JP2011089940A - Leakage measurement apparatus of gasket - Google Patents

Leakage measurement apparatus of gasket Download PDF

Info

Publication number
JP2011089940A
JP2011089940A JP2009244999A JP2009244999A JP2011089940A JP 2011089940 A JP2011089940 A JP 2011089940A JP 2009244999 A JP2009244999 A JP 2009244999A JP 2009244999 A JP2009244999 A JP 2009244999A JP 2011089940 A JP2011089940 A JP 2011089940A
Authority
JP
Japan
Prior art keywords
gasket
pressure
gas
leak
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009244999A
Other languages
Japanese (ja)
Inventor
Yosuke Asashige
陽介 朝重
Kimihiro Mizukami
公博 水上
Masayoshi Yasuda
政義 安田
Masato Inaoka
正人 稲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009244999A priority Critical patent/JP2011089940A/en
Publication of JP2011089940A publication Critical patent/JP2011089940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leakage measurement apparatus for accurately measuring the minute quantity of a leakage in a gasket under a high-temperature condition while a pressure loss of an actual usage is reproduced. <P>SOLUTION: Both surfaces of the gasket A are pinched by a supporting member and a pressing member in the thickness direction. While the gasket is heated, a gas is injected from a gas injection path connected to an inner sealed space on the inside diameter side of the gasket, and discharged from a gas discharge path. A flow rate of the gas supplied from the gas injection path is measured by a first mass flowmeter. A flow rate of the leak gas is measured by a second mass flowmeter provided in the leak gas discharge path connected to an outer sealed space. The flow rate of the leak gas is measured by providing a gas pressure setting means for setting a holding pressure on the gas discharge side in the gas discharge path while a pressure in a seal plane corresponding to the pressure loss of the actual usage is reproduced. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明はガスケットの漏洩(リーク)測定装置に係り、特に高温条件下におけるガスケットの漏洩を測定する装置に関するものである。   The present invention relates to a gasket leakage measuring apparatus, and more particularly to an apparatus for measuring gasket leakage under high temperature conditions.

従来、ガスケットの漏洩測定装置として特許文献1〜3が提案されている。特許文献1の漏洩測定装置は、ガスケットを装着するフランジと、フランジに圧力を加える加圧手段と、ガスケットを装着したフランジを収容し所定温度に加熱する加熱手段と、ガスケット内に漏洩試験用ガスを送るための配管と、配管に漏洩試験用ガスを供給する漏洩試験用ガス供給手段と、加熱手段の外にあって配管内を流れる漏洩試験用ガスの質量流量を測定する少なくとも1個の質量流量計と、を備える。   Conventionally, Patent Literatures 1 to 3 have been proposed as gasket leakage measuring devices. The leak measurement apparatus of Patent Document 1 includes a flange on which a gasket is mounted, a pressurizing unit that applies pressure to the flange, a heating unit that accommodates the flange on which the gasket is mounted and heats it to a predetermined temperature, and a leak test gas in the gasket. A pipe for sending a gas, a gas supply means for leak test for supplying a gas for leak test to the pipe, and at least one mass for measuring a mass flow rate of the gas for leak test outside the heating means and flowing in the pipe A flow meter.

この漏洩測定装置では、ガスケットのセッティング部分が密閉されているため、ガスケットにかかる圧力は、ガスケットの一次側で調整せざるを得ない。この装置でガスケットにかかる圧力を厳密に制御することは困難である。加圧手段としてボルトを使用するため、締結力を定量化できず、ガスケットにかかる面圧を変更しながらリーク量を測定することができないという課題がある。   In this leak measurement apparatus, since the setting portion of the gasket is sealed, the pressure applied to the gasket must be adjusted on the primary side of the gasket. With this device, it is difficult to strictly control the pressure applied to the gasket. Since the bolt is used as the pressurizing means, there is a problem that the fastening force cannot be quantified and the amount of leak cannot be measured while changing the surface pressure applied to the gasket.

特許文献2に記載の漏洩測定装置は、対向配置された金属フランジ部材の周縁部間に環状の試験金属ガスケットを配置するとともに、金属フランジ部材の周縁部に沿って複数設けられたボルトを締付けることにより試験金属ガスケットを所定の締付力で金属フランジ部材間に挟持している。所定の締付力で締付けられた金属ガスケットおよび試験金属フランジ部材を加熱炉内で所定時間、所定の温度で加熱して試験金属ガスケットを加熱劣化させ、この加熱劣化の間、ボルトの少なくとも1本に設けられた歪ゲージにより締付力の低下を測定し、試験金属ガスケットの応力緩和特性を評価するものである。   The leak measurement device described in Patent Document 2 arranges an annular test metal gasket between the peripheral portions of the metal flange members arranged opposite to each other, and tightens a plurality of bolts provided along the peripheral portion of the metal flange member. Thus, the test metal gasket is held between the metal flange members with a predetermined tightening force. The metal gasket and the test metal flange member clamped with a predetermined tightening force are heated in a heating furnace at a predetermined temperature for a predetermined time to heat deteriorate the test metal gasket, and at least one of the bolts during the heat deterioration. The reduction of the clamping force is measured by a strain gauge provided on the test piece, and the stress relaxation characteristics of the test metal gasket are evaluated.

この漏洩測定装置も、ボルトを使用するため、特許文献1と同様にガスケットにかかる面圧を変更することができない。また、一度ガスケットを加熱劣化させた後、漏洩試験を行っているため、ガスケット使用温度下で正確な温度条件を再現しているわけではない。   Since this leakage measuring apparatus also uses bolts, the surface pressure applied to the gasket cannot be changed as in Patent Document 1. In addition, since the leakage test is performed after the gasket is once heated and deteriorated, the exact temperature condition is not reproduced under the gasket operating temperature.

特許文献3に記載のものは、気密検査時に被検査対象物入口側からガスを一定流量で連続供給する入口ガス定量供給装置と、被検査対象物出口側で通過ガス流量を測定する出口ガス流量測定装置とを備え、通過ガス流量の減少量で被検査対象物の気密検査をするガスリーク評価装置において、出口ガス流量測定装置は、被検査対象物出口側に接続される加圧装置を有し、加圧装置により被検査対象物の内圧を可変し、そのときのリーク量が圧力に比例して大きくなることを利用して、この圧力に対する出口側流量値を2点以上で求めて、その勾配からリーク検査を実施するものである。   Patent Document 3 discloses an inlet gas constant supply device that continuously supplies gas at a constant flow rate from the inlet side of an object to be inspected during an airtight inspection, and an outlet gas flow rate that measures a passing gas flow rate at the outlet side of the object to be inspected And a gas leak evaluation apparatus for performing an airtight inspection of an object to be inspected with a decrease amount of a passing gas flow rate. The outlet gas flow rate measuring apparatus has a pressurizing device connected to the inspection object outlet side. Using the fact that the internal pressure of the object to be inspected is varied by the pressurizing device and the amount of leakage at that time increases in proportion to the pressure, the outlet flow rate value for this pressure is obtained at two or more points, The leak inspection is performed from the gradient.

この評価装置は、SOFCセルユニットの高温におけるガスリーク量を定量化し、セル性能を評価するためのものである。この方法では、リーク量をガスの減少量から求めている。これは実際にリーク量を直接検出したものではないため、リーク量が全体流量の1%以下程度であるような場合、特許文献3のようなガス流量の減少量によるリーク量の検出方法では、信頼性が低い。   This evaluation apparatus is for quantifying the amount of gas leak at a high temperature of the SOFC cell unit and evaluating the cell performance. In this method, the leak amount is obtained from the gas decrease amount. This is not the actual detection of the leak amount. Therefore, when the leak amount is about 1% or less of the total flow rate, the leak amount detection method using the gas flow reduction amount as in Patent Document 3, Low reliability.

特開2001−66216号公報JP 2001-66216 A 特開2002−364749号公報JP 2002-364749 A 特開2006−170918号公報JP 2006-170918 A

本発明の目的は、高温条件下におけるガスケットの微小なリーク量を、実際の使用時における圧力損失を再現しながら精度よく測定できる漏洩測定装置を提供することにある。   An object of the present invention is to provide a leakage measuring apparatus capable of accurately measuring a minute leak amount of a gasket under a high temperature condition while reproducing a pressure loss in actual use.

前記目的を達成するため、本発明は、ガスケットの厚み方向の一方面を支持する支持部材と、前記ガスケットの厚み方向の他方面を加圧して、前記ガスケットの内径側に内側密閉空間を形成する加圧部材と、前記ガスケットを加熱するための加熱手段と、前記内側密閉空間に接続されたガス投入経路と、前記ガス投入経路中に設けられ、ガス投入経路から供給されたガスの流量を測定する第1の質量流量計と、前記内側密閉空間に接続されたガス排出経路と、前記ガス排出経路中に設けられ、ガス排出側における保持圧力を設定するガス圧設定手段と、前記ガスケットの外径側に密閉された外側密閉空間を形成するための気密容器と、前記外側密閉空間に接続されたリークガス排出経路と、前記リークガス排出経路中に設けられ、当該リークガス排出経路を流れるリークガスの流量を測定する第2の質量流量計と、を備えたことを特徴とするガスケットの漏洩測定装置を提供する。   In order to achieve the above object, the present invention pressurizes the supporting member for supporting one surface in the thickness direction of the gasket and the other surface in the thickness direction of the gasket to form an inner sealed space on the inner diameter side of the gasket. A pressure member, a heating means for heating the gasket, a gas input path connected to the inner sealed space, and a flow rate of the gas provided in the gas input path and supplied from the gas input path are measured. A first mass flow meter that performs gas flow, a gas discharge path connected to the inner sealed space, a gas pressure setting means that is provided in the gas discharge path and sets a holding pressure on the gas discharge side, and an outside of the gasket An airtight container for forming an outer sealed space sealed on the diameter side, a leak gas discharge path connected to the outer sealed space, and the leak gas discharge path provided in the leak gas discharge path Providing leakage measuring device of the gasket, characterized in that it includes a second mass flow meter for measuring the flow rate of the leak gas flowing through the scan discharge path, the.

ガスケットの両面を支持部材と加圧部材とで挟持し、ガスケットの内径側に形成された内側密閉空間にガス投入経路を介してガスを供給する。供給されたガスの流量は、第1の質量流量計で計測される。供給されたガスの一部はガスケットと支持部材との隙間、又はガスケットと加圧部材との隙間を介して外側密閉空間へリークし、リークガスは外側密閉空間で捕集される。リークガスは、外側密閉空間に接続されたリークガス排出経路を通り、第2の質量流量計で流量が計測される。第1質量流量計の測定値と第2質量流量計の測定値とからリーク率を求めることができる。   Both surfaces of the gasket are sandwiched between the support member and the pressure member, and gas is supplied to the inner sealed space formed on the inner diameter side of the gasket through the gas input path. The flow rate of the supplied gas is measured by the first mass flow meter. A part of the supplied gas leaks to the outer sealed space through the gap between the gasket and the support member or the gap between the gasket and the pressure member, and the leaked gas is collected in the outer sealed space. The leak gas passes through the leak gas discharge path connected to the outer sealed space, and the flow rate is measured by the second mass flow meter. The leak rate can be obtained from the measured value of the first mass flow meter and the measured value of the second mass flow meter.

特許文献1,2では、シール空間に対してガス投入口(1次側)しか持たないため、実際の使用時における圧力損失に応じたシール面内圧を再現できない。それに対し、本発明では、ガスケットの内側空間にガス投入経路(1次側)だけでなくガス排出経路(2次側)を接続し、さらにガス排出経路側に保持圧力を設定するガス圧設定手段を設けてあるので、保持圧力を実際の使用時における圧力損失を想定して設定することにより、デバイスにガスケットを介してガスを流すプロセスを再現することが可能になる。ガス圧設定手段としては、圧力調整バルブのほか、実際のデバイスと同等な圧力損失を有する部材を用いてもよい。つまり、2次側にデバイスを接続することも可能になり、実物の圧力損失に応じたシール面内圧を再現できる。   In Patent Documents 1 and 2, since only the gas inlet (primary side) is provided with respect to the seal space, the in-seal pressure corresponding to the pressure loss during actual use cannot be reproduced. On the other hand, in the present invention, not only the gas input path (primary side) but also the gas discharge path (secondary side) is connected to the inner space of the gasket, and the gas pressure setting means sets the holding pressure on the gas discharge path side. Therefore, by setting the holding pressure in consideration of the pressure loss during actual use, it is possible to reproduce the process of flowing gas through the gasket through the device. As the gas pressure setting means, a member having a pressure loss equivalent to that of an actual device may be used in addition to the pressure adjustment valve. That is, it becomes possible to connect a device to the secondary side, and it is possible to reproduce the seal surface pressure corresponding to the actual pressure loss.

加圧部材に接続され、ガスケットを厚み方向に加圧すると共に、加圧力を可変できる加圧駆動機構を設けるのが望ましい。この場合には、ガスケットの面圧を加圧駆動機構で連続的に調整可能であるため、ガスケットの面圧を変化させながら、リークガスの微小流量を測定することができる。   It is desirable to provide a pressure drive mechanism that is connected to the pressure member, pressurizes the gasket in the thickness direction, and can vary the pressure. In this case, since the surface pressure of the gasket can be continuously adjusted by the pressurization driving mechanism, the minute flow rate of the leak gas can be measured while changing the surface pressure of the gasket.

ガスケットを加熱するための加熱手段を支持部材又はその周辺に設けるのが望ましい。加熱手段を加圧部材側に設けることも可能であるが、その場合には加圧部材の熱変形などの影響により、ガスケットの面圧が変化する可能性がある。これに対し、支持部材側に加熱手段を設けることで、加圧部材への熱影響を小さくし、面圧のばらつきを抑えることができる。   It is desirable to provide a heating means for heating the gasket on the support member or its periphery. The heating means may be provided on the pressure member side, but in that case, the surface pressure of the gasket may change due to the influence of thermal deformation of the pressure member. On the other hand, by providing the heating means on the support member side, it is possible to reduce the thermal effect on the pressure member and suppress variations in surface pressure.

支持部材と加圧部材とに、ガスケットに加わる温度を測定するための温度センサを設けるのが望ましい。ガスケットの温度を直接測定することはできないので、ガスケットの両面を挟持している支持部材と加圧部材とに温度センサを設け、その温度を計測することで、ガスケット付近の温度を検知できる。   It is desirable to provide a temperature sensor for measuring the temperature applied to the gasket on the support member and the pressure member. Since the temperature of the gasket cannot be directly measured, the temperature in the vicinity of the gasket can be detected by providing a temperature sensor on the support member and the pressure member sandwiching both surfaces of the gasket and measuring the temperature.

加圧駆動機構と加圧部材とを軸方向荷重のみを伝える自在継手を介して接続するのが望ましい。加圧駆動機構と加圧部材とを直結してもよいが、加圧駆動機構の押し付け力の方向や加圧部材に傾きがあると、ガスケットに対して垂直荷重を付与できなくなる。そこで、加圧部材と加圧駆動機構とを例えばボールジョイントなどの自在継手を介して接続することで、ガスケットに対する加圧部材又は加圧駆動機構の軸の垂直度が厳密に出ていなくても、加圧部材の押圧面がガスケットに対して平行になるように修正されるので、ガスケットを均等に加圧でき、適切な面圧を付与できる。   It is desirable to connect the pressure driving mechanism and the pressure member through a universal joint that transmits only the axial load. The pressure drive mechanism and the pressure member may be directly connected, but if the direction of the pressing force of the pressure drive mechanism or the pressure member is inclined, a vertical load cannot be applied to the gasket. Therefore, by connecting the pressure member and the pressure drive mechanism via a universal joint such as a ball joint, even if the perpendicularity of the axis of the pressure member or the pressure drive mechanism with respect to the gasket is not strictly output, Since the pressing surface of the pressurizing member is corrected so as to be parallel to the gasket, the gasket can be uniformly pressed and an appropriate surface pressure can be applied.

以上のように、本発明の漏洩測定装置によれば、ガスケットからのリークガスを外側密閉空間にて捕集し、リークガスの流量を第2の質量流量計で計測するので、リークガスの微小流量を直接測定できる。また、ガスケットの内側空間にガス投入経路だけでなくガス排出経路も接続し、ガス排出経路側に保持圧力を設定するガス圧設定手段を設けたので、実際の使用時における圧力損失を再現しながらリークガス流量を高精度に測定できる。   As described above, according to the leakage measuring apparatus of the present invention, the leakage gas from the gasket is collected in the outer sealed space, and the leakage gas flow rate is measured by the second mass flow meter. It can be measured. In addition, not only the gas input path but also the gas discharge path is connected to the inner space of the gasket, and the gas pressure setting means for setting the holding pressure is provided on the gas discharge path side, so that the pressure loss during actual use is reproduced. The leak gas flow rate can be measured with high accuracy.

本発明に係る漏洩測定装置を示す図である。It is a figure which shows the leak measuring apparatus which concerns on this invention. 本発明に係る漏洩測定装置の本体部の詳細断面図である。It is detailed sectional drawing of the main-body part of the leak measuring apparatus which concerns on this invention. 図2の要部の拡大断面図である。It is an expanded sectional view of the principal part of FIG. ガスケット面圧を変化させ、二次側の圧力損失値を変化させたときのガスケットからのリーク率を求めた結果である。It is the result of having calculated | required the leak rate from a gasket when changing a gasket surface pressure and changing the pressure loss value of a secondary side. 図4をグラフ化した図である。FIG. 5 is a graph of FIG. 4.

図1〜図3は本発明に係るガスケットAの漏洩測定装置の第1実施形態を示す。本実施形態の漏洩測定装置は、上下一対のケース1a,1bで構成された気密容器1を備えており、上下のケース1a,1bのフランジ部をボルト等の締結部材2で締結することにより、気密容器1の内部に外側密閉空間3が形成されている。なお、外側というのはガスケットAから見て外側にあるという意味である。このように気密容器1は気密性を確保しつつ分割できる構造となっている。気密容器1の天井部内面にはガスケットAの上面を支える支持部材4が固定されている。上ケース1aの外側面には、ヒータ6を装備した加熱装置5が取り付けられ、加熱装置5の熱は上ケース1aを介して支持部材4へ伝導される。そのため、ガスケットA及びその周辺部を、常温〜1000℃までの任意の温度に加熱できる構造となっている。加熱装置5、上ケース1a及び支持部材4を貫通して支持部材4の下面に開口するように、ガス投入経路7とガス排出経路8とが接続されている。   1 to 3 show a first embodiment of a leakage measurement apparatus for gasket A according to the present invention. The leak measurement apparatus of the present embodiment includes an airtight container 1 composed of a pair of upper and lower cases 1a and 1b. By fastening the flange portions of the upper and lower cases 1a and 1b with fastening members 2 such as bolts, An outer sealed space 3 is formed inside the airtight container 1. The outer side means that the outer side is seen from the gasket A. Thus, the airtight container 1 has a structure that can be divided while ensuring airtightness. A support member 4 that supports the upper surface of the gasket A is fixed to the inner surface of the ceiling portion of the airtight container 1. A heating device 5 equipped with a heater 6 is attached to the outer surface of the upper case 1a, and the heat of the heating device 5 is conducted to the support member 4 through the upper case 1a. Therefore, the gasket A and its peripheral part can be heated to an arbitrary temperature from room temperature to 1000 ° C. The gas input path 7 and the gas discharge path 8 are connected so as to pass through the heating device 5, the upper case 1 a, and the support member 4 and open to the lower surface of the support member 4.

ガス投入経路(一次側)7には、ガスボンベ9からガス(例えばHeガス)が供給されており、その一次圧力はレギュレータ等の圧力調整弁10によって調整されている。一次圧力は圧力計11によって検出される。さらに流量調整弁12によって投入ガス量が調整され、その流量は第1質量流量計13によって検出される。   A gas (for example, He gas) is supplied from a gas cylinder 9 to the gas input path (primary side) 7 and its primary pressure is adjusted by a pressure adjusting valve 10 such as a regulator. The primary pressure is detected by the pressure gauge 11. Further, the input gas amount is adjusted by the flow rate adjusting valve 12, and the flow rate is detected by the first mass flow meter 13.

ガス排出経路(二次側)8の終端は大気に開放されている。ガス排出経路8には、二次圧力(圧力損失)を検出する圧力計14と、その下流側にガスケットAにかかる内圧を調節するための圧力調整弁15とが設けられている。圧力調整弁15の代わりに実機(デバイス)を想定した圧力損失を有する部材を2次側に取り付けても良い。このように、ガスケットAの内部空間内に投入されるガスは、ガス投入経路7(1次側)から投入され、ガス排出経路8(2次側)を通って大気に開放されることで連続的に流すことができる。   The end of the gas discharge path (secondary side) 8 is open to the atmosphere. The gas discharge path 8 is provided with a pressure gauge 14 for detecting a secondary pressure (pressure loss) and a pressure adjusting valve 15 for adjusting an internal pressure applied to the gasket A on the downstream side thereof. Instead of the pressure regulating valve 15, a member having a pressure loss assuming an actual machine (device) may be attached to the secondary side. Thus, the gas introduced into the internal space of the gasket A is continuously introduced by being introduced from the gas introduction path 7 (primary side) and released to the atmosphere through the gas discharge path 8 (secondary side). Can be flushed.

気密容器1の内部には、加圧部材20が上下動自在に配置されており、加圧部材20の上面と支持部材4の下面との間に、測定すべきガスケットAが配置されている。そのため、図3に示すようにガスケットAの内径側に内側密閉空間21が形成されている。加圧部材20の長さは加熱装置5の及ぶ高さより十分に長く、その下端部は下ケース1bまで延びており、接続部材22によって支えられている。接続部材22の軸部22aは下ケース1bの底部を摺動自在に貫通しており、摺動部にOリング23を設けることにより、気密容器1の気密性を確保しつつ接続部材22が上下に摺動できるようになっている。接続部材22は加熱装置5から離れているので、接続部材22やOリング23をその耐熱温度以下の環境に設置することができる。接続部材22にはボールジョイント等の継手24が設けられており、軸部22aの押し上げ力の方向がガスケットAのシール面に対して垂直方向でない場合でも、継手24によって加圧部材20の上面がシール面に対し平行になるように自動的に修正されるため、シール面を均等に押さえつけることが可能となる。   Inside the hermetic container 1, a pressurizing member 20 is disposed so as to be movable up and down, and a gasket A to be measured is disposed between the upper surface of the pressurizing member 20 and the lower surface of the support member 4. Therefore, as shown in FIG. 3, an inner sealed space 21 is formed on the inner diameter side of the gasket A. The length of the pressure member 20 is sufficiently longer than the height reached by the heating device 5, and the lower end thereof extends to the lower case 1 b and is supported by the connection member 22. The shaft portion 22a of the connecting member 22 penetrates the bottom portion of the lower case 1b so as to be slidable. By providing an O-ring 23 on the sliding portion, the connecting member 22 moves up and down while ensuring airtightness of the airtight container 1. Can be slid. Since the connecting member 22 is away from the heating device 5, the connecting member 22 and the O-ring 23 can be installed in an environment below the heat resistant temperature. The connecting member 22 is provided with a joint 24 such as a ball joint. Even when the direction of the pushing force of the shaft portion 22a is not perpendicular to the seal surface of the gasket A, the upper surface of the pressurizing member 20 is supported by the joint 24. Since the correction is automatically made to be parallel to the seal surface, the seal surface can be pressed evenly.

気密容器1の外部に突出した接続部材22の軸部22aには、エアーシリンダ等の加圧駆動機構25の軸25aが連結されている。そのため、加圧駆動機構25を作動させると、その加圧力は接続部材22及び加圧部材20を介してガスケットAを垂直荷重として押圧することができる。加圧駆動機構25は、シリンダへの供給圧力を調整することにより、ガスケットAにかかる面圧を例えば10kPa〜100kPaまで任意に調整できる。   A shaft 25a of a pressure driving mechanism 25 such as an air cylinder is connected to the shaft portion 22a of the connection member 22 protruding outside the airtight container 1. Therefore, when the pressure driving mechanism 25 is operated, the pressure can press the gasket A as a vertical load via the connection member 22 and the pressure member 20. The pressure driving mechanism 25 can arbitrarily adjust the surface pressure applied to the gasket A from, for example, 10 kPa to 100 kPa by adjusting the supply pressure to the cylinder.

支持部材4と加圧部材20にはそれぞれ熱電対26,27が取り付けられており、これら熱電対は気密容器1の側壁に設けられた外部端子28,29を介して装置外部に設けられた出力調整器(図示せず)に接続されている。熱電対26,27でガスケットA付近の温度を検出し、出力調整器を介し加熱装置5への出力を調整することで、ガスケットA付近の温度を所望の温度に設定できる。加熱装置5による熱影響を受けない気密容器1の下部側面には、外側密閉空間3を大気に開放するためのリークガス排出経路30が接続されており、リークガス排出経路30の途中には、リークガス排出経路を流れるリークガスの流量を測定する第2質量流量計31が設けられている。第1,第2質量流量計13,31の精度はフルスケール±1%程度のものがよい。   Thermocouples 26 and 27 are attached to the support member 4 and the pressure member 20, respectively, and these thermocouples are provided outside the apparatus via external terminals 28 and 29 provided on the side wall of the airtight container 1. It is connected to a regulator (not shown). The temperature near the gasket A can be set to a desired temperature by detecting the temperature near the gasket A with the thermocouples 26 and 27 and adjusting the output to the heating device 5 via the output regulator. A leak gas discharge path 30 for opening the outer sealed space 3 to the atmosphere is connected to the lower side surface of the hermetic container 1 that is not affected by heat from the heating device 5. A second mass flow meter 31 for measuring the flow rate of the leak gas flowing through the path is provided. The accuracy of the first and second mass flowmeters 13 and 31 is preferably about 1% full scale.

ここで、前記構成よりなる漏洩測定装置の作動を説明する。まず測定の前に、加圧駆動機構25の押し付け圧力と、ガスケットAにかかる面圧との相関関係を求めておく。そのため、常温状態でロードセル等の荷重検出器(図示せず)を支持部材4と加圧部材20との間にセットし、加圧駆動機構25を作動させながら、荷重検出器の検出データを読み取る。加圧駆動機構25の押し付け圧力とガスケットAの面圧との相関関係を求めた後、荷重検出器を取り外す。   Here, the operation of the leakage measuring apparatus having the above-described configuration will be described. First, before the measurement, a correlation between the pressing pressure of the pressure driving mechanism 25 and the surface pressure applied to the gasket A is obtained. Therefore, a load detector (not shown) such as a load cell is set between the support member 4 and the pressurizing member 20 at room temperature, and the detection data of the load detector is read while operating the pressurization drive mechanism 25. . After obtaining the correlation between the pressing pressure of the pressure drive mechanism 25 and the surface pressure of the gasket A, the load detector is removed.

次に、実際の漏洩測定の手順を説明する。
(1)ガスケットAを支持部材4と加圧部材20との間にセットし、気密容器1を密閉する。
(2)加熱装置5をセットし、加熱装置5によってガスケットA及びその周辺を所定温度(例えば800℃)に加熱する。
(3)事前に求めた押し付け圧力と面圧との相関関係に基づいて、ガスケットAの面圧が所定の値(例えば10kPa)になるように加圧駆動機構25の押し付け圧を調整する。
(4)ガス投入経路(一次側)7から内側密閉空間21へガスを供給する。そして、圧力調整弁15により、二次側の圧力損失を例えば0〜30kPa に変化させる。圧力損失は二次側の圧力計14で計測する。
(5)第1質量流量計13によって一次側の投入流量を計測し、第2質量流量計31によってリークガスの流量を測定する。ガスケットAからリークするガスは、外側密閉空間3で捕集されるので、リークガスの流量を第2質量流量計31で直接測定できる。第1,第2質量流量計13,31の精度はフルスケール±1%程度であるため、リーク量が全体流量の1%以下程度であるような場合でも、精度よく測定できる。
(6)ガスケット面圧30、50、70kPaの場合も同様に、順次(3) 〜(5) の手順を繰り返す。
Next, an actual leakage measurement procedure will be described.
(1) The gasket A is set between the support member 4 and the pressure member 20, and the airtight container 1 is sealed.
(2) The heating device 5 is set, and the gasket A and its surroundings are heated to a predetermined temperature (for example, 800 ° C.) by the heating device 5.
(3) Based on the correlation between the pressing pressure and the surface pressure obtained in advance, the pressing pressure of the pressure drive mechanism 25 is adjusted so that the surface pressure of the gasket A becomes a predetermined value (for example, 10 kPa).
(4) Gas is supplied from the gas input path (primary side) 7 to the inner sealed space 21. Then, the pressure loss on the secondary side is changed to, for example, 0 to 30 kPa by the pressure adjusting valve 15. The pressure loss is measured with a secondary pressure gauge 14.
(5) The primary mass flow meter 13 measures the primary input flow rate, and the second mass flow meter 31 measures the leak gas flow rate. Since the gas leaking from the gasket A is collected in the outer sealed space 3, the flow rate of the leak gas can be directly measured by the second mass flow meter 31. Since the accuracy of the first and second mass flowmeters 13 and 31 is about full scale ± 1%, even when the leak amount is about 1% or less of the total flow rate, it can be measured with high accuracy.
(6) Repeat steps (3) to (5) in the same way for gasket surface pressures of 30, 50 and 70 kPa.

次に、前記構成の漏洩測定装置を用いてガスケットのリーク量を測定した実験について示す。実験条件は以下の通りである。
・投入ガス種:He
・投入ガス量:5NL/min(NL:normal liter:基準状態 (0℃、1atm)での体積)
・加熱温度:800℃
・ガスケット−材質:バーミキュライト(厚み:0.5mm,内径80mm,外径90mm)
・第1質量流量計のフルスケール:20LM(LM:l/min)
・第2質量流量計のフルスケール:200CCM(CCM:ml/min)
Next, an experiment in which the leakage amount of the gasket was measured using the leakage measurement apparatus having the above-described configuration will be described. The experimental conditions are as follows.
・ Gas type: He
-Input gas volume: 5 NL / min (NL: normal liter: volume at standard condition (0 ° C, 1 atm))
・ Heating temperature: 800 ℃
・ Gasket-Material: Vermiculite (thickness: 0.5mm, inner diameter 80mm, outer diameter 90mm)
・ Full scale of the first mass flow meter: 20LM (LM: l / min)
・ Full scale of the second mass flow meter: 200 CCM (CCM: ml / min)

図4は、面圧を1.02E-05、3.059E-05 、5.099E-05 、7.138E-05 Paとした条件下で、二次側の圧力損失値を0〜30kPaに変化させたときのガスケットからのリーク率(%)を求めたものである。リーク率は以下の計算式で求めた。
リーク率=J値/L値×100
J値:第1質量流量計の測定値
L値:第2質量流量計の測定値
FIG. 4 shows a case where the pressure loss value on the secondary side is changed to 0 to 30 kPa under the conditions where the surface pressure is 1.02E-05, 3.059E-05, 5.099E-05, and 7.138E-05 Pa. The leak rate (%) from the gasket was obtained. The leak rate was calculated by the following formula.
Leak rate = J value / L value x 100
J value: Measurement value of the first mass flow meter
L value: Measurement value of the second mass flow meter

図4から明らかなように、シール面圧と圧力損失とを変化させた状態でのリーク量を精度良く測定することができた。つまり、実際のリーク部にかかる条件を厳密に再現した状態で、供給ガス量の1%以下のリーク率でも検出できる結果を得た。   As is clear from FIG. 4, the amount of leak in a state where the seal surface pressure and the pressure loss were changed could be accurately measured. That is, it was possible to detect even a leak rate of 1% or less of the supply gas amount in a state where the conditions concerning the actual leak portion were strictly reproduced.

図5は、図4をグラフ化したものである。面圧1.02E-05Paが面圧1kgfに相当する。図5から分かるように、本ガスケットを800℃で使用し、リーク率1%以下を評価基準とした場合、シール面圧を3kgf以上とする必要があることがわかる。   FIG. 5 is a graph of FIG. A surface pressure of 1.02E-05 Pa corresponds to a surface pressure of 1 kgf. As can be seen from FIG. 5, when this gasket is used at 800 ° C. and the leak rate is 1% or less, the seal surface pressure needs to be 3 kgf or more.

A ガスケット
1 気密容器
3 外側密閉空間
4 支持部材
5 加熱装置
7 ガス投入経路(一次側)
8 ガス排出経路(二次側)
10 圧力調整弁
11 圧力計
12 流量調整弁
13 第1質量流量計
14 圧力計
15 圧力調整弁(ガス圧設定手段)
20 加圧部材
21 内側密閉空間
24 継手
25 加圧駆動機構
26,27 熱電対
30 リークガス排出経路
31 第2質量流量計
A Gasket 1 Airtight container 3 Outer sealed space 4 Support member 5 Heating device 7 Gas supply path (primary side)
8 Gas discharge route (secondary side)
DESCRIPTION OF SYMBOLS 10 Pressure regulating valve 11 Pressure gauge 12 Flow regulating valve 13 1st mass flow meter 14 Pressure gauge 15 Pressure regulating valve (gas pressure setting means)
20 Pressurizing member 21 Inner sealed space 24 Joint 25 Pressurizing drive mechanism 26, 27 Thermocouple 30 Leak gas discharge path 31 Second mass flow meter

Claims (5)

ガスケットの厚み方向の一方面を支持する支持部材と、
前記ガスケットの厚み方向の他方面を加圧して、前記ガスケットの内径側に内側密閉空間を形成する加圧部材と、
前記ガスケットを加熱するための加熱手段と、
前記内側密閉空間に接続されたガス投入経路と、
前記ガス投入経路中に設けられ、ガス投入経路から供給されたガスの流量を測定する第1の質量流量計と、
前記内側密閉空間に接続されたガス排出経路と、
前記ガス排出経路中に設けられ、ガス排出側における保持圧力を設定するガス圧設定手段と、
前記ガスケットの外径側に密閉された外側密閉空間を形成するための気密容器と、
前記外側密閉空間に接続されたリークガス排出経路と、
前記リークガス排出経路中に設けられ、当該リークガス排出経路を流れるリークガスの流量を測定する第2の質量流量計と、を備えたことを特徴とするガスケットの漏洩測定装置。
A support member that supports one surface of the gasket in the thickness direction;
A pressure member that pressurizes the other surface in the thickness direction of the gasket to form an inner sealed space on the inner diameter side of the gasket;
Heating means for heating the gasket;
A gas input path connected to the inner sealed space;
A first mass flow meter provided in the gas input path for measuring the flow rate of the gas supplied from the gas input path;
A gas discharge path connected to the inner sealed space;
A gas pressure setting means provided in the gas discharge path for setting a holding pressure on the gas discharge side;
An airtight container for forming an outer sealed space sealed on the outer diameter side of the gasket;
A leak gas discharge path connected to the outer sealed space;
A gasket leakage measurement apparatus comprising: a second mass flow meter provided in the leak gas discharge path and measuring a flow rate of the leak gas flowing through the leak gas discharge path.
前記加圧部材に接続され、前記ガスケットを厚み方向に加圧すると共に、加圧力を可変できる加圧駆動機構、をさらに備えることを特徴とする請求項1に記載のガスケットの漏洩測定装置。   The gasket leakage measurement device according to claim 1, further comprising a pressure drive mechanism connected to the pressure member and configured to pressurize the gasket in a thickness direction and change a pressure. 前記支持部材又はその周辺に、前記加熱手段が設けられていることを特徴とする請求項1又は2に記載のガスケットの漏洩測定装置。   The gasket leakage measuring apparatus according to claim 1 or 2, wherein the heating means is provided on or around the support member. 前記支持部材と加圧部材とに、ガスケットに加わる加熱温度を測定するための温度センサが設けられていることを特徴とする請求項1乃至3のいずれかに記載のガスケットの漏洩測定装置。   4. The gasket leakage measuring device according to claim 1, wherein a temperature sensor for measuring a heating temperature applied to the gasket is provided on the support member and the pressure member. 前記加圧駆動機構と加圧部材とが軸方向荷重のみを伝える自在継手を介して接続されていることを特徴とする請求項1乃至4のいずれかに記載のガスケットの漏洩測定装置。   The gasket leakage measurement apparatus according to any one of claims 1 to 4, wherein the pressure driving mechanism and the pressure member are connected via a universal joint that transmits only an axial load.
JP2009244999A 2009-10-26 2009-10-26 Leakage measurement apparatus of gasket Pending JP2011089940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244999A JP2011089940A (en) 2009-10-26 2009-10-26 Leakage measurement apparatus of gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244999A JP2011089940A (en) 2009-10-26 2009-10-26 Leakage measurement apparatus of gasket

Publications (1)

Publication Number Publication Date
JP2011089940A true JP2011089940A (en) 2011-05-06

Family

ID=44108313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244999A Pending JP2011089940A (en) 2009-10-26 2009-10-26 Leakage measurement apparatus of gasket

Country Status (1)

Country Link
JP (1) JP2011089940A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818680A (en) * 2012-08-20 2012-12-12 珠海格力电器股份有限公司 Pressure testing device
CN104502038A (en) * 2014-12-18 2015-04-08 清华大学 System and method for measuring air leakage rate of contact interface of sealing element
CN105606319A (en) * 2016-03-29 2016-05-25 三峡大学 Test device and method for detecting sealing performance of waterproof strip of power cable
JP2017122616A (en) * 2016-01-06 2017-07-13 日本特殊陶業株式会社 Sensor inspecting method and sensor manufacturing method
JP2020012790A (en) * 2018-07-20 2020-01-23 株式会社フクダ Hermetic container for leakage test
CN114136609A (en) * 2021-11-29 2022-03-04 重庆川仪调节阀有限公司 Method for detecting inner and outer sealing performance of gasket
CN115711706A (en) * 2023-01-09 2023-02-24 中南大学 Tunnel joint sealing gasket waterproof capacity early warning system and judgment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108389U (en) * 1977-02-05 1978-08-30
JP2003322583A (en) * 2002-02-26 2003-11-14 Nippon Api Corp Leak inspection method, object to be inspected, gas permeability measuring method, and object to be measured
JP2004306068A (en) * 2003-04-04 2004-11-04 Ube Machinery Corporation Ltd Container for holding half-molten metal, and method of preventing its deformation
JP2007147559A (en) * 2005-11-30 2007-06-14 Yamatake Corp Method and device for inspecting leakage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108389U (en) * 1977-02-05 1978-08-30
JP2003322583A (en) * 2002-02-26 2003-11-14 Nippon Api Corp Leak inspection method, object to be inspected, gas permeability measuring method, and object to be measured
JP2004306068A (en) * 2003-04-04 2004-11-04 Ube Machinery Corporation Ltd Container for holding half-molten metal, and method of preventing its deformation
JP2007147559A (en) * 2005-11-30 2007-06-14 Yamatake Corp Method and device for inspecting leakage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818680A (en) * 2012-08-20 2012-12-12 珠海格力电器股份有限公司 Pressure testing device
CN104502038A (en) * 2014-12-18 2015-04-08 清华大学 System and method for measuring air leakage rate of contact interface of sealing element
JP2017122616A (en) * 2016-01-06 2017-07-13 日本特殊陶業株式会社 Sensor inspecting method and sensor manufacturing method
CN105606319A (en) * 2016-03-29 2016-05-25 三峡大学 Test device and method for detecting sealing performance of waterproof strip of power cable
JP2020012790A (en) * 2018-07-20 2020-01-23 株式会社フクダ Hermetic container for leakage test
JP7141878B2 (en) 2018-07-20 2022-09-26 株式会社フクダ Sealed container for leak test
CN114136609A (en) * 2021-11-29 2022-03-04 重庆川仪调节阀有限公司 Method for detecting inner and outer sealing performance of gasket
CN114136609B (en) * 2021-11-29 2024-04-05 重庆川仪调节阀有限公司 Gasket inner and outer sealing performance detection method
CN115711706A (en) * 2023-01-09 2023-02-24 中南大学 Tunnel joint sealing gasket waterproof capacity early warning system and judgment method

Similar Documents

Publication Publication Date Title
JP2011089940A (en) Leakage measurement apparatus of gasket
KR102309369B1 (en) Test device for metallic materials resistant to hydrogen embrittlement
CN102445310B (en) Simple high-temperature testing device and method for flange rubber sealing element
WO2011067877A1 (en) Pressure-type flow rate control device
US20090064756A1 (en) Vacuum gauge calibration apparatus capable of calibrating and testing without displacement and operating method thereof
JPH05248916A (en) Mass flowmeter, method for measuring mass of fluid and viscosity measuring device
JP2007232666A (en) Method and device for inspecting leakage in pipe line
TWI494554B (en) Method and device for differential pressure measurement
CN104406751A (en) System for testing high-temperature pipeline flange under action of outer bending moment
JP6650166B2 (en) Gas supply device capable of measuring flow rate, flow meter, and flow rate measuring method
CN109374221A (en) It is a kind of for testing the experimental rig of metal stationary seal ring elevated-temperature seal performance
KR101560145B1 (en) Batch measurement method for gas permeation, penetration damage and mechanical property, apparatus using thereof
KR102154632B1 (en) Test device for metallic materials resistant to hydrogen embrittlement
WO2014171571A1 (en) Differential pressure-type leakage examining device and leakage examining method
JP4571194B2 (en) SOFC battery pack sealing material high temperature leak detector
JP4364218B2 (en) Leak inspection method and leak inspection apparatus
CN106525701B (en) High-frequency fatigue overheating testing device in oxyhydrogen steam environment
JP6650734B2 (en) Volume measurement method and airtightness / leakage test method using it
JP6370113B2 (en) Pressure gauge inspection method
KR101422506B1 (en) Apparatus for testing flange leakages, and a method for testing flange leakages using the same
KR101909903B1 (en) System for testing airtightness of gasket
CN111198131A (en) Measuring device and measuring method for volume expansion characteristic of material under tensile load
JP2020016536A (en) Pressure inspection device and pressure inspection method
CN115326303A (en) System and method for testing leakage rate of sealing gasket in high-temperature and high-pressure environment
JP2001066216A (en) Instrument and method for measuring quantity of leakage from gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120704

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Effective date: 20131015

Free format text: JAPANESE INTERMEDIATE CODE: A02