒では減圧排気、酸素パージを行うことにより吸着剤の再生を行い、各吸着筒の流路を切り換えることで連続的に酸素を生成する。従って、何れか一方の吸着筒の吸着剤については、大気中の窒素、水分を吸着した状態で装置が停止することになる。また配管途中に凝集した結露水がそのまま残存する可能性もある。   Thus, by reducing the load applied to the compressor, it is possible to prevent the compressor from generating noise and vibration when the apparatus is stopped. For this purpose, an operation for lowering the pressure in the adsorption cylinder when the apparatus is stopped is required, but in order to maintain long-term oxygen concentration performance, an operation for regenerating the adsorbent when the apparatus is stopped is also required. However, in the pressure fluctuation adsorption method, while one of the adsorption cylinders is pressurized to generate oxygen, the adsorbent is regenerated by evacuating and purging oxygen in the other adsorption cylinder. Oxygen is continuously generated by switching the flow path. Therefore, with respect to the adsorbent of any one of the adsorption cylinders, the apparatus stops in a state where nitrogen and moisture in the atmosphere are adsorbed. Moreover, the condensed water condensed in the middle of the piping may remain as it is.

本発明は、装置停止時のコンプレッサの負荷を抑え、騒音や振動の発生を抑えると共に、装置停止後における吸着剤の吸湿劣化を抑え、配管系に溜まった吸着水及び配管中の結露水を系外に確実に排出する機能を備えた酸素濃縮装置を提供するものである。   The present invention suppresses the load on the compressor when the apparatus is stopped, suppresses the generation of noise and vibration, suppresses the moisture absorption deterioration of the adsorbent after the apparatus is stopped, and uses the adsorbed water accumulated in the piping system and the condensed water in the piping. An oxygen concentrator having a function of reliably discharging to the outside is provided.

本発明は、以下の酸素濃縮装置を提供する。すなわち、本発明は、酸素よりも窒素を選択的に吸着し得る吸着剤を充填した複数の吸着筒と、該吸着筒へ加圧空気を供給するコンプレッサと、該吸着筒の下流側に吸着筒間を均圧する均圧弁、該吸着筒の上流側に該コンプレッサと各吸着筒間の流路を接続する供給弁、各吸着筒と排気管との流路を接続する排気弁を備え、吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、吸着工程終了後の吸着筒を減圧排気し吸着剤を再生する脱着工程、吸着工程側吸着筒から濃縮酸素を該均圧弁を開いて脱着工程側吸着筒へ導入し吸着剤をパージするパージ工程、各吸着筒間を連通させる均圧工程を所定タイミングで繰り返す制御手段を具備した圧力変動吸着型酸素濃縮装置において、該制御手段が、装置停止時に、該供給弁及び該排気弁の全てを開いた状態でコンプレッサを停止する制御を行う手段であることを特徴とする酸素濃縮装置を提供する。   The present invention provides the following oxygen concentrator. That is, the present invention includes a plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, a compressor that supplies pressurized air to the adsorption cylinder, and an adsorption cylinder downstream of the adsorption cylinder. A pressure equalizing valve for equalizing pressure, a supply valve for connecting a flow path between the compressor and each adsorption cylinder on the upstream side of the adsorption cylinder, and an exhaust valve for connecting a flow path between each adsorption cylinder and the exhaust pipe. An adsorption process for supplying pressurized air to extract concentrated oxygen, a desorption process for evacuating the adsorption cylinder after completion of the adsorption process to regenerate the adsorbent, and a desorption process for opening the pressure equalizing valve from the adsorption process side adsorption cylinder In the pressure fluctuation adsorption type oxygen concentrator equipped with a control means for repeating the purge process for introducing the adsorbent into the side adsorption cylinder and purging the adsorbent and the pressure equalizing process for communicating between the adsorption cylinders at a predetermined timing, the control means stops the apparatus. Sometimes all of the supply valve and the exhaust valve Providing an oxygen concentrator, characterized in that in the opened state is a means to perform a control of stopping the compressor.

また本発明は、かかる制御手段が、装置停止時に該コンプレッサの回転数を段階的に下げて停止させる制御を行う手段である酸素濃縮装置を提供する。
また本発明は、該吸着筒が2つの吸着筒からなり、該制御手段が、該流路切替手段及び該均圧弁の開閉制御を行うことにより、一方の吸着筒について吸着工程、パージ生成工程、均圧工程、脱着工程、パージ排気工程、均圧工程を、他方の吸着筒について脱着工程、パージ排気工程、均圧工程、吸着工程、パージ生成工程、均圧工程を交互に切替える定常シーケンスを行う手段であり、該装置の運転停止信号を認識すると、(1) パージ生成工程の終了時またはパージ排気工程の終了時まで定常シーケンスで運転し、(2) 均圧弁を閉じると共に、パージ生成工程側吸着筒の該供給弁及び該排気弁を開き、且つパージ排気工程側吸着筒の該供給弁は閉じ且つ該排気弁は開いた状態で該コンプレッサを運転し、(3) 該供給弁及び該排気弁を全て開いた状態で該コンプレッサを停止する、という(1)から(3)のステップの制御を順次行う手段であることを特徴とする酸素濃縮装置を提供する。
また本発明は、かかる制御手段が、該ステップ(2)の時に該コンプレッサの回転数を定常シーケンス時の回転数よりも下げた状態で運転する制御を行う手段である酸素濃縮装置を提供する。
The present invention also provides an oxygen concentrator, which is a means for controlling such a control means to lower the speed of the compressor in a stepwise manner when the apparatus is stopped.
According to the present invention, the adsorption cylinder includes two adsorption cylinders, and the control means performs opening / closing control of the flow path switching means and the pressure equalizing valve, whereby an adsorption process, a purge generation process, A steady-state sequence is performed in which the pressure equalization process, desorption process, purge exhaust process, and pressure equalization process are alternately switched between the desorption process, purge exhaust process, pressure equalization process, adsorption process, purge generation process, and pressure equalization process for the other adsorption cylinder. When the operation stop signal of the apparatus is recognized, (1) the operation is performed in a steady sequence until the end of the purge generation process or the end of the purge exhaust process, and (2) the pressure equalization valve is closed and the purge generation process side Open the supply valve and the exhaust valve of the adsorption cylinder, and operate the compressor with the supply valve of the adsorption cylinder on the purge exhaust process side closed and the exhaust valve open, and (3) the supply valve and the exhaust All valves opened Providing an oxygen concentrator, characterized in that in stopping the compressor, it is successively performed means controls the step from that (1) (3).
Further, the present invention provides an oxygen concentrator, which is a means for controlling such a control means to operate in a state where the rotational speed of the compressor is lower than the rotational speed in the steady sequence at the time of step (2).

本発明の酸素濃縮装置は、運転スイッチを切ることにより装置の停止信号を受けとった場合、定常の運転シーケンスのパージ工程終了までは運転を継続することで、パージ排気工程側吸着筒の吸着材の吸着した水分を完全に排気する。均圧弁を閉じ、パージ生成工程側吸着筒への供給弁及び排気弁を開くことで、パージ生成工程側吸着筒を減圧排気し吸着水を排気すると共に、パージ排気工程側吸着筒供給弁は閉じ、且つ排気弁を開いた状態で維持することで吸着筒内圧が大気圧となるまで排気する。この間、コンプレッサ回転数を落すことで、排気効率を上げると共にコンプレッサの負荷を低減し、最終的に全ての供給弁及び排気弁を開いた状態でコンプレッサを運転することで配管中の結露水等を全て排出し、筒内の圧力を低下させ、コンプレッサを停止させる。これにより、装置停止時のコンプレッサの負荷を抑え、騒音や振動の発生を抑えることが出来る。   When the oxygen concentrator of the present invention receives the stop signal of the apparatus by turning off the operation switch, the operation is continued until the purge process of the normal operation sequence is completed, so that the adsorbent of the adsorption cylinder of the purge exhaust process side adsorption cylinder is maintained. Exhaust the adsorbed moisture completely. By closing the pressure equalizing valve and opening the supply valve and exhaust valve to the purge generation process side adsorption cylinder, the purge generation process side adsorption cylinder is evacuated to exhaust the adsorbed water, and the purge exhaust process side adsorption cylinder supply valve is closed. In addition, by maintaining the exhaust valve in an open state, exhaust is performed until the pressure in the adsorption cylinder becomes atmospheric pressure. During this time, by reducing the compressor speed, the exhaust efficiency is increased and the load on the compressor is reduced. Finally, all the supply valves and exhaust valves are opened, and the compressor is operated to remove condensed water in the piping. Drain everything, lower the pressure in the cylinder, and stop the compressor. Thereby, the load of the compressor when the apparatus is stopped can be suppressed, and the generation of noise and vibration can be suppressed.

本願発明の酸素濃縮装置のフロー図。The flowchart of the oxygen concentration apparatus of this invention. 本願発明の酸素濃縮装置の終了シーケンスの動作図。The operation | movement figure of the completion | finish sequence of the oxygen concentrator of this invention.

本発明の酸素濃縮装置の実施態様例を、以下の図面を用いて説明する。図1は本発明の一実施形態である2筒式PSA型の圧力変動吸着型酸素濃縮装置を例示した概略装置構成図である。   An embodiment of the oxygen concentrator of the present invention will be described with reference to the following drawings. FIG. 1 is a schematic apparatus configuration diagram illustrating a two-cylinder PSA type pressure fluctuation adsorption type oxygen concentrator as an embodiment of the present invention.

本発明の酸素濃縮装置は、原料空気を供給するコンプレッサ102、酸素よりも窒素を選択的に吸着する吸着剤を充填した吸着筒105a,105b、吸脱着工程を切り換える切換弁(供給弁、排気弁)104および均圧弁107を備え、原料空気から分離生成した酸素ガスを流量設定器110で所定流量に調整後、カニューラ115を用いて使用者に供給される。   The oxygen concentrator of the present invention includes a compressor 102 that supplies raw air, adsorption cylinders 105a and 105b that are filled with an adsorbent that selectively adsorbs nitrogen over oxygen, and a switching valve that switches between adsorption and desorption processes (supply valve, exhaust valve) ) 104 and a pressure equalizing valve 107, and the oxygen gas separated and generated from the raw air is adjusted to a predetermined flow rate by the flow rate setting device 110 and then supplied to the user using the cannula 115.

先ず、外部から取り込まれる原料空気は、塵埃などの異物を取り除くための外部空気取り込みフィルタ等などを備えた空気取り込み口から取り込まれる。このとき、通常の空気中には、約21%の酸素ガス、約77%の窒素ガス、0.8%のアルゴンガス、二酸化炭素ほかのガスが1.2%含まれている。かかる装置では、呼吸用ガスとして必要な酸素ガスのみを濃縮して取り出す。   First, raw material air taken in from the outside is taken in from an air intake port provided with an external air intake filter or the like for removing foreign matters such as dust. At this time, the normal air contains 1.2% of about 21% oxygen gas, about 77% nitrogen gas, 0.8% argon gas, carbon dioxide and other gases. In such an apparatus, only oxygen gas necessary as a breathing gas is concentrated and extracted.

この酸素ガスの取り出しは、原料空気を酸素分子よりも窒素分子を選択的に吸着する、ナトリウム5A型、13X型、あるいはLi-X型のモレキュラーシーブゼオライトなどの吸着剤が充填された吸着筒105に対して、切換弁104によって対象とする吸着筒105a,105bを順次切り換えながら、コンプレッサ102から原料空気を加圧供給し、吸着筒105内で原料空気中に含まれる約77%の窒素ガスを選択的に吸着除去する。前記の吸着筒105としては、前記吸着剤を充填した円筒状容器で形成され、通常、1筒式、2筒式の他に3筒以上の多筒式が用いられるが、連続的かつ効率的に原料空気から酸素富化空気を製造するためには、2筒式や多筒式の吸着筒を使用することが好ましい。   The oxygen gas is extracted by adsorbing cylinder 105 filled with an adsorbent such as sodium 5A type, 13X type, or Li-X type molecular sieve zeolite that selectively adsorbs nitrogen molecules rather than oxygen molecules. On the other hand, while the target adsorption cylinders 105a and 105b are sequentially switched by the switching valve 104, the raw material air is pressurized and supplied from the compressor 102, and about 77% of nitrogen gas contained in the raw material air in the adsorption cylinder 105 is supplied. Selectively remove by adsorption. The adsorbing cylinder 105 is formed of a cylindrical container filled with the adsorbent, and usually a multi-cylinder type of three or more cylinders is used in addition to the one-cylinder type and the two-cylinder type. In order to produce oxygen-enriched air from raw material air, it is preferable to use a two-cylinder or multi-cylinder type adsorption cylinder.

また、前記のコンプレッサ102としては、圧縮機能及び真空機能を有するコンプレッサとして2ヘッドのタイプの揺動型空気圧縮機が用いられるほか、スクリュー式、ロータリー式、スクロール式などの回転型空気圧縮機が用いられる場合もある。また、このコンプレッサ102を駆動する電動機の電源は、交流であっても直流であってもよい。   Further, as the compressor 102, a two-head type oscillating air compressor is used as a compressor having a compression function and a vacuum function, and a rotary air compressor such as a screw type, a rotary type, a scroll type or the like is used. Sometimes used. Further, the power source of the electric motor that drives the compressor 102 may be alternating current or direct current.

前記吸着筒105で吸着されなかった酸素ガスを主成分とする酸素富化空気は、吸着筒105へ逆流しないように設けられた逆止弁106a,106bを介して、製品タンク108に流入する。
なお、吸着剤に吸着した窒素分子は、新たに導入される原料空気から再度窒素ガスを吸着するために吸着剤から脱着させる必要がある。このために、加圧状態の吸着筒を、排気弁104c,104dによって排気ラインに接続して大気開放状態に切り換え、加圧状態で吸着されていた窒素分子を脱着させて吸着剤を再生させる。さらにこの脱着工程において、その脱着効率を高めるため、均圧弁107を介して吸着工程中の吸着筒の製品端側から酸素濃縮ガスをパージガスとして逆流させる。
Oxygen-enriched air mainly composed of oxygen gas that has not been adsorbed by the adsorption cylinder 105 flows into the product tank 108 via check valves 106a and 106b provided so as not to flow back to the adsorption cylinder 105.
The nitrogen molecules adsorbed on the adsorbent must be desorbed from the adsorbent in order to adsorb nitrogen gas again from the newly introduced raw material air. For this purpose, the adsorption cylinder in the pressurized state is connected to the exhaust line by the exhaust valves 104c and 104d and switched to the atmosphere open state, and the nitrogen molecules adsorbed in the pressurized state are desorbed to regenerate the adsorbent. Further, in this desorption process, in order to increase the desorption efficiency, the oxygen-enriched gas is caused to flow back as a purge gas from the product end side of the adsorption cylinder during the adsorption process via the pressure equalizing valve 107.

原料空気から酸素濃縮ガスが製造され、製品タンク108へ蓄えられる。この製品タンク108に蓄えられた酸素濃縮ガスは、例えば95%といった高濃度の酸素ガスを含んでおり、調圧弁109、コントロールバルブ等の流量設定手段110によってその供給流量と圧力とが制御されながら、加湿器113へ供給され、加湿された酸素が患者に供給される。   Oxygen-enriched gas is produced from the raw air and stored in the product tank 108. The oxygen-concentrated gas stored in the product tank 108 contains high-concentration oxygen gas, for example, 95%, and the supply flow rate and pressure are controlled by the flow rate setting means 110 such as the pressure regulating valve 109 and the control valve. , Supplied to the humidifier 113, and humidified oxygen is supplied to the patient.

かかる加湿器113には、水分透過膜を有する水分透過膜モジュールによって、外部空気から水分を取り込んで乾燥状態の酸素富化空気へ供給する無給水式加湿器や、水を用いたバブリング式加湿器、或いは表面蒸発式加湿器を用いることが出来る。   Such a humidifier 113 includes a moisture permeable membrane module having a moisture permeable membrane, and takes in moisture from external air and supplies it to dry oxygen-enriched air, or a bubbling humidifier using water Alternatively, a surface evaporation humidifier can be used.

使用者に供給される酸素濃縮ガスの流量及び酸素濃度は超音波式の酸素濃度・流量センサ112で検知され、コンプレッサ102の回転数や流路切換弁104の開閉時間、コントロールバルブ110の開度をフィードバック制御し、酸素生成をコントロールすることも可能である。   The flow rate and oxygen concentration of the oxygen-enriched gas supplied to the user are detected by an ultrasonic oxygen concentration / flow rate sensor 112, the rotation speed of the compressor 102, the opening / closing time of the flow path switching valve 104, and the opening degree of the control valve 110 It is also possible to control oxygen production by feedback control.

PSA型の酸素濃縮装置では、一方の吸着筒105aが吸着工程を行っている場合は、他方の吸着筒105bでは脱着工程を行い、吸着工程、脱着工程を各々逆位相の形で順次切り替え、酸素を連続的に生成している。再生効率を上げる為、吸着工程で生成した酸素の一部を均圧弁107を介して脱着工程側吸着筒に流すパージ工程(パージ生成工程、パージ排気工程)、吸着工程・パージ生成工程終了後の吸着筒と脱着工程・パージ排気工程終了後の吸着筒の間を連結し圧力移動によるエネルギー回収を行う均圧工程を組み込み、一方の吸着筒105aについて吸着工程、パージ生成工程、均圧工程、脱着工程、パージ排気工程、均圧工程を、他方の吸着筒について脱着工程、パージ排気工程、均圧工程、吸着工程、パージ生成工程、均圧工程を交互に切り換える定常シーケンスを行うことにより、効率的に酸素を生成することが出来る。   In the PSA-type oxygen concentrator, when one adsorption cylinder 105a is performing an adsorption process, the other adsorption cylinder 105b performs a desorption process, and the adsorption process and the desorption process are sequentially switched in reverse phase, Is generated continuously. In order to increase the regeneration efficiency, a purge process (purge generation process, purge exhaust process) in which a part of oxygen generated in the adsorption process flows to the desorption process side adsorption cylinder via the pressure equalizing valve 107, after the completion of the adsorption process / purge generation process Incorporates a pressure equalization process that connects the adsorption cylinder and the adsorption cylinder after completion of the desorption process and purge exhaust process, and collects energy by pressure transfer. Adsorption process, purge generation process, pressure equalization process, desorption of one adsorption cylinder 105a The process, purge exhaust process, and pressure equalization process are efficiently performed by performing a steady sequence that alternately switches the desorption process, purge exhaust process, pressure equalization process, adsorption process, purge generation process, and pressure equalization process for the other adsorption cylinder. Can produce oxygen.

酸素濃縮装置装置を停止する場合、吸着床は、運転シーケンスのうち、吸着工程、パージ生成工程、均圧工程、脱着工程、パージ排気工程、均圧工程の何れかの工程で装置が停止することになる。吸着材の再生という観点からは脱着工程及びパージ排気工程が終了し、吸着剤の窒素分子を完全に除去した後に装置を停止するのが最も効率的である。しかし、もう一方の吸着筒では、逆位相状態で運転シーケンスが切り換っているため、必ずパージしながら酸素を生成するパージ生成工程で終了することになり、最も窒素や水分等が吸着剤に吸着した状態となっている。更に両吸着筒の一方はパージ生成工程が終了した最大圧の状態であり、他方はパージ排気工程は終了した略大気圧の最小圧の状態となっている。この状態でコンプレッサを停止させると大きな負荷がかかり、大きな振動及び騒音が発生する。また吸着筒の圧力を下げるため、均圧弁を開くとパージ排気工程終了後の吸着剤再生が完了した吸着筒に、パージ生成工程側の吸着筒からガスが流入することになる。   When stopping the oxygen concentrator device, the adsorption bed must be stopped in any of the operation sequence of the adsorption process, purge generation process, pressure equalization process, desorption process, purge exhaust process, and pressure equalization process. become. From the viewpoint of regeneration of the adsorbent, it is most efficient to stop the apparatus after the desorption process and the purge exhaust process are completed and the nitrogen molecules in the adsorbent are completely removed. However, in the other adsorption cylinder, since the operation sequence is switched in the reverse phase state, it is always completed in the purge generation process in which oxygen is generated while purging. It is in an adsorbed state. Furthermore, one of the two adsorption cylinders is in a state of maximum pressure after the purge generation process is completed, and the other is in a state of minimum pressure of substantially atmospheric pressure after the purge exhaust process is completed. When the compressor is stopped in this state, a large load is applied, and a large vibration and noise are generated. Further, when the pressure equalizing valve is opened to reduce the pressure in the adsorption cylinder, gas flows from the adsorption cylinder on the purge generation process side into the adsorption cylinder in which the adsorbent regeneration after the purge exhaust process is completed.

本発明の酸素濃縮装置においては、装置停止時に均圧弁107を閉じ、且つ流路切替手段である供給弁104a,104b及び排気弁104c,104dの全ての電磁弁を開いた状態でコンプレッサ102を停止する運転制御手段を備える。   In the oxygen concentrator of the present invention, when the apparatus is stopped, the pressure equalizing valve 107 is closed, and the compressor 102 is stopped with all the solenoid valves of the supply valves 104a and 104b and the exhaust valves 104c and 104d being the flow path switching means opened. Operation control means is provided.

装置運転時に装置停止信号を認識すると、次の(1)〜(3)のステップ、すなわち、
(1) パージ生成工程の終了時またはパージ排気工程の終了時まで定常シーケンスで運転し、
(2) 均圧弁を閉じ、且つ、パージ生成工程側吸着筒の該供給弁及び該排気弁を開き、パージ排気工程側吸着筒の該供給弁は閉じ且つ該排気弁は開いた状態で該コンプレッサを運転し、
(3) 該供給弁及び該排気弁を全て開いた状態で該コンプレッサを停止する、
という制御を順次行う。
When the device stop signal is recognized during device operation, the following steps (1) to (3), that is,
(1) Operate in a steady sequence until the end of the purge generation process or the end of the purge exhaust process,
(2) Close the pressure equalizing valve, open the supply valve and the exhaust valve of the purge generation process side adsorption cylinder, close the supply valve of the purge exhaust process side adsorption cylinder, and open the exhaust valve. Drive
(3) Stop the compressor with all the supply valves and the exhaust valves open.
The control is sequentially performed.

具体的には、図2に示す供給弁104a,104b、排気弁104c,104d、均圧弁107の開閉制御及びコンプレッサ102の回転数の制御を行う。
定常運転時の吸着工程、パージ生成工程、均圧工程、脱着工程、パージ排気工程、均圧工程の何れの工程中に停止スイッチが押されたとしても、終了シーケンス(1)として、次のパージ生成工程或いはパージ排気工程まで運転する。これにより吸着筒の一方(吸着筒105b)では必ず吸着剤の再生が完了することになる。
Specifically, the supply valves 104a and 104b, the exhaust valves 104c and 104d, and the pressure equalizing valve 107 shown in FIG. 2 are controlled to open and close and the rotation speed of the compressor 102 is controlled.
Even if the stop switch is pressed during any of the adsorption process, purge generation process, pressure equalization process, desorption process, purge exhaust process, and pressure equalization process during steady operation, the next purge is performed as the end sequence (1). The operation is performed until the generation process or the purge exhaust process. As a result, regeneration of the adsorbent is always completed in one of the adsorption cylinders (adsorption cylinder 105b).

次にパージ工程で開いていた均圧弁107を閉じることで再生が完了した吸着筒105bへのガス流入を遮断し、窒素吸着、酸素生成を行っていた吸着筒105a側の排気弁105cを開くことで、吸着筒105aの減圧再生が始まる。この間、コンプレッサ102は駆動しているため、供給風を受けるが、排気弁104cが開いているため、吸着筒105aの吸着した窒素、酸素、水分は圧力差に従って排気弁104cから脱着排気される。また、配管中に溜まった凝結水についてもコンプレッサからの加圧空気によって系外に吹き飛ばされ、排気される。この時、コンプレッサ102の回転数を1/2程度に落すことで排気効率を上げることが出来る。吸着筒105bの排気弁104dは開いているので、大気圧近傍まで残圧を排気することが出来る。   Next, by closing the pressure equalizing valve 107 that was opened in the purge process, the gas flow into the adsorption cylinder 105b that has been regenerated is shut off, and the exhaust valve 105c on the adsorption cylinder 105a side that was performing nitrogen adsorption and oxygen generation is opened. Thus, decompression regeneration of the adsorption cylinder 105a starts. During this time, the compressor 102 is driven and thus receives supply air. However, since the exhaust valve 104c is open, nitrogen, oxygen, and moisture adsorbed by the adsorption cylinder 105a are desorbed and exhausted from the exhaust valve 104c according to the pressure difference. Condensed water collected in the piping is also blown out of the system by the pressurized air from the compressor and exhausted. At this time, exhaust efficiency can be increased by reducing the rotation speed of the compressor 102 to about 1/2. Since the exhaust valve 104d of the adsorption cylinder 105b is open, the residual pressure can be exhausted to near atmospheric pressure.

最後に、流路切換弁104の供給弁104a,104b、排気弁104c,104dの全てを開くことで、コンプレッサと吸着筒105a及び吸着筒105bの連結配管途中に残る結露水等を全て排気することが出来る。
かかる終了シーケンスを行うことで、吸着筒105a,105bの吸着剤の再生及び残圧の排気を行うと共に、吸着剤及び配管中の水分を全て排出することが出来る。そしてかかる工程を行うことで吸着筒の内圧が大気圧近傍まで下がるため、コンプレッサ102の停止に際し、コンプレッサ駆動部にかかる圧力負荷が最小限に抑えることができ、停止時の振動、騒音を抑えることが出来る。
Finally, by opening all of the supply valves 104a and 104b and the exhaust valves 104c and 104d of the flow path switching valve 104, all the condensed water remaining in the connecting pipe between the compressor and the adsorption cylinder 105a and the adsorption cylinder 105b is exhausted. I can do it.
By performing such an end sequence, it is possible to regenerate the adsorbent in the adsorption cylinders 105a and 105b and exhaust the residual pressure, and to discharge all the moisture in the adsorbent and the pipe. By performing this process, the internal pressure of the adsorption cylinder decreases to near atmospheric pressure, so when the compressor 102 is stopped, the pressure load on the compressor drive unit can be minimized, and vibration and noise at the time of stop can be suppressed. I can do it.

本装置において、パージ工程終了直後の吸着筒105aの最大内圧の時にコンプレッサを停止した場合に比較して、終了シーケンス(1)〜(3)を実施後にコンプレッサを停止した時の振動は約2/3に抑えることができ、騒音も10%低下する。ステップ(2)において、コンプレッサの回転数を定常シーケンスの場合に比べて1/2に落すことで2段階でコンプレッサ回転数を落すことで、停止時の振動は約1/2に落すことが出来る。   In this apparatus, compared with the case where the compressor is stopped at the maximum internal pressure of the adsorption cylinder 105a immediately after the purge process is finished, the vibration when the compressor is stopped after the completion sequence (1) to (3) is about 2 / 3 and noise is also reduced by 10%. In step (2), the compressor speed can be reduced to about 1/2 by reducing the compressor speed in two stages by reducing the speed of the compressor to 1/2 compared to the steady sequence. .

本願発明の酸素濃縮装置は医療用酸素濃縮装置として、喘息、肺気腫症、慢性気管支炎等の呼吸器系器官疾患に苦しむ患者に対する酸素吸入療法のための酸素供給源に使用される。特に装置停止時の振動、騒音を抑えつつ、吸着剤の再生、吸湿劣化を抑えることができ、長期運転にかかる安定性を担保する酸素濃縮装置を提供する。   The oxygen concentrator of the present invention is used as a medical oxygen concentrator as an oxygen supply source for oxygen inhalation therapy for patients suffering from respiratory organ diseases such as asthma, emphysema, and chronic bronchitis. In particular, the present invention provides an oxygen concentrator capable of suppressing the regeneration and moisture absorption deterioration of an adsorbent while suppressing vibration and noise when the apparatus is stopped, and ensuring the stability of long-term operation.

101 吸気サイレンサ
102 コンプレッサ
103 コンプレッサボックス
104 流路切換弁
104a 供給弁a
104b 供給弁b
104c 排気弁c
104d 排気弁d
105a 吸着筒a
105b 吸着筒b
106a,106b 逆止弁
107 均圧弁
108 製品タンク
109 調圧弁
110 流量設定器
111 フィルタ
112 酸素濃度/酸素流量センサ
113 加湿器
114 フィルタ
115 カニューラ
116 加湿器装着センサ
117 排気サイレンサ
118 冷却ファン
119 圧力センサ
120 リリーフ弁
101 Intake silencer
102 Compressor
103 Compressor box
104 Channel switching valve
104a Supply valve a
104b Supply valve b
104c Exhaust valve c
104d Exhaust valve d
105a Adsorption cylinder a
105b Adsorption cylinder b
106a, 106b Check valve
107 pressure equalizing valve
108 Product tank
109 Pressure regulator
110 Flow rate setting device
111 Filter
112 Oxygen concentration / oxygen flow sensor
113 humidifier
114 filters
115 cannula
116 Humidifier attachment sensor
117 Exhaust silencer
118 Cooling fan
119 Pressure sensor
120 relief valve

Claims (4)

酸素よりも窒素を選択的に吸着し得る吸着剤を充填した複数の吸着筒と、該吸着筒へ加圧空気を供給するコンプレッサと、該吸着筒の下流側に吸着筒間を均圧する均圧弁、該吸着筒の上流側に該コンプレッサと各吸着筒間の流路を接続する供給弁、各吸着筒と排気管との流路を接続する排気弁を備え、吸着筒へ加圧空気を供給し濃縮酸素を取り出す吸着工程、吸着工程終了後の吸着筒を減圧排気し吸着剤を再生する脱着工程、吸着工程側吸着筒から濃縮酸素を該均圧弁を開いて脱着工程側吸着筒へ導入し吸着剤をパージするパージ工程、各吸着筒間を連通させる均圧工程を所定タイミングで繰り返す制御手段を具備した圧力変動吸着型酸素濃縮装置において、
該制御手段が、装置停止時に、該供給弁及び該排気弁の全てを開いた状態でコンプレッサを停止する制御を行う手段であることを特徴とする酸素濃縮装置。
A plurality of adsorption cylinders filled with an adsorbent capable of selectively adsorbing nitrogen rather than oxygen, a compressor for supplying pressurized air to the adsorption cylinder, and a pressure equalizing valve for equalizing pressure between the adsorption cylinders downstream of the adsorption cylinder A supply valve for connecting the flow path between the compressor and each adsorption cylinder upstream of the adsorption cylinder, and an exhaust valve for connecting the flow path between each adsorption cylinder and the exhaust pipe, and supplying pressurized air to the adsorption cylinder The adsorption process for extracting concentrated oxygen, the desorption process for depressurizing the adsorption cylinder after completion of the adsorption process and regenerating the adsorbent, and introducing the concentrated oxygen from the adsorption process side adsorption cylinder into the desorption process side adsorption cylinder by opening the pressure equalizing valve In the pressure fluctuation adsorption type oxygen concentrator equipped with a control means for repeating a purge process for purging the adsorbent and a pressure equalizing process for communicating between the respective adsorption cylinders at a predetermined timing,
The oxygen concentrating apparatus, wherein the control means is a means for performing control to stop the compressor while all the supply valve and the exhaust valve are open when the apparatus is stopped.
該制御手段が、装置停止時に該コンプレッサの回転数を段階的に下げて停止させる制御を行う手段である請求項1記載の酸素濃縮装置。   2. The oxygen concentrating apparatus according to claim 1, wherein the control means is a means for performing control to stop the apparatus by decreasing the rotational speed of the compressor stepwise when the apparatus is stopped. 該吸着筒が2つの吸着筒からなり、
該制御手段が、該流路切換手段及び該均圧弁の開閉制御を行うことにより、一方の吸着筒について吸着工程、パージ生成工程、均圧工程、脱着工程、パージ排気工程、均圧工程を、他方の吸着筒について脱着工程、パージ排気工程、均圧工程、吸着工程、パージ生成工程、均圧工程を交互に切り換える定常シーケンスを行う手段であり、
該装置の運転停止信号を認識すると、
(1) パージ生成工程の終了時またはパージ排気工程の終了時まで定常シーケンスで運転し、
(2) 均圧弁を閉じると共に、パージ生成工程側吸着筒の該供給弁及び該排気弁を開き、且つパージ排気工程側吸着筒の該供給弁は閉じ且つ該排気弁は開いた状態で該コンプレッサを運転し、
(3) 該供給弁及び該排気弁を全て開いた状態で該コンプレッサを停止する、
制御を順次行う手段であることを特徴とする請求項2記載の酸素濃縮装置。
The adsorption cylinder consists of two adsorption cylinders,
The control means performs opening / closing control of the flow path switching means and the pressure equalizing valve, thereby performing an adsorption process, a purge generation process, a pressure equalization process, a desorption process, a purge exhaust process, and a pressure equalization process for one adsorption cylinder. A means for performing a steady sequence of alternately switching the desorption process, purge exhaust process, pressure equalization process, adsorption process, purge generation process, pressure equalization process for the other adsorption cylinder,
When the operation stop signal of the device is recognized,
(1) Operate in a steady sequence until the end of the purge generation process or the end of the purge exhaust process,
(2) The pressure equalizing valve is closed, the supply valve and the exhaust valve of the purge generation process side adsorption cylinder are opened, and the supply valve of the purge exhaust process side adsorption cylinder is closed and the exhaust valve is opened. Drive
(3) Stop the compressor with all the supply valves and the exhaust valves open.
3. The oxygen concentrator according to claim 2, wherein the oxygen concentrator is a means for sequentially performing control.
該制御手段が、該ステップ(2)の時に該コンプレッサの回転数を定常シーケンス時の回転数よりも下げた状態で運転する制御を行う手段である、請求項3に記載の酸素濃縮装置。   The oxygen concentrator according to claim 3, wherein the control means is a means for controlling the compressor to operate in a state in which the rotational speed of the compressor is lower than the rotational speed in the steady sequence at the time of the step (2).
JP2009252057A 2009-11-02 2009-11-02 Oxygen concentrator Active JP5524574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252057A JP5524574B2 (en) 2009-11-02 2009-11-02 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252057A JP5524574B2 (en) 2009-11-02 2009-11-02 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2011092622A true JP2011092622A (en) 2011-05-12
JP5524574B2 JP5524574B2 (en) 2014-06-18

Family

ID=44110241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252057A Active JP5524574B2 (en) 2009-11-02 2009-11-02 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP5524574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186175A1 (en) * 2021-03-02 2022-09-09 帝人ファーマ株式会社 Oxygen concentration apparatus, control method, and control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151755A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Oxygen-enriching machine
JP2008011933A (en) * 2006-07-03 2008-01-24 Sanyo Electric Industries Co Ltd Oxygen concentration apparatus
JP2008178795A (en) * 2007-01-24 2008-08-07 Teijin Pharma Ltd Oxygen concentrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151755A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Oxygen-enriching machine
JP2008011933A (en) * 2006-07-03 2008-01-24 Sanyo Electric Industries Co Ltd Oxygen concentration apparatus
JP2008178795A (en) * 2007-01-24 2008-08-07 Teijin Pharma Ltd Oxygen concentrator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186175A1 (en) * 2021-03-02 2022-09-09 帝人ファーマ株式会社 Oxygen concentration apparatus, control method, and control program
JPWO2022186175A1 (en) * 2021-03-02 2022-09-09
JP7454100B2 (en) 2021-03-02 2024-03-21 帝人ファーマ株式会社 Oxygen concentrator, control method and control program

Also Published As

Publication number Publication date
JP5524574B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5080568B2 (en) Oxygen concentrator
JP5357264B2 (en) Oxygen concentrator
JP5080483B2 (en) Oxygen concentrator
JP2013052021A (en) Oxygen concentrator
JP5833358B2 (en) Oxygen concentrator
JP6211753B2 (en) Cylindrical unit fixing method and oxygen concentrator using the same method
JP4922739B2 (en) Oxygen concentrator
JP5193537B2 (en) Oxygen concentrator
JP5307982B2 (en) Oxygen concentrator
JP5524574B2 (en) Oxygen concentrator
JP5431662B2 (en) Oxygen concentrator
JP5275671B2 (en) Oxygen concentrator
JP5242996B2 (en) Oxygen concentrator
JP2857045B2 (en) Oxygen concentrator
JP5112839B2 (en) Oxygen concentrator
JP2008178795A (en) Oxygen concentrator
JP5065714B2 (en) Oxygen concentrator
JP2009273623A (en) Oxygen enricher
JP5242928B2 (en) Oxygen concentrator
JP5123556B2 (en) Oxygen concentrator
JP2008173284A (en) Adsorption oxygen concentrator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5524574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350