JP2011089809A - Device and method for evaluating rolling resistance - Google Patents

Device and method for evaluating rolling resistance Download PDF

Info

Publication number
JP2011089809A
JP2011089809A JP2009241817A JP2009241817A JP2011089809A JP 2011089809 A JP2011089809 A JP 2011089809A JP 2009241817 A JP2009241817 A JP 2009241817A JP 2009241817 A JP2009241817 A JP 2009241817A JP 2011089809 A JP2011089809 A JP 2011089809A
Authority
JP
Japan
Prior art keywords
container
cylindrical
containers
partition
rolling resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009241817A
Other languages
Japanese (ja)
Inventor
Junichi Nasuno
純一 那須野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009241817A priority Critical patent/JP2011089809A/en
Publication of JP2011089809A publication Critical patent/JP2011089809A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device or method for evaluating the effect exerted on the rolling resistance of a cylindrical container by internally moving the sealing matter housed in the cylindrical container. <P>SOLUTION: In the device for evaluating rolling resistance is composed of two or more cylindrical containers and an inclined stand, the cylindrical containers have the mutually substantially same shape and include the mutually substantially same material and the sealing matters of the same kind are sealed in the cylindrical containers so as to have the substantially same voids. At least one cylindrical container has a partition demarcating a plurality of container internal spaces. The cylindrical containers have mutually different container internal spaces. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、円筒状容器に収納した、粒状、粉状、液状等をなす封入物の内部移動が、容器の転がり抵抗に与える影響を評価する技術を提案するものである。   The present invention proposes a technique for evaluating the influence of the internal movement of a granular, powdery, liquid, or other enclosure contained in a cylindrical container on the rolling resistance of the container.

この発明の目的とするところは、円筒状容器の内部に収納した封入物が内部移動することによって、円筒状の容器の転がり抵抗に与える影響を評価するための装置や方法を提供することにある。   An object of the present invention is to provide an apparatus and a method for evaluating the influence on the rolling resistance of a cylindrical container due to the internal movement of the enclosed material stored in the cylindrical container. .

この発明の転がり抵抗の評価装置は、二つ以上の円筒状容器と傾斜台からなるものであって、前記円筒状容器は、相互に実質的に同一の形状および材質からなり、同一種類の封入物を、実質的に同一の空隙率で封入され、少なくとも一つの前記円筒状容器は、複数の容器内部空間に区画する仕切りを有し、前記円筒状容器は、相互に異なる前記容器内部空間を有するものである。
ここにおいて、「実質的に同一の形状および材質」とは、容器相互の形状および材質のある程度の相違は許容する意味であり、「実質的に同一の空隙率」とは、容器相互の空隙率の、5〜10%の誤差を許容する意味である。
また、ここでいう「空隙率」とは、容器の容積から、封入物の体積を差し引いて、これを容器の容積で割った値を百分率で表したものを意味する。
The rolling resistance evaluation apparatus according to the present invention comprises two or more cylindrical containers and an inclined table, and the cylindrical containers are formed of substantially the same shape and material, and are of the same kind. The at least one cylindrical container has a partition that divides into a plurality of container internal spaces, and the cylindrical containers have different container internal spaces from each other. It is what you have.
Here, “substantially the same shape and material” means that some difference in the shape and material between containers is allowed, and “substantially the same porosity” means the porosity between containers. Of 5 to 10%.
Further, the “porosity” as used herein means a value obtained by subtracting the volume of the enclosure from the volume of the container and dividing this by the volume of the container, expressed as a percentage.

ここで好ましくは、前記仕切りは、前記円筒状容器の中心軸を通過して配置される。   Preferably, the partition is disposed so as to pass through a central axis of the cylindrical container.

また好ましくは、前記封入物は粒状体からなる。   Preferably, the encapsulant is made of a granular material.

この発明の転がり抵抗の評価方法は、二つ以上の円筒状容器と傾斜台からなる転がり抵抗の評価方法であって、前記円筒状容器は、相互に実質的に同一の形状および材質からなり、同一種類の封入物を実質的に同一の空隙率で封入され、少なくとも一つの前記円筒状容器は、複数の容器内部空間に区画する仕切りを有し、前記円筒状容器は、相互に異なる前記容器内部空間を有しており、いずれの前記円筒状容器も、前記傾斜台の傾斜面上を実質的に同一の高さの位置から転がして、前記円筒状容器の転がった距離を測定し比較することにある。   The rolling resistance evaluation method of the present invention is a rolling resistance evaluation method comprising two or more cylindrical containers and an inclined table, wherein the cylindrical containers are formed of substantially the same shape and material. The same kind of inclusions are enclosed with substantially the same porosity, and at least one of the cylindrical containers has a partition that divides into a plurality of container internal spaces, and the cylindrical containers are different from each other. It has an internal space, and any of the cylindrical containers rolls on the inclined surface of the inclined table from a position of substantially the same height, and measures and compares the rolled distance of the cylindrical container. There is.

この発明の転がり抵抗の評価装置によれば、内部を複数の小空間に区画する仕切りを設けた円筒状容器と、仕切りを設けない円筒状容器とのそれぞれの内部空隙率を相互に実質的に同一なものとし、円筒状容器の転動に際し、内部に仕切りを設けた容器では、仕切りがない容器に比して、内部の封入物の、周方向の移動量を制限することにより、いずれの容器にも同じ大きさの入力を与えて転がした場合、内部に仕切りを設けた容器では、入力されたエネルギの、封入物の内部移動による消費量が相対的に少なくなるので、その分のエネルギが容器の転がりに費やされることになり、結果として、内部に仕切りを設けた容器が、仕切りがない容器によりも長い距離にわたって転がることになる。
従って、複数の容器の転がり量を比較することで、内部に封入した封入物の内部移動が、円筒状容器の転がり抵抗に与える影響を評価することができる。
According to the rolling resistance evaluation apparatus of the present invention, the internal porosity of each of the cylindrical container provided with a partition that divides the interior into a plurality of small spaces and the cylindrical container provided with no partition are substantially equal to each other. In the case of rolling the cylindrical container, in the case of a container provided with a partition inside, by restricting the amount of movement of the enclosed matter in the circumferential direction compared to a container without a partition, If the container is rolled with the same size input, the consumption of the input energy due to the internal movement of the enclosure will be relatively small in the container provided with a partition inside. As a result, a container provided with a partition is rolled over a longer distance than a container without a partition.
Therefore, by comparing the rolling amounts of a plurality of containers, it is possible to evaluate the influence of the internal movement of the enclosed material enclosed on the rolling resistance of the cylindrical container.

ここで、前記仕切りは、前記円筒状容器の中心軸を通過して配置されるものとしたときは、円筒状の容器内部に、容器の転がり方向に均等な小空間を容易に形成することができ、その結果として、適正かつ正確な、容器の転がり抵抗の評価を行うことができる。   Here, when the partition is arranged to pass through the central axis of the cylindrical container, a small space that is uniform in the rolling direction of the container can be easily formed inside the cylindrical container. As a result, proper and accurate evaluation of the rolling resistance of the container can be performed.

またここで、封入物が粒状体からなるものとしたときは、粒状体は液体や粉状体よりも径が大きいことから、内部を複数の小空間に区画した容器の仕切りを簡易なものとしてなお、粒状体の、仕切りにより区画された空間の相互の移動を十分に防止して、封入物である粒状体の内部移動による、転がり抵抗に与える影響を正確に評価することができる。   Here, when the inclusion is made of a granular material, since the granular material has a larger diameter than the liquid or powdery material, the container partitioning the interior into a plurality of small spaces can be simplified. In addition, the mutual movement of the space of the granular material partitioned by the partition is sufficiently prevented, and the influence on the rolling resistance due to the internal movement of the granular material as the inclusion can be accurately evaluated.

そしてまた、この発明の転がり抵抗の評価方法によれば、いずれの前記円筒状容器も、前記傾斜台の傾斜面上を実質的に同一の高さの位置から転がした場合に、内部を小空間に区画した容器と、区画しない容器との間に、内部封入物の移動制限に基く、転がり距離の差が生じることになるので、これらの容器の転がり距離を比較することにより円筒状容器の転がり抵抗を評価することができる。   Further, according to the rolling resistance evaluation method of the present invention, when any of the cylindrical containers rolls on the inclined surface of the inclined base from a position at substantially the same height, the interior is a small space. Since there is a difference in the rolling distance between the container that is partitioned into the container and the container that is not partitioned based on the movement restriction of the inner enclosure, the rolling of the cylindrical container is compared by comparing the rolling distance of these containers. Resistance can be evaluated.

この発明の実施の形態に用いる円筒状容器について示す斜視図である。It is a perspective view shown about the cylindrical container used for embodiment of this invention. 図1に示す円筒状容器を、連結前の状態について示す分解斜視図である。It is a disassembled perspective view which shows the cylindrical container shown in FIG. 1 about the state before a connection. 他の実施の形態に用いる円筒状容器について示す横断面図である。It is a cross-sectional view shown about the cylindrical container used for other embodiment. 他の実施の形態に用いる筒状部材に、封入物を収納する状態を示す透過斜視図である。It is a permeation | transmission perspective view which shows the state which accommodates the enclosure thing in the cylindrical member used for other embodiment. 他の実施の形態に用いる筒状部材を密封する状態を示す透過斜視図である。It is a permeation | transmission perspective view which shows the state which seals the cylindrical member used for other embodiment. この発明の装置について示す斜視図である。It is a perspective view shown about the apparatus of this invention.

以下に図面を参照しつつ、この発明の実施の形態を説明する。
図1(a)、(b)はそれぞれ、この発明に用いる一の円筒状容器1および、他の円筒状容器11のそれぞれを示す斜視図である。なおここでは、評価対象となる容器を二個の円筒状容器1、11としたが、三個以上の円筒状容器を評価対象容器とすることもできる。
Embodiments of the present invention will be described below with reference to the drawings.
FIGS. 1A and 1B are perspective views showing one cylindrical container 1 and another cylindrical container 11 used in the present invention, respectively. Here, although the containers to be evaluated are the two cylindrical containers 1 and 11, three or more cylindrical containers may be used as the evaluation target containers.

図示の円筒状容器1、11は、容積、寸法および材質を互いに同一とするとともに、いずれの容器1、11も、一端側(図では下方側)が低壁で密閉された筒状部材2、12の他端(図では上端)に、蓋部材3、13を締付けその他によって取付けてなるものである。   The cylindrical containers 1 and 11 shown in the figure have the same volume, dimensions, and material, and each of the containers 1 and 11 has a cylindrical member 2 whose one end side (the lower side in the figure) is sealed with a low wall, The lid members 3 and 13 are attached to the other end of 12 (upper end in the figure) by fastening or the like.

ここでは、図2に分解斜視図で示すように、一方の円筒状容器1の内部には、容器1の軸線方向を中心として外周側に放射状に広がる仕切り4を設け、この仕切り4によって、容器1の内部を八個の均等な小空間5に区画するのに対し、他方の円筒状部材11の内部には、かかる仕切りを設けないものとする。   Here, as shown in an exploded perspective view in FIG. 2, a partition 4 is provided in one cylindrical container 1 so as to spread radially on the outer peripheral side with the axial direction of the container 1 as the center. While the inside of 1 is divided into eight equal small spaces 5, it is assumed that such a partition is not provided inside the other cylindrical member 11.

筒状部材2の内部のこの仕切り4は、種々の形状のものとすることができるが、たとえば、図3(a)に筒状部材2を横断面図で示すように、筒状部材2の軸線方向を中心として放射状をなす仕切り4によって、容器内部をたとえば四個の均等な小空間5に区画することができる他、図3(b)に示すように、互いに垂直をなす複数の隔壁からなる仕切り4によって、内部を、横断面で複数の方形状等に区画することもできる。
また、図示しないが、仕切り4を構成する隔壁のそれぞれを曲面状に形成することも可能である。
The partition 4 inside the cylindrical member 2 can have various shapes. For example, as shown in FIG. 3A in a cross-sectional view of the cylindrical member 2, The inside of the container can be partitioned into, for example, four equal small spaces 5 by the partitions 4 that are formed radially about the axial direction, and, as shown in FIG. 3 (b), a plurality of partition walls that are perpendicular to each other. By the partition 4 which becomes, the inside can also be divided into a plurality of square shapes or the like in the cross section.
Further, although not shown, each of the partition walls constituting the partition 4 can be formed in a curved surface shape.

そして、一端側を密閉した筒状部材2、12の内側の空間に、いずれも同一種類の、たとえばプラスチックからなる複数個の球形粒状体6、16を、その粒状体6、16が容器内で移動できる程度の空間を残して収納した状態で、筒状部材2、12の他端側に、蓋部材3、13を嵌め合わせて容器1、11を封止する。
このように、粒状体6、16が容器内で移動できる空間を確保した状態で、粒状体6、16を容器内に封入することで、容器1、11の転がりに伴って、容器1、11の内部の粒状体6、16が、その内部を移動することができる。
Then, in the space inside the cylindrical members 2 and 12 whose one end is sealed, a plurality of spherical particles 6 and 16 of the same type, for example made of plastic, are stored in the container. The containers 1 and 11 are sealed by fitting the lid members 3 and 13 to the other end sides of the cylindrical members 2 and 12 in a state where the movable members are stored leaving a space that can move.
In this way, by enclosing the granular bodies 6 and 16 in the container in a state in which a space in which the granular bodies 6 and 16 can move in the container is secured, the containers 1 and 11 are rolled with the rolling of the containers 1 and 11. The internal granular bodies 6 and 16 can move inside.

この場合、一方の容器1の内部空隙率と、他方の容器11の内部空隙率とが互いに実質的に同一となるように、粒状体6、16を各容器1、11に封入する。
なおここで、一方の容器1の内部に形成した複数の小空間5内の空隙率は、相互に等しいものとすることができるが、これら空隙率を、小空間5毎に相違するものとしてもよい。
In this case, the granular materials 6 and 16 are enclosed in the containers 1 and 11 so that the internal porosity of one container 1 and the internal porosity of the other container 11 are substantially the same.
Here, the void ratios in the plurality of small spaces 5 formed inside one container 1 can be equal to each other, but these void ratios may be different for each small space 5. Good.

またここで、容器1、11に収納した封入物を、図では粒状体6、16としたが、これを液体もしくは粉状体とすることも可能である。
とくに封入物を液体とした場合は、一方の容器1の内部に形成した小空間5の相互間で、液体の流動が生じるおそれのある隙間が、仕切り4と筒状部材2との間や、仕切り4を構成する隔壁の相互の間に形成されないようにすることが必要である。
In addition, here, the inclusions stored in the containers 1 and 11 are the granular bodies 6 and 16 in the figure, but this may be a liquid or a powdery body.
In particular, when the encapsulated material is a liquid, there is a gap between the small space 5 formed in one container 1 between the partition 4 and the tubular member 2 between the partition 4 and the tubular member 2. It is necessary to prevent the partition 4 from being formed between the partition walls.

なお、図示の円筒状容器1、11では、筒状部材2、12の、蓋部材3、13への取付け側の端部に形成した雄ネジ部2A、12Aと、蓋部材3、13の筒状部3A、13Aの内周面に形成した図示しない雌ネジ部とを螺合させて、それらの両部材を連結させているが、両部材は、これに限定されることなく、種々の取付け手段によって相互連結することができる。   In the illustrated cylindrical containers 1 and 11, male screw portions 2 </ b> A and 12 </ b> A formed at the end portions of the cylindrical members 2 and 12 on the attachment side to the lid members 3 and 13 and the cylinders of the lid members 3 and 13. The internal threads of the shape portions 3A and 13A are screwed together with a female screw portion (not shown) to connect these two members. However, both members are not limited to this, and various attachments are possible. It can be interconnected by means.

ところで、この円筒状容器としては、内部に仕切りを形成することができ、且つ封入物を収納することができるものであればよく、たとえば、図4に、筒状部材の周面を透視した斜視図で例示するように、内部に仕切り24を形成するとともに両端が閉塞された筒状部材22および、内部に仕切りがなく両端が閉塞された筒状部材32のそれぞれの両端面のいずれか一方に、図では円形の穴27、37を形成し、その穴27、37から容器内部に封入物26、36を挿入した後に、図5に示すように、穴27、37と略同等の大きさの、図では円盤状のほぞ部材28、38を、穴27、37を閉塞するように、筒状部材22、32のそれぞれの端面に嵌め込み固着させて筒状部材22、32を密封して、円筒状容器21、31を作成することもできる。   By the way, as this cylindrical container, what is necessary is just a thing which can form a partition in an inside and can accommodate an enclosure, for example, the perspective which saw through the surrounding surface of the cylindrical member in FIG. As illustrated in the figure, the cylindrical member 22 is formed with a partition 24 inside and closed at both ends, and the cylindrical member 32 is closed at both ends without any partition inside. In the figure, circular holes 27, 37 are formed, and after the inclusions 26, 36 are inserted into the container from the holes 27, 37, the size of the holes 27, 37 is substantially the same as shown in FIG. In the drawing, the disk-like tenon members 28 and 38 are fitted and fixed to the respective end surfaces of the cylindrical members 22 and 32 so as to close the holes 27 and 37, and the cylindrical members 22 and 32 are sealed to form a cylinder. A cylindrical container 21, 31 It can be.

以上のようにして作成した二の円筒状容器1、11は、たとえば図6に斜視図で示すように、斜面台50の、平坦面または曲面の斜面上の、相互に同一の高さの位置に、それらの両者を配置して、この斜面上を転がすこと等によって、互いに同一の大きさの、転がり入力を付与することができる。   As shown in the perspective view of FIG. 6, for example, the two cylindrical containers 1 and 11 created as described above are positioned at the same height on the flat or curved slope of the slope base 50. In addition, by arranging both of them and rolling on the slope, it is possible to give rolling inputs of the same size.

このように、いずれの円筒状容器1、11も、傾斜台50の、同一の高さの位置から転がして、各容器の転がった距離を測定し比較するものとしたときは、人の手で容器1、11に入力を与えて平面上を転がす場合に比して、両容器1、11により正確に等しい量のエネルギを与えることができるので、評価が容易なものとなるとともに、容器1、11の転がり量、ひいては、封入物6、16の内部移動が転がり抵抗に与える影響を、より適正に評価することができる。   As described above, when any of the cylindrical containers 1 and 11 are rolled from the same height position of the tilting table 50 and the distances of the respective containers are measured and compared, Compared to the case where the containers 1 and 11 are input to roll on the plane, the containers 1 and 11 can be given an equal amount of energy, so that the evaluation can be easily performed. Thus, the influence of the amount of rolling 11 and the internal movement of the inclusions 6 and 16 on the rolling resistance can be evaluated more appropriately.

ここで、二の容器1、11に、相互に同じ大きさの入力を与えるためには、容器1、11のそれぞれに、平面上のそれらに、互いに同一の力を容器の後方から加えて、それらを平面上で転がすこともできる。   Here, in order to give the two containers 1 and 11 inputs having the same size, the same force is applied to each of the containers 1 and 11 on the plane from the rear of the container. They can also be rolled on a flat surface.

このようにして円筒状容器1、11を転がすと、内部の封入物、ここでは粒状体6、16が、容器内に確保した、粒状体6、16の移動空間を、互いに衝突等しながら移動することとなり、粒状体6、16のこの移動によって、容器1、11に加えた入力エネルギの一部が費やされることになる。この場合、内部に仕切り4を形成した容器1では、その仕切り4の存在の故に、粒状体6、16のこのような内部移動が制限されるので、仕切りがない容器11に比して、転がり移動量、すなわち、容器内部でのエネルギロスが少ないものとなる。   When the cylindrical containers 1 and 11 are rolled in this way, the internal inclusions, here, the granular bodies 6 and 16 move in the moving space of the granular bodies 6 and 16 secured in the container while colliding with each other. As a result, a part of the input energy applied to the containers 1 and 11 is consumed by this movement of the granular bodies 6 and 16. In this case, in the container 1 in which the partition 4 is formed, the internal movement of the granular bodies 6 and 16 is limited due to the presence of the partition 4, so that the rolling is performed as compared with the container 11 without the partition. The amount of movement, that is, energy loss inside the container is small.

そして、この結果として、仕切り4を設けた容器1は、仕切りがない容器11よりも長い距離を転がることになり、両容器1、11の相互間でその転がり量に差が生じることとなるため、各容器1、11の転がり量を測定し、比較することによって、容器内の封入物の移動が、容器の転がり量に与える影響を評価することができる。   As a result, the container 1 provided with the partition 4 rolls a longer distance than the container 11 without the partition, and a difference in the amount of rolling occurs between the containers 1 and 11. By measuring and comparing the amount of rolling of each of the containers 1 and 11, it is possible to evaluate the influence of the movement of the inclusion in the container on the amount of rolling of the container.

次に、この発明の評価装置および評価方法の効果を検証したので、以下に説明する。   Next, the effects of the evaluation apparatus and the evaluation method of the present invention have been verified and will be described below.

この発明の評価装置および評価方法に用いる、内部に仕切りを設けた容器1は、図1(a)および図2(a)に示す構成とし、内部に仕切りがない容器11は、図1(b)および図2(b)に示す構成とした。各部材の寸法等を表1に示す。
なお、容器1の内部空間は、仕切り4で均等な八個の小空間5に区画し、各小空間5の空隙率は互いに等しいものとした。
The container 1 provided with a partition inside used in the evaluation apparatus and the evaluation method of the present invention has the configuration shown in FIGS. 1A and 2A, and the container 11 without a partition inside is shown in FIG. ) And the configuration shown in FIG. Table 1 shows the dimensions and the like of each member.
In addition, the internal space of the container 1 was divided into eight equal small spaces 5 by the partitions 4, and the void ratios of the small spaces 5 were equal to each other.

Figure 2011089809
Figure 2011089809

これらの各容器1、11を、図6に示すような、側面視で底辺300mm、高さ50mmの斜面台の頂点から斜面上を転がして、各容器1、11の転がり距離を測定し、内部に仕切りを設けた容器1の転がり距離を、仕切りがない容器11をコントロールとする指数で評価した。
その結果を表2に示す。
Each of these containers 1 and 11 is rolled on the slope from the top of the slope base having a base of 300 mm and a height of 50 mm as shown in FIG. 6 to measure the rolling distance of each of the containers 1 and 11. The rolling distance of the container 1 provided with a partition was evaluated by an index with the container 11 having no partition as a control.
The results are shown in Table 2.

Figure 2011089809
Figure 2011089809

表2の結果から、内部に仕切り4を設けた容器1が、仕切りがない容器11に比して長い距離にわたって転がることがわかり、このことから、この発明の装置および方法によれば、容器内部の封入物の移動による、容器の転がり抵抗を適正に評価できることがわかった。   From the results of Table 2, it can be seen that the container 1 provided with the partition 4 inside rolls over a longer distance than the container 11 without the partition. From this, according to the apparatus and method of the present invention, It was found that the rolling resistance of the container can be properly evaluated by the movement of the inclusions.

この発明に係る物は販売の可能性があるので、この発明は産業上利用できるものである。   Since the thing concerning this invention has a possibility of sale, this invention can be utilized industrially.

1、11、21、31 円筒状容器
2、12、22、32 筒状部材
3、13 蓋部材
4、24 仕切り
5、25 小空間
6、16、26、36 粒状体
27、37 穴
28、38 円盤状部材
50 斜面台
1, 11, 21, 31 Cylindrical container 2, 12, 22, 32 Cylindrical member 3, 13 Lid member 4, 24 Partition 5, 25 Small space 6, 16, 26, 36 Granule 27, 37 Hole 28, 38 Disc-shaped member 50 Slope base

Claims (4)

二つ以上の円筒状容器と傾斜台からなる転がり抵抗の評価装置であって、
前記円筒状容器は、相互に実質的に同一の形状および材質からなり、
同一種類の封入物を、実質的に同一の空隙率で封入され、
少なくとも一つの前記円筒状容器は、複数の容器内部空間に区画する仕切りを有し、
前記円筒状容器は、相互に異なる前記容器内部空間を有することを特徴とした転がり抵抗評価装置。
An evaluation device for rolling resistance comprising two or more cylindrical containers and an inclined table,
The cylindrical containers are substantially the same shape and material as each other,
The same type of inclusions are enclosed with substantially the same porosity,
At least one of the cylindrical containers has a partition that partitions into a plurality of container internal spaces,
The rolling resistance evaluation apparatus according to claim 1, wherein the cylindrical containers have different container internal spaces.
前記仕切りは、前記円筒状容器の中心軸を通過して配置されることを特徴とした請求項1に記載の転がり抵抗評価装置。   The rolling resistance evaluation apparatus according to claim 1, wherein the partition is disposed to pass through a central axis of the cylindrical container. 前記封入物は、粒状体からなることを特徴とした請求項1または2に記載の転がり抵抗評価装置。   The rolling resistance evaluation apparatus according to claim 1, wherein the inclusion is made of a granular material. 二つ以上の円筒状容器と傾斜台からなる転がり抵抗の評価方法であって、
前記円筒状容器は、相互に実質的に同一の形状および材質からなり、
同一種類の封入物を実質的に同一の空隙率で封入され、
少なくとも一つの前記円筒状容器は、複数の容器内部空間に区画する仕切りを有し、
前記円筒状容器は、相互に異なる前記容器内部空間を有しており、
いずれの前記円筒状容器も、前記傾斜台の傾斜面上を実質的に同一の高さの位置から転がして、前記円筒状容器の転がった距離を測定し比較することを特徴とした転がり抵抗の評価方法。
An evaluation method of rolling resistance comprising two or more cylindrical containers and an inclined table,
The cylindrical containers are substantially the same shape and material as each other,
The same kind of inclusions are enclosed with substantially the same porosity,
At least one of the cylindrical containers has a partition that partitions into a plurality of container internal spaces,
The cylindrical container has the container internal space different from each other,
Any of the cylindrical containers rolls on the inclined surface of the inclined table from a position at substantially the same height, and measures and compares the rolling distance of the cylindrical container. Evaluation methods.
JP2009241817A 2009-10-20 2009-10-20 Device and method for evaluating rolling resistance Withdrawn JP2011089809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241817A JP2011089809A (en) 2009-10-20 2009-10-20 Device and method for evaluating rolling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241817A JP2011089809A (en) 2009-10-20 2009-10-20 Device and method for evaluating rolling resistance

Publications (1)

Publication Number Publication Date
JP2011089809A true JP2011089809A (en) 2011-05-06

Family

ID=44108203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241817A Withdrawn JP2011089809A (en) 2009-10-20 2009-10-20 Device and method for evaluating rolling resistance

Country Status (1)

Country Link
JP (1) JP2011089809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087794A (en) * 2013-10-28 2015-05-07 沖電気工業株式会社 Connection mechanism, medium processor, and manufacturing method of connection mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087794A (en) * 2013-10-28 2015-05-07 沖電気工業株式会社 Connection mechanism, medium processor, and manufacturing method of connection mechanism

Similar Documents

Publication Publication Date Title
US750632A (en) Telescopic measuring-pail
CN103328832B (en) Locking device and method for fixation of components to tubes
BR102014001243A2 (en) COLLAPSABLE FITTING CONTAINER
WO2017085613A4 (en) Weighing and characterizing materials by acoustic levitation
JP2011089809A (en) Device and method for evaluating rolling resistance
Tian et al. Study on free fall surfaces in three-dimensional hopper flows
CN104159660A (en) Emulsion preparation device and emulsion preparation method
US20170341813A1 (en) Longitudinally segregated vessel
BR112022010873A2 (en) BAG PRODUCTS
RU2018122793A (en) CAPACITY WITH DEEPENING IN THE CAPACITY WALL
CA2835346A1 (en) Test specimen holding device for inspecting sterilization or cleaning processes
JP2009029431A (en) Hopper for preventing particle size segregation
JP2016223924A5 (en)
CN108163325A (en) A kind of Spliced type paper packaging box
Han et al. Effect of bond and asymmetry of 2D-dumbbells on their structure in high concentration regime
ITBO20100374A1 (en) VOLUMETRIC DOSER FOR DOSING LIQUID OR PASTOUS PHARMACEUTICAL SUBSTANCES
JP2010007856A (en) Pipe connector and pipe structure
US20170225829A1 (en) Fluid-holding container for vehicle service centers
JP2021032679A5 (en)
JP2007069947A (en) Measuring container
Bartos et al. Side pressure anomalies in 2D packings of frictionless spheres
BR112018067313A2 (en) bottle cap component
Berkowitz Some Granular Columns Weigh Too Much
JP2016020240A (en) Bottle
CN108161865B (en) Instrument box for instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108