JP4763296B2 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
JP4763296B2
JP4763296B2 JP2005010869A JP2005010869A JP4763296B2 JP 4763296 B2 JP4763296 B2 JP 4763296B2 JP 2005010869 A JP2005010869 A JP 2005010869A JP 2005010869 A JP2005010869 A JP 2005010869A JP 4763296 B2 JP4763296 B2 JP 4763296B2
Authority
JP
Japan
Prior art keywords
measurement
optical transmission
measurement location
transmission characteristic
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005010869A
Other languages
Japanese (ja)
Other versions
JP2006200950A (en
Inventor
和彦 松田
正樹 出雲
哲郎 和田
昌郎 土橋
昭二 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Tokyo Metropolitan Sewerage Service Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Tokyo Metropolitan Sewerage Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Tokyo Metropolitan Sewerage Service Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005010869A priority Critical patent/JP4763296B2/en
Publication of JP2006200950A publication Critical patent/JP2006200950A/en
Application granted granted Critical
Publication of JP4763296B2 publication Critical patent/JP4763296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measuring Volume Flow (AREA)
  • Optical Transform (AREA)

Description

本発明は、物理量の変化による光ファイバの光伝送特性の変化を測定して、前記物理量の変化を検知する検知装置に関する。   The present invention relates to a detection apparatus that detects a change in a physical quantity by measuring a change in optical transmission characteristics of an optical fiber due to a change in the physical quantity.

従来より、物理量の変化に起因して生ずる光ファイバの光伝送特性の変化を測定して、前記物理量の変化を検知する種々の検知装置が用いられている。
これらの検知装置は、例えば、光ファイバ中のラマン散乱光やレーリー散乱光などの光散乱強度が温度によって変化することを利用し、光ファイバが曝される周囲温度によりこれらの散乱光の光伝送特性の変化を測定し、測定箇所の温度を検知する温度検知装置がある(例えば特許文献1参照)。
2. Description of the Related Art Conventionally, various detection devices that measure changes in optical transmission characteristics of optical fibers caused by changes in physical quantities and detect changes in physical quantities have been used.
These detectors use, for example, the fact that the intensity of light scattering such as Raman scattered light or Rayleigh scattered light in an optical fiber varies with temperature, and the optical transmission of these scattered light depends on the ambient temperature to which the optical fiber is exposed. There is a temperature detection device that measures changes in characteristics and detects the temperature of a measurement location (see, for example, Patent Document 1).

また、物理量の変化により可動する可動部を用い、前記可動部により光ファイバに応力を加え、応力による光ファイバの光伝送特性の変化を測定して物理量の変化を検知する検知装置もある。
可動部を用いた検知装置としては、例えば、フロート機構を可動部とした水位検知装置や、蓋、扉などを可動部とした開閉検知装置が知られている。また可動部の動きを受け止める光ファイバの構成として光ファイバを巻回した構成のものが特許文献2、3などに開示されている。
There is also a detection device that uses a movable part that is movable by a change in physical quantity, applies stress to the optical fiber by the movable part, and measures a change in optical transmission characteristics of the optical fiber due to the stress to detect a change in physical quantity.
As a detection device using a movable portion, for example, a water level detection device using a float mechanism as a movable portion, and an open / close detection device using a lid, a door, or the like as a movable portion are known. Patent Documents 2, 3 and the like disclose a configuration in which an optical fiber is wound as a configuration of an optical fiber that catches the movement of a movable portion.

これらの検知装置においては、図14に示すように複数の測定箇所4、4・・が1心の光ファイバ線路3上に直列に設けられ、光パルス測定器(Optical Time Domain Reflectmetry、以下OTDRと呼ぶ)2にて各測定箇所における光ファイバの光伝送特性変化(典型的には光伝送損失変化)を測定し、光ファイバ線路3上の測定箇所4、4・・に生じた物理量変化の有無を検知している。
OTDR2では信号光のS/N比を向上させるために平均化処理が行われている。即ち、OTDR2により測定される散乱光は微弱であり、不規則に発生するノイズの影響が大きいため、所定時間内に複数回測定を繰り返し、複数回の測定値を平均して出力値として出力することにより、不規則に発生するノイズの影響を低減している。この状態を模式化したのが図15である。
OTDR2による測定は線図5で示すようにt1の時間間隔で行うが、出力は線図6に示すようにt1の例えば5倍であるt2の時間間隔で行う。線図6における出力値8は線図5における5つの測定値9、9・・を平均したものであるため、不規則なノイズ10はこの場合1/5に希釈されて出力値8は真値と近いものとなる。
このような平均化処理については、例えば特許文献4に開示がある。
特開平8−233668号公報 特開平10−82621号公報 特開平6−148017号公報 特開平7−218354号公報
In these detectors, as shown in FIG. 14, a plurality of measurement points 4, 4,... Are provided in series on a single optical fiber line 3, and an optical pulse measuring device (Optical Time Domain Reflectometry, hereinafter referred to as OTDR). 2) Measure the optical transmission characteristic change (typically the optical transmission loss change) of the optical fiber at each measurement location in 2), and the presence or absence of the physical quantity change that occurred at the measurement locations 4, 4 ... on the optical fiber line 3 Is detected.
In OTDR2, averaging processing is performed to improve the S / N ratio of signal light. That is, since the scattered light measured by OTDR2 is weak and greatly affected by irregularly generated noise, the measurement is repeated a plurality of times within a predetermined time, and the measurement values obtained by averaging a plurality of times are output as an output value. Thus, the influence of irregularly generated noise is reduced. FIG. 15 schematically shows this state.
Measurement by OTDR2 is performed at a time interval of t1 as shown in a diagram 5, while output is performed at a time interval of t2, which is five times t1, for example, as shown in a diagram 6. Since the output value 8 in the diagram 6 is an average of the five measured values 9, 9,... In the diagram 5, the irregular noise 10 is diluted to 1/5 in this case and the output value 8 is a true value. And close.
Such an averaging process is disclosed in Patent Document 4, for example.
JP-A-8-233668 Japanese Patent Laid-Open No. 10-82621 Japanese Patent Laid-Open No. 6-148017 JP-A-7-218354

このような平均化処理において測定の時間間隔t1は光ファイバ線路の長さが長くなるほど長時間を要し、1回の出力に対する測定回数は多いほどノイズの影響が低減できるが、その分、出力の時間間隔t2は長くなってしまう。
光ファイバの光伝送特性変化の測定値を2値化して物理量変化の有無(ON/OFF)を検知するある例においては、光ファイバ線路長が30kmの場合には、出力の時間間隔t2は約10秒が必要である。このため、高速検知が要求される箇所での使用には制約があった。
In such an averaging process, the measurement time interval t1 requires a longer time as the length of the optical fiber line becomes longer, and the influence of noise can be reduced as the number of times of measurement for one output is increased. The time interval t2 becomes longer.
In one example in which the measured value of the change in optical transmission characteristics of the optical fiber is binarized to detect the presence or absence (ON / OFF) of a change in physical quantity, when the optical fiber line length is 30 km, the output time interval t2 is about 10 seconds are required. For this reason, there are restrictions on use in places where high-speed detection is required.

上記課題を解決し、高速検知の可能な検出装置を提供するため、本発明者は鋭意検討の結果以下の構想に想到した。即ち
(1)請求項1の検知装置は、光ファイバ線路と、光ファイバ線路に直接接続された測定個所とからなる光伝送系統を有し、物理量の変化による前記測定個所の光伝送特性の変化を測定し、前記物理量の変化を検知する検知装置であって、
一つの測定個所に対して複数の伝送系統と前記複数の伝送系統のそれぞれに設けた光伝送特性測定器を備え、それぞれの前記光伝送特性測定器は前記複数の伝送系統において同じ側に配置されて、互いに異なる時刻に前記測定個所の光伝送特性値を出力し、それぞれの前記光伝送特性値の出力を合わせて、光伝送特性値の出力の時間間隔を短縮化するとともに、
流路内に設置され、水の有無を測定可能な少なくとも第1の測定個所と第2の測定個所を備え、前記第1の測定個所は前記第2の測定個所よりも前記流路内の上流側に設置され、各測定個所の作動時刻の差と、前記各測定個所の距離とから、流速を測定可能であることを特徴とする。
(2)請求項2の検知装置は、請求項1に記載の検知装置であって、前記複数の伝送系統は、複数の光ファイバ線路であることを特徴とする。
(3)請求項3の検知装置は、請求項1に記載の検知装置であって、前記複数の伝送系統は、波長分割多重によって一つの光ファイバ線路を伝播する波長の異なる伝送系統であることを特徴とする。
(4)請求項4の検知装置は、請求項2または請求項3に記載の検知装置であって、前記光伝送特性測定器から出力される光伝送特性値は、所定時間内に測定された複数の測定値を最適化処理した値であることを特徴とする。
(5)請求項5の検知装置は、請求項1に記載の検知装置であって、前記第2の測定個所はさらに複数の測定個所からなり、前記複数の測定個所のうち少なくとも2つの測定個所は、互いに鉛直方向に高低差をもって設置されることを特徴とする。
(6)請求項6の検知装置は、請求項5に記載の検知装置であって、前記2つの測定個所は、液体が溜まる個所に鉛直方向に高低差をもって設置されることを特徴とする。
(7)請求項7の検知装置は 請求項1から請求項6いずれか一つに記載の検知装置であって、前記測定個所は、前記物理量の変化に応じて可動する可動部により光ファイバに応力を加え、前記応力により前記光ファイバに光伝送特性の変化を生じさせることを特徴とする。
(8)請求項8は、下水道のオーバーフロー管の上流側に設置された第1の測定個所と、該オーバーフロー管の下流側に設置された第2の測定個所と、前記第1および第2の測定個所のそれぞれに直接接続された光ファイバ線路とからなる光伝送系統を有し、前記光伝送系統は光伝送特性測定器を有し、前記光伝送特性測定器によって、前記第1および第2の測定個所における物理量の変化を前記各測定個所における光伝送特性の変化として測定する物理量変化の検知方法であって、前記光伝送系統および前記光伝送特性測定器は、前記各測定個所について複数あって、かつ前記複数の光伝送系統それぞれの前記光伝送特性測定器は互いに異なる時刻に前記測定個所の光伝送特性値を出力を合わせて、光伝送特性値の出力の時間間隔を短縮化するとともに、下水道のオーバーフローによる下水流が前記第1および第2の測定個所を作動させ、前記各測定個所の作動時刻の差と、予め知られた前記各測定個所の距離とから、下水流の流速を測定することを特徴とする。
(9)請求項9は、請求項8に記載の物理量変化の検知方法であって、
前記第1または第2の測定個所のいずれかの上方に第3の測定個所を有し、前記第1、第2、第3の測定個所の物理量変化によって、下水流の水位を測定することを特徴とする。
(10)請求項10は、請求項9に記載の物理量変化の検知方法であって、
測定された下水流の水位と、予め知られたオーバーフロー管の断面のディメンジョンとから、下水流の流量を測定することを特徴とする。
In order to solve the above-described problems and provide a detection device capable of high-speed detection, the present inventor has conceived the following concept as a result of intensive studies. That is, (1) The detection device according to claim 1 has an optical transmission system composed of an optical fiber line and a measurement point directly connected to the optical fiber line, and changes in the optical transmission characteristics of the measurement point due to changes in physical quantities. And detecting a change in the physical quantity,
A plurality of transmission systems and an optical transmission characteristic measuring device provided in each of the plurality of transmission systems for one measurement location, and each of the optical transmission characteristic measuring devices is arranged on the same side in the plurality of transmission systems. Te, outputs the optical transmission characteristic values of the measuring points at different times from each other, the combined output of each of the optical transmission characteristic value, to shorten the time interval of the output of the optical transmission characteristic values with,
And at least a first measurement location and a second measurement location that are installed in the flow path and are capable of measuring the presence or absence of water, wherein the first measurement location is upstream of the second measurement location. The flow velocity can be measured from the difference in operating time of each measurement location and the distance of each measurement location.
(2) The detection apparatus according to claim 2 is the detection apparatus according to claim 1, wherein the plurality of transmission systems are a plurality of optical fiber lines.
(3) detecting apparatus according to claim 3, a detecting apparatus according to claim 1, wherein the plurality of transmission lines is the different transmission systems having wavelengths propagating Thus one optical fiber line in a wavelength division multiplexing It is characterized by that.
(4) The detection device according to claim 4 is the detection device according to claim 2 or claim 3, wherein the optical transmission characteristic value output from the optical transmission characteristic measuring device is measured within a predetermined time. It is a value obtained by optimizing a plurality of measured values.
(5) The detection device according to claim 5 is the detection device according to claim 1, wherein the second measurement location further includes a plurality of measurement locations, and at least two measurement locations of the plurality of measurement locations. Are installed with vertical differences from each other.
(6) The detection device according to claim 6 is the detection device according to claim 5, wherein the two measurement locations are installed at a location where liquid is accumulated with a vertical difference in height.
(7) The detection device according to claim 7 is the detection device according to any one of claims 1 to 6, wherein the measurement portion is attached to the optical fiber by a movable portion that is movable in accordance with a change in the physical quantity. It is characterized in that a stress is applied and a change in optical transmission characteristics is caused in the optical fiber by the stress.
(8) Claim 8 is a first measurement location installed upstream of the overflow pipe of the sewer, a second measurement location installed downstream of the overflow pipe, and the first and second An optical transmission system comprising an optical fiber line directly connected to each of the measurement points, the optical transmission system having an optical transmission characteristic measuring instrument, and the first and second optical transmission characteristic measuring instruments are used to A physical quantity change detecting method for measuring a change in physical quantity at each measurement location as a change in optical transmission property at each measurement location, wherein a plurality of optical transmission systems and optical transmission property measuring instruments are provided for each measurement location. In addition, the optical transmission characteristic measuring device of each of the plurality of optical transmission systems combines the output of the optical transmission characteristic values at the measurement locations at different times, thereby shortening the time interval between the output of the optical transmission characteristic values. In addition, the sewage flow caused by the overflow of the sewer operates the first and second measurement points, and the difference between the operation times of the measurement points and the distance between the measurement points known in advance, It is characterized by measuring the flow rate.
(9) Claim 9 is the physical quantity change detection method according to claim 8,
Having a third measurement location above either the first or second measurement location, and measuring the water level of the sewage flow according to the physical quantity change of the first, second, or third measurement location. Features.
(10) Claim 10 is the physical quantity change detection method according to claim 9,
The flow rate of the sewage flow is measured from the measured water level of the sewage flow and the dimension of the cross section of the overflow pipe known in advance.

請求項1の検知装置によれば、複数の伝送系統に設けたそれぞれの光伝送特性測定器から互いに異なる時刻に光伝送特性値を出力するので、一つの伝送系統の光伝送特性測定値に基づく出力に要する時間が長い場合であっても、前回出力から今回出力までの間に他の伝送系統の光伝送特性測定値に基づく出力を行うことができる。その結果、実質的に短い時間間隔での特性値出力が可能となり、高速検知の要求に応じることが可能となる。   According to the detection device of the first aspect, since the optical transmission characteristic values are output at different times from the respective optical transmission characteristic measuring devices provided in the plurality of transmission systems, it is based on the optical transmission characteristic measurement values of one transmission system. Even when the time required for output is long, output based on the measured values of the optical transmission characteristics of other transmission systems can be performed between the previous output and the current output. As a result, the characteristic value can be output at a substantially short time interval, and the request for high-speed detection can be met.

そして、前記複数の伝送系統は、例えば、請求項2の検知装置のように複数の光ファイバ線路を設けることで実現することができる。
また、請求項3の検知装置のように、一つの光ファイバ線路しか設けない場合であっても、一つの光ファイバ線路に異なる波長を伝播させ波長分割多重することにより複数の伝送系統を構成することもできる。
特に、光伝送特性測定器から出力される光伝送特性値が、所定時間内に測定された複数の測定値を最適化処理した値である場合には、出力値の精度という点では好適であるが、前回出力から今回出力までの時間間隔が長くなりがちである。そこで、請求項4の検知装置においては、最適化処理とそれぞれの前記光伝送特性測定器は互いに異なる時刻に前記光ファイバ線路の光伝送特性値を出力するという構成の協働により、精度の良さと出力時間間隔の短縮を両立することができる。
The plurality of transmission systems can be realized, for example, by providing a plurality of optical fiber lines as in the detection device of claim 2.
Further, even when only one optical fiber line is provided as in the detection device of claim 3, a plurality of transmission systems are configured by propagating different wavelengths through one optical fiber line and wavelength division multiplexing. You can also.
In particular, when the optical transmission characteristic value output from the optical transmission characteristic measuring device is a value obtained by optimizing a plurality of measured values measured within a predetermined time, it is preferable in terms of the accuracy of the output value. However, the time interval from the previous output to the current output tends to be longer. Therefore, in the detection device according to claim 4, since the optimization process and each of the optical transmission characteristic measuring devices output the optical transmission characteristic value of the optical fiber line at different times, the accuracy is improved. And shortening the output time interval.

また、伝送系統を複数設けない場合であっても、請求項5の検知装置によれば、n+a回目測定時点とn+c回目測定時点に出力が可能となる。即ち、この動作を繰り返せばn+a回目測定時点からn+2a回目測定時点の間のn+c回目測定時点にも特性値が出力されるので、実質的に前回出力から今回出力までの時間間隔が短縮され高速検知に供することができる。
また、これらの出力値はいずれも複数の測定値を最適化処理した値なのでノイズの影響も低減することができる。
Further, even when a plurality of transmission systems are not provided, according to the detection device of the fifth aspect, output is possible at the n + a-th measurement time and the n + c-th measurement time. That is, if this operation is repeated, the characteristic value is also output at the (n + c) th measurement time between the (n + a) th measurement time and the (n + 2a) th measurement time. Can be used.
Since these output values are values obtained by optimizing a plurality of measured values, the influence of noise can be reduced.

上述した検知装置はいずれも高速検知に給するものである。このため、請求項1の検知装置のように、第1および第2の測定個所を流路内に設置すれば、ある時点まで液体のなかった流路に液体が到達したことを検知できるとともに、第1の測定個所と第2の測定個所に流路が到達した時刻の差をも検知する上で有益であり、上記時刻差から流速をも知ることができる。
同様に請求項5の検知装置によれば、各測定個所に液体レベル(液体が水の場合は水位)が到達しているか否かおよび液体レベルの上昇速度を検知することができる。
All of the above-described detection devices supply high-speed detection. For this reason, when the first and second measurement locations are installed in the flow path as in the detection device of claim 1 , it is possible to detect that the liquid has reached the flow path where there was no liquid until a certain point in time, This is useful for detecting the difference in time when the flow path reaches the first measurement location and the second measurement location, and the flow velocity can also be known from the time difference.
Similarly, according to the detection device of the fifth aspect , it is possible to detect whether or not the liquid level (the water level when the liquid is water) has reached each measurement location and the rising speed of the liquid level.

また、請求項8、9および10の記載の検知方法によれば、上流側に設けた第1の測定個所と下流側に設けた第2の測定個所の検知時刻の差から流速が求められるとともに、鉛直方向に高低差をもって設けられた複数の測定個所からなる第2の測定個所のいずれの測定個所に液体が到達しているかを検知することにより液体レベルを知ることができる。即ち、流路の断面のディメンジョンを考慮することにより流量を知ることができる。
According to the detection method described in claims 8, 9 and 10, the flow velocity is obtained from the difference in detection time between the first measurement location provided on the upstream side and the second measurement location provided on the downstream side. The liquid level can be known by detecting which measurement point of the second measurement point, which is composed of a plurality of measurement points provided with a vertical difference in the vertical direction, has reached the liquid. That is, the flow rate can be known by considering the dimension of the cross section of the flow path.

上述した検知装置の測定個所は、前記物理量の変化に応じて可動する可動部により光ファイバに応力を加え、前記応力により前記光ファイバに光伝送特性の変化を生じさせることにより、好適に種々の物理量変化を光伝送特性の変化に変換できる。   The measurement part of the above-described detection apparatus preferably applies various stresses by applying stress to the optical fiber by the movable part that moves in accordance with the change in the physical quantity, and causing the optical fiber to change in the optical fiber due to the stress. Changes in physical quantities can be converted into changes in optical transmission characteristics.

本発明を実施する最良の形態を以下に説明する。本形態における検知装置は、図1に示すように下水道のオーバーフロー流出口の浸水検知装置として構成されている。
図1においてオーバーフロー管101、102・・は、下水管11の所定個所に接続され、下水管11からのオーバーフローを系外12に放出する。系外12は例えば河川、海などである。このオーバーフローする下水の有無、その流量などは下水道の管理者などにとっては重大な関心事である。そこでオーバーフロー管101、102・・には21、22、23および24,25,26・・・のそれぞれ3つの測定個所が設置されている。
The best mode for carrying out the present invention will be described below. As shown in FIG. 1, the detection device in the present embodiment is configured as a flood detection device for an overflow outlet of a sewer.
1, overflow pipes 101, 102,... Are connected to predetermined locations of the sewer pipe 11, and discharge overflow from the sewer pipe 11 to the outside of the system 12. The outside of the system 12 is, for example, a river or the sea. The presence and flow rate of overflowing sewage is a serious concern for sewer managers. Therefore, the overflow pipes 101, 102,... Are provided with three measurement points 21, 22, 23 and 24, 25, 26,.

いまオーバーフロー管101を例に説明すると、オーバーフロー管101に設置される測定個所は、第1に光ファイバ線路31上に直列接続されたプローブ21aと、光ファイバ線路32上に直列接続されたプローブ21bからなる測定個所21、第2に光ファイバ線路31上に直列接続されたプローブ22aと、光ファイバ線路32上に直列接続されたプローブ22bからなる測定個所22、第3に光ファイバ線路31上に直列接続されたプローブ23aと、光ファイバ線路32上に直列接続されたプローブ23bからなる測定個所23の3箇所がある。   Now, taking the overflow pipe 101 as an example, the measurement location installed in the overflow pipe 101 is firstly a probe 21a connected in series on the optical fiber line 31 and a probe 21b connected in series on the optical fiber line 32. A measurement point 21 comprising: a second probe 22 a connected in series on the optical fiber line 31; a second measurement point 22 comprising a probe 22 b connected in series on the optical fiber line 32; and a third on the optical fiber line 31. There are three measurement points 23, which are a probe 23 a connected in series and a probe 23 b connected in series on the optical fiber line 32.

また、他のオーバーフロー管102に設置される測定個所24、25、26を構成するプローブ24a、25a、26a、プローブ24b、25b、26bもそれぞれ光ファイバ線路31、32上に直列接続されている。光ファイバ線路31、32はそれぞれOTDR41、42に接続されている。
OTDR41、42からは光ファイバ線路31、32に光パルスが入射されその後方散乱光強度を測定することにより、光ファイバ線路31、32の所定個所(本形態においては測定個所21・・26)における伝送特性の変化を知ることができる。
Probes 24a, 25a, 26a, and probes 24b, 25b, 26b constituting measurement points 24, 25, 26 installed in other overflow pipes 102 are also connected in series on the optical fiber lines 31, 32, respectively. The optical fiber lines 31 and 32 are connected to OTDRs 41 and 42, respectively.
A light pulse is incident on the optical fiber lines 31 and 32 from the OTDRs 41 and 42 and the intensity of the backscattered light is measured, so that the optical fiber lines 31 and 32 are measured at predetermined locations (in the present embodiment, measurement locations 21 and 26). Change in transmission characteristics can be known.

しかしながら、背景技術欄で前述したように後方散乱光は微弱であり、ノイズの影響を低減するため最適化処理としての平均化処理が有用であるが、その場合、光伝送特性値を出力する時間間隔が長くなってしまう。本実施形態においても最適化処理としての平均化処理を実施しているが以下に説明するように光伝送測定値を出力する時間間隔を短縮している。   However, as described above in the Background Art section, the backscattered light is weak, and an averaging process as an optimization process is useful to reduce the influence of noise. In this case, the time for outputting the optical transmission characteristic value The interval will be longer. In this embodiment, the averaging process is performed as an optimization process, but the time interval for outputting the optical transmission measurement value is shortened as described below.

即ち、OTDR41は、光ファイバ線路31、プローブ21a・・26aからなる第1の光伝送系統の光伝送特性を時刻Aを始点に時間間隔t1で測定し、時間間隔t2での平均化処理した値の出力を行う。
他方、OTDR42は、光ファイバ線路32、プローブ21b・・26bからなる第2の光伝送系統の光伝送特性を時刻Aからt2/2だけ遅れた時刻Bを始点に時間間隔t1で測定し、時間間隔t2での平均化処理した値の出力を行う。すると、2つのOTDR41、42からの出力を合せて考えると出力の時間間隔はt2/2となり時間間隔を半分に短縮できる。
この状態を模式的に示したのが図2であり、図2において線図51はOTDR41の測定値、線図52はOTDR41の出力値、線図53はOTDR42の測定値、線図54はOTDR42の出力値である。なお、本実施の形態のおいては、光伝送系統を2つとしたが、光伝送系統の数を増やせばそれだけ出力の時間間隔を短縮できる。
In other words, the OTDR 41 measures the optical transmission characteristics of the first optical transmission system including the optical fiber line 31 and the probes 21a... 26a at the time interval t1 starting from the time A, and is an averaged value at the time interval t2. Is output.
On the other hand, the OTDR 42 measures the optical transmission characteristics of the second optical transmission system composed of the optical fiber line 32 and the probes 21b... 26b at a time interval t1 starting from a time B delayed by t2 / 2 from the time A. The averaged value at the interval t2 is output. Then, when the outputs from the two OTDRs 41 and 42 are considered together, the output time interval is t2 / 2, and the time interval can be reduced to half.
FIG. 2 schematically shows this state. In FIG. 2, a diagram 51 is a measured value of OTDR 41, a diagram 52 is an output value of OTDR 41, a diagram 53 is a measured value of OTDR 42, and a diagram 54 is OTDR 42. Is the output value. In this embodiment, the number of optical transmission systems is two. However, if the number of optical transmission systems is increased, the output time interval can be shortened accordingly.

次に、一つのオーバーフロー管、例えばオーバーフロー管101内の測定個所21、22、23の設置の仕方について説明する。
図3に示すように、オーバーフロー管101にはその上流側には管底からH1の高さに測定個所21が設置され、測定個所21より下流側に管底からH1の高さに測定個所22が設置され、測定個所22の鉛直上側の管底からH2の高さに測定個所23が設置されている。
Next, how to install the measurement locations 21, 22, and 23 in one overflow pipe, for example, the overflow pipe 101 will be described.
As shown in FIG. 3, the overflow pipe 101 is provided with a measurement location 21 at the height H1 from the bottom of the tube on the upstream side, and the measurement location 22 at a height H1 from the bottom of the tube downstream of the measurement location 21. Is installed, and a measurement location 23 is installed at a height of H2 from the bottom of the tube vertically above the measurement location 22.

今、オーバーフローによる下水流が発生したとすると、下水流はまず測定個所21の光伝送特性を変化させ(以下、作動と呼ぶ)、所定時間t3後に、測定個所22のみ、あるいは測定個所22および23を作動させる。
本実施形態においては、OTDR41からの出力時間間隔が短縮されているので比較的短時間である所定時間t3内の変化を出力することができる。
そうすると、測定個所21の作動時刻と測定個所22などの作動時刻の差を知ることができる。これにより測定個所21と測定個所22などの距離は既知であるから下水流の速度を知ることができる。また、下水流の水位が測定個所22より上かつ測定個所23より下である場合は下水流は測定個所22のみを作動させ、水位が測定個所23よりも上の場合は測定個所22および23を作動させるので、作動した測定個所が22のみなのか測定箇所22および23の両方なのかを検知することにより下水流の水位を知ることができる。
その結果、オーバーフロー管101の断面のディメンジョンは既知なので下水流の流量を知ることができる。
なお、本実施形態では測定個所を3箇所としたが、測定個所の数、特に下流側に設置される測定個所の数を増やし、様々な高さに設置すれば流量検知の分解能を向上させることができる。
Now, assuming that a sewage flow due to overflow has occurred, the sewage flow first changes the optical transmission characteristics of the measurement location 21 (hereinafter referred to as operation), and after a predetermined time t3, only the measurement location 22 or the measurement locations 22 and 23. Is activated.
In the present embodiment, since the output time interval from the OTDR 41 is shortened, a change within the predetermined time t3 that is a relatively short time can be output.
Then, the difference between the operation time of the measurement location 21 and the operation time of the measurement location 22 can be known. Thereby, since the distance between the measurement location 21 and the measurement location 22 is known, the speed of the sewage flow can be known. When the water level of the sewage flow is above the measurement point 22 and below the measurement point 23, the sewage flow activates only the measurement point 22, and when the water level is above the measurement point 23, the measurement points 22 and 23 are set. Since it is operated, it is possible to know the water level of the sewage flow by detecting whether only 22 measurement points are operated or both measurement points 22 and 23.
As a result, since the dimension of the cross section of the overflow pipe 101 is known, the flow rate of the sewage flow can be known.
In this embodiment, the number of measurement points is three. However, if the number of measurement points, especially the number of measurement points installed downstream, is increased and installed at various heights, the resolution of flow rate detection can be improved. Can do.

次に、測定個所の構造について説明する。図4に示すように、測定個所21は支持具201、202に2本の光ファイバ211、212が巻回されプローブ21a、21bを構成している。光ファイバ211、212はそれぞれ光ファイバ線路31、32に直列接続されている。
図5に示すように支持具202は固定され、支持具201はフロート220と連結して可動である。水位の上昇に伴いフロート220、支持具201が上昇すれば支持具201、202に巻回されたプローブ21a、21bは変形し、マクロベンドによる伝送損失の増加を生じてOTDR41、42により検知が可能となる。
Next, the structure of the measurement location will be described. As shown in FIG. 4, in the measurement location 21, two optical fibers 211 and 212 are wound around supports 201 and 202 to form probes 21a and 21b. The optical fibers 211 and 212 are connected in series to the optical fiber lines 31 and 32, respectively.
As shown in FIG. 5, the support tool 202 is fixed, and the support tool 201 is connected to the float 220 and is movable. If the float 220 and the support tool 201 rise as the water level rises, the probes 21a and 21b wound around the support tools 201 and 202 are deformed, causing an increase in transmission loss due to macrobending and being detected by the OTDRs 41 and 42. It becomes.

このようにして、本実施形態においては、光伝送特性の変化を出力する時間間隔を短くしたため、流速や流量の検知も可能となり、下水道のオーバーフローを監視するのに好適な検知装置を実現している。   In this way, in the present embodiment, the time interval for outputting the change in the optical transmission characteristics is shortened, so that the flow velocity and flow rate can be detected, and a detection device suitable for monitoring the overflow of the sewer is realized. Yes.

その他の実施例を以下に説明する。
まず、光伝送特性の変化を出力する時間間隔を短くするために、複数本の光ファイバ線路を用いる代わりに1本の光ファイバ線路に波長の異なる光を伝播させ波長分割多重により複数の伝送系統を構成してもよい。この場合、例えば図6に示すようにOTDR41、42、光合分波器50、光ファイバ線路31、測定個所27、28を備えた検知装置によって実現される。
Other embodiments will be described below.
First, in order to shorten the time interval for outputting the change in the optical transmission characteristics, instead of using a plurality of optical fiber lines, light having different wavelengths is propagated to one optical fiber line, and a plurality of transmission systems are transmitted by wavelength division multiplexing. May be configured. In this case, for example, as shown in FIG. 6, it is realized by a detection device including OTDRs 41 and 42, an optical multiplexer / demultiplexer 50, an optical fiber line 31, and measurement points 27 and 28.

また、検知装置は出力値の最適化処理を行わないものであってもよい。例えば図7に示すように、第一の光伝送測定器は測定した都度その測定値をそのまま出力し(線図55)、第2の光伝送測定器も測定した都度その測定値をそのまま出力する(線図56)場合であっても、その出力する時刻を異ならせることで出力時間間隔を短縮することができる。   Further, the detection device may not perform an output value optimization process. For example, as shown in FIG. 7, the first optical transmission measuring device outputs the measured value as it is every time it is measured (diagram 55), and the second optical transmission measuring device also outputs the measured value as it is every time it is measured. (Diagram 56) Even in the case, the output time interval can be shortened by changing the output time.

さらに、伝送系統を1つしか設けない場合であっても、図8に示すよう、複数回光伝送特性の測定を行い、1回目測定値から5回目測定値までを最適化処理した出力値500の出力を行い、以降測定値5回分を最適化処理した出力値501・・の出力を繰り返すとともに、3回目測定値から7回目測定値までを最適化処理した出力値510の出力を行い以降測定値5回分を最適化処理した出力値511・・の出力を繰り返すことによっても最適化処理と出力時間間隔の短縮を両立させることができる。   Further, even if only one transmission system is provided, as shown in FIG. 8, the output value 500 is obtained by measuring the optical transmission characteristics a plurality of times and optimizing the first measurement value to the fifth measurement value. , And output the output value 501... That has been optimized for five measurement values thereafter, and output the output value 510 that has been optimized from the third measurement value to the seventh measurement value. It is also possible to achieve both optimization processing and shortening of the output time interval by repeating output of output values 511.

また、最適化処理については、前述した平均化処理のほかに、複数の測定値の中から、中央値を選択して出力するもの、最頻値を出力するもの、所定の範囲外の測定値を無視するもの、またはこれらの組み合わせなど種々の手法が採用可能である。   As for the optimization process, in addition to the averaging process described above, one that outputs a median value selected from a plurality of measurement values, one that outputs a mode value, or a measurement value outside a predetermined range Various methods such as a method that ignores the above or a combination thereof can be adopted.

さらに光伝送特性測定器としては図9に示すようにOTDRではなく光源45、46およびパワーメータ43、44を使用してもよい。   Furthermore, as an optical transmission characteristic measuring device, light sources 45 and 46 and power meters 43 and 44 may be used instead of the OTDR as shown in FIG.

測定個所の構成については、前述した構成の他に、図10に示すように、光ファイバテープ心線213を支持具201、202に巻回し、光ファイバテープ心線213を構成する光ファイバの一端を適宜短絡させても構成できる。
また、必ずしも巻回部を設けなくても、図11(a)に示すように光ファイバ230の直線部を可動部により押圧して応力を負荷するもの、図11(b)のように可動部により引っ張って応力を負荷するものなど種々の構成が採用できる。
Regarding the configuration of the measurement location, in addition to the configuration described above, as shown in FIG. 10, one end of the optical fiber constituting the optical fiber tape core wire 213 is formed by winding the optical fiber tape core wire 213 around the support tools 201 and 202. It can be configured by short-circuiting as appropriate.
In addition, even if a winding part is not necessarily provided, the linear part of the optical fiber 230 is pressed by the movable part as shown in FIG. 11 (a) and stress is applied, and the movable part as shown in FIG. 11 (b). Various configurations can be employed, such as those that are pulled to apply stress.

本発明の検知装置を浸水検知に用いる場合、測定個所の配置は以下のようなものでもよい。即ち、図12に示すように、2つ測定個所21、22を流れ方向の異なる個所に設置すれば、流量の検知には不向きだが流速の検知は可能である。また、図13に示すように液体の溜まる個所に鉛直方向に高低差をもって測定個所21、22を設置すれば、液体レベル、および液体レベルの上昇速度を検知することができる。   When the detection device of the present invention is used for inundation detection, the arrangement of the measurement points may be as follows. That is, as shown in FIG. 12, if the two measurement locations 21 and 22 are installed at locations with different flow directions, they are unsuitable for detecting the flow rate but can detect the flow velocity. Moreover, as shown in FIG. 13, if the measurement locations 21 and 22 are installed with a height difference in the vertical direction at the location where the liquid accumulates, the liquid level and the rising speed of the liquid level can be detected.

また、本発明に係る検知装置は浸水検知のみならず、蓋、扉などの開閉検知、温度検知などの種々の物理量の変化を検知する場合に適用可能である。   The detection device according to the present invention can be applied not only to detection of flooding but also to detection of changes in various physical quantities such as detection of opening / closing of lids, doors, etc., temperature detection and the like.

このように、本発明によれば、光伝送特性値の出力時間間隔を短縮したので、さまざまな場面に適用可能な検知装置を提供することができる。   As described above, according to the present invention, since the output time interval of the optical transmission characteristic value is shortened, it is possible to provide a detection device applicable to various scenes.

本発明に係る検知装置を示す模式図。The schematic diagram which shows the detection apparatus which concerns on this invention. 本発明に係る検知装置における測定、出力状態を示す概念図。The conceptual diagram which shows the measurement and output state in the detection apparatus based on this invention. 本発明に係る検知装置の測定箇所設置状態を示す模式図。The schematic diagram which shows the measurement location installation state of the detection apparatus which concerns on this invention. 本発明に係る検知装置の測定箇所の構成を示す模式図。The schematic diagram which shows the structure of the measurement location of the detection apparatus which concerns on this invention. 本発明に係る検知装置の測定箇所の構成を示す模式図。The schematic diagram which shows the structure of the measurement location of the detection apparatus which concerns on this invention. 本発明に係る検知装置を示す模式図。The schematic diagram which shows the detection apparatus which concerns on this invention. 本発明に係る検知装置における測定、出力状態を示す概念図。The conceptual diagram which shows the measurement and output state in the detection apparatus based on this invention. 本発明に係る検知装置における測定、出力状態を示す概念図。The conceptual diagram which shows the measurement and output state in the detection apparatus based on this invention. 本発明に係る検知装置を示す模式図。The schematic diagram which shows the detection apparatus which concerns on this invention. 本発明に係る検知装置の測定箇所の構成を示す模式図。The schematic diagram which shows the structure of the measurement location of the detection apparatus which concerns on this invention. 本発明に係る検知装置の測定箇所の構成を示す模式図。The schematic diagram which shows the structure of the measurement location of the detection apparatus which concerns on this invention. 本発明に係る検知装置の測定箇所設置状態を示す模式図。The schematic diagram which shows the measurement location installation state of the detection apparatus which concerns on this invention. 本発明に係る検知装置の測定箇所設置状態を示す模式図。The schematic diagram which shows the measurement location installation state of the detection apparatus which concerns on this invention. 従来の検知装置を示す模式図。The schematic diagram which shows the conventional detection apparatus. 従来の検知装置における測定、出力状態を示す概念図。The conceptual diagram which shows the measurement and output state in the conventional detection apparatus.

符号の説明Explanation of symbols

1 検知装置
2 OTDR
3 光ファイバ線路
4 測定箇所
5 測定線図
6 出力線図
8 出力値
9 測定値
10 ノイズ
11 下水管
12 系外
101 オーバーフロー管
102 オーバーフロー管
21 測定箇所
21a プローブ
21b プローブ
22 測定箇所
22a プローブ
22b プローブ
23 測定箇所
23a プローブ
23b プローブ
24 測定箇所
24a プローブ
24b プローブ
25 測定箇所
25a プローブ
25b プローブ
26 測定箇所
26a プローブ
26b プローブ
27 測定箇所
28 測定箇所
201 支持具
202 支持具
211 光ファイバ
212 光ファイバ
213 光ファイバテープ心線
220 フロート
230 光ファイバ
31 光ファイバ線路
32 光ファイバ線路
41 OTDR
42 OTDR
43 パワーメータ
44 パワーメータ
45 光源
46 光源
50 光合分波器
51 測定線図
52 出力線図
53 測定線図
54 出力線図
55 測定・出力線図
56 測定・出力線図
500 出力値
501 出力値
510 出力値
511 出力値
1 Detector 2 OTDR
DESCRIPTION OF SYMBOLS 3 Optical fiber line 4 Measurement location 5 Measurement diagram 6 Output diagram 8 Output value 9 Measurement value 10 Noise 11 Sewage pipe 12 Out-of-system 101 Overflow pipe 102 Overflow pipe 21 Measurement location 21a Probe 21b Probe 22 Measurement location 22a Probe 22b Probe 23 Measurement location 23a Probe 23b Probe 24 Measurement location 24a Probe 24b Probe 25 Measurement location 25a Probe 25b Probe 26 Measurement location 26a Probe 26b Probe 27 Measurement location 28 Measurement location 201 Support fixture 202 Support fixture 211 Optical fiber 212 Optical fiber 213 Optical fiber tape core Line 220 Float 230 Optical fiber 31 Optical fiber line 32 Optical fiber line 41 OTDR
42 OTDR
43 Power meter 44 Power meter 45 Light source 46 Light source 50 Optical multiplexer / demultiplexer 51 Measurement diagram 52 Output diagram 53 Measurement diagram 54 Output diagram 55 Measurement / output diagram 56 Measurement / output diagram 500 Output value 501 Output value 510 Output value 511 Output value

Claims (10)

光ファイバ線路と、光ファイバ線路に直接接続された測定個所とからなる光伝送系統を有し、物理量の変化による前記測定個所の光伝送特性の変化を測定し、前記物理量の変化を検知する検知装置であって、
一つの測定個所に対して複数の伝送系統と前記複数の伝送系統のそれぞれに設けた光伝送特性測定器を備え、それぞれの前記光伝送特性測定器は前記複数の伝送系統において同じ側に配置されて、互いに異なる時刻に前記測定個所の光伝送特性値を出力し、それぞれの前記光伝送特性値の出力を合わせて、光伝送特性値の出力の時間間隔を短縮化するとともに、
流路内に設置され、水の有無を測定可能な少なくとも第1の測定個所と第2の測定個所を備え、前記第1の測定個所は前記第2の測定個所よりも前記流路内の上流側に設置され、各測定個所の作動時刻の差と、前記各測定個所の距離とから、流速を測定可能であることを特徴とする検知装置。
An optical transmission system comprising an optical fiber line and a measurement point directly connected to the optical fiber line, and detecting a change in the physical quantity by measuring a change in the optical transmission characteristic of the measurement point due to a change in the physical quantity A device,
A plurality of transmission systems and an optical transmission characteristic measuring device provided in each of the plurality of transmission systems for one measurement location, and each of the optical transmission characteristic measuring devices is arranged on the same side in the plurality of transmission systems. Te, outputs the optical transmission characteristic values of the measuring points at different times from each other, the combined output of each of the optical transmission characteristic value, to shorten the time interval of the output of the optical transmission characteristic values with,
And at least a first measurement location and a second measurement location that are installed in the flow path and are capable of measuring the presence or absence of water, wherein the first measurement location is upstream of the second measurement location. A detection apparatus, which is installed on the side and capable of measuring a flow velocity from a difference in operating time of each measurement location and a distance between each measurement location.
請求項1に記載の検知装置であって、前記複数の伝送系統は、複数の光ファイバ線路であることを特徴とする検知装置。   The detection device according to claim 1, wherein the plurality of transmission systems are a plurality of optical fiber lines. 請求項1に記載の検知装置であって、前記複数の伝送系統は、波長分割多重によって一つの光ファイバ線路を伝播する波長の異なる伝送系統であることを特徴とする検知装置。 A detecting device according to claim 1, wherein the plurality of transmission lines, detecting device, characterized in that the different transmission systems having wavelengths propagating Thus one optical fiber line in wavelength division multiplexing. 請求項2または請求項3に記載の検知装置であって、前記光伝送特性測定器から出力される光伝送特性値は、所定時間内に測定された複数の測定値を最適化処理した値であることを特徴とする検知装置。   4. The detection device according to claim 2, wherein the optical transmission characteristic value output from the optical transmission characteristic measuring device is a value obtained by optimizing a plurality of measured values measured within a predetermined time. A detection device characterized by being. 請求項1に記載の検知装置であって、前記第2の測定個所はさらに複数の測定個所からなり、前記複数の測定個所のうち少なくとも2つの測定個所は、互いに鉛直方向に高低差をもって設置されることを特徴とする検知装置。   The detection apparatus according to claim 1, wherein the second measurement location further includes a plurality of measurement locations, and at least two of the plurality of measurement locations are installed with a height difference in the vertical direction. A detection device characterized by that. 請求項5に記載の検知装置であって、前記2つの測定個所は、液体が溜まる個所に鉛直方向に高低差をもって設置されることを特徴とする検知装置。   6. The detection device according to claim 5, wherein the two measurement locations are installed with a height difference in a vertical direction at a location where the liquid accumulates. 請求項1から請求項6いずれか一つに記載の検知装置であって、前記測定個所は、前記物理量の変化に応じて可動する可動部により光ファイバに応力を加え、前記応力により前記光ファイバに光伝送特性の変化を生じさせることを特徴とする検知装置。   7. The detection device according to claim 1, wherein the measurement portion applies stress to the optical fiber by a movable portion that is movable according to a change in the physical quantity, and the optical fiber is applied by the stress. A sensing device characterized by causing a change in optical transmission characteristics. 下水道のオーバーフロー管の上流側に設置された第1の測定個所と、A first measurement location installed upstream of the overflow pipe of the sewer,
前記オーバーフロー管の下流側に設置された第2の測定個所と、A second measurement location installed downstream of the overflow pipe;
前記第1および第2の測定個所のそれぞれに直接接続された光ファイバ線路とからなる光伝送系統を有し、An optical transmission system comprising an optical fiber line directly connected to each of the first and second measurement points;
前記光伝送系統は光伝送特性測定器を有し、The optical transmission system has an optical transmission characteristic measuring device,
前記光伝送特性測定器によって、前記第1および第2の測定個所における物理量の変化を各測定個所における光伝送特性の変化として測定する物理量変化の検知方法であって、A physical quantity change detection method for measuring a change in physical quantity at the first and second measurement points as a change in optical transmission characteristic at each measurement point by the optical transmission characteristic measuring device,
前記光伝送系統および前記光伝送特性測定器は、前記各測定個所について複数あって、The optical transmission system and the optical transmission characteristic measuring instrument are plural for each measurement point,
かつ複数の前記光伝送系統それぞれの前記光伝送特性測定器は互いに異なる時刻に前記測定個所の光伝送特性値を出力を合わせて、光伝送特性値の出力の時間間隔を短縮化するとともに、And the optical transmission characteristic measuring device of each of the plurality of optical transmission systems is adapted to output the optical transmission characteristic value of the measurement location at different times, and shorten the time interval of output of the optical transmission characteristic value,
下水道のオーバーフローによる下水流が前記第1および第2の測定個所を作動させ、前記各測定個所の作動時刻の差と、予め知られた前記各測定個所の距離とから、下水流の流速を測定することを特徴とする物理量変化の検知方法。The sewer flow caused by the overflow of the sewer operates the first and second measurement points, and the flow velocity of the sewer flow is measured from the difference between the operation times of the measurement points and the distance between the measurement points known in advance. A method for detecting a change in physical quantity, characterized by:
請求項8に記載の物理量変化の検知方法であって、The physical quantity change detection method according to claim 8,
前記第1または第2の測定個所のいずれかの上方に第3の測定個所を有し、前記第1、第2、第3の測定個所の物理量変化によって、下水流の水位を測定することを特徴とする物理量変化の検知方法。Having a third measurement location above either the first or second measurement location, and measuring the water level of the sewage flow according to the physical quantity change of the first, second, or third measurement location. A method for detecting changes in physical quantities.
請求項9に記載の物理量変化の検知方法であって、The physical quantity change detection method according to claim 9,
測定された下水流の水位と、予め知られたオーバーフロー管の断面のディメンジョンとから、下水流の流量を測定することを特徴とする物理量変化の検知方法。A physical quantity change detection method, comprising: measuring a flow rate of a sewage flow from a measured water level of the sewage flow and a cross-sectional dimension of a known overflow pipe.
JP2005010869A 2005-01-18 2005-01-18 Detection device Expired - Fee Related JP4763296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010869A JP4763296B2 (en) 2005-01-18 2005-01-18 Detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010869A JP4763296B2 (en) 2005-01-18 2005-01-18 Detection device

Publications (2)

Publication Number Publication Date
JP2006200950A JP2006200950A (en) 2006-08-03
JP4763296B2 true JP4763296B2 (en) 2011-08-31

Family

ID=36959098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010869A Expired - Fee Related JP4763296B2 (en) 2005-01-18 2005-01-18 Detection device

Country Status (1)

Country Link
JP (1) JP4763296B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557021B2 (en) * 2009-08-26 2014-07-23 株式会社ジェイテクト Rotation angle detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054013A (en) * 1998-07-30 2000-02-22 Kobe Steel Ltd Method for grasping condition in inner part of blast furface and vertically horizontal sonde
JP2001305017A (en) * 2000-04-21 2001-10-31 Ando Electric Co Ltd Optical pulse testing device
JP2002279575A (en) * 2001-03-22 2002-09-27 Sumitomo Electric Ind Ltd Condition change monitoring system

Also Published As

Publication number Publication date
JP2006200950A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
US6876786B2 (en) Fiber-optic sensing system for distributed detection and localization of alarm conditions
CN101949745B (en) Monitoring system of internal temperature and stress of power transformer winding and monitoring method thereof
US9062965B2 (en) Multi-point measuring apparatus and method of FBG sensor having multiple delaying fibers
EA028593B1 (en) Method and apparatus for monitoring a fluid carrying conduit
WO2019094474A1 (en) Measurement of flow properties in pipelines
US20130333476A1 (en) Method of measuring acoustic distribution and distributed acoustic sensor
WO2014101754A1 (en) Multi-core optical fibre, sensing device adopting multi-core optical fibre and running method therefor
CA2800215A1 (en) Fluid flow monitor
WO2019022084A1 (en) Sewer monitoring system and method for implementing same
EA032547B1 (en) Optical fiber vibration measurement system in multiphase flows and related method to monitor multiphase flows
CN104596576A (en) Optical fiber temperature sensing and vibration sensing collineation fusion system and monitoring method
Niklès et al. Greatly extended distance pipeline monitoring using fibre optics
Handerek et al. Improved optical power budget in distributed acoustic sensing using enhanced scattering optical fibre
JP4763296B2 (en) Detection device
CN113375879B (en) Multi-parameter multi-mode high-precision pipeline leakage monitoring and positioning system
JP3641562B2 (en) Cable tunnel monitoring device
Boffi et al. Coherent optical fiber interferometric sensor for incipient cavitation index detection
KR102197696B1 (en) Structure health monitoring system using optic fiber-based hybrid nerve network sensor, and method for the same
JP5264336B2 (en) Flood detection module and flood detection method using the same
CN115507817A (en) Underground pipe gallery duct piece settlement detection method based on distributed optical fiber sensor
JP4728412B2 (en) OTDR measuring instrument, optical communication line monitoring system, and optical communication line monitoring method
CN107607066B (en) Differential detection method and system for ponding area in underground space building
KR20160005847A (en) Fiber Optic Raman OTDR with Fiber Bragg Gratings for Simultaneous Measurement of Temperature and Strain and Method for Sensing thereof
US20140354973A1 (en) Structural health monitoring method and apparatus based on optical fiber bend loss measurement
KR101607667B1 (en) An underground subsidence position detection system using fiber optic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees