JP2011091895A - Power supply control system - Google Patents

Power supply control system Download PDF

Info

Publication number
JP2011091895A
JP2011091895A JP2009241461A JP2009241461A JP2011091895A JP 2011091895 A JP2011091895 A JP 2011091895A JP 2009241461 A JP2009241461 A JP 2009241461A JP 2009241461 A JP2009241461 A JP 2009241461A JP 2011091895 A JP2011091895 A JP 2011091895A
Authority
JP
Japan
Prior art keywords
power supply
relay
load
control system
smr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009241461A
Other languages
Japanese (ja)
Inventor
Masahito Ozaki
真仁 尾崎
Shuhei Yokota
修平 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP2009241461A priority Critical patent/JP2011091895A/en
Publication of JP2011091895A publication Critical patent/JP2011091895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply control system which quickly and accurately detects the occurrence of a malfunction accompanied by the disconnection of an SMR, and determines whether a starting operation should be executed. <P>SOLUTION: It is determined whether the start of a load should be executed on the basis of a change of the minimum output voltage VL detected by a voltage sensor. When the minimum output voltage VL exceeds a preset value, it is determined that there is no failure, and the connection of the SMR is permitted. When the minimum output voltage VL falls below the preset value, it is determined that there is the failure such as disconnection, and the connection of the SMR is prohibited. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電源制御システムに関する。   The present invention relates to a power supply control system.

ハイブリッド車両(HV:Hybrid Vehicle)やいわゆる電気自動車(EV:Electric Vehicle)等の、1または複数のモータからの駆動力により走行する車両がある。このような車両には一般に、電源(バッテリ)を含む電源制御システムが搭載されており、電源の電圧を変換して昇降圧させるコンバータ、コンバータから出力される直流電圧を交流電圧に変換するインバータを介してモータに電力が供給され、インバータが出力する交流電圧に基づいてモータが回転し、車両を駆動させる。   There are vehicles that travel with driving force from one or more motors, such as hybrid vehicles (HV) and so-called electric vehicles (EV). Such a vehicle is generally equipped with a power supply control system including a power supply (battery), and includes a converter that converts the voltage of the power supply to step up and down, and an inverter that converts a DC voltage output from the converter into an AC voltage. Then, electric power is supplied to the motor, and the motor rotates based on the AC voltage output from the inverter to drive the vehicle.

モータはまた、車両の制動制御によって交流電圧を発生させ、インバータに供給することもできる。このとき、インバータは、交流電圧を直流電圧に変換し、必要に応じてコンバータで昇降圧した後に二次電池に充電される。この二次電池は、上述した電源を兼用する場合もあり、別の二次電池を用意する場合もある。   The motor can also generate an alternating voltage by the braking control of the vehicle and supply it to the inverter. At this time, the inverter converts the AC voltage into the DC voltage, and is charged to the secondary battery after being stepped up and down by the converter as necessary. This secondary battery may be used also as the power source described above, or another secondary battery may be prepared.

このような電源制御システムでは、電源とコンバータとの間に電気的な接続を遮断するためのシステムメインリレー(SMR:System Main Relay、以下「SMR」または単に「リレー」とも称する)が設けられる。SMRは、例えばSMRを流れる電流によって溶着や断線するおそれがあり、溶着や断線などの不具合が発生すると電源システムの遮断や電源の切り替えが正常に行えなくなる等の動作不良の原因となりうる。   In such a power supply control system, a system main relay (SMR: System Main Relay, hereinafter also referred to as “SMR” or simply “relay”) is provided between the power supply and the converter. The SMR may be welded or disconnected due to, for example, a current flowing through the SMR. If a failure such as welding or disconnection occurs, it may cause a malfunction such as shutting down the power system or switching the power supply.

このような電源制御システムにおいて、SMRの溶着が発生しているか否かを判定し、この判定に基づいて起動動作を実行または禁止すること(例えば、特許文献1)、起動要求が有った場合でも、正常動作が確保されない場合にはシステムの始動を禁止すること(例えば、特許文献2)について開示されている。   In such a power supply control system, it is determined whether or not SMR welding has occurred, and a start operation is executed or prohibited based on this determination (for example, Patent Document 1), and there is a start request. However, it is disclosed that the start of the system is prohibited when normal operation is not ensured (for example, Patent Document 2).

特許第4259348号公報Japanese Patent No. 4259348 特許第3381708号公報Japanese Patent No. 3381708

本発明は、SMRの断線に伴う不具合の発生を速やかに、かつ精度良く検知し、起動動作の実行の可否を判定することが可能な電源制御システムを提供する。   The present invention provides a power supply control system that can quickly and accurately detect the occurrence of a problem associated with a disconnection of an SMR and determine whether or not to perform a start-up operation.

本発明は、電源の一方の極と負荷との電気的な接続を切り替える第1のリレーと、前記電源の他方の極と前記負荷との電気的な接続を切り替える第2のリレーと、前記第2のリレーに直列に接続された抵抗と、前記第2のリレーおよび抵抗に並列に接続され、前記電源の他方の極と前記負荷との電気的な接続を切り替える第3のリレーと、前記負荷の電源側に配置され、前記電源から負荷側に供給されうる電圧を検出するための電圧センサと、前記負荷への電力供給を制御する制御部と、を含み、前記制御部が、前記電圧センサが検出した最低出力電圧の変化に基づいて、前記負荷への電力供給を実行するか否かを判定する電源制御システムである。   The present invention includes a first relay that switches an electrical connection between one pole of a power source and a load, a second relay that switches an electrical connection between the other pole of the power source and the load, and the first relay A resistor connected in series to the second relay, a third relay connected in parallel to the second relay and the resistor, and switching an electrical connection between the other pole of the power source and the load; and the load A voltage sensor for detecting a voltage that can be supplied from the power source to the load side, and a control unit that controls power supply to the load, wherein the control unit includes the voltage sensor. Is a power supply control system that determines whether or not to execute power supply to the load based on a change in the minimum output voltage detected by.

本発明によれば、SMRの断線に伴う不具合の発生を速やかに、かつより確実に検知し、起動動作の実行の可否を判定することができる。   According to the present invention, it is possible to promptly and more reliably detect the occurrence of a problem associated with the disconnection of the SMR, and determine whether or not the start operation can be performed.

本発明の実施の形態における電源制御システムの構成の概略の一例を示す図である。It is a figure which shows an example of the outline of a structure of the power supply control system in embodiment of this invention. 本発明の実施の形態における電源制御システムの起動制御を示すタイミングチャートである。It is a timing chart which shows starting control of the power supply control system in embodiment of this invention. 従来の電源制御システムの起動時の制御の一例を示すフローチャートである。It is a flowchart which shows an example of the control at the time of starting of the conventional power supply control system. 従来の電源制御システムの起動制御を示すタイミングチャートである。It is a timing chart which shows starting control of the conventional power supply control system.

図3,4を参照し、従来の電源制御システムの起動時の制御の一例について説明する。   With reference to FIGS. 3 and 4, an example of control at the time of starting the conventional power supply control system will be described.

まずイグニッションキー(IG)をオンにすることによりユーザからの起動要求を取得する(S10)。次いで、複数のSMRのうち少なくとも一つ、例えばSMRPの故障を検出したか否かを、各リレーからの故障信号の取得の有無により確認する(S12)。SMRからの故障信号が検出されず、故障なしと判断された場合には、電源制御システムの起動を許可し(S16)、コンバータ、インバータ、モータなどを含むシステム全体に電力供給を行う。一方、SMRが断線などの故障状態であり、故障信号の検出により故障ありと判断された場合には、電源制御システムの起動を禁止し、起動動作を停止させる(S18)。このように、電源制御システムの起動可否の判定は一般に、SMRに対する故障の有無を判断することにより行われてきた。より早く機能安全を確保するために、一般に故障判定を短時間に行う必要があるとされるが、このような手法により短時間で起動可否判定を行う電源制御システムにおいては、誤検出が発生する可能性もあり得た。   First, an activation request from the user is acquired by turning on the ignition key (IG) (S10). Next, whether or not a failure of at least one of the plurality of SMRs, for example, SMRP, is detected is confirmed based on whether or not a failure signal is acquired from each relay (S12). If a failure signal from the SMR is not detected and it is determined that there is no failure, the activation of the power supply control system is permitted (S16), and power is supplied to the entire system including the converter, inverter, motor, and the like. On the other hand, when the SMR is in a failure state such as disconnection and it is determined that there is a failure by detecting a failure signal, the activation of the power supply control system is prohibited and the activation operation is stopped (S18). As described above, the determination of whether or not the power supply control system can be started is generally performed by determining whether or not there is a failure in the SMR. In order to ensure functional safety earlier, it is generally necessary to make a failure determination in a short time. However, in a power supply control system that makes a startability determination in a short time by such a method, a false detection occurs. There was a possibility.

これに対し、本発明の実施の形態における電源制御システムでは、図1に示すようにコンバータ16のバッテリ10側に、電圧センサ22が設けられている。図1に示す電源制御システム100にはまた、バッテリ10と、バッテリ10の電圧を昇降圧するコンバータ16と、コンバータ16の直流電力を交流電力に変換するインバータ18と、インバータ18から供給される交流電力に応じて回転駆動するモータ20a,20bと、制御部24と、を備えている。バッテリ10としては、ニッケル水素、リチウムイオン等の二次電池や燃料電池を適用することができ、必要に応じて、複数の電池を組み合わせた組電池であっても良い。他の実施の形態では、モータ20a,20bはどちらか1つのみであってよく、また3つ以上でもよい。   In contrast, in the power supply control system according to the embodiment of the present invention, a voltage sensor 22 is provided on the battery 10 side of the converter 16 as shown in FIG. The power supply control system 100 shown in FIG. 1 also includes a battery 10, a converter 16 that steps up and down the voltage of the battery 10, an inverter 18 that converts DC power of the converter 16 into AC power, and AC power supplied from the inverter 18. Motors 20a and 20b that are driven to rotate in response to the control, and a control unit 24. As the battery 10, a secondary battery such as nickel hydride or lithium ion or a fuel cell can be applied, and an assembled battery in which a plurality of batteries are combined may be used as necessary. In other embodiments, only one of the motors 20a and 20b may be provided, or three or more motors may be provided.

バッテリ10の正極側とコンバータ16との間には、第1のリレー12a(SMRB)が設けられている。また、バッテリ10の負極側とコンバータ16との間には、第2のリレー12b(SMRP)と、リレー12bに直列に接続された抵抗14と、リレー12bおよび抵抗14に並列に接続された第3のリレー12c(SMRG)と、がそれぞれ設けられている。   A first relay 12 a (SMRB) is provided between the positive electrode side of the battery 10 and the converter 16. Further, between the negative electrode side of the battery 10 and the converter 16, a second relay 12b (SMRP), a resistor 14 connected in series to the relay 12b, and a second relay 12b and a resistor 14 connected in parallel to the resistor 14 are connected. 3 relays 12c (SMRG).

電圧センサ22は、第1のリレー12a(SMRB)とコンバータ16とを電気的に接続するラインL1と、抵抗14と第3のリレー12c(SMRG)を繋ぐ接点とコンバータ16とを電気的に接続するラインL2との間での最低出力電圧VLを測定することができる。   The voltage sensor 22 electrically connects the line L1 that electrically connects the first relay 12a (SMRB) and the converter 16, the contact that connects the resistor 14 and the third relay 12c (SMRG), and the converter 16. The minimum output voltage VL with respect to the line L2 to be measured can be measured.

制御部24は、内部に信号処理を行うCPUと、プログラムや制御データを格納する記憶部とを備えるコンピュータである。コンバータ16、インバータ18、モータ20a,20b、リレー12a,12b,12cは制御部24にそれぞれ接続され、制御部24の指令によって動作するよう構成されている。また、電圧センサ22は制御部24に接続され、電圧センサ22の検出信号(最低出力電圧VL)が制御部24に入力されるよう構成されている。電源制御システム100を電動車両に搭載する場合には、電源制御システム100を含む車両駆動システムを始動停止させるスイッチであるイグニッションキー(図示せず)をさらに設けることができる。このとき、イグニッションキーは制御部24に接続され、イグニッションキーのオンオフ信号が制御部24に入力されるよう構成される。   The control unit 24 is a computer that includes a CPU that performs signal processing therein and a storage unit that stores programs and control data. The converter 16, the inverter 18, the motors 20a and 20b, and the relays 12a, 12b, and 12c are respectively connected to the control unit 24 and configured to operate according to commands from the control unit 24. The voltage sensor 22 is connected to the control unit 24, and the detection signal (minimum output voltage VL) of the voltage sensor 22 is input to the control unit 24. When power supply control system 100 is mounted on an electric vehicle, an ignition key (not shown) that is a switch for starting and stopping the vehicle drive system including power supply control system 100 can be further provided. At this time, the ignition key is connected to the control unit 24, and an ignition key ON / OFF signal is input to the control unit 24.

図2に示すように、本実施の形態では、故障検出信号をSMRから直接取得することに代えて、電圧センサ22が検出する最低出力電圧VLの変化に基づいて、コンバータ16、インバータ18、モータ20a,20bを含む負荷に対し、電力供給を実行するか否かを判定する。より具体的には、最低出力電圧VLが予め設定した閾値まで到達した場合には、故障なしと判断し、SMRの接続を許可する。一方、最低出力電圧VLが予め設定した閾値まで到達しない場合には、断線など、何らかの故障が発生していると判断し、SMRの接続を禁止して電源制御システム100の起動を停止する。   As shown in FIG. 2, in this embodiment, instead of directly acquiring the failure detection signal from the SMR, the converter 16, the inverter 18, the motor based on the change in the minimum output voltage VL detected by the voltage sensor 22. It is determined whether or not to supply power to the load including 20a and 20b. More specifically, when the minimum output voltage VL reaches a preset threshold value, it is determined that there is no failure, and SMR connection is permitted. On the other hand, if the minimum output voltage VL does not reach the preset threshold value, it is determined that some failure such as disconnection has occurred, the SMR connection is prohibited, and the activation of the power supply control system 100 is stopped.

このように、本実施の形態によれば、短時間での制御性確保と誤検出を極力低減させるといった、相反する要求を、電源から負荷に対する電力供給の可否に基づいて電源制御システムの起動制御を実行するか否かを判定することにより、同時に実現することができる。   As described above, according to the present embodiment, conflicting demands such as ensuring controllability in a short time and reducing false detection as much as possible can be controlled based on whether or not power can be supplied from the power source to the load. Can be realized simultaneously by determining whether or not to execute.

なお、図1に示す制御部24は、電圧センサ22からの最低出力電圧VLの取得に並行して、SMRからの故障検出信号の取得を行う構成とすることもできる。本実施の形態において、最低出力電圧VLの値からはSMRに故障なしと判断されている場合において、SMRからの故障検出信号を取得した場合には、例えば起動制御の精度をより高めるために最低出力電圧VLの値を再取得することもでき、他の実施の形態として、SMRからの故障検出信号の検出に基づいて電力供給を停止させる制御を行うこともできるが、これらに限定されるものではない。一方、最低出力電圧VLの値からはSMRに故障ありと判断されている場合において、SMRからの故障検出信号が検出されない場合には、電力供給を再開してフェイルセーフモードで起動させることもできる。さらに別の実施の形態として、SMRからの故障検出信号を取得した旨を単独で、あるいは上述した他の制御とともに記録および/または表示させることもできるが、これらの実施の形態に限定されるものではない。   Note that the control unit 24 illustrated in FIG. 1 may be configured to acquire a failure detection signal from the SMR in parallel with acquisition of the minimum output voltage VL from the voltage sensor 22. In this embodiment, when it is determined that there is no failure in the SMR from the value of the minimum output voltage VL, when a failure detection signal is acquired from the SMR, for example, in order to further increase the accuracy of the start control, The value of the output voltage VL can be reacquired, and as another embodiment, control for stopping power supply based on detection of a failure detection signal from the SMR can be performed, but the present invention is not limited to these. is not. On the other hand, when it is determined that there is a failure in the SMR from the value of the minimum output voltage VL, if a failure detection signal from the SMR is not detected, the power supply can be restarted to start in the fail safe mode. As yet another embodiment, the fact that the failure detection signal from the SMR has been acquired can be recorded and / or displayed alone or together with the other control described above, but is limited to these embodiments. is not.

本発明の電源制御システムは、電動車両に搭載して利用することが可能である。なお、ここでいう「電動車両」とは、エンジンによる駆動や回生により発電を行う発電機と、バッテリからの電力により作動し駆動輪を駆動するモータとを有するハイブリッド電気自動車や、電気自動車、燃料電池車(FCEV:Fuel Cell Electric Vehicle)を含む意である。また、これに限らず、定置させて利用しても良い。   The power supply control system of the present invention can be used by being mounted on an electric vehicle. The term “electric vehicle” as used herein refers to a hybrid electric vehicle, an electric vehicle, a fuel that has a generator that generates electric power by driving or regenerating by an engine, and a motor that operates by electric power from a battery and drives driving wheels. It is intended to include a battery car (FCEV). Further, the present invention is not limited to this, and it may be used by being stationary.

10 バッテリ、12a,12b,12c リレー(システムメインリレー)、14 抵抗、16 コンバータ、18 インバータ、20a,20b モータ、22 電圧センサ、24 制御部。   10 battery, 12a, 12b, 12c relay (system main relay), 14 resistor, 16 converter, 18 inverter, 20a, 20b motor, 22 voltage sensor, 24 control unit.

Claims (1)

電源の一方の極と負荷との電気的な接続を切り替える第1のリレーと、
前記電源の他方の極と前記負荷との電気的な接続を切り替える第2のリレーと、前記第2のリレーに直列に接続された抵抗と、
前記第2のリレーおよび抵抗に並列に接続され、前記電源の他方の極と前記負荷との電気的な接続を切り替える第3のリレーと、
前記負荷の電源側に配置され、前記電源から負荷側に供給されうる電圧を検出するための電圧センサと、
前記負荷への電力供給を制御する制御部と、を含み、
前記制御部が、前記電圧センサが検出した最低出力電圧の変化に基づいて、前記負荷への電力供給を実行するか否かを判定することを特徴とする電源制御システム。
A first relay that switches electrical connection between one pole of the power source and the load;
A second relay that switches electrical connection between the other pole of the power source and the load; and a resistor connected in series to the second relay;
A third relay connected in parallel to the second relay and a resistor, and for switching an electrical connection between the other pole of the power source and the load;
A voltage sensor disposed on the power source side of the load for detecting a voltage that can be supplied from the power source to the load side;
A control unit for controlling power supply to the load,
The power supply control system, wherein the control unit determines whether or not to execute power supply to the load based on a change in the minimum output voltage detected by the voltage sensor.
JP2009241461A 2009-10-20 2009-10-20 Power supply control system Pending JP2011091895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241461A JP2011091895A (en) 2009-10-20 2009-10-20 Power supply control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241461A JP2011091895A (en) 2009-10-20 2009-10-20 Power supply control system

Publications (1)

Publication Number Publication Date
JP2011091895A true JP2011091895A (en) 2011-05-06

Family

ID=44109621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241461A Pending JP2011091895A (en) 2009-10-20 2009-10-20 Power supply control system

Country Status (1)

Country Link
JP (1) JP2011091895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765683A (en) * 2013-10-02 2016-07-13 克诺尔有限公司 Method and apparatus for monitoring at least one electronic switching contact for a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102101A (en) * 2001-09-25 2003-04-04 Suzuki Motor Corp Power control device for electric vehicle
JP2007159326A (en) * 2005-12-07 2007-06-21 Honda Motor Co Ltd Power supply controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102101A (en) * 2001-09-25 2003-04-04 Suzuki Motor Corp Power control device for electric vehicle
JP2007159326A (en) * 2005-12-07 2007-06-21 Honda Motor Co Ltd Power supply controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105765683A (en) * 2013-10-02 2016-07-13 克诺尔有限公司 Method and apparatus for monitoring at least one electronic switching contact for a vehicle
JP2016533294A (en) * 2013-10-02 2016-10-27 クノル−ブレムゼ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Gesellschaft mit beschraenkter Haftung Method and apparatus for monitoring at least one electronic switch contact for a vehicle
US10126365B2 (en) 2013-10-02 2018-11-13 Knorr-Bremse Gesellschaft Mit Beschränkter Haftung Method and apparatus for monitoring at least one electronic switching contact for a vehicle

Similar Documents

Publication Publication Date Title
JP5575506B2 (en) Vehicle power supply device and vehicle equipped with the power supply device
US7468565B2 (en) Electrical load control device
US9929674B2 (en) Power supply system for vehicle
JP5621915B2 (en) Power supply system, vehicle equipped with the same, and control method of power supply system
JP6003743B2 (en) Power supply
JP2007228753A (en) Electric vehicle
JP4529851B2 (en) Power supply circuit abnormality detection device
JP2013098170A (en) Device and method for monitoring main relay of green vehicle
JP2009017675A (en) Electric vehicle
JP2007089241A (en) Fault detector of power supply circuit
JP6691502B2 (en) Vehicle power supply
JP2013225996A (en) Abnormality diagnosis device for power supply control system
JP2017229132A (en) Power supply unit for vehicle and power supply controller
US20160200196A1 (en) Method and system for controlling an isolated hv circuit
JP2018198519A (en) Vehicle power supply device
JP5990109B2 (en) Vehicle power supply
JP2018148680A (en) Voltage impression control unit
JP2012110175A (en) Power storage device control apparatus and vehicle mounting the same thereon and power storage device control method
JP2012178895A (en) Abnormality diagnostic device of power supply apparatus of electric motor
JP4886821B2 (en) Fuel cell vehicle
JP2011122485A (en) Vehicle drive control system
JP5741168B2 (en) Power supply system, vehicle equipped with the same, and control method of power supply system
JP2011091895A (en) Power supply control system
JP2016011054A (en) vehicle
JP2008162342A (en) Power source device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140430