JP2011091340A - Inspection device of oil-immersed transformer - Google Patents

Inspection device of oil-immersed transformer Download PDF

Info

Publication number
JP2011091340A
JP2011091340A JP2009245784A JP2009245784A JP2011091340A JP 2011091340 A JP2011091340 A JP 2011091340A JP 2009245784 A JP2009245784 A JP 2009245784A JP 2009245784 A JP2009245784 A JP 2009245784A JP 2011091340 A JP2011091340 A JP 2011091340A
Authority
JP
Japan
Prior art keywords
light
oil
insulating oil
communication pipe
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009245784A
Other languages
Japanese (ja)
Inventor
Takuya Shinkai
琢也 新開
Tadayoshi Oka
唯宜 岡
Yasushi Oshita
泰史 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009245784A priority Critical patent/JP2011091340A/en
Publication of JP2011091340A publication Critical patent/JP2011091340A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device capable of accurately detecting a state of an insulating oil of an oil-immersed transformer. <P>SOLUTION: An oil-immersed transformer 10 includes: a transformer body 14 containing an insulating oil 13 and a transformation section 12 in a tank 11; and a radiator 16 connected to the transformer body 14 via a communication pipe 15 and cooling the insulating oil 13 entering from the transformer body 14 through the communication pipe 15. An inspection device 18 includes a detector 19 to the communication pipe 15 wherein the detector detects a state of the insulating oil 13 flowing through the communication pipe 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、油入変圧器に使用されている絶縁油の劣化等の状態を検査する検査装置に関する。   The present invention relates to an inspection apparatus for inspecting a state such as deterioration of insulating oil used in an oil-filled transformer.

一般に、油入変圧器は、絶縁油が充填されたタンク内に鉄心やコイル等からなる変圧部を収容することによって構成されている。このような油入変圧器において、タンク内で局部過熱や部分放電等の異常が発生すると、絶縁材料の種類や異常部分の温度等に応じて特有の分解ガスが発生し、この分解ガスは絶縁油中に溶解する。このため、絶縁油の状態を分析すれば、内部異常の有無や状況を推定することが可能となっている。   In general, an oil-filled transformer is configured by housing a transforming unit made of an iron core, a coil, or the like in a tank filled with insulating oil. In such oil-filled transformers, when an abnormality such as local overheating or partial discharge occurs in the tank, a specific decomposition gas is generated depending on the type of insulating material, the temperature of the abnormal part, etc., and this decomposition gas is insulated. Dissolves in oil. For this reason, if the state of the insulating oil is analyzed, it is possible to estimate the presence or absence of internal abnormality and the situation.

従来、絶縁油の状態を分析するには、タンクから絶縁油を採取し、この採取した絶縁油をガスクロマトグラフで分析する方法が採られていた。しかし、この方法では短時間で処理することができず、複雑な操作を必要とし、人手と費用がかかるという問題があった。   Conventionally, in order to analyze the state of insulating oil, a method of collecting insulating oil from a tank and analyzing the collected insulating oil by a gas chromatograph has been employed. However, this method has a problem that it cannot be processed in a short time, requires a complicated operation, and requires labor and cost.

このような問題を解消する技術として、下記特許文献1には、絶縁油が満たされている変圧器の排油弁近傍に油溜めを設けるとともに、この油溜めの油中に光ファイバーを貫通させ、この光ファイバーの一方端部に発光装置を結合し、かつ、他方端部に受光装置を結合するとともに、受光装置に、受光量の減衰量を検出する光減衰量検出装置およびこの光減衰量検出装置にて検出された光減衰量に基づき絶縁油の劣化度を判断する判定装置を設けた変圧器の診断装置が提案されている。   As a technique for solving such a problem, in Patent Document 1 below, an oil sump is provided in the vicinity of a drain valve of a transformer filled with insulating oil, and an optical fiber is passed through the oil in the sump. A light-emitting device is coupled to one end of the optical fiber, and a light-receiving device is coupled to the other end, and an optical attenuation detection device that detects the attenuation of the received light amount and the optical attenuation detection device. A transformer diagnostic device has been proposed that includes a determination device that determines the degree of deterioration of insulating oil based on the amount of optical attenuation detected in the above.

特開平9−7840号公報Japanese Patent Laid-Open No. 9-7840

特許文献1に記載の診断装置は、油溜めの中の油を貫通するように配置された光ファイバーを通る光の減衰量を検出することにより、短時間で簡単に変圧器の劣化度や異常の有無を予測判断できるという利点がある。しかしながら、油溜めにおいて絶縁油が滞留してしまう可能性が高いため、変圧器内の絶縁油全体の状態を正確に判断することが困難である。また、光ファイバーは油溜めの油中を貫通しているため、保守点検の際には少なくとも油溜め内の絶縁油を抜き取る必要があるので作業が繁雑になり、場合によっては変圧器を停止させなければならないという欠点がある。また、光ファイバーが破損し、変圧器のタンク内に入り込んでしまうと、大規模な除去作業が必要になるという問題もある。   The diagnostic device described in Patent Document 1 detects the attenuation amount of light passing through an optical fiber arranged so as to penetrate oil in an oil sump, so that the deterioration degree or abnormality of a transformer can be easily detected in a short time. There is an advantage that the presence or absence can be predicted. However, since there is a high possibility that the insulating oil stays in the oil sump, it is difficult to accurately determine the state of the entire insulating oil in the transformer. In addition, since the optical fiber penetrates the oil in the oil sump, it is necessary to remove at least the insulating oil in the sump during maintenance and inspection, which makes the work complicated, and in some cases, the transformer must be stopped. There is a disadvantage of having to. Another problem is that if the optical fiber breaks and enters the transformer tank, a large-scale removal operation is required.

本発明は、このような実情に鑑みてなされたものであり、油入変圧器の絶縁油の状態を正確に検出することが可能な油検出装置を提供することを主たる目的とする。   This invention is made | formed in view of such a situation, and makes it a main objective to provide the oil detection apparatus which can detect the state of the insulating oil of an oil-filled transformer correctly.

本発明は、タンク内に絶縁油及び変圧部を収容している変圧器本体と、この変圧器本体に連通管を介して接続され、前記変圧器本体から前記連通管を介して流入した前記絶縁油を冷却するラジエータとを備えている油入変圧器の検査装置であって、
前記連通管に、当該連通管内を流れる絶縁油の状態を検出する検出部を備えていることを特徴とする。
The present invention provides a transformer body containing insulating oil and a transformer in a tank, and the insulation connected to the transformer body via a communication pipe and flowing from the transformer body via the communication pipe. An oil-filled transformer inspection device comprising a radiator for cooling oil,
The communication pipe is provided with a detection unit that detects the state of the insulating oil flowing in the communication pipe.

本発明の油入変圧器の検査装置は、変圧器本体とラジエータとを接続する連通管に対して絶縁油の状態を検出する検出部が設けられており、この連通管内は、変圧器本体とラジエータとの間で絶縁油が滞留することなく常時流通しているので、検出部によって絶縁油全体の状態を正確に検出することができる。   The inspection apparatus for an oil-filled transformer according to the present invention is provided with a detection unit that detects a state of insulating oil with respect to a communication pipe connecting the transformer main body and the radiator. Since the insulating oil circulates constantly with the radiator without stagnation, the state of the entire insulating oil can be accurately detected by the detection unit.

上記構成において、前記連通管の管壁には、光透過性の透光窓が形成されており、前記検出部は、前記連通管外から前記透光窓を介して前記連通管内の絶縁油に光を投光する投光部と、前記絶縁油を通過した光を前記透光窓を介して前記連通管外で受光するとともに、前記絶縁油の状態変化に伴う屈折率の変化に対応可能な受光範囲を有し、かつこの受光範囲内における前記光の受光位置を識別可能に構成された受光部と、を備えていることが好ましい。   In the above configuration, a light-transmitting light-transmitting window is formed on the tube wall of the communication tube, and the detection unit is connected to the insulating oil in the communication tube from the outside of the communication tube via the light-transmitting window. A light projecting unit that projects light, and light that has passed through the insulating oil is received outside the communication pipe via the light transmitting window, and can respond to a change in refractive index accompanying a change in state of the insulating oil. It is preferable to include a light receiving unit having a light receiving range and configured to be able to identify the light receiving position of the light within the light receiving range.

この構成によれば、投光部は、透光窓を介して連通管内の絶縁油に投光し、受光部は、絶縁油を通過した光を透光窓を介して受光する。また、投光部から発せられた光は、受光部において受光されるまでに絶縁油と透光窓との間の屈折率の相違に基づいて屈折する。絶縁油は劣化等の状態により屈折率が変化するため、この絶縁油の状態に応じて絶縁油を通過する光路が変化し、受光部における受光位置にも変化が現れる。したがって、この受光位置を識別することによって、絶縁油の状態を検出することができる。   According to this configuration, the light projecting unit projects light onto the insulating oil in the communication pipe through the light transmitting window, and the light receiving unit receives light that has passed through the insulating oil through the light transmitting window. Further, the light emitted from the light projecting unit is refracted based on the difference in refractive index between the insulating oil and the light transmitting window before being received by the light receiving unit. Since the refractive index of the insulating oil changes depending on the state of deterioration or the like, the optical path passing through the insulating oil changes according to the state of the insulating oil, and the light receiving position in the light receiving portion also changes. Therefore, the state of the insulating oil can be detected by identifying the light receiving position.

また、上記構成によって、油入変圧器の内部に光ファイバー等の部品を配置することなく絶縁油の状態を検出することができるので、装置の保守点検の際に、変圧器本体内の絶縁油を抜き取る作業を行う必要がなく、容易に保守点検作業を行うことが可能となる。   In addition, with the above configuration, it is possible to detect the state of the insulating oil without placing an optical fiber or other components inside the oil-filled transformer. There is no need to perform the extraction work, and the maintenance inspection work can be easily performed.

前記透光窓は、前記連通管を横切る方向に対向して一対設けられており、前記投光部は、一方の透光窓を介して前記連通管内に検査光を投光し、前記受光部は、他方の透光窓を介して前記検査光を受光するように構成することができる。
このような構成により、投光部から発せられた光を、一方の透光窓と絶縁油との間、絶縁油と他方の透光窓との間で屈折させた後に受光部によって受光させることができる。
A pair of the translucent windows are provided opposite to each other in a direction crossing the communication tube, and the light projecting unit projects inspection light into the communication tube through one translucent window, and the light receiving unit. Can be configured to receive the inspection light through the other light-transmitting window.
With such a configuration, the light emitted from the light projecting unit is refracted between one light transmitting window and the insulating oil and between the insulating oil and the other light transmitting window and then received by the light receiving unit. Can do.

この構成の場合、前記他方の透光窓は、前記一方の透光窓よりも高屈折率の材質により形成されていることが好ましい。
この場合、絶縁油を通過した後、他方の透光窓に到達した光を大きく屈折させて受光部によって受光させることができ、絶縁油の状態変化に伴う屈折率の変化を増幅し、検出精度を高めることができる。
In the case of this configuration, it is preferable that the other light transmitting window is made of a material having a higher refractive index than the one light transmitting window.
In this case, after passing through the insulating oil, the light that reaches the other light transmission window can be refracted greatly and received by the light receiving unit, and the change in the refractive index accompanying the change in the state of the insulating oil is amplified, and the detection accuracy is increased. Can be increased.

前記透光窓は、前記連通管の管壁の一側部に設けられており、前記投光部は、前記透光窓を介して前記連通管内に光を投光し、前記受光部は、前記透光窓に対向する連通管の内壁部において反射した光を、前記透光窓を介して受光するように構成することができる。
このような構成により、投光部から発せられた光を、透光窓と絶縁油との間で屈折させた後に受光部によって受光させることができる。なお、光を反射させる連通管の内壁部は、当該光を全反射させることができるように鏡面としておくことが望ましい。
The translucent window is provided on one side of the tube wall of the communication tube, the light projecting unit projects light into the communication tube through the translucent window, and the light receiving unit is The light reflected by the inner wall part of the communicating pipe facing the light transmitting window can be configured to be received through the light transmitting window.
With such a configuration, the light emitted from the light projecting unit can be received by the light receiving unit after being refracted between the light transmitting window and the insulating oil. The inner wall portion of the communicating tube that reflects light is preferably a mirror surface so that the light can be totally reflected.

本発明の油入変圧器の検査装置によれば、絶縁油の状態を正確に検出することができる。   According to the inspection apparatus for an oil-filled transformer of the present invention, the state of insulating oil can be accurately detected.

本発明の実施形態に係る油入変圧器とその検査装置の概略構成図である。It is a schematic block diagram of the oil-filled transformer which concerns on embodiment of this invention, and its inspection apparatus. 検査装置の模式的な構成図である。It is a typical lineblock diagram of an inspection device. 検査装置の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of an inspection apparatus. 本発明の他の実施形態に係る油入変圧器の検査装置の模式的な構成図である。It is a typical block diagram of the inspection apparatus of the oil-filled transformer which concerns on other embodiment of this invention.

以下、図面を参照して本発明の実施形態を説明する。
図1は本発明の実施形態に係る油入変圧器10とその検査装置18の概略構成図、図2は検査装置18の模式図である。油入変圧器10は、タンク11内に変圧部12及び絶縁油13を収容することによって構成された変圧器本体14と、この変圧器本体14に連通管15を介して接続されたラジエータ16とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an oil-filled transformer 10 and its inspection device 18 according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of the inspection device 18. The oil-filled transformer 10 includes a transformer body 14 configured by housing a transformer 12 and insulating oil 13 in a tank 11, and a radiator 16 connected to the transformer body 14 via a communication pipe 15. It has.

変圧部12は、電圧の変換を行う部分であり、鉄心やこれに巻回された巻線等から構成されている。また、変圧部12には巻線の導体被覆として用いられる絶縁紙や、巻線間のスペーサとして使用されるプレスボード等(以下、これらを単に「絶縁物」という)が設けられている。
絶縁油13は、変圧部12を周囲から絶縁するとともに、変圧部12から発生する熱を吸収するためにタンク11内に充填されている。この絶縁油13としては、シリコーン油や鉱油を用いることができる。
The transformer 12 is a part that performs voltage conversion, and includes an iron core, a winding wound around the core, and the like. In addition, the transformer 12 is provided with insulating paper used as a conductor covering of the winding, a press board used as a spacer between the windings (hereinafter simply referred to as “insulator”), and the like.
The insulating oil 13 is filled in the tank 11 in order to insulate the transformer 12 from the surroundings and absorb heat generated from the transformer 12. As this insulating oil 13, silicone oil or mineral oil can be used.

ラジエータ16は、変圧部12の熱を吸収した絶縁油13を冷却するためのものであり、この絶縁油13は連通管15を介して変圧器本体14とラジエータ16との間を循環するようになっている。すなわち、絶縁油13は、変圧器本体14から流入用連通管15Aを介してラジエータ16内に流入し、放熱・冷却された後に排出用連通管15Bを介して変圧器本体14に戻されるようになっている。この絶縁油13の循環は、自然対流による循環であってもよいし、油圧ポンプ等による強制的な循環であってもよい。   The radiator 16 is for cooling the insulating oil 13 that has absorbed the heat of the transformer 12, and the insulating oil 13 is circulated between the transformer body 14 and the radiator 16 via the communication pipe 15. It has become. That is, the insulating oil 13 flows from the transformer main body 14 into the radiator 16 through the inflow communication pipe 15A, and is returned to the transformer main body 14 through the discharge communication pipe 15B after being radiated and cooled. It has become. The insulation oil 13 may be circulated by natural convection or forced circulation by a hydraulic pump or the like.

本実施形態の油入変圧器10には、絶縁油13の劣化等の状態を検査する検査装置18が付設されている。この検査装置18は、排出用連通管15に設けられた検出部19を備え、この検出部19は、図2に示すように、一対の透光窓20A,20Bと、投光部Eと、受光部R1〜Rnと、これら投光部E及び受光部R1〜Rnを制御する制御ユニット21とを備えている。なお、検出部19は、流入用連通管15Aに設けられていてもよく、流入用連通管15A及び排出用連通管15Bの双方に設けられていてもよい。 The oil-filled transformer 10 according to the present embodiment is provided with an inspection device 18 for inspecting a state such as deterioration of the insulating oil 13. The inspection device 18 includes a detection unit 19 provided in the discharge communication pipe 15, and the detection unit 19 includes a pair of translucent windows 20A and 20B, a light projecting unit E, as shown in FIG. The light receiving units R 1 to R n and the control unit 21 for controlling the light projecting unit E and the light receiving units R 1 to R n are provided. The detection unit 19 may be provided in the inflow communication tube 15A, or may be provided in both the inflow communication tube 15A and the discharge communication tube 15B.

投光部Eは、例えば可視光線レーザー光や赤外線レーザー光を発光するレーザー発振器等を有している。
透光窓20A,20Bは、投光部Eから投光されたレーザー光LBを透過可能な部材、例えば透明なガラスやプラスチックから形成されており、連通管15Bを横切る方向に対向するように設けられた入側透光窓20Aと、出側透光窓20Bとから構成されている。また、出側透光窓20Bは、入側透光窓20Aよりも屈折率の高い材質により形成されている。
The light projecting unit E includes, for example, a laser oscillator that emits visible light laser light or infrared laser light.
The translucent windows 20A and 20B are formed of a member capable of transmitting the laser beam LB projected from the light projecting unit E, for example, transparent glass or plastic, and are provided so as to face in a direction crossing the communication tube 15B. The entrance side translucent window 20A and the exit side translucent window 20B are comprised. Moreover, the exit side light transmission window 20B is formed of a material having a higher refractive index than the entrance side light transmission window 20A.

投光部Eは、連通管15Bの外部から入側透光窓20Aに対して斜めにレーザー光LBを投光し、かつこのレーザー光LBが、連通管15B内の絶縁油13と出側透光窓20Bとを通過するように配置されている。レーザー光LBは、入側透光窓20Aと絶縁油13との間、及び絶縁油13と出側透光窓20Bとの間の屈折率の相違に基づいて、屈折しながら進行する。   The light projecting unit E projects laser light LB obliquely from the outside of the communication pipe 15B to the entrance-side light transmission window 20A, and the laser light LB is separated from the insulating oil 13 in the communication pipe 15B and the outgoing side light transmission. It arrange | positions so that the optical window 20B may be passed. The laser beam LB travels while being refracted based on the difference in refractive index between the entrance-side light transmitting window 20A and the insulating oil 13 and between the insulating oil 13 and the exit-side light transmitting window 20B.

受光部R1〜Rnは、投光部Eから投光され、入側透光窓20A、絶縁油13、及び出側透光窓20Bを通過したレーザー光LBを受光可能なフォトダイオード、フォトトランジスタ、光電管等の受光素子を有している。本実施形態では、絶縁油13内でレーザー光LBが通り得る範囲を全てカバーするように、複数の受光部R1〜Rnによって受光範囲が設定され、どの受光部R1〜Rnが受光するかによって当該受光範囲内におけるレーザー光LBの受光位置を識別することができる。なお、図2においては複数の受光部R1〜Rnが間隔をあけて配置されているように示されているが、実際には、レーザー光LBを受光できない部分が生じないように複数の受光部R1〜Rnは隙間なく配置されている。 The light receiving parts R 1 to R n are a photodiode that can receive the laser light LB emitted from the light projecting part E and passed through the entrance side transparent window 20A, the insulating oil 13, and the exit side transparent window 20B. It has a light receiving element such as a transistor or a phototube. In the present embodiment, the light receiving range is set by the plurality of light receiving portions R 1 to R n so as to cover the entire range in which the laser beam LB can pass in the insulating oil 13, and which light receiving portions R 1 to R n receive light. Depending on whether or not, the light receiving position of the laser beam LB within the light receiving range can be identified. In FIG. 2, the plurality of light receiving portions R 1 to R n are illustrated as being spaced apart from each other. However, in practice, a plurality of light receiving portions R 1 to R n are provided so that a portion that cannot receive the laser beam LB does not occur. The light receiving parts R 1 to R n are arranged without gaps.

変圧器本体14内の絶縁油13は、使用に伴う劣化によって酸価が上昇し、スラッジの生成が促進される。このスラッジは、絶縁物や鉄心等に付着することによって冷却効果の低下や絶縁物の熱劣化をもたらし、局部加熱や部分放電の原因となる。さらに、変圧器本体14のタンク11内で局部加熱や部分放電が生じると、周囲の絶縁物が熱分解されて分解ガスを発生し、この分解ガスが絶縁油中に溶解される。変圧器に発生する異常と絶縁油13中に溶解される分解ガスとは相関があるため、従来から行われている油中ガス分析では、この分解ガスの成分を分析することによって変圧器の異常を判断している。   The insulating oil 13 in the transformer body 14 has an acid value that increases due to deterioration due to use, and the generation of sludge is promoted. This sludge adheres to an insulator, an iron core or the like, thereby causing a reduction in cooling effect and thermal deterioration of the insulator, causing local heating and partial discharge. Further, when local heating or partial discharge occurs in the tank 11 of the transformer body 14, the surrounding insulator is thermally decomposed to generate decomposition gas, which is dissolved in the insulating oil. Since there is a correlation between the abnormality occurring in the transformer and the cracked gas dissolved in the insulating oil 13, in the conventional gas analysis in oil, the abnormality of the transformer is analyzed by analyzing the components of the cracked gas. Judging.

例えば、絶縁油中の分解ガスとして、H2(水素)、CH4(メタン),C26(エタン),C24(エチレン),C22(アセチレン)が発生している場合には絶縁油13が過熱されていると判断することができ、これらに加えてCO(一酸化炭素),CO2(二酸化炭素)が発生している場合には、絶縁油13に浸積している絶縁物が過熱されていると判断することができる。また、H2(水素)、CH4(メタン),C24(エチレン),C22(アセチレン)が発生している場合には絶縁油中で放電が発生していると判断することができ、これらに加えてCO(一酸化炭素),CO2(二酸化炭素)が発生している場合には、絶縁油13に浸積している絶縁物が放電していると判断することができる。 For example, as a decomposition gas in insulating oil, H2 (hydrogen), CH 4 (methane), C 2 H 6 (ethane), if C 2 H 4 (ethylene), C 2 H 2 to (acetylene) has occurred In this case, it can be determined that the insulating oil 13 is overheated. In addition, when CO (carbon monoxide) and CO 2 (carbon dioxide) are generated, the insulating oil 13 is immersed in the insulating oil 13. It can be determined that the insulating material is overheated. Moreover, H2 (hydrogen), CH 4 (methane), C 2 H 4 (ethylene), that when C 2 H 2 to (acetylene) has occurred is determined to be occurring discharge in the insulating oil In addition to these, when CO (carbon monoxide) and CO 2 (carbon dioxide) are generated, it can be determined that the insulator immersed in the insulating oil 13 is discharged. it can.

以上のように、絶縁油13の劣化や分解ガスの溶解など、様々な理由で絶縁油13の状態が変化すると、当該絶縁油13の屈折率にも変化が現れ、この屈折率の変化によって図2に示すように投光部Eから投光されたレーザー光LB1〜LBnの光路が変化する。例えば、絶縁油13としてのシリコーン油は屈折率が約1.4であるが、劣化等によって状態が変化するとこれより屈折率が上昇又は低下する。 As described above, when the state of the insulating oil 13 changes due to various reasons such as deterioration of the insulating oil 13 and dissolution of decomposition gas, the refractive index of the insulating oil 13 also changes. 2, the optical paths of the laser beams LB 1 to LB n projected from the light projecting unit E change. For example, the silicone oil as the insulating oil 13 has a refractive index of about 1.4. However, when the state changes due to deterioration or the like, the refractive index increases or decreases.

図2においては、劣化等のない正常な絶縁油13を通過したレーザー光が符号LB1とともに実線で示されており、このレーザー光LB1は受光部R1によって受光される。また、劣化等の異常のある絶縁油13を通過したレーザー光は符号LB2〜LBnとともに2点鎖線で示されており、このレーザー光LB2〜LBnは受光部R2〜Rnによって受光される。したがって、受光部R1がレーザー光LB1を受光した場合には、絶縁油13や変圧器本体14に異常等がないと判断することができ、他の受光部R2〜Rnがレーザー光LBを受光した場合には、絶縁油13や変圧器に異常が生じていると判断することができる。 In FIG. 2, the laser beam that has passed through the normal insulating oil 13 without deterioration or the like is indicated by a solid line together with the reference LB 1 , and this laser beam LB 1 is received by the light receiving unit R 1 . The laser light that has passed through the insulating oil 13 having an abnormality such as deterioration is indicated by two-dot chain lines together with the symbols LB 2 to LB n . The laser light LB 2 to LB n is received by the light receiving portions R 2 to R n . Received light. Therefore, when the light receiving unit R 1 receives the laser beam LB 1 , it can be determined that there is no abnormality in the insulating oil 13 or the transformer main body 14, and the other light receiving units R 2 to R n receive the laser beam. When LB is received, it can be determined that an abnormality has occurred in the insulating oil 13 or the transformer.

また、レーザー光を受光する受光部R1〜Rnが複数設けられていることによって、レーザー光LB1〜LBnを受光した受光部R1〜Rnによって絶縁油13の劣化等の異常の度合いを判別することができる。また、受光部R1の両側に他の受光部R2〜Rnが配置されていることによって、劣化等の異常により絶縁油13の屈折率が大きくなった場合だけでなく小さくなった場合も検出することができる。 In addition, since a plurality of light receiving portions R 1 to R n that receive the laser light are provided, abnormalities such as deterioration of the insulating oil 13 are caused by the light receiving portions R 1 to R n that receive the laser beams LB 1 to LB n . The degree can be determined. Further, since the other light receiving portions R 2 to R n are arranged on both sides of the light receiving portion R 1 , not only when the refractive index of the insulating oil 13 is increased due to an abnormality such as deterioration, but also when it is decreased. Can be detected.

図2に示すように、制御ユニット21は、制御部25と、警報発生部26と、送信部27等を有している。制御部25は、レーザー光LBを発光するように投光部Eを駆動制御し、また、受光部R1〜Rnからは受光信号が入力される。警報発生部26は、制御部25に入力された受光信号に応じて警報信号を生成する。また、送信部27は、警報発生部26において生成された警報信号を、例えば、油入変圧器10から離れた場所に設置された監視センター28(図1参照)等へ送信する機能を有している。 As shown in FIG. 2, the control unit 21 includes a control unit 25, an alarm generation unit 26, a transmission unit 27, and the like. The control unit 25 drives and controls the light projecting unit E so as to emit the laser beam LB, and light reception signals are input from the light receiving units R 1 to R n . The alarm generation unit 26 generates an alarm signal according to the light reception signal input to the control unit 25. Moreover, the transmission part 27 has a function which transmits the alarm signal produced | generated in the alarm generation part 26 to the monitoring center 28 (refer FIG. 1) etc. which were installed in the place away from the oil-filled transformer 10, for example. ing.

以下、図3を参照して本実施形態の油入変圧器10の検査装置18の動作フローについて説明する。
まず、ステップS1において、制御ユニット21の制御部25は、レーザー光LBを投光するように投光部Eを駆動制御する。投光部Eが連通管15に向かってレーザー光LBを投光すると、このレーザー光LBは入側透光窓20A、絶縁油13、出側透光窓20Bを屈折しつつ通過する。
Hereinafter, the operation flow of the inspection device 18 of the oil-filled transformer 10 of the present embodiment will be described with reference to FIG.
First, in step S1, the control unit 25 of the control unit 21 drives and controls the light projecting unit E so as to project the laser light LB. When the light projecting part E projects the laser light LB toward the communication tube 15, the laser light LB passes through the entrance side light transmission window 20A, the insulating oil 13, and the exit side light transmission window 20B while being refracted.

次いで、ステップS2において、制御部25は、レーザー光LBがいずれかの受光部R1〜Rnによって受光されたか否かを判断する。いずれか受光部R1〜Rnによってレーザー光LBが受光された場合には、ステップS3に処理を進め、受光されていない場合には、ステップS8に処理を進める。 Next, in step S2, the control unit 25 determines whether or not the laser beam LB is received by any of the light receiving units R 1 to R n . If the laser beam LB is received by any of the light receiving units R 1 to R n , the process proceeds to step S3, and if not received, the process proceeds to step S8.

ステップS3において、制御部25は、さらに受光部R1によってレーザー光LBが受光されたか否かを判断する。受光部R1によってレーザー光LBが受光された場合、ステップS4において、制御部25は絶縁油13の状態が正常であると判断し、ステップS1に処理を戻して上記動作を繰り返し行う。 In step S3, the control unit 25 further laser beam LB is determined whether or not received by the light receiving unit R 1. If the laser beam LB by the light receiving portion R 1 is received, in step S4, the control unit 25 determines that the normal state of the insulating oil 13 to repeat the above operation returns to step S1.

受光部R1によってレーザー光LBが受光されなかった、すなわち、受光部R2〜Rnによってレーザー光LBが受光された場合、ステップS5において、制御部25は絶縁油13の状態に劣化等の異常があると判断する。そして、ステップS6において、警報発生部26によって絶縁油13が正常でない旨の警報信号を生成し(ステップS6)、ステップS7において、この警報信号を送信部27によって遠隔の監視センター28に送信する。 When the laser beam LB is not received by the light receiving unit R 1, that is, when the laser beam LB is received by the light receiving units R 2 to R n , the control unit 25 determines that the state of the insulating oil 13 has deteriorated in step S5. Judge that there is an abnormality. In step S6, the alarm generation unit 26 generates an alarm signal indicating that the insulating oil 13 is not normal (step S6). In step S7, the alarm signal is transmitted to the remote monitoring center 28 by the transmission unit 27.

一方、ステップS2において、いずれかの受光部R1〜Rnによってレーザー光LBが受光されていないと判断された場合には、投光部E又は受光部R1〜Rnの故障、レーザー光を遮る障害の発生等の不具合が生じたものと考えられる。したがって、制御部25は、検出エラーが発生したと判断し(ステップS8)、ステップS6において、警報発生部26によって検出エラーを示す警報信号を生成し、送信部27によってこの警報信号を監視センタに送信する(ステップS7)。 On the other hand, in step S2, when the laser beam LB is determined not to be received by any of the light-receiving portion R 1 to R n, the failure of the light projecting portion E or the light receiving unit R 1 to R n, laser light It is probable that there was a problem such as the occurrence of an obstacle that interrupts. Therefore, the control unit 25 determines that a detection error has occurred (step S8). In step S6, the alarm generation unit 26 generates an alarm signal indicating the detection error, and the transmission unit 27 transmits this alarm signal to the monitoring center. Transmit (step S7).

監視センター28では、検査装置18から異常検出時の警報信号がリアルタイムに送信されるので、この警報信号に基づいて、変圧器の使用停止など迅速な対処を行うことができる。また、検査装置18によって異常が検出された変圧器は、別途、油中ガス分析等の詳細な検査により異常の原因を診断したり、絶縁油13の交換などのメンテナンスを行ったりすることができる。   In the monitoring center 28, an alarm signal at the time of abnormality detection is transmitted from the inspection device 18 in real time. Based on this alarm signal, it is possible to take quick measures such as stopping the use of the transformer. In addition, the transformer in which the abnormality is detected by the inspection device 18 can diagnose the cause of the abnormality by a detailed inspection such as gas analysis in oil or perform maintenance such as replacement of the insulating oil 13. .

以上の構成を有する油入変圧器10の検査装置18は、変圧器本体14とラジエータ16との間で常に絶縁油13が循環している連通管15に検出部19を備えているので、絶縁油13全体の状態を正確に検出することができる。
また、検査装置18は、絶縁油13を通過したレーザー光LBをどの受光部R1〜Rnが受光するかによって絶縁油13の状態を検出しているので、その劣化等の異常の判断が極めて簡単であり、誤検出も少なくすることができる。
The inspection device 18 of the oil-filled transformer 10 having the above configuration includes the detection unit 19 in the communication pipe 15 in which the insulating oil 13 is always circulated between the transformer body 14 and the radiator 16. The state of the entire oil 13 can be accurately detected.
In addition, since the inspection device 18 detects the state of the insulating oil 13 depending on which light receiving portions R 1 to R n receive the laser light LB that has passed through the insulating oil 13, it is possible to determine abnormality such as deterioration. It is extremely simple, and false detection can be reduced.

また、検査装置18において絶縁油の異常が検出されると、警報信号が監視センター28等の遠隔地に送信されるので、油入変圧器10の設置場所や検査装置18の設置場所に出向かなくても異常を監視することができる。
また、出側透光窓20Bは、入側透光窓20Aよりも屈折率の高い材質により形成されているので、絶縁油13と出側透光窓20Bとの間のレーザー光LBの屈折量を増幅することができ、レーザー光LBの光路の変化を高精度で検出することができる。
Further, when an abnormality in the insulating oil is detected in the inspection device 18, an alarm signal is transmitted to a remote location such as the monitoring center 28, so that it is sent to the installation location of the oil-filled transformer 10 or the installation location of the inspection device 18. Abnormality can be monitored without it.
Moreover, since the exit side light transmission window 20B is formed of a material having a higher refractive index than the entrance side light transmission window 20A, the amount of refraction of the laser light LB between the insulating oil 13 and the exit side light transmission window 20B. And the change in the optical path of the laser beam LB can be detected with high accuracy.

検査装置18は、連通管15の外部から投光されたレーザー光LBを連通管15の外部において受光するように構成されているので、絶縁油13が存在する連通管15の内部に検査装置18の部品を配置する必要がない。そのため、検査装置18の保守点検を行う場合に絶縁油13を抜き取る作業が不要となり、作業を簡単且つ短時間で行うことができる。また、検査装置18の部品が破損したとしても変圧器本体14内に入り込むことがないので、除去作業等が必要となることもない。   Since the inspection device 18 is configured to receive the laser beam LB projected from the outside of the communication tube 15 outside the communication tube 15, the inspection device 18 is provided inside the communication tube 15 where the insulating oil 13 exists. There is no need to place any parts. Therefore, when performing maintenance and inspection of the inspection device 18, the work of extracting the insulating oil 13 is not necessary, and the work can be performed easily and in a short time. Further, even if a part of the inspection device 18 is damaged, it does not enter the transformer main body 14, so that removal work or the like is not required.

図4は本発明の他の実施形態に係る油入変圧器10の検査装置18の概略構成図である。
本実施形態では、排出用連通管15Bの一側部に透光窓20が設けられ、排出用連通管15Bの他側部の内壁部には透光窓20に対向するように反射鏡30が設けられている。そして、投光部Eから投光されたレーザー光LBは、絶縁油13を通過して反射鏡30によって全反射され、再度、絶縁油13を通過して透光窓20から外部へ進行する。受光部R1〜Rnは、投光部Eと並設して配置されており、反射鏡30で反射されたレーザー光LBを透光窓20を介して受光するように設けられている。また、上記実施形態と同様に、複数の受光部R1〜Rnによって、レーザー光LBの屈折に対応するように所定の受光範囲が設定されている。
したがって、本実施形態においても、第1実施形態と同様の作用効果を奏する。また、本実施形態の検出部19は、投光部Eと受光部R1〜Rnとを連通管15に対して同じ側に並設して配置することができるので、装置のコンパクト化が可能となる。
FIG. 4 is a schematic configuration diagram of the inspection device 18 of the oil-filled transformer 10 according to another embodiment of the present invention.
In the present embodiment, a translucent window 20 is provided on one side of the discharge communication tube 15B, and a reflecting mirror 30 is provided on the inner wall of the other side of the discharge communication tube 15B so as to face the translucent window 20. Is provided. Then, the laser beam LB projected from the light projecting unit E passes through the insulating oil 13 and is totally reflected by the reflecting mirror 30, and again passes through the insulating oil 13 and proceeds to the outside from the light transmitting window 20. The light receiving parts R 1 to R n are arranged in parallel with the light projecting part E, and are provided so as to receive the laser light LB reflected by the reflecting mirror 30 through the light transmitting window 20. Similarly to the above-described embodiment, a predetermined light receiving range is set by the plurality of light receiving portions R 1 to R n so as to correspond to the refraction of the laser light LB.
Therefore, also in this embodiment, there exists an effect similar to 1st Embodiment. The detection unit 19 of the present embodiment, it is possible to arrange the light projecting portion E and the light-receiving portion R 1 to R n are juxtaposed on the same side of the communicating pipe 15, compact device It becomes possible.

本発明は、上記実施形態に限定されることなく適宜設計変更可能である。例えば、上記実施形態では、複数の受光部(受光素子)R1〜Rnを並設することによって、レーザー光LBの屈折の変化に対応可能な受光範囲を設定しているが、1つの受光素子上の受光位置を、その出力電流又は出力電圧の変化によって識別することが可能なフォトダイオード等によって受光部を構成することも可能である。
投光部Eは、レーザー発振器に代えてLED等を有するものとし、このLED等の光を集光し指向性を高めて利用することもできる。ただし、直進性、指向性の高いレーザー光を使用することがより好ましい。
また、請求項1の発明では、検出部19が連通管15内の絶縁油13の状態を検出する限りにおいて、上記実施形態とは異なる検出方法(例えば、従来公知の検出方法)によって絶縁油の状態を検出してもよい。
The present invention is not limited to the above-described embodiment, and can be appropriately changed in design. For example, in the above embodiment, a plurality of light receiving portions (light receiving elements) R 1 to R n are arranged in parallel to set a light receiving range that can cope with a change in refraction of the laser light LB. It is also possible to configure the light receiving unit by a photodiode or the like that can identify the light receiving position on the element by the change in the output current or output voltage.
The light projecting unit E includes an LED or the like instead of the laser oscillator, and can collect light from the LED or the like to improve the directivity. However, it is more preferable to use a laser beam having high straightness and directivity.
Further, in the first aspect of the invention, as long as the detection unit 19 detects the state of the insulating oil 13 in the communication pipe 15, the detection method of the insulating oil (for example, a conventionally known detection method) different from the above embodiment is used. A state may be detected.

10 油入変圧器
11 タンク
12 変圧部
13 絶縁油
14 変圧器本体
15 連通管
16 ラジエータ
18 検査装置
19 検出部
20A 入側透光窓
20B 出側透光窓
21 制御ユニット
25 制御部
26 警報発生部
27 送信部
E 投光部
1〜Rn 受光部
LB1〜LBn レーザー光
DESCRIPTION OF SYMBOLS 10 Oil-filled transformer 11 Tank 12 Transformer part 13 Insulating oil 14 Transformer main body 15 Communication pipe 16 Radiator 18 Inspection apparatus 19 Detection part 20A Incoming side translucent window 20B Outgoing side translucent window 21 Control unit 25 Control part 26 Alarm generating part 27 Transmitter E Emitter R 1 to R n Light Receptor LB 1 to LB n Laser Light

Claims (5)

タンク内に絶縁油及び変圧部を収容している変圧器本体と、この変圧器本体に連通管を介して接続され、前記変圧器本体から前記連通管を介して流入した前記絶縁油を冷却するラジエータとを備えている油入変圧器の検査装置であって、
前記連通管に、当該連通管内を流れる絶縁油の状態を検出する検出部を備えていることを特徴とする油入変圧器の検査装置。
A transformer main body that contains the insulating oil and the transformer in the tank, and is connected to the transformer main body via a communication pipe, and cools the insulating oil that has flowed in from the transformer main body via the communication pipe. An oil-filled transformer inspection device comprising a radiator,
An inspection apparatus for an oil-filled transformer, wherein the communication pipe is provided with a detection unit that detects a state of insulating oil flowing in the communication pipe.
前記連通管の管壁には、光透過性の透光窓が形成されており、
前記検出部が、前記連通管外から前記透光窓を介して前記連通管内の絶縁油に光を投光する投光部と、
前記絶縁油を通過した光を前記透光窓を介して前記連通管外で受光するとともに、前記絶縁油の状態変化に伴う屈折率の変化に対応可能な受光範囲を有し、かつこの受光範囲内における前記光の受光位置を識別可能に構成された受光部と、を備えている請求項1に記載の油入変圧器の検査装置。
On the tube wall of the communication tube, a light transmissive light transmission window is formed,
A light projecting unit for projecting light from the outside of the communication pipe to the insulating oil in the communication pipe through the light transmission window;
The light that has passed through the insulating oil is received outside the communication pipe through the transparent window, and has a light receiving range that can respond to a change in refractive index accompanying a change in state of the insulating oil, and the light receiving range. The oil-immersed transformer inspection device according to claim 1, further comprising: a light receiving unit configured to be able to identify a light receiving position of the light in the inside.
前記透光窓が、前記連通管を横切る方向に対向して一対設けられており、
前記投光部が、一方の透光窓を介して前記連通管内に光を投光し、
前記受光部が、前記絶縁油を通過した光を他方の透光窓を介して受光する請求項2に記載の油入変圧器の検査装置。
A pair of the translucent windows are provided opposite to each other in a direction crossing the communication pipe,
The light projecting unit projects light into the communication pipe through one translucent window,
The inspection apparatus for an oil-filled transformer according to claim 2, wherein the light receiving unit receives light that has passed through the insulating oil through the other light-transmitting window.
前記他方の透光窓が、前記一方の透光窓よりも高屈折率の材質により形成されている請求項3に記載の油入変圧器の検査装置。   The inspection apparatus for an oil-filled transformer according to claim 3, wherein the other light-transmitting window is formed of a material having a higher refractive index than that of the one light-transmitting window. 前記透光窓が、前記連通管の管壁の一側部に設けられており、
前記投光部が、前記透光窓を介して前記連通管内に光を投光し、
前記受光部が、前記透光窓に対向する前記連通管の内壁部において反射した光を、前記透光窓を介して受光する請求項2に記載の油入変圧器の検査装置。
The translucent window is provided on one side of the pipe wall of the communication pipe;
The light projecting unit projects light into the communication pipe through the translucent window,
The inspection apparatus for an oil-filled transformer according to claim 2, wherein the light receiving unit receives the light reflected by the inner wall portion of the communication pipe facing the light transmitting window through the light transmitting window.
JP2009245784A 2009-10-26 2009-10-26 Inspection device of oil-immersed transformer Pending JP2011091340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245784A JP2011091340A (en) 2009-10-26 2009-10-26 Inspection device of oil-immersed transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245784A JP2011091340A (en) 2009-10-26 2009-10-26 Inspection device of oil-immersed transformer

Publications (1)

Publication Number Publication Date
JP2011091340A true JP2011091340A (en) 2011-05-06

Family

ID=44109298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245784A Pending JP2011091340A (en) 2009-10-26 2009-10-26 Inspection device of oil-immersed transformer

Country Status (1)

Country Link
JP (1) JP2011091340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139959A (en) * 2013-01-21 2014-07-31 Aichi Electric Co Ltd Method for identifying insulation oil in oil feeding pipe and oil feeding device
EP2899728B1 (en) 2014-01-22 2016-11-16 ABB Schweiz AG A device comprising a high voltage apparatus including a fluid and equipment for detecting one or more physical properties of the fluid
CN110443383A (en) * 2019-07-18 2019-11-12 西安工程大学 Transformer electrification method for inspecting and cruising inspection system based on Business Stream

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139959A (en) * 2013-01-21 2014-07-31 Aichi Electric Co Ltd Method for identifying insulation oil in oil feeding pipe and oil feeding device
EP2899728B1 (en) 2014-01-22 2016-11-16 ABB Schweiz AG A device comprising a high voltage apparatus including a fluid and equipment for detecting one or more physical properties of the fluid
CN110443383A (en) * 2019-07-18 2019-11-12 西安工程大学 Transformer electrification method for inspecting and cruising inspection system based on Business Stream

Similar Documents

Publication Publication Date Title
US11587727B2 (en) Systems and methods for monitoring components in a power transformer or the like
US9182342B2 (en) Apparatus, system and method for using an LED to identify a presence of a material in a gas and/or a fluid and/or determine properties of the material
KR101681561B1 (en) apparatus for determination of temperature and dissolved gases in insulation oil of transformer
CN206488060U (en) A kind of underground pipe gallery natural gas line leakage on-line monitoring prior-warning device
WO2019172276A1 (en) Optical fiber monitoring method, and optical fiber monitoring system
JP2007232515A (en) Optical fiber vibration detection system
JP2011091340A (en) Inspection device of oil-immersed transformer
KR20180098718A (en) Optical time domain reflectometer for divided optical fiber monitering on optical termination box
US7684695B1 (en) Optical diagnostic indicator
US20140231637A1 (en) Apparatus for Distance Measurement Using Inductive Means
JP2006071602A (en) Optical path abnormality diagnostic device and diagnostic method
JP7268999B2 (en) Fire detector and tunnel disaster prevention system
CN116972957A (en) Vibration detection method and system for power transmission GIL pipeline
JP7020476B2 (en) Gas detection system, gas detection method and program
CN112242869A (en) Optical fiber fault detection system
JP2002124425A (en) Method of diagnosing deterioration of oil-filled electric apparatus and device therefor
JP2010217084A (en) Fluorescence temperature sensor and failure determination method of same
JP2010137677A (en) Crossing monitoring system, method and program
JP2688792B2 (en) Temperature abnormality detection structure in fluid flow line
JP2007174597A (en) Optical cable line with line monitoring device, optical cable line, and fusing point detection method for optical cable line
CN116295788B (en) Multi-mode natural gas leakage detection system and method
KR102504680B1 (en) apparatus for monitoring insulation oil of transformer
JP7364960B2 (en) Fiber optic device, temperature measurement system, and method for manufacturing fiber optic device
JP4763296B2 (en) Detection device
JPH02130447A (en) Apparatus and method for monitoring optical fiber line