JP2011090332A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2011090332A
JP2011090332A JP2011000364A JP2011000364A JP2011090332A JP 2011090332 A JP2011090332 A JP 2011090332A JP 2011000364 A JP2011000364 A JP 2011000364A JP 2011000364 A JP2011000364 A JP 2011000364A JP 2011090332 A JP2011090332 A JP 2011090332A
Authority
JP
Japan
Prior art keywords
gap
signal electrode
electrode
microwave
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011000364A
Other languages
Japanese (ja)
Other versions
JP5045821B2 (en
Inventor
Masaki Sugiyama
昌樹 杉山
Tadao Nakazawa
忠雄 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2011000364A priority Critical patent/JP5045821B2/en
Publication of JP2011090332A publication Critical patent/JP2011090332A/en
Application granted granted Critical
Publication of JP5045821B2 publication Critical patent/JP5045821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-speed and high-performance optical modulator capable of reducing a driving voltage by securing a modulation band. <P>SOLUTION: The optical modulator includes an optical waveguide, a signal electrode, a ground electrode, and a ridge. The optical waveguide is formed on a lithium niobate substrate. The signal electrode is formed near the optical waveguide such that a range of characteristics impedance is 45 to 50 Ω, a reflection amount of a microwave is -20 dB or lower, and an operation length is 50 mm or more. The ground electrodes are formed on both sides of the signal electrode with thicknesses of 28 μm or more. The ridge has a height of 6 μm to 8 μm such that an effective refractive index when the signal electrode is formed in an upper part and the microwave travels through the signal electrode is equal to that when light travels through the optical waveguide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は光変調装置に関し、特に電気光学効果を有する結晶基板を用いた光変調装置に関する。   The present invention relates to a light modulation device, and more particularly to a light modulation device using a crystal substrate having an electro-optic effect.

マルチメディアの進展に伴い、高速・大容量の情報を遠距離まで低コストで伝送するために、光通信ネットワークの構築が強く要望されている。この光通信ネットワークを実現するための心臓部にあたる重要なデバイスとして光変調器がある。   With the progress of multimedia, there is a strong demand for the construction of an optical communication network in order to transmit high-speed and large-capacity information to a long distance at a low cost. There is an optical modulator as an important device as the heart for realizing the optical communication network.

光変調器は、基板上に光導波路を形成し、その光導波路にかける電圧によって、光導波路上での光の位相を変化させる外部変調を行って、電気信号を光信号に変換するデバイスである。   An optical modulator is a device that converts an electrical signal into an optical signal by forming an optical waveguide on a substrate and performing external modulation that changes the phase of light on the optical waveguide by a voltage applied to the optical waveguide. .

一方、近年になって、従来の10Gb/sクラスの光通信から、さらなる高速・大容量の通信として、40Gb/sクラスへの光通信システムの開発が進められている(例えば、DWDM(Dense Wavelength Division Multiplex)のシステムなど)。   On the other hand, in recent years, optical communication systems for 40 Gb / s class have been developed from conventional 10 Gb / s class optical communication to 40 Gb / s class as further high speed and large capacity communication (for example, DWDM (Dense Wavelength Division Multiplex) system).

このような超高速・大容量のシステムを実現するために、光変調器では、例えば、40Gb/sの光を発生するためには、従来の10Gb/s通信用に比べて光変調の速度を4倍速くする必要がある。また、光変調器を駆動させるためには、超高速な電子回路は大きな電圧を発生できないので、光変調器の駆動電圧は小さくしなければならない。   In order to realize such an ultra-high-speed and large-capacity system, for example, in order to generate 40 Gb / s light, the optical modulator has a light modulation speed higher than that for conventional 10 Gb / s communication. Need to be 4 times faster. In addition, in order to drive the optical modulator, an ultrahigh-speed electronic circuit cannot generate a large voltage, so the driving voltage of the optical modulator must be reduced.

しかし、上記のような光変調器は、駆動電圧と動作速度(変調帯域)はトレードオフの関係にある。すなわち、光導波路の長さを短くすると(光導波路に電界を与えて作用させるための信号電極の長さを短くすると)電気的容量が減って動作速度は速くなるが、同じ電圧での位相変化は少なくなる。このため、十分な変調を得るためには、駆動電圧を大きくしなければならない、といった矛盾がでてくる。このように、従来の光変調器では、一定以上の高速化や低電圧化が困難であった。   However, in the optical modulator as described above, the drive voltage and the operation speed (modulation band) are in a trade-off relationship. That is, when the length of the optical waveguide is shortened (when the length of the signal electrode for applying an electric field to the optical waveguide is shortened), the electric capacity is reduced and the operation speed is increased, but the phase change at the same voltage. Will be less. For this reason, in order to obtain sufficient modulation, a contradiction arises in that the drive voltage must be increased. Thus, it has been difficult for conventional optical modulators to achieve a certain speed or voltage reduction.

本発明はこのような点に鑑みてなされたものであり、変調帯域を確保し、駆動電圧の低減化を実現した、高速・高性能な光変調装置を提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a high-speed and high-performance optical modulation device that secures a modulation band and realizes a reduction in drive voltage.

上記課題を解決するために、光変調装置が提供される。この光変調装置は、ニオブ酸リチウム基板上に形成された光導波路と、特性インピーダンスの範囲を45〜50Ωの範囲に有してマイクロ波の反射量を−20dB以下とし、作用長が50mm以上である、前記光導波路の近傍に形成された信号電極と、厚さが11μm以上であって、前記信号電極の両側に形成された接地電極と、前記信号電極が上部に形成され、前記信号電極を前記マイクロ波が進行するときの実効屈折率が、前記光導波路を光が進行するときの実効屈折率と同一となる、6μm〜8μmの高さを有するリッジとを備える。   In order to solve the above problems, an optical modulation device is provided. This light modulation device has an optical waveguide formed on a lithium niobate substrate, a characteristic impedance range of 45 to 50Ω, a microwave reflection amount of −20 dB or less, and an action length of 50 mm or more. A signal electrode formed in the vicinity of the optical waveguide, a ground electrode having a thickness of 11 μm or more and formed on both sides of the signal electrode, the signal electrode formed on the upper portion, and the signal electrode A ridge having a height of 6 μm to 8 μm, wherein an effective refractive index when the microwave travels is the same as an effective refractive index when light travels through the optical waveguide.

低減化された駆動電圧で、十分な変調帯域を確保して、高速・高性能の光変調を行うことが可能になる。   With a reduced driving voltage, it is possible to secure a sufficient modulation band and perform high-speed and high-performance optical modulation.

光変調装置の平面図である。It is a top view of a light modulation device. 光変調装置のA部の断面図である。It is sectional drawing of the A section of a light modulation apparatus. 光変調装置に対する従来の問題点を示す図である。It is a figure which shows the conventional problem with respect to an optical modulation apparatus. 信号電極の単位長さあたりのマイクロ波の減衰量とギャップとの関係を示す図である。It is a figure which shows the relationship between the attenuation amount of the microwave per unit length of a signal electrode, and a gap. 駆動電圧×作用長とギャップとの関係を示す図である。It is a figure which shows the relationship between a drive voltage x action length, and a gap. マイクロ波の減衰量を一定(変調帯域を一定)とした場合の作用長とギャップとの関係を示す図である。It is a figure which shows the relationship between an action length and a gap at the time of making attenuation amount of a microwave constant (a modulation band is constant). 図6に示す作用長にもとづく駆動電圧とギャップとの関係を示す図である。It is a figure which shows the relationship between the drive voltage and gap based on the action length shown in FIG. 従来のギャップと作用長との関係を示す図である。It is a figure which shows the relationship between the conventional gap and action length. 本発明のギャップと作用長との関係を示す図である。It is a figure which shows the relationship between the gap and action length of this invention. マイクロ波反射と特性インピーダンスの関係を示す図である。It is a figure which shows the relationship between a microwave reflection and characteristic impedance. マイクロ波の実効屈折率とギャップとの関係を示す図である。It is a figure which shows the relationship between the effective refractive index of a microwave, and a gap. マイクロ波の実効屈折率とギャップとの関係を示す図である。It is a figure which shows the relationship between the effective refractive index of a microwave, and a gap. マイクロ波の実効屈折率とギャップとの関係を示す図である。It is a figure which shows the relationship between the effective refractive index of a microwave, and a gap. 特性インピーダンスとギャップとの関係を示す図である。It is a figure which shows the relationship between characteristic impedance and a gap. 特性インピーダンスとギャップとの関係を示す図である。It is a figure which shows the relationship between characteristic impedance and a gap. 特性インピーダンスとギャップとの関係を示す図である。It is a figure which shows the relationship between characteristic impedance and a gap. ギャップと接地電極厚との関係を示す図である。It is a figure which shows the relationship between a gap and the thickness of a ground electrode. ギャップと接地電極厚との関係を示す図である。It is a figure which shows the relationship between a gap and the thickness of a ground electrode. ギャップと接地電極厚との関係を示す図である。It is a figure which shows the relationship between a gap and the thickness of a ground electrode. 実効屈折率neff=2.15の場合の特性インピーダンスZ0=45〜55Ωを満たすギャップと接地電極厚との関係を示す図である。It is a figure which shows the relationship between the gap which satisfy | fills characteristic impedance Z0 = 45-55ohm in the case of effective refractive index neff = 2.15, and ground electrode thickness. 本発明のギャップ、接地電極厚、駆動電圧の関係を示す図である。It is a figure which shows the relationship of the gap of this invention, the ground electrode thickness, and a drive voltage. 本発明のギャップ、接地電極厚、作用長の関係を示す図である。It is a figure which shows the relationship of the gap of this invention, the ground electrode thickness, and action length. 従来の断面構造を示す図である。It is a figure which shows the conventional cross-section. シングル電極構造の光変調装置の平面図である。It is a top view of the light modulation apparatus of a single electrode structure.

以下、本発明の実施の形態を図面を参照して説明する。図1は光変調装置の平面図であり、図2は光変調装置のA部の断面図である。光変調装置10は、電気光学効果(電界をかけると屈折率が変化する現象)を有するニオブ酸リチウム(LiNbO3:以下、LN)等を用いた結晶基板上に、光導波路11で形成されたマッハツェンダ干渉計を介して、光導波路11内を伝搬する光を制御する装置である。また、光導波路11の近傍には信号電極12が形成され、信号電極12の両側に接地電極13が形成される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of the light modulation device, and FIG. 2 is a cross-sectional view of part A of the light modulation device. The light modulation device 10 is formed of an optical waveguide 11 on a crystal substrate using lithium niobate (LiNbO 3 : hereinafter referred to as LN) having an electro-optic effect (a phenomenon in which a refractive index changes when an electric field is applied). It is a device that controls light propagating in the optical waveguide 11 via a Mach-Zehnder interferometer. A signal electrode 12 is formed in the vicinity of the optical waveguide 11, and a ground electrode 13 is formed on both sides of the signal electrode 12.

光変調装置10では、LN結晶(電気光学効果が大きく、光導波路を形成しやすいなどの利点を持つ)基板上の一部に金属膜を形成し熱拡散させる、またはパターニング後に安息香酸中でプロトン交換するなどして、光導波路11を形成する。   In the light modulation device 10, a metal film is formed on a part of the LN crystal (having advantages such as a large electro-optic effect and easy formation of an optical waveguide) and thermally diffused, or protons in benzoic acid after patterning. The optical waveguide 11 is formed by replacement.

光導波路11は、2つの平行導波路11a、11bに分岐され、平行導波路11a、11b上には、それぞれ2本の信号電極12が設けられている(デュアル電極構造である)。なお、平行導波路11a、11bの長さ(またはこの部分の信号電極12の長さ)を作用長Lとする。   The optical waveguide 11 is branched into two parallel waveguides 11a and 11b, and two signal electrodes 12 are provided on the parallel waveguides 11a and 11b (dual electrode structure). The length of the parallel waveguides 11a and 11b (or the length of the signal electrode 12 in this portion) is defined as an action length L.

また、光変調装置10は、Z−cutのLN結晶を用いる構成なので、光導波路11中を伝搬する光が信号電極12、接地電極13によって吸収されるのを防ぐために、基板と電極の間にバッファ層14を設けている。バッファ層14としては、例えば厚さ0.2〜1μmのSiO2を用いる。 Further, since the light modulation device 10 uses a Z-cut LN crystal, in order to prevent light propagating through the optical waveguide 11 from being absorbed by the signal electrode 12 and the ground electrode 13, the light modulation device 10 is interposed between the substrate and the electrode. A buffer layer 14 is provided. As the buffer layer 14, for example, SiO 2 having a thickness of 0.2 to 1 μm is used.

このような構成の光変調装置10では、信号電極12の特性インピーダンスZ0の範囲を、マイクロ波の反射が一定値以下となるように定め、光とマイクロ波の位相を整合した場合に、信号電極12と接地電極13のギャップSが50μm以上、かつ信号電極12の作用長Lが50mm以上であり、駆動電圧が1.7V以下で40Gb/s以上の光変調を行うものである。なお、以降の説明のために、接地電極13の厚みをHg、リッジ15の高さをHrと符号を付ける。   In the light modulation device 10 having such a configuration, the range of the characteristic impedance Z0 of the signal electrode 12 is determined so that the reflection of the microwave is not more than a certain value, and the signal electrode 12 is matched when the phases of the light and the microwave are matched. 12 and the ground electrode 13 have a gap S of 50 μm or more, the working length L of the signal electrode 12 is 50 mm or more, a drive voltage of 1.7 V or less, and light modulation of 40 Gb / s or more is performed. For the following description, the thickness of the ground electrode 13 is denoted by Hg, and the height of the ridge 15 is denoted by Hr.

次に光変調装置10の設計方法について詳しく説明する。最初に、光変調装置の動作概要を含め、本発明が解決すべき問題点について説明する。光変調装置を高速で駆動する場合は、信号電極12と接地電極13を終端抵抗で接続して進行波電極とし、2本の信号電極12に対して、図1に示した信号源Sa、Sbからそれぞれ相補信号を入力する。   Next, a method for designing the light modulation device 10 will be described in detail. First, problems to be solved by the present invention will be described, including an outline of the operation of the light modulation device. When the light modulation device is driven at high speed, the signal electrode 12 and the ground electrode 13 are connected by a terminating resistor to form a traveling wave electrode, and the signal sources Sa and Sb shown in FIG. The complementary signals are input respectively.

このとき、光導波路11に与えられる電界によって平行導波路11a、11bの屈折率がそれぞれ+Δn、−Δnのように変化し、平行導波路11a、11b間の位相差が変化するため、出射導波路から強度変調された信号光が出力される(平行導波路11a、11bの位相差が0°なら光は強め合い、位相差がπならば光は弱め合う)。   At this time, the refractive index of the parallel waveguides 11a and 11b changes as + Δn and −Δn, respectively, due to the electric field applied to the optical waveguide 11, and the phase difference between the parallel waveguides 11a and 11b changes. Signal light whose intensity is modulated is output (if the phase difference between the parallel waveguides 11a and 11b is 0 °, the light is strengthened, and if the phase difference is π, the light is weakened).

また、光の変調帯域をできるだけ広くして広帯域の光応答特性を得るためには、光とマイクロ波の実効屈折率を一致させ、光とマイクロ波の位相を整合させる必要がある。LNの場合、光の実効屈折率が2.15であるのに対し、マイクロ波の実効屈折率はその倍近くにもなる。このため、図2に示したように、光導波路11の近傍をエッチングしてリッジ形状にしたり、接地電極13を厚くするなどして、マイクロ波の実効屈折率を光の屈折率の2.15まで下げる工夫を行うことになる。   In addition, in order to obtain a broadband optical response characteristic by making the modulation band of light as wide as possible, it is necessary to match the effective refractive indexes of light and microwave and match the phases of light and microwave. In the case of LN, the effective refractive index of light is 2.15, whereas the effective refractive index of microwaves is nearly twice that. Therefore, as shown in FIG. 2, the effective refractive index of the microwave is set to 2.15 of the refractive index of the light by etching the vicinity of the optical waveguide 11 to form a ridge or increasing the thickness of the ground electrode 13. It will be devised to lower.

一方、40Gb/sを超える高速信号による駆動では、光変調装置を駆動するためのドライバアンプの出力が小さいため、駆動電圧は低減しなければならない。この場合、従来では、光導波路11に対して低電圧で電界を強く与えようとして、信号電極12と接地電極13をできるだけ接近させて、ギャップSを狭くしていた(従来のギャップS≒30μm)。   On the other hand, in driving with a high-speed signal exceeding 40 Gb / s, the output of the driver amplifier for driving the optical modulation device is small, so the driving voltage must be reduced. In this case, conventionally, the signal electrode 12 and the ground electrode 13 are brought as close as possible to narrow the gap S in order to give a strong electric field to the optical waveguide 11 at a low voltage (conventional gap S≈30 μm). .

ところが、ギャップSを狭くしてマイクロ波を入力すると、導体損のために、マイクロ波の高周波成分の損失が増大するため(高周波が通らなくなる)、光の広帯域化が阻まれてしまう。したがって、このギャップSを狭くした状態で変調帯域を確保しようとすると、高周波成分損失の低減化のため、今度は作用長Lを短くする必要がでてくるが、作用長Lが短いと光の位相変化は小さくなるため、駆動電圧を大きくしなければならないといった矛盾が生じてしまう。   However, if the microwave is input with the gap S narrowed, the loss of the high frequency component of the microwave increases due to the conductor loss (the high frequency cannot be transmitted), and the optical broadband is prevented. Therefore, if an attempt is made to secure the modulation band with the gap S narrowed, it is necessary to shorten the action length L this time in order to reduce high-frequency component loss. Since the phase change is small, a contradiction arises in that the drive voltage must be increased.

図3は光変調装置に対する従来の問題点を示す図である。
〔S1〕従来では、まず、駆動電圧を小さくしようとする。
〔S2〕駆動電圧を小さくした分、光導波路11に強い電界を与えるために、ギャップSを狭くする。
〔S3〕ギャップSが狭いと導体損の影響が大きくなるため、高周波の損質が大きくなる。
〔S4〕導体損の影響を小さくするため、作用長Lを短くする。
〔S5〕作用長Lが短いため、光の位相変化が小さくなってしまう。
〔S6〕光の位相変化を大きくするため、駆動電圧を大きくしなければならず、ステップS1と矛盾が生じる。
FIG. 3 is a diagram showing a conventional problem with the light modulation device.
[S1] Conventionally, an attempt is first made to reduce the drive voltage.
[S2] In order to apply a strong electric field to the optical waveguide 11 by reducing the drive voltage, the gap S is narrowed.
[S3] If the gap S is narrow, the influence of the conductor loss increases, so the high-frequency loss quality increases.
[S4] The action length L is shortened in order to reduce the influence of the conductor loss.
[S5] Since the action length L is short, the phase change of light becomes small.
[S6] In order to increase the phase change of light, the drive voltage must be increased, which contradicts step S1.

このように、従来の光デバイス(特に40Gb/s以上の高速光デバイス)の設計方針では、最適な装置を開発することが困難であった。本発明では、光変調デバイスに対する、これらパラメータの最適範囲を見つけて、従来と比べて、ギャップS及び作用長Lを伸ばすことで、駆動電圧及びマイクロ波の高周波成分損失を低減化して、高速・高性能化を実現した光変調装置10を提供するものである。   As described above, it has been difficult to develop an optimum apparatus with the design policy of conventional optical devices (particularly, high-speed optical devices of 40 Gb / s or more). In the present invention, the optimum range of these parameters for the light modulation device is found, and the gap S and the action length L are increased compared to the conventional case, thereby reducing the high-frequency component loss of the drive voltage and the microwave. An optical modulation device 10 realizing high performance is provided.

次にドライバアンプの出力が最大2Vの場合を想定し、デュアルドライブでの駆動電圧が2V以下で40Gb/s以上(40〜43.5Gb/s)の光変調動作を行う、光変調装置10の具体的な設計方法について、図4〜図22を用いて説明する。   Next, assuming that the output of the driver amplifier is 2 V at the maximum, the light modulation device 10 performs a light modulation operation of 40 Gb / s or more (40 to 43.5 Gb / s) when the drive voltage in the dual drive is 2 V or less. A specific design method will be described with reference to FIGS.

図4は信号電極12の単位長さあたりのマイクロ波の減衰量とギャップSとの関係を示す図である。縦軸にマイクロ波の減衰量[dB/(GHz)1/2/cm]、横軸にギャップS[μm]をとる。図5は駆動電圧×作用長LとギャップSとの関係を示す図である。縦軸に駆動電圧×作用長(=Vπ・L)[V・cm]をとり、横軸にギャップS[μm]をとる。なお、Vπとは半波長電圧と呼ばれ、光導波路11内の伝搬する光の位相をπだけ変化させるのに必要な電圧を示す。 FIG. 4 is a diagram showing the relationship between the microwave attenuation per unit length of the signal electrode 12 and the gap S. FIG. The vertical axis represents the microwave attenuation [dB / (GHz) 1/2 / cm], and the horizontal axis represents the gap S [μm]. FIG. 5 is a diagram showing the relationship between drive voltage × action length L and gap S. FIG. The vertical axis represents drive voltage × action length (= Vπ · L) [V · cm], and the horizontal axis represents gap S [μm]. Vπ is called a half-wave voltage and indicates a voltage required to change the phase of light propagating in the optical waveguide 11 by π.

図4から、ギャップSが大きくなるほど、マイクロ波の減衰量が小さくなり、図5から、ギャップSが大きくなるほど駆動電圧が大きくなることがわかる。すなわち、マイクロ波の減衰量を小さくしようとして、ギャップSを大きくしようとすると、駆動電圧が大きくなってしまうといった不都合な関係がある。   From FIG. 4, it can be seen that the greater the gap S, the smaller the attenuation of the microwave, and FIG. 5 indicates that the drive voltage increases as the gap S increases. That is, there is an inconvenient relationship in which, if the attenuation of microwaves is reduced and the gap S is increased, the driving voltage increases.

一方、マイクロ波の減衰量を一定とした場合(例えば、−6dBの帯域を40GHzでとれるようにした場合)、作用長LとギャップSとの関係を調べると、図6のようになる。図6はマイクロ波の減衰量を一定(変調帯域を一定)とした場合の作用長LとギャップSとの関係を示す図である。縦軸に作用長L[mm]、横軸にギャップS[μm]をとる。   On the other hand, when the attenuation amount of the microwave is constant (for example, when the −6 dB band can be taken at 40 GHz), the relationship between the action length L and the gap S is as shown in FIG. FIG. 6 is a diagram showing the relationship between the action length L and the gap S when the microwave attenuation is constant (modulation band is constant). The vertical axis represents the action length L [mm], and the horizontal axis represents the gap S [μm].

ここで、図4と図6から、マイクロ波の減衰量を小さくする場合には、ギャップSを広げ、広げたギャップSに応じた作用長Lをとれば(長くすれば)よいことがわかる。例えば、図4でマイクロ波の減衰量を0.2→0.1の半分にしようとした場合、そのときのギャップSの値は40→60であるから、このギャップSの値で図6を見ると、作用長Lは33→82となる(マイクロ波の減衰量を半分にするのならギャップSを約1.5倍広げ、作用長Lは約2倍長くすればよい)。   Here, it can be seen from FIGS. 4 and 6 that when the attenuation amount of the microwave is reduced, the gap S is widened and the action length L corresponding to the widened gap S is taken (longened). For example, in FIG. 4, when the attenuation amount of the microwave is to be reduced to a half of 0.2 → 0.1, the value of the gap S at that time is 40 → 60. As seen, the action length L becomes 33 → 82 (if the microwave attenuation is halved, the gap S should be increased by about 1.5 times and the action length L should be increased by about twice).

図7は図6に示す作用長Lにもとづく駆動電圧とギャップSとの関係を示す図である。縦軸に駆動電圧[V]、横軸にS[μm]をとる。図7から、作用長Lを長くした信号電極12では、ギャップSが大きくなるほど駆動電圧が小さくなることがわかる。   FIG. 7 is a diagram showing the relationship between the drive voltage and the gap S based on the action length L shown in FIG. The vertical axis represents drive voltage [V] and the horizontal axis represents S [μm]. From FIG. 7, it can be seen that in the signal electrode 12 in which the action length L is increased, the drive voltage decreases as the gap S increases.

ここで、ギャップSと作用長Lとの関係から見た従来と本発明との差異について図8、図9を用いて説明する。図8は従来のギャップSと作用長Lとの関係を示す図である。
〔S11〕ギャップSを狭くする。
〔S12〕ギャップSが狭いと、高周波損失が大きくなるが、駆動電圧は小さくできる。
〔S13〕高周波損失を小さくするために、作用長Lを短くする。
〔S14〕作用長Lを短くしたため、高周波損失は小さくすることができるが、光の位相変化が減少するため、駆動電圧は大きくしなければならないといった問題が発生する。
Here, the difference between the prior art and the present invention viewed from the relationship between the gap S and the action length L will be described with reference to FIGS. FIG. 8 is a diagram showing the relationship between the conventional gap S and the action length L. In FIG.
[S11] The gap S is narrowed.
[S12] If the gap S is narrow, the high frequency loss increases, but the drive voltage can be reduced.
[S13] The action length L is shortened in order to reduce high frequency loss.
[S14] Since the action length L is shortened, the high-frequency loss can be reduced. However, since the phase change of light is reduced, there arises a problem that the drive voltage must be increased.

図9は本発明のギャップSと作用長Lとの関係を示す図である。
〔S21〕マイクロ波の減衰量を一定となるようにした場合の作用長LとギャップSとの関係を求めた図6に示したグラフにもとづき、ギャップSを広げる。また、このとき、ギャップSに応じて作用長Lを伸ばす。
〔S22〕ギャップSのみを広げた場合では、高周波損失は小さくなるが、駆動電圧は大きくしなければならない。また、作用長Lのみを伸ばした場合では、高周波損失は大きくなるが、駆動電圧は小さくできる。
〔S23〕ステップS21のように、ギャップSを広げ、作用長Lを伸ばすことにより、高周波の損失を低減し(∵図4、図6)、駆動電圧を低減させる(∵図7)。
FIG. 9 is a diagram showing the relationship between the gap S and the action length L of the present invention.
[S21] The gap S is widened based on the graph shown in FIG. 6 in which the relationship between the action length L and the gap S when the attenuation amount of the microwave is made constant is obtained. At this time, the action length L is extended according to the gap S.
[S22] When only the gap S is widened, the high-frequency loss is reduced, but the drive voltage must be increased. Further, when only the action length L is increased, the high-frequency loss increases, but the drive voltage can be reduced.
[S23] As in step S21, the gap S is widened and the action length L is extended to reduce high-frequency loss (FIGS. 4 and 6) and drive voltage (FIG. 7).

このように、本発明では、駆動電圧を低減させるために、従来のようにギャップSを狭くするところからスタートするのではなく、ギャップSを広げ、かつ作用長Lを伸ばすことにより、駆動電圧及びマイクロ波の高周波成分損失の低減化を実現するものである。   As described above, in the present invention, in order to reduce the driving voltage, instead of starting from the narrowing of the gap S as in the prior art, the driving voltage and the driving voltage L are increased by widening the gap S and extending the action length L. This is to reduce the high-frequency component loss of the microwave.

次にギャップSを広げ、かつ作用長Lを伸ばして光変調装置10を構成する際の、前提条件(反射における特性インピーダンスZ0の範囲、光とマイクロ波の位相の整合)について説明する。最初に、マイクロ波の反射における信号電極12の特性インピーダンスZ0の範囲について説明する。   Next, preconditions (range of characteristic impedance Z0 in reflection, phase matching between light and microwave) when the optical modulation device 10 is configured with the gap S widened and the action length L widened will be described. First, the range of the characteristic impedance Z0 of the signal electrode 12 in microwave reflection will be described.

信号電極12上をマイクロ波が伝搬する際、信号電極12上には定在波(進行波と反射波が伝送路上で干渉して見かけ上移動しない波)が発生する。すると、送出電力の一部が戻る反射が生じ、光変調装置10へ信号を入力する入力回路へ悪影響を与える場合がある。これを防ぐため、マイクロ波の反射は−20dB以下にすることが要求される。   When the microwave propagates on the signal electrode 12, a standing wave (a wave that does not appear to move due to interference between the traveling wave and the reflected wave on the transmission path) is generated on the signal electrode 12. Then, a part of the transmitted power is reflected back, which may adversely affect the input circuit that inputs a signal to the light modulator 10. In order to prevent this, the reflection of the microwave is required to be −20 dB or less.

図10はマイクロ波反射と特性インピーダンスZ0の関係を示す図である。縦軸にマイクロ波反射[dB]、横軸に信号電極12の特性インピーダンスZ0[Ω]をとる。図からわかるように、マイクロ波の反射が−20dB以下となるには、特性インピーダンスZ0を約45〜55Ωの範囲にすればよい。   FIG. 10 is a diagram showing the relationship between the microwave reflection and the characteristic impedance Z0. The vertical axis represents the microwave reflection [dB], and the horizontal axis represents the characteristic impedance Z0 [Ω] of the signal electrode 12. As can be seen from the figure, the characteristic impedance Z0 should be in the range of about 45 to 55Ω in order for the microwave reflection to be −20 dB or less.

次に光とマイクロ波の位相整合について説明する。変調帯域を拡大するためには、光とマイクロ波の位相を整合する必要がある。LNの場合、光の実効屈折率neff=2.15であるため、マイクロ波の実効屈折率をこの値に合わせて、位相整合を行う。   Next, phase matching between light and microwave will be described. In order to expand the modulation band, it is necessary to match the phases of light and microwave. In the case of LN, since the effective refractive index neff of light is 2.15, phase matching is performed by matching the effective refractive index of the microwave with this value.

したがって、特性インピーダンスZ0=45〜55Ωの範囲で、マイクロ波の実効屈折率を2.15となるように、リッジ高さHr、接地電極厚Hg、ギャップSの関係を求めることになる。   Therefore, the relationship between the ridge height Hr, the ground electrode thickness Hg, and the gap S is determined so that the effective refractive index of the microwave is 2.15 in the range of the characteristic impedance Z0 = 45 to 55Ω.

図11〜図13はマイクロ波の実効屈折率neffとギャップSとの関係を示す図である(有限要素法により算出)。縦軸に実効屈折率neff、横軸にギャップS[μm]をとる。図11〜図13はそれぞれ、接地電極厚Hg=4、16、28μmの場合を示す。また、リッジ高さHrに対し、Hr1〜Hr3はそれぞれ、6、8、10μmである。   11 to 13 are diagrams showing the relationship between the effective refractive index neff of the microwave and the gap S (calculated by the finite element method). The vertical axis represents the effective refractive index neff, and the horizontal axis represents the gap S [μm]. 11 to 13 show cases where the ground electrode thickness Hg = 4, 16, and 28 μm, respectively. Further, Hr1 to Hr3 are 6, 8, and 10 μm, respectively, with respect to the ridge height Hr.

図14〜図16は特性インピーダンスZ0とギャップSとの関係を示す図である(有限要素法により算出)。縦軸に特性インピーダンスZ0[Ω]、横軸にギャップS[μm]をとる。図14〜図16はそれぞれ、接地電極厚Hg=4、16、28μmの場合を示す。また、リッジ高さHrに対し、Hr1〜Hr3はそれぞれ、6、8、10μmである。   14 to 16 are diagrams showing the relationship between the characteristic impedance Z0 and the gap S (calculated by the finite element method). The vertical axis represents the characteristic impedance Z0 [Ω], and the horizontal axis represents the gap S [μm]. 14 to 16 show cases where the ground electrode thickness Hg is 4, 16, and 28 μm, respectively. Further, Hr1 to Hr3 are 6, 8, and 10 μm, respectively, with respect to the ridge height Hr.

図17はギャップSと接地電極厚Hgとの関係を示す図である。縦軸にギャップS[μm]、横軸に接地電極厚Hg[μm]をとる。また、リッジ高さHrに対し、Hr1〜Hr3はそれぞれ、6、8、10μmである。   FIG. 17 is a diagram showing the relationship between the gap S and the ground electrode thickness Hg. The vertical axis represents the gap S [μm], and the horizontal axis represents the ground electrode thickness Hg [μm]. Further, Hr1 to Hr3 are 6, 8, and 10 μm, respectively, with respect to the ridge height Hr.

図17は実効屈折率neff=2.15となる場合の図11〜図13のデータを変換した図である(第1の関係の図)。この図に対し、例えば、Hr=8μm(=Hr2)、Hg=33μmの場合には、S=50μmでneff=2.15となり、位相整合ができる。   FIG. 17 is a diagram obtained by converting the data of FIGS. 11 to 13 when the effective refractive index neff = 2.15 (first relationship diagram). In contrast to this figure, for example, when Hr = 8 μm (= Hr2) and Hg = 33 μm, S = 50 μm and neff = 2.15, and phase matching can be achieved.

図18はギャップSと接地電極厚Hgとの関係を示す図である。縦軸にギャップS[μm]、横軸に接地電極厚Hg[μm]をとる。また、リッジ高さHrに対し、Hr1〜Hr3はそれぞれ、6、8、10μmである。図18は特性インピーダンスZ0=45Ωとなる場合の図14〜図16のデータを変換した図である(第2の関係の図)。   FIG. 18 is a diagram showing the relationship between the gap S and the ground electrode thickness Hg. The vertical axis represents the gap S [μm], and the horizontal axis represents the ground electrode thickness Hg [μm]. Further, Hr1 to Hr3 are 6, 8, and 10 μm, respectively, with respect to the ridge height Hr. FIG. 18 is a diagram obtained by converting the data of FIGS. 14 to 16 when the characteristic impedance Z0 = 45Ω (second relationship diagram).

図19はギャップSと接地電極厚Hgとの関係を示す図である。縦軸にギャップS[μm]、横軸に接地電極厚Hg[μm]をとる。また、リッジ高さHrに対し、Hr2、Hr3はそれぞれ、8、10μmである。図19は特性インピーダンスZ0=55Ωとなる場合の図14〜図16のデータを変換した図である(第2の関係の図)。   FIG. 19 is a diagram showing the relationship between the gap S and the ground electrode thickness Hg. The vertical axis represents the gap S [μm], and the horizontal axis represents the ground electrode thickness Hg [μm]. Further, Hr2 and Hr3 are 8 and 10 μm, respectively, with respect to the ridge height Hr. FIG. 19 is a diagram obtained by converting the data of FIGS. 14 to 16 when the characteristic impedance Z0 = 55Ω (second relationship diagram).

図18、図19に対し、例えば、Hr=10μm(=Hr3)、Hg=25μmの場合には、S=42〜65μmでZ0=45〜55Ωとなり、反射を−20dB以下にできる。   18 and 19, for example, when Hr = 10 μm (= Hr3) and Hg = 25 μm, S = 42 to 65 μm, Z0 = 45 to 55Ω, and reflection can be made −20 dB or less.

次に図17と図18から実効屈折率neff=2.15で特性インピーダンスZ0=45Ωの場合、図17と図19から実効屈折率neff=2.15で特性インピーダンスZ0=55Ωの場合に関するグラフを作成する。   Next, FIGS. 17 and 18 are graphs regarding the case where the effective refractive index neff = 2.15 and the characteristic impedance Z0 = 45Ω, and FIGS. 17 and 19 are the graphs regarding the case where the effective refractive index neff = 2.15 and the characteristic impedance Z0 = 55Ω. create.

図20は実効屈折率neff=2.15の場合の特性インピーダンスZ0=45〜55Ωを満たすギャップSと接地電極厚Hgとの関係を示す図である。縦軸にギャップS[μm]、横軸に接地電極厚Hg[μm]をとる。   FIG. 20 is a diagram showing the relationship between the gap S satisfying the characteristic impedance Z0 = 45 to 55Ω and the ground electrode thickness Hg when the effective refractive index neff = 2.15. The vertical axis represents the gap S [μm], and the horizontal axis represents the ground electrode thickness Hg [μm].

図の条件範囲20内が実効屈折率neff=2.15で、特性インピーダンスZ0=45〜55Ωを満たす範囲である。したがって、この条件範囲20内で、ギャップS、作用長L、駆動電圧、接地電極厚Hgの最適値を求めることになる。   In the condition range 20 in the figure, the effective refractive index neff = 2.15 and the characteristic impedance Z0 = 45 to 55Ω is satisfied. Therefore, the optimum values of the gap S, the action length L, the drive voltage, and the ground electrode thickness Hg are obtained within the condition range 20.

図21は本発明のギャップS、接地電極厚Hg、駆動電圧の関係を示す図である。縦軸にギャップS[μm]と駆動電圧[V]、横軸に接地電極厚Hg[μm]をとる。図22は本発明のギャップS、接地電極厚Hg、作用長Lの関係を示す図である。縦軸にギャップS[μm]、横軸に接地電極厚Hg[μm]をとる。   FIG. 21 is a diagram showing the relationship among the gap S, the ground electrode thickness Hg, and the drive voltage according to the present invention. The vertical axis represents the gap S [μm] and the drive voltage [V], and the horizontal axis represents the ground electrode thickness Hg [μm]. FIG. 22 is a diagram showing the relationship among the gap S, the ground electrode thickness Hg, and the action length L of the present invention. The vertical axis represents the gap S [μm], and the horizontal axis represents the ground electrode thickness Hg [μm].

ここで、ギャップSが50μm以上で、駆動電圧が1.7V以下の範囲21(太実線で囲まれた範囲)を用いて、40Gb/s以上の光変調を行う光変調装置10の各パラメータの値を決める。   Here, each parameter of the light modulation device 10 that performs light modulation of 40 Gb / s or more using a range 21 (range surrounded by a thick solid line) in which the gap S is 50 μm or more and the drive voltage is 1.7 V or less is used. Determine the value.

本発明では、範囲21に対し、デュアルドライブでの駆動電圧が1.6V以下で、ギャップSが56μm以上、接地電極13の厚さHgが11μm以上で、40Gb/sの光変調装置10を設計する。または、範囲21に対し、デュアルドライブでの駆動電圧が1.5V以下で、ギャップSが62μm以上、接地電極13の厚さHgが28μm以上で、40Gb/sの光変調装置10を設計する。   In the present invention, a 40 Gb / s optical modulation device 10 is designed with a drive voltage in a dual drive of 1.6 V or less, a gap S of 56 μm or more, and a ground electrode 13 thickness Hg of 11 μm or more with respect to the range 21. To do. Alternatively, a 40 Gb / s optical modulation device 10 is designed with respect to the range 21 in which the drive voltage in the dual drive is 1.5 V or less, the gap S is 62 μm or more, and the thickness Hg of the ground electrode 13 is 28 μm or more.

ただし、接地電極13の厚さHgは、製造プロセス上の制限として、上限値を50μmとする、なお、従来の光変調装置の各パラメータが存在していた位置Pを図21、図22に示す。従来と比べて、本発明では、駆動電圧は低く、ギャップSは広く、作用長Lは長く、接地電極厚Hgは厚いことがわかる。   However, the thickness Hg of the ground electrode 13 is set to an upper limit value of 50 μm as a limitation in the manufacturing process, and the position P where each parameter of the conventional light modulation device exists is shown in FIGS. 21 and 22. . It can be seen that in the present invention, the drive voltage is low, the gap S is wide, the action length L is long, and the ground electrode thickness Hg is thick in the present invention.

次に従来と本発明の光変調装置に対する断面構造の違いについて示す。図23は従来の断面構造を示す図である。なお、各構成部の説明は上述したので、断面構造の異なる点のみ説明する。   Next, the difference in cross-sectional structure between the conventional and the light modulation device of the present invention will be described. FIG. 23 is a diagram showing a conventional cross-sectional structure. In addition, since description of each structure part was mentioned above, only the point from which a cross-sectional structure differs is demonstrated.

従来の断面構造100では、ギャップS’は狭く、接地電極13aの厚さHg’は薄い構造である。一方、図2で上述した本発明の断面構造では、ギャップSは広く、接地電極13の厚さHgは厚い構造である。すなわち、S’<S、Hg’<Hgである。   In the conventional cross-sectional structure 100, the gap S 'is narrow and the thickness Hg' of the ground electrode 13a is thin. On the other hand, in the cross-sectional structure of the present invention described above with reference to FIG. 2, the gap S is wide and the thickness Hg of the ground electrode 13 is thick. That is, S ′ <S and Hg ′ <Hg.

次に本発明の光変調装置に対し、シングル電極構造の場合について説明する。上記の説明ではデュアル電極構造について説明したが、シングル電極構造の場合にも本発明を適用できる。   Next, the case of a single electrode structure for the light modulation device of the present invention will be described. Although the dual electrode structure has been described in the above description, the present invention can also be applied to a single electrode structure.

図24はシングル電極構造の光変調装置の平面図である。断面図は省略する。光変調装置10aは、LN結晶基板上に、光導波路11を形成し、光導波路11の近傍には1つの信号電極12が形成され、信号電極12の両側に接地電極13が形成される。なお、その他は同様なので説明は省略する。   FIG. 24 is a plan view of a light modulation device having a single electrode structure. A sectional view is omitted. In the optical modulation device 10 a, an optical waveguide 11 is formed on an LN crystal substrate, one signal electrode 12 is formed in the vicinity of the optical waveguide 11, and ground electrodes 13 are formed on both sides of the signal electrode 12. Since the others are the same, the description is omitted.

以上説明したように、本発明によれば、ギャップSを広げ、作用長Lを伸ばすことにより、駆動電圧及びマイクロ波の高周波成分損失の低減化を図ることができ、高速で高品質の光変調装置を実現することが可能になる。   As described above, according to the present invention, it is possible to reduce the high-frequency component loss of the drive voltage and microwave by widening the gap S and extending the action length L, and high-speed and high-quality optical modulation. An apparatus can be realized.

(付記1) 電気光学効果を有する結晶基板上に形成された光導波路と、前記光導波路の近傍に形成された信号電極と、前記信号電極の両側に形成された接地電極と、から構成される光変調装置であって、
前記信号電極の特性インピーダンスの範囲をマイクロ波の反射が一定値以下となるように定め、光とマイクロ波の位相を整合した場合に、
前記信号電極と前記接地電極のギャップが50μm以上、かつ前記信号電極の作用長が50mm以上で、40Gb/s以上の光変調を行うことを特徴とする光変調装置。
(Supplementary note 1) An optical waveguide formed on a crystal substrate having an electro-optic effect, a signal electrode formed in the vicinity of the optical waveguide, and a ground electrode formed on both sides of the signal electrode A light modulator,
When the range of the characteristic impedance of the signal electrode is determined so that the reflection of the microwave is a certain value or less, and the phase of the light and the microwave is matched,
A light modulation device characterized in that a light modulation device performs light modulation of 40 Gb / s or more when a gap between the signal electrode and the ground electrode is 50 μm or more and a working length of the signal electrode is 50 mm or more.

(付記2) 駆動電圧が1.6V以下で、前記ギャップが56μm以上、前記接地電極の厚さが11μm以上であることを特徴とする付記1記載の光変調装置。
(付記3) 駆動電圧が1.5V以下で、前記ギャップが62μm以上、前記接地電極の厚さが28μm以上であることを特徴とする付記1記載の光変調装置。
(Supplementary note 2) The light modulation device according to supplementary note 1, wherein the drive voltage is 1.6 V or less, the gap is 56 μm or more, and the thickness of the ground electrode is 11 μm or more.
(Supplementary note 3) The light modulation device according to supplementary note 1, wherein the drive voltage is 1.5 V or less, the gap is 62 μm or more, and the thickness of the ground electrode is 28 μm or more.

(付記4) 前記接地電極の厚さが50μm以下であることを特徴とする付記1記載の光変調装置。
(付記5) 前記信号電極は、デュアル電極またはシングル電極の形状であることを特徴とする付記1記載の光変調装置。
(Additional remark 4) The thickness of the said ground electrode is 50 micrometers or less, The light modulation apparatus of Additional remark 1 characterized by the above-mentioned.
(Additional remark 5) The said signal electrode is a shape of a dual electrode or a single electrode, The optical modulation apparatus of Additional remark 1 characterized by the above-mentioned.

(付記6) 光変調を行って電気信号を光信号に変換する光変調装置の設計方法において、
マイクロ波の反射が一定値以下となる特性インピーダンスの許容範囲を求め、
前記マイクロ波の実効屈折率を光の実効屈折率に一致させて位相整合を行い、
前記位相整合を行った場合の、信号電極と接地電極間のギャップと前記接地電極の厚さとの第1の関係を求め、
前記許容範囲内での前記ギャップと前記接地電極の厚さとの第2の関係を求め、
前記第1の関係及び前記第2の関係から、前記許容範囲内でかつ前記位相整合した場合で、前記ギャップと前記接地電極の厚さとの関係を定める条件範囲を求め、
前記条件範囲内に、前記駆動電圧及び前記信号電極の作用長をプロットし、
前記駆動電圧及び前記マイクロ波の高周波成分損失の低減化を図るために、前記ギャップを広げて、かつ前記作用長を伸ばしたときの、前記ギャップと、前記作用長と、前記駆動電圧と、前記接地電極の厚さとの最適な値を求めることを特徴とする光変調装置の設計方法。
(Additional remark 6) In the design method of the optical modulation apparatus which performs an optical modulation and converts an electric signal into an optical signal,
Find the acceptable range of the characteristic impedance where the reflection of the microwave is below a certain value,
Matching the effective refractive index of the microwave to the effective refractive index of the light to perform phase matching,
Determining the first relationship between the gap between the signal electrode and the ground electrode and the thickness of the ground electrode when the phase matching is performed;
Determining a second relationship between the gap and the thickness of the ground electrode within the allowable range;
From the first relationship and the second relationship, a condition range that defines the relationship between the gap and the thickness of the ground electrode is obtained within the allowable range and in the phase matching,
Within the condition range, plot the operating length of the drive voltage and the signal electrode,
In order to reduce the high-frequency component loss of the drive voltage and the microwave, the gap, the action length, the drive voltage, and the drive voltage when the gap is widened and the action length is extended, A method for designing an optical modulation device, characterized in that an optimum value for the thickness of a ground electrode is obtained.

(付記7) 40Gb/s以上の光変調を行う前記光変調装置に対して、前記作用長が50mm以上、前記ギャップが50μm以上で設計することを特徴とする付記6記載の光変調装置の設計方法。   (Supplementary note 7) The design of the light modulation device according to supplementary note 6, wherein the light modulation device that performs light modulation of 40 Gb / s or more is designed with the action length of 50 mm or more and the gap of 50 μm or more. Method.

(付記8) 前記作用長が50mm以上、前記駆動電圧が1.6V以下、前記ギャップが56μm以上、前記接地電極の厚さが11μm以上で設計することを特徴とする付記7記載の光変調装置の設計方法。   (Supplementary note 8) The light modulation device according to Supplementary note 7, wherein the working length is 50 mm or more, the drive voltage is 1.6 V or less, the gap is 56 μm or more, and the thickness of the ground electrode is 11 μm or more. Design method.

(付記9) 前記作用長が50mm以上、前記駆動電圧が1.5V以下、前記ギャップが62μm以上、前記接地電極の厚さが28μm以上で設計することを特徴とする付記7記載の光変調装置の設計方法。   (Supplementary note 9) The light modulation device according to supplementary note 7, wherein the working length is 50 mm or more, the driving voltage is 1.5 V or less, the gap is 62 μm or more, and the thickness of the ground electrode is 28 μm or more. Design method.

(付記10) 前記接地電極の厚さが50μm以下で設計することを特徴とする付記7記載の光変調装置の設計方法。
(付記11) 前記信号電極を、デュアル電極またはシングル電極の形状で設計することを特徴とする付記7記載の光変調装置の設計方法。
(Additional remark 10) The design method of the optical modulation apparatus of Additional remark 7 characterized by designing with the thickness of the said ground electrode being 50 micrometers or less.
(Additional remark 11) The said signal electrode is designed in the shape of a dual electrode or a single electrode, The design method of the optical modulation apparatus of Additional remark 7 characterized by the above-mentioned.

(付記12) ニオブ酸リチウム基板上に形成された光導波路と、
特性インピーダンスの範囲を45〜50Ωの範囲に有してマイクロ波の反射量を−20dB以下とし、作用長が50mm以上である、前記光導波路の近傍に形成された信号電極と、
厚さが11μm以上であって、前記信号電極の両側に形成された接地電極と、
前記信号電極が上部に形成され、前記信号電極を前記マイクロ波が進行するときの実効屈折率が、前記光導波路を光が進行するときの実効屈折率と同一となる、6μm〜8μmの高さを有するリッジと、
を備える、
ことを特徴とする光変調装置。
(Supplementary note 12) An optical waveguide formed on a lithium niobate substrate;
A signal electrode formed in the vicinity of the optical waveguide having a characteristic impedance range of 45 to 50Ω, a microwave reflection amount of −20 dB or less, and an action length of 50 mm or more;
A ground electrode having a thickness of 11 μm or more and formed on both sides of the signal electrode;
A height of 6 μm to 8 μm, in which the signal electrode is formed on the upper portion, and an effective refractive index when the microwave travels through the signal electrode is the same as an effective refractive index when light travels through the optical waveguide A ridge having
Comprising
An optical modulation device characterized by that.

(付記13) 前記信号電極は、デュアル電極またはシングル電極の形状であることを特徴とする付記12記載の光変調装置。
(付記14) 前記ニオブ酸リチウム基板と前記信号電極との間および前記ニオブ酸リチウム基板と前記接地電極との間に、バッファ層が備えられることを特徴とする付記12記載の光変調装置。
(Additional remark 13) The said signal electrode is a shape of a dual electrode or a single electrode, The optical modulation apparatus of Additional remark 12 characterized by the above-mentioned.
(Supplementary note 14) The light modulation device according to supplementary note 12, wherein a buffer layer is provided between the lithium niobate substrate and the signal electrode and between the lithium niobate substrate and the ground electrode.

10 光変調装置
11、11a、11b 光導波路
12 信号電極
13 接地電極
L 作用長
Sa、Sb 信号源
DESCRIPTION OF SYMBOLS 10 Optical modulation apparatus 11, 11a, 11b Optical waveguide 12 Signal electrode 13 Ground electrode L Action length Sa, Sb Signal source

Claims (3)

ニオブ酸リチウム基板上に形成された光導波路と、
特性インピーダンスの範囲を45〜50Ωの範囲に有してマイクロ波の反射量を−20dB以下とし、作用長が50mm以上である、前記光導波路の近傍に形成された信号電極と、
厚さが11μm以上であって、前記信号電極の両側に形成された接地電極と、
前記信号電極が上部に形成され、前記信号電極を前記マイクロ波が進行するときの実効屈折率が、前記光導波路を光が進行するときの実効屈折率と同一となる、6μm〜8μmの高さを有するリッジと、
を備える、
ことを特徴とする光変調装置。
An optical waveguide formed on a lithium niobate substrate;
A signal electrode formed in the vicinity of the optical waveguide having a characteristic impedance range of 45 to 50Ω, a microwave reflection amount of −20 dB or less, and an action length of 50 mm or more;
A ground electrode having a thickness of 11 μm or more and formed on both sides of the signal electrode;
A height of 6 μm to 8 μm, in which the signal electrode is formed on the upper portion, and an effective refractive index when the microwave travels through the signal electrode is the same as an effective refractive index when light travels through the optical waveguide A ridge having
Comprising
An optical modulation device characterized by that.
前記信号電極は、デュアル電極またはシングル電極の形状であることを特徴とする請求項1記載の光変調装置。   The light modulation device according to claim 1, wherein the signal electrode has a shape of a dual electrode or a single electrode. 前記ニオブ酸リチウム基板と前記信号電極との間および前記ニオブ酸リチウム基板と前記接地電極との間に、バッファ層が備えられることを特徴とする請求項1記載の光変調装置。   The light modulation device according to claim 1, wherein a buffer layer is provided between the lithium niobate substrate and the signal electrode and between the lithium niobate substrate and the ground electrode.
JP2011000364A 2011-01-05 2011-01-05 Light modulator Expired - Lifetime JP5045821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000364A JP5045821B2 (en) 2011-01-05 2011-01-05 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000364A JP5045821B2 (en) 2011-01-05 2011-01-05 Light modulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007038541A Division JP4907378B2 (en) 2007-02-19 2007-02-19 Light modulator

Publications (2)

Publication Number Publication Date
JP2011090332A true JP2011090332A (en) 2011-05-06
JP5045821B2 JP5045821B2 (en) 2012-10-10

Family

ID=44108574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000364A Expired - Lifetime JP5045821B2 (en) 2011-01-05 2011-01-05 Light modulator

Country Status (1)

Country Link
JP (1) JP5045821B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118371A (en) * 2013-11-15 2015-06-25 Tdk株式会社 Optical modulator
US9599843B2 (en) 2013-02-08 2017-03-21 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166566A (en) * 1994-12-14 1996-06-25 Nippon Telegr & Teleph Corp <Ntt> Optical control device
JPH1039266A (en) * 1995-11-28 1998-02-13 Nippon Telegr & Teleph Corp <Ntt> Optical control device
JPH11316359A (en) * 1998-05-06 1999-11-16 Nippon Telegr & Teleph Corp <Ntt> Optical control device
JP2001004966A (en) * 1999-06-04 2001-01-12 Lucent Technol Inc Electronic-optical modulator and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166566A (en) * 1994-12-14 1996-06-25 Nippon Telegr & Teleph Corp <Ntt> Optical control device
JPH1039266A (en) * 1995-11-28 1998-02-13 Nippon Telegr & Teleph Corp <Ntt> Optical control device
JPH11316359A (en) * 1998-05-06 1999-11-16 Nippon Telegr & Teleph Corp <Ntt> Optical control device
JP2001004966A (en) * 1999-06-04 2001-01-12 Lucent Technol Inc Electronic-optical modulator and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599843B2 (en) 2013-02-08 2017-03-21 Sumitomo Osaka Cement Co., Ltd. Optical modulator
JP2015118371A (en) * 2013-11-15 2015-06-25 Tdk株式会社 Optical modulator

Also Published As

Publication number Publication date
JP5045821B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP2003262841A (en) Optical modulator and designing method
US7394950B2 (en) Optical modulator
US7133578B2 (en) Optical modulator with an impedance matching region
US20150370095A1 (en) Optical modulator
JP2014123032A (en) Optical modulator
JP5045821B2 (en) Light modulator
US6768570B2 (en) Optical modulator
JP2013037243A (en) Optical modulator
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
JP4907378B2 (en) Light modulator
JP4587509B2 (en) Waveguide type optical modulator
JP5314060B2 (en) Light modulator
JP2007033894A (en) Optical modulator
JP2022047597A (en) Optical device and light transmitter-receiver
JP5075055B2 (en) Light modulator
JP4754608B2 (en) Light modulator
JP2007025369A (en) Optical modulator
JP5416658B2 (en) Optical modulator and optical modulator module
JP2008152206A (en) Optical modulator
JP5124382B2 (en) Light modulator
JP4922086B2 (en) Light modulator
JP2008139554A (en) Optical modulator
JP2009086453A (en) Optical modulator
JP2009015118A (en) Optical modulator
JP2014153537A (en) Optical modulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term