JP5275671B2 - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
JP5275671B2
JP5275671B2 JP2008105596A JP2008105596A JP5275671B2 JP 5275671 B2 JP5275671 B2 JP 5275671B2 JP 2008105596 A JP2008105596 A JP 2008105596A JP 2008105596 A JP2008105596 A JP 2008105596A JP 5275671 B2 JP5275671 B2 JP 5275671B2
Authority
JP
Japan
Prior art keywords
flow path
oxygen
valve
adsorption cylinder
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008105596A
Other languages
Japanese (ja)
Other versions
JP2009254502A (en
Inventor
善信 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2008105596A priority Critical patent/JP5275671B2/en
Publication of JP2009254502A publication Critical patent/JP2009254502A/en
Application granted granted Critical
Publication of JP5275671B2 publication Critical patent/JP5275671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen concentrator for lowering noises. <P>SOLUTION: The oxygen concentrator of a pressure swing absorption type has: an absorption cylinder for filling up an absorption material for absorbing nitrogen in favor of oxygen; an air compressing means for supplying the absorption cylinder with compressed air; and a flow path switch valve for repeating an absorption process for pressuring the absorption cylinder, absorbing nitrogen in the compressed air, and generating oxygen unabsorbed and a process of attachment/removal for reducing pressure in the absorption cylinder to regenerate the absorption material with regular timing. When two or more flow path switch valves simultaneously operate, timing at which the respective flow path switch valves switch has a minute time deviation. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、酸素よりも窒素を優先的に吸着する吸着材を用いた圧力変動吸着型の酸素濃縮装置に関するものであり、特に慢性呼吸器疾患患者などに対して行われる酸素吸入療法に使用する医療用酸素濃縮装置に関するものである。さらに詳細には、吸着材を充填した吸着筒において圧力変動を発生させるために気体の流路を切り換えるパイロット式流路切換弁のパイロット圧排気流路を改良し、騒音を改善することができる圧力変動吸着型酸素濃縮装置に関するものである。   The present invention relates to a pressure fluctuation adsorption type oxygen concentrator using an adsorbent that preferentially adsorbs nitrogen over oxygen, and is particularly used for oxygen inhalation therapy performed on patients with chronic respiratory diseases. The present invention relates to a medical oxygen concentrator. More specifically, the pressure fluctuation that can improve noise by improving the pilot pressure exhaust flow path of the pilot-type flow path switching valve that switches the gas flow path to generate pressure fluctuation in the adsorption cylinder filled with the adsorbent The present invention relates to an adsorption-type oxygen concentrator.

近年、喘息、肺気腫症、慢性気管支炎等の呼吸器系器官の疾患に苦しむ患者が増加する傾向にあるが、その治療法として最も効果的なもののひとつに酸素吸入療法がある。かかる酸素吸入療法とは、酸素ガスあるいは酸素富化空気を患者に吸入させるものである。その供給源として、酸素濃縮装置、液体酸素、酸素ガスボンベ等が知られているが、使用時の便利さや保守管理の容易さから、在宅酸素療法には酸素濃縮装置が主流で用いられている。   In recent years, the number of patients suffering from respiratory organ diseases such as asthma, emphysema, and chronic bronchitis has been increasing. One of the most effective treatment methods is oxygen inhalation therapy. Such oxygen inhalation therapy is to allow a patient to inhale oxygen gas or oxygen-enriched air. Oxygen concentrators, liquid oxygen, oxygen gas cylinders, and the like are known as supply sources, but oxygen concentrators are mainly used for home oxygen therapy because of convenience during use and ease of maintenance.

酸素濃縮装置は、空気中の約21%の酸素を濃縮して供給する装置であり、それには酸素を選択的に透過する膜を用いた膜式酸素濃縮装置と、窒素または酸素を優先的に吸着しうる吸着材を用いた圧力変動吸着型酸素濃縮装置があるが、得られる酸素濃度の点から圧力変動吸着型酸素濃縮装置が主流になっている。   The oxygen concentrator is a device that concentrates and supplies about 21% of oxygen in the air, and includes a membrane oxygen concentrator using a membrane that selectively permeates oxygen and nitrogen or oxygen preferentially. There is a pressure fluctuation adsorption type oxygen concentrator using an adsorbent that can be adsorbed, but the pressure fluctuation adsorption type oxygen concentrator is the mainstream in terms of the obtained oxygen concentration.

圧力変動吸着型酸素濃縮装置は、酸素よりも窒素を選択的に吸着する吸着材として5A型や13X型、Li−X型などのモレキュラーシーブゼオライトを充填した吸着筒に、コンプレッサで圧縮された空気を供給することにより加圧条件下で窒素を吸着させ、未吸着の酸素濃縮ガスを得る加圧・吸着工程と、前記吸着筒内の圧力を大気圧またはそれ以下に減じて、吸着材に吸着された窒素をパージすることで吸着材の再生を行う減圧・脱着(再生)工程を交互に繰り返し行うことで、高濃度酸素ガスを連続的に生成することができる。   The pressure fluctuation adsorption type oxygen concentrator is an air compressed by a compressor in an adsorption cylinder filled with molecular sieve zeolite such as 5A type, 13X type, and Li-X type as an adsorbent that selectively adsorbs nitrogen rather than oxygen. By adsorbing nitrogen under pressurized conditions to obtain unadsorbed oxygen-enriched gas, and reducing the pressure in the adsorption cylinder to atmospheric pressure or lower and adsorbing to the adsorbent By alternately repeating the pressure reduction / desorption (regeneration) step of regenerating the adsorbent by purging the generated nitrogen, high-concentration oxygen gas can be continuously generated.

本発明のような酸素濃縮装置では、通常2本以上の吸着筒を有しており、一方の吸着筒が吸着工程のときは、他方の吸着筒では脱着工程にし、両工程を順次切り換え実施することによって、連続して酸素濃縮ガスを生成できるようにしているが、これらの吸着筒を一定サイクルで切り換えるために、2方弁や3方弁の流路切換弁が使用されている。現在の酸素濃縮装置では低消費電力の要求があるため、流路切換弁にパイロット式の電磁弁が使用されることもある。パイロット式の電磁弁は直動式よりも電磁弁部分を小さくする事が可能であるが、駆動方法が異なるだけで弁部分の構造は同じであり、どちらの流路切換弁を使用しても作動時に騒音が発生する。   The oxygen concentrator as in the present invention usually has two or more adsorption cylinders. When one adsorption cylinder is an adsorption process, the other adsorption cylinder is set as a desorption process, and both processes are sequentially switched. Thus, the oxygen-enriched gas can be continuously generated. In order to switch these adsorption cylinders at a constant cycle, a two-way valve or a three-way valve switching valve is used. Since current oxygen concentrators require low power consumption, pilot-type solenoid valves are sometimes used as flow path switching valves. The pilot type solenoid valve can make the solenoid valve part smaller than the direct acting type, but the structure of the valve part is the same except that the drive method is different. Noise is generated during operation.

これらの騒音を減衰させ、静音化した酸素濃縮器を提供するために、騒音源となるものを遮蔽板と吸音材で構成された収納ケースに入れる方法が提案されている(特許文献1、2)。しかしながら、この方法では収納ケース内のデッドスペースが大きくなり、酸素濃縮装置の本体が大型化してしまうという問題があった。   In order to provide an oxygen concentrator in which these noises are attenuated and silenced, there has been proposed a method in which a noise source is placed in a storage case composed of a shielding plate and a sound absorbing material (Patent Documents 1 and 2). ). However, this method has a problem that the dead space in the storage case becomes large and the main body of the oxygen concentrator becomes large.

また別の方法としては、騒音を発生する部品そのものに防音材で構成するカバーを取り付けることによって、騒音が拡散する前に防音する方法も提案されているが、騒音源そのものを静音化するものではなく、問題の根本的な解決には至っていない。(特許文献3)   As another method, a method of soundproofing before noise spreads by attaching a cover made of soundproofing material to the noise generating part itself has been proposed. There is no fundamental solution to the problem. (Patent Document 3)

特開2004−188123号公報JP 2004-188123 A 特開2008−11933号公報JP 2008-11933 A 特開2007−222378号公報JP 2007-222378 A

本発明は、かかる装置に使用される流路切換弁の作動タイミングを見直すことによって、流路切換弁の作動騒音を低減させ、低騒音化を実現した酸素濃縮装置を提供することを目的とする。   It is an object of the present invention to provide an oxygen concentrating device that reduces the operation noise of the flow path switching valve and realizes low noise by reviewing the operation timing of the flow path switching valve used in such an apparatus. .

かかる課題に対して本発明者は鋭意検討した結果、吸着工程・脱着工程を切り換える際に、2つ以上の該流路切換弁が同時に作動するときの切り換えタイミングを、微小時間のずれを有して作動することにより低騒音化を実現できることを見出した。   As a result of diligent investigations, the present inventor has found that when switching between the adsorption process and the desorption process, the switching timing when two or more of the flow path switching valves operate simultaneously has a slight time lag. It was found that noise reduction can be realized by operating the

すなわち、本発明は、一端に空気圧縮手段または排気管と接続される原料供給端、他端に製品酸素を取り出す製品端を備え、内部に酸素よりも窒素を優先的に吸着する吸着材を充填した吸着筒と、該吸着筒に圧縮空気を供給する空気圧縮手段と、吸着材に吸着した窒素を大気中へ排気する排気管、該吸着筒を加圧し圧縮空気中の窒素を吸着し未吸着の酸素を生成する吸着工程と、該吸着筒を減圧し吸着した窒素を脱着排気し吸着材を再生する脱着工程とを一定のタイミングで繰り返すため、該空気圧縮手段と該吸着筒と該排気管との間の流路を切り換える複数の流路切換弁と、を備えた圧力変動吸着型酸素濃縮装置において、工程切り換え時の複数の該流路切換弁を同時に作動する際に、それぞれの該流路切換弁の切り換タイミングを時間のずれを有して作動させる流路切換制御手段を有することを特徴とする酸素濃縮装置を提供するものである。   That is, the present invention has a raw material supply end connected to an air compression means or an exhaust pipe at one end, and a product end for taking out product oxygen at the other end, and is filled with an adsorbent that preferentially adsorbs nitrogen over oxygen. An adsorbing cylinder, an air compression means for supplying compressed air to the adsorbing cylinder, an exhaust pipe for exhausting nitrogen adsorbed on the adsorbent to the atmosphere, and pressurizing the adsorbing cylinder to adsorb nitrogen in the compressed air and unadsorb The air compression means, the adsorption cylinder, and the exhaust pipe are repeated at a fixed timing to repeat the adsorption process for generating oxygen and the desorption process for reducing the adsorption cylinder and desorbing and exhausting the adsorbed nitrogen to regenerate the adsorbent. And a plurality of flow path switching valves for switching the flow path between the two and the flow path switching valves at the time of the process switching, The switching timing of the path switching valve There is provided an oxygen concentrator characterized in that it comprises a by causing passage switching control means operating with a record.

また本発明は、かかる流路切換制御手段が、該流路切換弁の各々の切り換タイミングを、0.2秒乃至0.4秒の微小時間のずれを持って各流路切換弁を作動させる手段、あるいは流路切換弁単独作動時の最大音圧よりも2〜10dBAの範囲で低下する時間のずれをもって各流路切換弁を作動させる手段である酸素濃縮装置を提供するものである。   In the present invention, the flow path switching control means is a means for operating each flow path switching valve with a minute time lag of 0.2 seconds to 0.4 seconds as to the switching timing of each flow path switching valve, or It is an object of the present invention to provide an oxygen concentrator that is a means for operating each flow path switching valve with a time lag that falls within a range of 2 to 10 dBA than the maximum sound pressure when the flow path switching valve is operated alone.

また本発明は、該吸着筒が2つの吸着筒A,Bからなり、該流路切換弁が2方電磁弁であり、該空気圧縮手段と吸着筒Aの間の流路に設けられた切換弁A、吸着筒Aと排気管の間の流路に設けられた切換弁B、空気圧縮手段と吸着筒Bの間の流路に設けられた切換弁C、吸着筒Bと排気管の間の流路に設けられた切換弁Dを備え、流路切換制御手段が該切換弁A,B,C,Dの切り換タイミングを制御する手段である酸素濃縮装置、更に該吸着筒A、吸着筒Bの製品端側同士を接続する均圧弁を備えた均圧流路を備え、該流路切換手段が、該均圧弁および該切換弁A,B,C,Dの切り換タイミングを制御する手段である酸素濃縮装置を提供するものである。   Further, according to the present invention, the adsorption cylinder is composed of two adsorption cylinders A and B, the flow path switching valve is a two-way electromagnetic valve, and the switching provided in the flow path between the air compression means and the adsorption cylinder A Valve A, switching valve B provided in the flow path between the adsorption cylinder A and the exhaust pipe, switching valve C provided in the flow path between the air compression means and the adsorption cylinder B, between the adsorption cylinder B and the exhaust pipe A switching valve D provided in the flow path, and the flow path switching control means is a means for controlling the switching timing of the switching valves A, B, C, D, the adsorption cylinder A, and the adsorption cylinder A A pressure equalizing flow path including a pressure equalizing valve for connecting the product end sides of the cylinder B, and the flow path switching means controls the switching timing of the pressure equalizing valve and the switching valves A, B, C, D An oxygen concentrator is provided.

また本発明は、かかる流路切換弁がパイロット式電磁弁、または直動式電磁弁である、上記酸素濃縮装置を提供する。   The present invention also provides the above-described oxygen concentrator, wherein the flow path switching valve is a pilot solenoid valve or a direct acting solenoid valve.

本発明の酸素濃縮装置を使用することにより流路切換弁が作動する時に発生する騒音を低減することができ、酸素濃縮装置の静音化することが可能になる。   By using the oxygen concentrator of the present invention, noise generated when the flow path switching valve is operated can be reduced, and the oxygen concentrator can be silenced.

本発明の酸素濃縮装置の実施態様例を、図面を用いて説明する。
図1は、本発明の一実施形態である圧力変動吸着型酸素濃縮装置を例示した概略装置構成図である。この図1において、1は酸素濃縮装置、3は加湿された酸素富化空気を吸入する使用者(患者)を示す。圧力変動吸着型酸素濃縮装置1は、外部空気取り込みフィルタ101、吸気消音器102、コンプレッサ103、流路切換弁104、吸着筒105、逆止弁106、製品タンク107、調圧弁108、流量設定手段109、パーティクルフィルタ110を備える。これにより外部から取り込んだ原料空気から酸素ガスを濃縮した酸素富化空気を製造することができる。また、酸素濃縮装置の筐体内には、生成された酸素富化空気を加湿するための加湿器201、前記流量設定手段109の設定値と、酸素濃度センサ301、流量センサ302の測定値を用いて、コンプレッサや流路切換弁を制御する制御手段401、コンプレッサの騒音を防音するためのコンプレッサボックス501、コンプレッサを冷却するための冷却ファン502が内蔵されている。
Embodiment examples of the oxygen concentrator of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic apparatus configuration diagram illustrating a pressure fluctuation adsorption type oxygen concentrator as an embodiment of the present invention. In FIG. 1, 1 is an oxygen concentrator, and 3 is a user (patient) who inhales humidified oxygen-enriched air. The pressure fluctuation adsorption type oxygen concentrator 1 includes an external air intake filter 101, an intake silencer 102, a compressor 103, a flow path switching valve 104, an adsorption cylinder 105, a check valve 106, a product tank 107, a pressure regulating valve 108, a flow rate setting means. 109 and a particle filter 110 are provided. Thereby, oxygen-enriched air obtained by concentrating oxygen gas from the raw material air taken in from the outside can be produced. Further, the humidifier 201 for humidifying the generated oxygen-enriched air, the set value of the flow rate setting means 109, and the measured values of the oxygen concentration sensor 301 and the flow rate sensor 302 are used in the casing of the oxygen concentrator. A control means 401 for controlling the compressor and the flow path switching valve, a compressor box 501 for preventing noise from the compressor, and a cooling fan 502 for cooling the compressor are incorporated.

まず外部から取り込まれる原料空気は、塵埃などの異物を取り除くための外部空気取り込みフィルタ101、吸気消音器102を備えた空気取り込み口から取り込まれる。このとき、通常の空気中には、約21%の酸素ガス、約77%の窒素ガス、0.8%のアルゴンガス、水蒸気ほかのガスが1.2%含まれている。かかる装置では、呼吸用ガスとして必要な酸素ガスのみを濃縮して取り出す。   First, raw material air taken in from the outside is taken in from an air intake port provided with an external air intake filter 101 and an intake silencer 102 for removing foreign matters such as dust. At this time, the normal air contains 1.2% of oxygen gas of about 21%, nitrogen gas of about 77%, argon gas of 0.8%, water vapor and the like. In such an apparatus, only oxygen gas necessary as a breathing gas is concentrated and extracted.

この酸素ガスの取り出しは、原料空気を酸素ガス分子よりも窒素ガス分子を選択的に吸着するゼオライトなどからなる吸着材が充填された吸着筒に対して、流路切換弁104によって対象とする吸着筒を順次切り換えながら、原料空気をコンプレッサ103により加圧して供給し、吸着筒内で原料空気中に含まれる約77%の窒素ガスを選択的に吸着除去する。   The oxygen gas is taken out from the adsorption cylinder filled with an adsorbent made of zeolite or the like that selectively adsorbs nitrogen gas molecules rather than oxygen gas molecules. While the cylinders are sequentially switched, the source air is pressurized and supplied by the compressor 103, and approximately 77% of nitrogen gas contained in the source air is selectively adsorbed and removed in the adsorption cylinder.

前記の吸着筒としては、前記吸着材を充填した円筒状容器で形成され、通常、1筒式、2筒式の他に3筒以上の多筒式が用いられるが、連続的かつ効率的に原料空気から酸素富化空気を製造するためには、多筒式の吸着筒を使用することが好ましい。また、前記のコンプレッサとしては、揺動型空気圧縮機が用いられるほか、スクリュー式、ロータリー式、スクロール式などの回転型空気圧縮機が用いられる場合もある。また、このコンプレッサを駆動する電動機の電源は、交流であっても直流であってもよい。
前記吸着筒105で吸着されなかった酸素ガスを主成分とする酸素富化空気は、吸着筒へ逆流しないように設けられた逆止弁106を介して、製品タンク107に流入する。
The adsorption cylinder is formed of a cylindrical container filled with the adsorbent, and usually a multi-cylinder type of three or more cylinders is used in addition to the one-cylinder type and the two-cylinder type. In order to produce oxygen-enriched air from raw material air, it is preferable to use a multi-cylinder type adsorption cylinder. As the compressor, a swing type air compressor may be used, and a rotary type air compressor such as a screw type, a rotary type, or a scroll type may be used. Further, the power source of the electric motor that drives the compressor may be alternating current or direct current.
Oxygen-enriched air mainly composed of oxygen gas that has not been adsorbed by the adsorption cylinder 105 flows into the product tank 107 through a check valve 106 provided so as not to flow backward to the adsorption cylinder.

また、吸着筒内に充填された吸着材に吸着された窒素ガスは、新たに導入される原料空気から再度窒素ガスを吸着するために吸着材から脱着させる必要がある。このために、コンプレッサによって実現される加圧状態から、流路切換弁によって減圧状態(例えば大気圧状態又は負圧状態)に切り換え、吸着されていた窒素ガスを脱着させて吸着材を再生させる。この脱着工程において、その脱着効率を高めるため、吸着工程中の吸着筒の製品端側或いは製品タンクから酸素富化空気をパージガスとして逆流させるようにしてもよい。通常、窒素を脱着させるときには大きな気流音が発生するため、一般的には窒素排気消音器503が用いられる。   Further, the nitrogen gas adsorbed by the adsorbent filled in the adsorption cylinder needs to be desorbed from the adsorbent in order to adsorb the nitrogen gas again from the newly introduced raw material air. For this purpose, the pressurized state realized by the compressor is switched to the reduced pressure state (for example, the atmospheric pressure state or the negative pressure state) by the flow path switching valve, and the adsorbent is regenerated by desorbing the adsorbed nitrogen gas. In this desorption process, in order to increase the desorption efficiency, oxygen-enriched air may be allowed to flow back as a purge gas from the product end side or product tank of the adsorption cylinder during the adsorption process. In general, a loud air flow noise is generated when nitrogen is desorbed, so a nitrogen exhaust silencer 503 is generally used.

原料空気から生成された酸素富化空気は、製品タンクへ蓄えられる。この製品タンクに蓄えられた酸素富化空気は、例えば95%といった高濃度の酸素ガスを含んでおり、調圧弁108や流量設定手段109などによってその供給流量と圧力とが制御されながら、加湿器201へ供給され、加湿された酸素富化空気が患者に供給される。かかる加湿器には、水分透過膜を有する水分透過膜モジュールによって、外部空気から水分を取り込んで乾燥状態の酸素富化空気へ供給する無給水式加湿器や、水を用いたバブリング式加湿器、或いは表面蒸発式加湿器を用いることが出来る。   Oxygen-enriched air generated from the raw air is stored in the product tank. The oxygen-enriched air stored in this product tank contains high concentration oxygen gas, for example, 95%, and the humidifier is controlled while the supply flow rate and pressure are controlled by the pressure regulating valve 108 and the flow rate setting means 109. Supplied to 201 and humidified oxygen-enriched air is supplied to the patient. In such a humidifier, a moisture permeable membrane module having a moisture permeable membrane takes in moisture from external air and supplies it to dry oxygen-enriched air, a bubbling humidifier using water, Alternatively, a surface evaporation humidifier can be used.

また、流量設定手段109の設定値を検知し、制御手段401によりコンプレッサの電動機の回転数を制御することで吸着筒への供給風量を制御する。設定流量が低流量の場合には回転数を落とすことで生成酸素量を抑え、且つ消費電力の低減を図ることができる。   Further, the set value of the flow rate setting means 109 is detected, and the control means 401 controls the number of rotations of the compressor motor, thereby controlling the amount of air supplied to the adsorption cylinder. When the set flow rate is low, the amount of generated oxygen can be suppressed and the power consumption can be reduced by reducing the rotation speed.

通常、コンプレッサは耳障りな騒音を発生するため、これを防音するためにコンプレッサボックス501の中に設置される。また酸素濃縮装置のほとんどの発熱量はコンプレッサから発生されるため、コンプレッサボックスには冷却ファン502を設置して、コンプレッサを冷却する。冷却ファンとしては、軸流式の冷却ファンや遠心型のブロアなどが用いられる。駆動方式は交流であっても直流であっても構わない。過冷却の防止や低騒音化を図るために、冷却ファンの回転数を制御することも実施されている。また、冷却風の向きは、コンプレッサボックス内の空気を換気する強制対流方式や、コンプレッサに冷却風を直接当てる強制空冷方式のどちらを使用してもかまわない。   Since the compressor usually generates annoying noise, the compressor is installed in the compressor box 501 to prevent the noise. In addition, since most of the calorific value of the oxygen concentrator is generated from the compressor, a cooling fan 502 is installed in the compressor box to cool the compressor. As the cooling fan, an axial flow type cooling fan, a centrifugal blower, or the like is used. The driving method may be alternating current or direct current. In order to prevent overcooling and reduce noise, the rotation speed of the cooling fan is also controlled. The direction of the cooling air may be either a forced convection method that ventilates the air in the compressor box or a forced air cooling method that directly applies the cooling air to the compressor.

図2は、本発明の酸素濃縮器に使用される流路切換弁104をさらに詳しく示したものである。本図では2方弁を4個使用する方法を示しているが、3方弁を2個使用する方法でも構わない。   FIG. 2 shows the flow path switching valve 104 used in the oxygen concentrator of the present invention in more detail. Although this figure shows a method using four two-way valves, a method using two three-way valves may be used.

図3には、図2に示すように流路切換弁を4個使用した場合の、流路切換弁の作動タイミングの一例を示している。本図のように流路切換弁を4個使用した場合、吸着筒A105Aを加圧吸着工程に、かつ吸着筒B105Bを減圧排気工程にする時には、切換弁104Aと切換弁104Dを開き、切換弁104Bと104Cを閉じることで可能になる。また、吸着筒A104Aを減圧排気工程に、かつ吸着筒B104Bを加圧吸着工程にする場合には、切換弁104Aと104Dを閉じ、切換弁104Bと104Cを開くことで可能になる。本図によると、タイミングAとタイミングBにおいて、3個同時に流路切換弁が作動していることが分かる。   FIG. 3 shows an example of the operation timing of the flow path switching valve when four flow path switching valves are used as shown in FIG. When four flow path switching valves are used as shown in this figure, when switching the adsorption cylinder A105A to the pressure adsorption process and the adsorption cylinder B105B to the vacuum exhaust process, the switching valve 104A and the switching valve 104D are opened, This is possible by closing 104B and 104C. Further, when the adsorption cylinder A104A is in the decompression exhaust process and the adsorption cylinder B104B is in the pressure adsorption process, it is possible to close the switching valves 104A and 104D and open the switching valves 104B and 104C. According to this figure, it can be seen that at timing A and timing B, three flow path switching valves are simultaneously operated.

同じ音圧レベルの騒音が発生する流路切換弁を2個同時に作動させた場合には、1個を単独で作動させた時より3dBの騒音増大に、また3個同時に作動させた場合には5dBの騒音増大になるが、本発明による酸素濃縮装置では、これらの流路切換弁が微少時間のずれを伴って作動するため、それぞれの流路切換弁が個別に作動し、同時に騒音を発生させる事がないため、単独で作動させた場合とほぼ同じ騒音レベルを実現する事ができる。   When two channel switching valves that generate noise of the same sound pressure level are operated at the same time, the noise increases by 3 dB from when one is operated alone, and when three are operated simultaneously. Although the noise increases by 5 dB, in the oxygen concentrator according to the present invention, these flow path switching valves operate with a slight time lag, so that each flow path switching valve operates individually and generates noise at the same time. Therefore, almost the same noise level as when operated alone can be realized.

以下に本発明の酸素濃縮装置の好適な具体実施例について説明する。本実施例で使用した流路切換弁はSMC社製のパイロット式電磁弁を4個使用し、図3に示す作動タイミングで、かつ±0.3秒の時間差を持たせて作動させ、その時に発生した騒音を測定した。比較例として、実施例と同じ構成の流路切換弁を、図3に示す作動タイミングで、かつ3個同時に作動させた時に発生する騒音を測定した。測定は暗騒音レベル17dBAの無響音室において、集音マイクと流路切換弁の距離を1.0m離し、A特性音圧レベルを測定した。   Hereinafter, preferred specific examples of the oxygen concentrator of the present invention will be described. The flow path switching valve used in this example uses four pilot type solenoid valves manufactured by SMC, which are operated at the operation timing shown in FIG. 3 with a time difference of ± 0.3 seconds. The generated noise was measured. As a comparative example, noise generated when three flow path switching valves having the same configuration as in the example were simultaneously operated at the operation timing shown in FIG. 3 was measured. The measurement was performed in an anechoic chamber with a background noise level of 17 dBA, and the distance between the sound collection microphone and the flow path switching valve was separated by 1.0 m, and the A characteristic sound pressure level was measured.

図4には、本実施例で使用した流路切換弁を1個単独で作動させた時の騒音レベルを示している。本図から流路切換弁1個の作動騒音は、約35dBAであることが分かる。
図5は、本実施例を示す騒音レベルであり、3個の流路切換弁が0.3秒の時間差で作動していることを示している。本図により、最大騒音レベルは1個単独で作動させた時とほぼ同じ35dBAであることが分かる。図6は、比較例を示す騒音レベルであり、3個の流路切換弁を同時に作動させた場合、約40dBAの騒音が発生している事が分かる。
FIG. 4 shows the noise level when one of the flow path switching valves used in this example is operated alone. From this figure, it can be seen that the operating noise of one flow path switching valve is about 35 dBA.
FIG. 5 is a noise level showing the present embodiment, and shows that the three flow path switching valves are operating with a time difference of 0.3 seconds. From this figure, it can be seen that the maximum noise level is 35 dBA, which is almost the same as when operating alone. FIG. 6 is a noise level showing a comparative example, and it can be seen that noise of about 40 dBA is generated when three flow path switching valves are operated simultaneously.

3個の流路切換弁を時間差0.1秒で作動させた場合は、1個単独作動の騒音レベル(35dBA)より2dBA程度上昇して37dBAとなるが、3個同時(時間差ゼロ)で作動させた場合の40dBAに比較すると騒音低減効果が認められる。更に、3個の流路切換弁を時間差0.2秒で作動させた場合には、1個単独作動の騒音レベルに対して1dBAアップの36dBAとなる。 なお、0.4秒よりも長い時間差で作動させても、1個単独作動の騒音レベルよりも低くなることはなく、逆に吸着シーケンスに悪影響がある。同様に、2つの音源の音圧レベル差が2〜4dBの時(0.1秒差、33dBA)では+2dB(37dBA)、音圧レベル差が5〜9dBの時(0.2秒差、28dBA)は+1dB(36dBA)、音圧レベル差が10dB以上の差があるときは小さい方の音はマスキングされ、大きい方の音だけが聞こえるという状態になる。従って2つの音源の音圧レベル差が2〜10dBAの範囲、特に約10dBAとなる時間差0.3秒の時間差で作動させるのが低騒音の面からも、吸着シーケンスへの影響を最小限に抑える面からも好ましい。   When three flow path switching valves are operated at a time difference of 0.1 seconds, the noise level (35 dBA) of each single operation rises by about 2 dBA to 37 dBA, but it operates at the same time (zero time difference). Compared to 40 dBA in the case of making it, the noise reduction effect is recognized. Further, when the three flow path switching valves are operated with a time difference of 0.2 seconds, the noise level is increased by 1 dBA to 36 dBA with respect to the noise level of the single operation. Note that even if the operation is performed with a time difference longer than 0.4 seconds, the noise level does not become lower than the single operation noise level, which adversely affects the adsorption sequence. Similarly, when the sound pressure level difference between two sound sources is 2 to 4 dB (0.1 second difference, 33 dBA), +2 dB (37 dBA), and when the sound pressure level difference is 5 to 9 dB (0.2 second difference, 28 dBA), +1 dB (36 dBA) When the sound pressure level difference is 10 dB or more, the smaller sound is masked and only the larger sound is heard. Therefore, if the sound pressure level difference between the two sound sources is in the range of 2 to 10 dBA, especially when the time difference is about 10 dBA and the time difference is 0.3 seconds, the effect on the adsorption sequence is minimized. It is preferable also from a surface.

これらの結果より、本発明の技術を使用することで、特別な防音カバーを取り付けることなく、騒音レベルを低減する事が実現できる。   From these results, it is possible to reduce the noise level by using the technique of the present invention without attaching a special soundproof cover.

本発明の酸素濃縮装置の実施態様例である圧力変動吸着型酸素濃縮装置の模式図。The schematic diagram of the pressure fluctuation adsorption type oxygen concentrator which is an embodiment of the oxygen concentrator of the present invention. 本発明の酸素濃縮装置の実施態様例である流路切換弁の構成を示した模式図。The schematic diagram which showed the structure of the flow-path switching valve which is the example of an embodiment of the oxygen concentration apparatus of this invention. 本発明の酸素濃縮装置の実施態様例である流路切換弁の作動タイミングを示した模式図。The schematic diagram which showed the action | operation timing of the flow-path switching valve which is the example of an embodiment of the oxygen concentration apparatus of this invention. 本発明の実施例で使用した流路切換弁を1個単独で作動させた時の騒音レベル。Noise level when one of the flow path switching valves used in the embodiment of the present invention is operated alone. 本発明の実施例を示す騒音レベル。The noise level which shows the Example of this invention. 比較例の示す騒音レベル。Noise level shown in the comparative example.

符号の説明Explanation of symbols

1:酸素濃縮装置
2:無給水式加湿器
3:使用者
101:外部空気取り込みフィルタ
102:吸気消音器
103:コンプレッサ
104:流路切換弁
105:吸着筒
106:均圧弁
107:逆止弁
108:製品タンク
109:調圧弁
110:流量設定手段
111:パーティクルフィルタ
201:加湿器
301:酸素濃度センサ
302:流量センサ
401:制御手段
501:コンプレッサボックス
502:冷却ファン
503:消音器
1: Oxygen concentrator 2: Waterless humidifier 3: User
101: External air intake filter
102: Intake silencer
103: Compressor
104: Flow path switching valve
105: Adsorption cylinder
106: Pressure equalizing valve
107: Check valve
108: Product tank
109: Pressure regulating valve
110: Flow rate setting method
111: Particle filter
201: Humidifier
301: Oxygen concentration sensor
302: Flow sensor
401: Control means
501: Compressor box
502: Cooling fan
503: Silencer

Claims (5)

一端に空気圧縮手段または排気管と接続される原料供給端、他端に製品酸素を取り出す製品端を備え、内部に酸素よりも窒素を優先的に吸着する吸着材を充填した吸着筒と、該吸着筒に圧縮空気を供給する空気圧縮手段と、吸着材に吸着した窒素を大気中へ排気する排気管、該吸着筒を加圧し圧縮空気中の窒素を吸着し未吸着の酸素を生成する吸着工程と、該吸着筒を減圧し吸着した窒素を脱着排気し吸着材を再生する脱着工程とを一定のタイミングで繰り返すため、該空気圧縮手段と該吸着筒と該排気管との間の流路を切り換える複数の流路切換弁と、を備えた圧力変動吸着型酸素濃縮装置において、
工程切り換え時の複数の該流路切換弁を同時に作動するように制御する際に、それぞれの該流路切換弁の各々の切り換えタイミングを、0.4秒以下の微小時間のずれを持って各流路切換弁を作動させる流路切換制御手段を有することを特徴とする酸素濃縮装置。
A raw material supply end connected to an air compression means or an exhaust pipe at one end, a product end for taking out product oxygen at the other end, and an adsorption cylinder filled with an adsorbent that preferentially adsorbs nitrogen over oxygen; Air compression means for supplying compressed air to the adsorption cylinder, an exhaust pipe for exhausting the nitrogen adsorbed on the adsorbent to the atmosphere, and adsorption that pressurizes the adsorption cylinder and adsorbs nitrogen in the compressed air to generate unadsorbed oxygen A flow path between the air compression means, the adsorption cylinder and the exhaust pipe for repeating the process and the desorption process of depressurizing the adsorption cylinder and desorbing and exhausting the adsorbed nitrogen to regenerate the adsorbent at a fixed timing. A pressure fluctuation adsorption type oxygen concentrating device comprising a plurality of flow path switching valves for switching between,
When controlled to operate the plurality of flow path switching valve during the process is switched at the same time, the switching timing of each of the respective flow passage switching valve, the flow paths with a deviation of 0.4 seconds or less short time An oxygen concentrator having flow path switching control means for operating a switching valve .
流路切換制御手段が、該流路切換弁の各々の切り換タイミングを、流路切換弁単独作動時の最大音圧よりも2〜10dBAの範囲で低下する時間のずれをもって各流路切換弁を作動させる手段である、請求項1に記載の酸素濃縮装置。 Passage switching control means, the cut conversion example timing of each of the flow path switching valve, the channel switching with time lag to be reduced in a range of 2~10dBA than the maximum sound pressure when the flow path switching valve alone operation The oxygen concentrator according to claim 1, which is a means for operating a valve. 該吸着筒が2つの吸着筒A,Bからなり、該流路切換弁が2方電磁弁であり、該空気圧縮手段と吸着筒Aの間の流路に設けられた切換弁A、吸着筒Aと排気管の間の流路に設けられた切換弁B、空気圧縮手段と吸着筒Bの間の流路に設けられた切換弁C、吸着筒Bと排気管の間の流路に設けられた切換弁Dを備え、流路切換制御手段が該切換弁A,B,C,Dの切り換タイミングを制御する手段である請求項1または2に記載の酸素濃縮装置。 The adsorption cylinder is composed of two adsorption cylinders A and B, the flow path switching valve is a two-way solenoid valve, and the switching valve A and the adsorption cylinder provided in the flow path between the air compression means and the adsorption cylinder A Switching valve B provided in the flow path between A and the exhaust pipe, switching valve C provided in the flow path between the air compression means and the adsorption cylinder B, provided in the flow path between the adsorption cylinder B and the exhaust pipe was selector valve provided with a D, the channel switching control means switching valve a, B, C, oxygen concentrator according to claim 1 or 2 which is a means for controlling the cut-conversion example timing of D. 該吸着筒A、吸着筒Bの製品端側同士を接続する均圧弁を備えた均圧流路を備え、該流路切換手段が、該均圧弁および該切換弁A,B,C,Dの切り換タイミングを制御する手段である請求項に記載の酸素濃縮装置。 A pressure equalizing flow path provided with a pressure equalizing valve for connecting the product end sides of the adsorption cylinder A and the adsorption cylinder B, and the flow path switching means switches the pressure equalizing valve and the switching valves A, B, C, D. oxygen concentrator according to claim 3, wherein the means for controlling the conversion example timing. 該流路切換弁がパイロット式電磁弁、または直動式電磁弁である、請求項1からの何れかに記載の酸素濃縮装置。 The oxygen concentrator according to any one of claims 1 to 4 , wherein the flow path switching valve is a pilot solenoid valve or a direct acting solenoid valve.
JP2008105596A 2008-04-15 2008-04-15 Oxygen concentrator Active JP5275671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105596A JP5275671B2 (en) 2008-04-15 2008-04-15 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105596A JP5275671B2 (en) 2008-04-15 2008-04-15 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2009254502A JP2009254502A (en) 2009-11-05
JP5275671B2 true JP5275671B2 (en) 2013-08-28

Family

ID=41382721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105596A Active JP5275671B2 (en) 2008-04-15 2008-04-15 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP5275671B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489115B (en) * 2011-12-15 2013-08-28 广州市美锐美容健康设备实业有限公司 Air source distributor used for pressure swing absorption oxygen-making instrument
JP7149573B2 (en) * 2018-08-03 2022-10-07 コフロック株式会社 Pressure swing adsorption device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594442Y2 (en) * 1993-06-11 1999-04-26 甲南電機株式会社 Solenoid valve for adsorption type oxygen concentrator
JP4758129B2 (en) * 2005-04-07 2011-08-24 日本特殊陶業株式会社 Oxygen concentrator

Also Published As

Publication number Publication date
JP2009254502A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5357264B2 (en) Oxygen concentrator
JP5080483B2 (en) Oxygen concentrator
KR101511803B1 (en) Oxygen enricher
JP6313461B2 (en) Oxygen concentrator
JP5193537B2 (en) Oxygen concentrator
JP5275677B2 (en) Oxygen concentrator
JP6211753B2 (en) Cylindrical unit fixing method and oxygen concentrator using the same method
JP5275671B2 (en) Oxygen concentrator
JP5922784B2 (en) Oxygen concentrator
JP5431662B2 (en) Oxygen concentrator
JP2009119069A (en) Oxygen concentrator
JP2009273623A (en) Oxygen enricher
JP5524574B2 (en) Oxygen concentrator
JP2008214151A (en) Oxygen concentrator
JP5112839B2 (en) Oxygen concentrator
JP5350994B2 (en) Oxygen concentrator
JP5242928B2 (en) Oxygen concentrator
JP2008178795A (en) Oxygen concentrator
JP5065714B2 (en) Oxygen concentrator
JP2008272004A (en) Oxygen concentrator
JP2005160761A (en) Oxygen concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350