JP2011089763A - Bullet position measuring device - Google Patents

Bullet position measuring device Download PDF

Info

Publication number
JP2011089763A
JP2011089763A JP2010272458A JP2010272458A JP2011089763A JP 2011089763 A JP2011089763 A JP 2011089763A JP 2010272458 A JP2010272458 A JP 2010272458A JP 2010272458 A JP2010272458 A JP 2010272458A JP 2011089763 A JP2011089763 A JP 2011089763A
Authority
JP
Japan
Prior art keywords
light
bullet
generators
curtain
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010272458A
Other languages
Japanese (ja)
Other versions
JP5092010B2 (en
Inventor
Masanori Yamazaki
正則 山▲崎▼
Tadatoshi Kamimura
忠利 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2010272458A priority Critical patent/JP5092010B2/en
Publication of JP2011089763A publication Critical patent/JP2011089763A/en
Application granted granted Critical
Publication of JP5092010B2 publication Critical patent/JP5092010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bullet position measuring device for reducing restriction of measurement area sizes and bullet types which can be measured. <P>SOLUTION: The bullet position measuring device includes a plurality of light generators 3a-3g linearly installed to have intervals, a light emission control part 7 for controlling light emission of the light generators, a light receiving device 5 extending to correspond to curtain-shaped lights formed by the light generators in a direction of aligning the light generators at positions facing to a plurality of the light generators, and a bullet passing position calculation part 9 for calculating a position of a bullet passing through a measuring area 13 including an area where the curtain-shaped lights formed by at least two light generators overlap each other. The light emission control part forms a plurality of groups, each of which includes a plurality of light generators at positions where the curtain-like lights does not overlap each other, to make the groups repeatedly emit light in turns at predetermined periods. The position of the bullet passing through the measuring area is calculated based on information of a position and a range of a bullet shadow obtained by light-shielding of the bullet 8 when two different light generators emit light and information of positions of the two different light generators emitting light at the time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、弾丸の着弾位置を検出するために弾丸の通過位置を計測する弾丸位置計測装置に係り、特に、訓練弾を含む実弾及び模擬弾を使用する射撃訓練に好適な弾丸位置計測装置に関する。   The present invention relates to a bullet position measuring device that measures the passage position of a bullet in order to detect the landing position of a bullet, and more particularly to a bullet position measuring device that is suitable for shooting training using real bullets and simulated bullets including training bullets. .

弾丸の着弾位置を検出する装置として、弾丸が標的に当たった位置を非接触で検出できる電子式射的用標的が提案されている(例えば、特許文献1参照)。このような電子式射的用標的は、標的を取り付ける窓の、射撃を行う側つまり前面側周囲に、光源と、この光源に対向する位置に光センサを隙間なく列状に並べた光センサアレイとの組を少なくとも1組設けている。つまり、標的は、光源と光センサアレイとの間に対応する位置にある。そして、弾丸が標的に到達する際、弾丸によって光源からの光が遮られることによって、光センサアレイを構成する光センサのうち、光を検出できなくなる光センサが生じ、この光を検出できなくなる光センサの位置に基づいて弾丸の着弾位置を演算している。   As an apparatus for detecting the landing position of a bullet, an electronic shooting target that can detect the position where the bullet hits the target in a non-contact manner has been proposed (for example, see Patent Document 1). Such an electronic target for shooting is a light sensor array in which a light source and a light sensor are arranged in a line at a position facing the light source around the shooting side, that is, the front side of the window to which the target is attached. And at least one set is provided. That is, the target is in a corresponding position between the light source and the photosensor array. Then, when the bullet reaches the target, light from the light source is blocked by the bullet, so that among the optical sensors constituting the optical sensor array, an optical sensor that cannot detect light is generated, and the light that cannot detect this light. The bullet landing position is calculated based on the sensor position.

一方、弾丸の着弾位置を検出するために、弾丸によって反射した光に基づいて弾丸の軌道つまり飛行時の通過位置を計測する弾丸位置計測装置が提案されている(例えば、特許文献2参照)。このような弾丸位置計測装置は、弾丸の軌道の途中つまり標的の前方に、レーザ光を照射して、標的と同じか、または、それ以上の大きさの空間に平たい幕状の光を形成する1つ以上のレーザ光発振器や、このレーザ光発振器から照射されるレーザ光が弾丸で反射した反射光を受光する2つ以上の受光器などを備えている。そして、各受光器が検出したレーザ反射光の位置を示す出力信号から反射光の発生角度を計算し、その反射光の発生角度に基づいてレーザ光を照射した計測領域における弾丸の通過位置を計算している。   On the other hand, in order to detect the landing position of a bullet, a bullet position measuring apparatus that measures the trajectory of a bullet, that is, a passing position at the time of flight, based on light reflected by the bullet has been proposed (for example, see Patent Document 2). Such a bullet position measuring device irradiates a laser beam in the middle of a bullet trajectory, that is, in front of the target, and forms a flat curtain-like light in a space equal to or larger than the target. One or more laser light oscillators and two or more light receivers that receive reflected light reflected by bullets from the laser light emitted from the laser light oscillator are provided. Then, the generation angle of the reflected light is calculated from the output signal indicating the position of the laser reflected light detected by each light receiver, and the bullet passing position in the measurement area irradiated with the laser light is calculated based on the generation angle of the reflected light. is doing.

特開平7−225100号公報(第2−3頁、第1図、第2図)JP-A-7-225100 (page 2-3, FIG. 1, FIG. 2)

特開平9−197037号公報(第4−6頁、第1図)JP-A-9-197037 (page 4-6, FIG. 1)

ところで、特許文献1のような電子式射的用標的では、弾丸の位置の計測精度を向上しようとすると、光源と光センサアレイとの組を、標的の周囲に、光源から照射される光の進行方向が交わるように2組設ける必要がある。このとき、弾丸の位置を計測する計測領域は、2つの光源から照射された光が交わり重なった領域のみ、例えば実際に各々の光源から光が照射されている領域の半分程度のみしか計測領域とならず、弾丸の通過位置を計測できない無駄な領域が大きくなる。このため、計測領域を標的の面積以上の大きさにするためには、例えば実際に各々の光源から光が照射されている領域の半分程度が計測領域の場合、標的の幅の倍以上に離す必要がある。したがって、設置場所の広さなどの条件によって光源と光センサアレイとの距離が制限されると、計測領域の光源から光が照射される領域の広さも制限されてしまうといったように、弾丸の位置を計測するための計測領域の広さに制限が生じてしまう。   By the way, in an electronic shooting target such as Patent Document 1, in order to improve the measurement accuracy of a bullet position, a set of a light source and an optical sensor array is used to irradiate light emitted from the light source around the target. It is necessary to provide two sets so that the traveling directions intersect. At this time, the measurement area for measuring the position of the bullet is only an area where light emitted from two light sources intersect and overlap, for example, only about half of the area where light is actually emitted from each light source. In other words, a useless area in which the bullet passage position cannot be measured increases. For this reason, in order to make the measurement region larger than the target area, for example, when about half of the region actually irradiated with light from each light source is the measurement region, the measurement region is separated by more than twice the target width. There is a need. Therefore, if the distance between the light source and the optical sensor array is limited by conditions such as the size of the installation location, the position of the bullet will be limited so that the area of the measurement area from which the light is irradiated is also limited. There is a limit to the size of the measurement area for measuring the.

一方、特許文献2に記載されたような弾丸位置計測装置では、弾丸の位置の計測精度を向上するために異なる位置に複数のレーザ光発振器を設けても、反射光に基づいて弾丸の通過位置を計測するため、複数のレーザ光発振器と受光器を設置する間隔などの問題が生じないため、計測領域の広さに制限が生じ難い。しかし、特許文献2に記載されたような弾丸位置計測装置では、レーザ弾丸の表面がレーザ光を反射する素材である必要があり、鉛製の訓練弾やプラスチック製の訓練弾などを使用した場合、弾丸の位置の計測に必要な反射光を得ることができず、弾丸の種類によって弾丸の通過位置を計測できない場合があり、計測できる弾丸の種類に制限が生じてしまう。このため、計測領域の広さ及び計測できる弾丸の種類が制限され難い弾丸位置計測装置が求められている。   On the other hand, in the bullet position measuring apparatus described in Patent Document 2, even if a plurality of laser light oscillators are provided at different positions in order to improve the measurement accuracy of the bullet position, the bullet passage position based on the reflected light Therefore, there is no problem such as an interval for installing a plurality of laser light oscillators and light receivers. Therefore, it is difficult to limit the width of the measurement area. However, in the bullet position measuring device as described in Patent Document 2, the surface of the laser bullet needs to be made of a material that reflects the laser beam, and when a lead training bullet or a plastic training bullet is used. The reflected light necessary for measuring the position of the bullet cannot be obtained, and the passage position of the bullet may not be measured depending on the type of the bullet, which limits the type of bullet that can be measured. For this reason, there is a need for a bullet position measuring device in which the size of the measurement area and the types of bullets that can be measured are not limited.

本発明の課題は、計測領域の広さ及び計測できる弾丸の種類が制限され難くい弾丸位置計測装置を提供することにある。   An object of the present invention is to provide a bullet position measurement device in which the size of a measurement region and the types of bullets that can be measured are not easily limited.

本発明の弾丸位置計測装置は、射撃の目標となる標的への射撃を行う側に弾丸の弾道と交わる方向の平たい幕状の光を照射し、予め設定した間隔で離して直線状に設置される複数の光発生器と、この光発生器の発光を制御する発光制御部と、複数の光発生器と対向する位置に、複数の光発生器が並ぶ方向で、光発生器で形成する幕状の光に対応して延在する受光器と、この受光器からの出力信号に基づいて、少なくとも2つの光発生器によって形成される幕状の光が重なり合う領域を併せた領域を計測領域として、この計測領域を通過する弾丸の位置を演算する弾丸通過位置演算部とを備え、光発生器は、計測領域が少なくとも標的と同じ大きさの平面状の空間をカバーするように間隔を開けて配置されてなり、発光制御部は、幕状の光が互いに重なり合わない位置にある複数の光発生器を1つの組として複数組を形成し、弾丸の長さから計測領域の幕状の光の厚さと受光器の受光面の幅のうち小さい方を引いた値を弾丸の速度で割った値に基づいて設定される発光周期で、複数組の各組を順番に繰り返し発光させてなり、受光器は、光発生器が発生した光が計測領域を通過する弾丸で遮光されることにより生成される影の位置及び範囲の情報を弾丸通過位置演算部に出力し、弾丸通過位置演算部は、2つの異なる前記光発光器が発光しているときに得られた弾丸の影の位置及び範囲の情報と、そのとき発光していた2つの異なる光発生器の位置の情報とに基づいて、2つの異なる光発光器の位置に対する弾丸の中心位置の方向に対応する2つの角度を演算し、この演算した2つの角度に基づいて、計測領域を通過する弾丸の位置を演算してなる構成とすることにより上記課題を解決する。   The bullet position measuring device of the present invention irradiates the target to be fired with a flat curtain-like light in a direction intersecting with the bullet trajectory, and is installed in a straight line at a predetermined interval. A plurality of light generators, a light emission control unit for controlling light emission of the light generators, and a curtain formed by the light generators in a direction facing the plurality of light generators in a direction in which the plurality of light generators are arranged. A measurement area is defined by combining a light receiver extending corresponding to the light in the form of light and a region in which curtain-shaped light formed by at least two light generators overlaps based on an output signal from the light receiver. A bullet passage position calculation unit for calculating the position of the bullet passing through the measurement area, and the light generator is spaced so that the measurement area covers at least a planar space having the same size as the target. The light emission control unit has a curtain-like light A plurality of light generators at positions that do not overlap with each other is formed as one set, and the smaller of the thickness of the bullet-shaped light in the measurement region and the width of the light receiving surface of the light receiver is determined from the length of the bullet. A set of light emission periods set based on the value obtained by dividing the subtracted value by the velocity of the bullet. Information on the position and range of the shadow generated by being shielded by the bullet that passes is output to the bullet passage position calculator, and the bullet passage position calculator is used when two different light emitters emit light. Based on the obtained bullet shadow position and range information and the information on the positions of the two different light generators that were emitting at that time, the direction of the center position of the bullet relative to the two different light emitter positions. The two angles corresponding to are calculated, and the two calculated Based on time, to solve the above problems by a calculated composed configure the position of the bullet passing through the measurement region.

このような構成とすることにより、弾丸からの反射光を用いずに、弾丸で遮光されることによって形成された影に関する情報を受光器で得、この受光器で得た弾丸の影に関する情報に基づいて弾丸の通過位置を計測できる。このように反射光を用いずに、弾丸の影の情報を用いて弾丸の通過位置を計測するため、計測できる弾丸の種類に制限が生じ難い。さらに、並べて設置された複数の光発生器の数や設置間隔、受光器の長さなどの調整によって計測領域の大きさを拡げることができ、計測領域を拡げるために光発生器と受光器の間の間隔を離す必要がないため、計測領域の広さに制限が生じ難い。したがって、計測領域の広さ及び計測できる弾丸の種類が制限され難くい弾丸位置計測装置を提供できる。   By adopting such a configuration, the information about the shadow formed by being blocked by the bullet without using the reflected light from the bullet is obtained by the light receiver, and the information about the shadow of the bullet obtained by this light receiver is obtained. Based on this, the bullet passing position can be measured. As described above, since the bullet passing position is measured using the bullet shadow information without using the reflected light, it is difficult to limit the types of bullets that can be measured. Furthermore, the size of the measurement area can be expanded by adjusting the number of light generators installed side by side, the installation interval, the length of the light receiver, etc. Since there is no need to separate the interval, it is difficult for the measurement area to be limited. Therefore, it is possible to provide a bullet position measuring device in which the size of the measurement area and the types of bullets that can be measured are not easily limited.

また、少なくとも2つの異なる光発生器の位置に対する弾丸の中心の位置の方向を示す角度に基づいて計測領域を通過する弾丸の位置を演算することにより、計測した弾丸の通過位置と実際の弾丸の通過位置との誤差を補正でき、弾丸の通過位置の計測精度をより向上できる。   Also, by calculating the position of the bullet passing through the measurement region based on the angle indicating the direction of the center position of the bullet relative to the position of at least two different light generators, the measured bullet passing position and the actual bullet The error with the passage position can be corrected, and the measurement accuracy of the bullet passage position can be further improved.

本発明によれば、計測領域の広さ及び計測できる弾丸の種類が制限され難い弾丸位置計測装置を提供できる。   According to the present invention, it is possible to provide a bullet position measuring device in which the size of a measurement region and the types of bullets that can be measured are not easily limited.

本発明の基本例に係る弾丸通過位置計測装置における概略構成を受光器の一部を破断して示す斜視図である。1 is a perspective view showing a schematic configuration of a bullet passage position measuring apparatus according to a basic example of the present invention with a part of a light receiver broken away. FIG. 本発明の基本例に係る弾丸通過位置計測装置における複数のレーザ発振器、受光器及び計測領域の関係を説明する正面図である。It is a front view explaining the relationship between the several laser oscillator, light receiver, and measurement area | region in the bullet passage position measuring device which concerns on the basic example of this invention. 本発明の基本例に係る弾丸通過位置計測装置におけるレーザ発振器の位置に対する弾丸の中心の位置の方向に対応する角度の求め方を説明する図である。It is a figure explaining how to obtain | require the angle corresponding to the direction of the position of the center of a bullet with respect to the position of the laser oscillator in the bullet passage position measuring device which concerns on the basic example of this invention. 本発明の基本例に係る弾丸通過位置計測装置におけるレーザ発振器の位置に対する弾丸の中心の位置の方向に対応する角度に基づく弾丸の通過位置の求め方を説明する図である。It is a figure explaining how to obtain the bullet passage position based on the angle corresponding to the direction of the center position of the bullet with respect to the position of the laser oscillator in the bullet passage position measuring apparatus according to the basic example of the present invention. 発明を適用してなる弾丸通過位置計測装置において計測領域を拡げるための一例を説明する図である。It is a figure explaining an example for expanding a measurement field in a bullet passage position measuring device formed by applying the invention.

(基本例)
以下、本発明の基本例を図1乃至図4を参照して説明した後、本発明の実施の形態について説明する。図1は、本発明の基本例に係る弾丸通過位置計測装置の概略構成を受光器の一部を破断して示す斜視図である。図2は、本発明の基本例に係る弾丸通過位置計測装置における複数のレーザ発振器、受光器及び計測領域の関係を説明する正面図である。図3は、本発明を基本例に係る弾丸通過位置計測装置におけるレーザ発振器の位置に対する弾丸の中心の位置の方向に対応する角度の求め方を説明する図である。図4は、本発明の基本例に係る弾丸通過位置計測装置におけるレーザ発振器の位置に対する弾丸の中心の位置の方向に対応する角度に基づく弾丸の通過位置の求め方について説明する図である。
(Basic example)
In the following, a basic example of the present invention will be described with reference to FIGS. 1 to 4, and then embodiments of the present invention will be described. FIG. 1 is a perspective view showing a schematic configuration of a bullet passage position measuring apparatus according to a basic example of the present invention, with a part of a light receiver broken. FIG. 2 is a front view for explaining the relationship among a plurality of laser oscillators, light receivers and measurement regions in the bullet passage position measuring apparatus according to the basic example of the present invention. FIG. 3 is a diagram for explaining how to obtain an angle corresponding to the direction of the center position of the bullet relative to the position of the laser oscillator in the bullet passage position measuring apparatus according to the basic example of the present invention. FIG. 4 is a diagram for explaining how to obtain the bullet passage position based on the angle corresponding to the direction of the center position of the bullet relative to the position of the laser oscillator in the bullet passage position measuring apparatus according to the basic example of the present invention.

本基本例の弾丸通過位置計測装置1は、図1に示すように、平たい幕状の光を照射し、予め設定した間隔で離して設置される複数の光発生器となるレーザ発振器3a−3g、レーザ発振器3a−3gと対向してレーザ発振器3a−3gが並ぶ方向に沿って延在する受光器5、レーザ発振器3a−3gのレーザの発振つまり発光を制御する発光制御部となる発光制御回路7、受光器5からの出力信号などに基づいて弾丸8の通過位置を演算する弾丸通過位置演算部9などを備えている。   As shown in FIG. 1, the bullet passing position measuring apparatus 1 of the present basic example irradiates a flat curtain-like light, and laser oscillators 3a to 3g serving as a plurality of light generators installed at predetermined intervals. A light receiving control circuit that controls the oscillation of the laser, that is, the light emission of the laser receiver 3a-3g, the light receiver 5 extending in the direction in which the laser oscillators 3a-3g are arranged facing the laser oscillator 3a-3g 7. A bullet passage position calculation unit 9 that calculates the passage position of the bullet 8 based on an output signal from the light receiver 5 and the like is provided.

レーザ発振器3a−3gと受光器5は、標的11の前方つまり弾丸8を発射する側に設置されており、レーザ発振器3a−3gは、標的11と同じ大きさか、または、それ以上の大きさの平面状の空間を照射する。レーザ発振器3a−3gは、標的11の大きさなどに応じた必要な範囲を通過する弾丸8の位置を計測できるように、予め設定された間隔離した状態で1列に設置されている。   The laser oscillator 3a-3g and the light receiver 5 are installed in front of the target 11, that is, on the side where the bullet 8 is fired, and the laser oscillator 3a-3g has the same size as or larger than the target 11. Irradiate a planar space. The laser oscillators 3a to 3g are installed in one row in a state of being separated in advance so that the positions of the bullets 8 passing through a necessary range according to the size of the target 11 can be measured.

本基本例では、レーザ発振器3a−3gは、平面状の標的11の面に沿う方向で、標的11の上縁部分の上方に対応する位置に並べて設置されており、下方に向けて扇型に拡がる平たい幕状のレーザ光を発振する。したがって、レーザ発振器3a−3gから発振された幕状のレーザ光は、弾丸8の弾道tと交わる方向に形成される。このとき、レーザ発振器3a−3gのうち少なくとも2つのレーザ発振器を発振させたときに形成した幕状のレーザ光が重なる部分を併せた領域が、弾丸8の通過位置を計測するための計測領域13となり得る。したがって、この計測領域13が、少なくとも通過する弾丸8の位置を計測できる必要がある範囲以上になるように、レーザ発振器の数及びレーザ発振器の設置間隔などが決定されている。   In this basic example, the laser oscillators 3a to 3g are arranged side by side at positions corresponding to the upper part of the upper edge portion of the target 11 in the direction along the plane of the planar target 11, and are fan-shaped downward. Oscillates a flat curtain-shaped laser beam that spreads. Accordingly, the curtain-like laser light oscillated from the laser oscillators 3 a to 3 g is formed in a direction intersecting with the trajectory t of the bullet 8. At this time, the region including the overlapping portions of the curtain-shaped laser beams formed when at least two of the laser oscillators 3a to 3g are oscillated is a measurement region 13 for measuring the passing position of the bullet 8. Can be. Therefore, the number of laser oscillators, the installation interval of the laser oscillators, and the like are determined so that the measurement region 13 is at least within a range where it is necessary to measure the position of the bullet 8 passing therethrough.

本基本例では、実際に弾丸8の通過位置の計測を行う場合、各レーザ発振器3a−3gは、発光制御回路7によって、順次交代で発光するように発光が制御される。なお、本基本例では、レーザ発振器3a−3gとして、幕状のレーザ光を形成するため、幕状にレーザ光線を発振するラインレーザ発振器を用いている。また、各レーザ発振器3a−3gと発光制御回路7とは、配線14を介して電気的に接続されている。   In this basic example, when actually measuring the passing position of the bullet 8, the light emission of each laser oscillator 3 a-3 g is controlled by the light emission control circuit 7 so as to sequentially emit light alternately. In this basic example, a line laser oscillator that oscillates a laser beam in a curtain shape is used as the laser oscillators 3a to 3g in order to form a curtain-like laser beam. The laser oscillators 3 a to 3 g and the light emission control circuit 7 are electrically connected via the wiring 14.

受光器5は、直線状に並べられた複数の受光素子15、複数の受光素子15と電気的に接続された信号処理回路17などを有している。そして、受光器5は、レーザ発振器3a−3gから発振された幕状のレーザ光を受光するため、レーザ発振器3a−3gに対向する側に複数の受光素子15が並んだ面を向け、レーザ発振器3a−3gが一列に配置された方向に沿って延在させた状態で設置される。したがって、本基本例では、受光器5は、レーザ発振器3a−3gに対向する位置で、標的11の下縁部分の下方に対応する位置に水平に設置されている。なお、受光器5の長さや直線状に並べられた複数の受光素子15の数などは、受光器5の受光面の位置での必要な計測領域13の長さに応じて決定されている。   The light receiver 5 includes a plurality of light receiving elements 15 arranged in a straight line, a signal processing circuit 17 electrically connected to the plurality of light receiving elements 15, and the like. The light receiver 5 receives the curtain-like laser light oscillated from the laser oscillators 3a to 3g, and directs the surface on which the plurality of light receiving elements 15 are arranged on the side facing the laser oscillators 3a to 3g. 3a-3g is installed in the state extended along the direction arrange | positioned in a line. Therefore, in this basic example, the light receiver 5 is horizontally installed at a position facing the laser oscillator 3a-3g and corresponding to a position below the lower edge portion of the target 11. Note that the length of the light receiver 5 and the number of the plurality of light receiving elements 15 arranged in a straight line are determined according to the required length of the measurement region 13 at the position of the light receiving surface of the light receiver 5.

受光器5の信号処理回路17は、銃器19などから発射された弾丸8が計測領域13を通過した際に、レーザ発振器3a−3gのいずれかから発振された幕状のレーザ光が遮光されたときに、レーザ光が照射されている部位と遮光されている部位の境界が直線上に並んだ複数の受光素子15のどの部位であるかを判断する。すなわち、受光器5の信号処理回路17は、レーザ発振器3a−3gのいずれかから照射したレーザ光が計測領域13を通過する弾丸8で遮光され、レーザ光を受光した受光素子15と、受光できなかった受光素子15の位置から、計測領域13を通過する弾丸8によって形成された影の位置及び範囲を検出する。   The signal processing circuit 17 of the light receiver 5 shields the curtain-shaped laser light oscillated from one of the laser oscillators 3a to 3g when the bullet 8 emitted from the firearm 19 or the like passes through the measurement region 13. Sometimes, it is determined which part of the plurality of light receiving elements 15 where the boundary between the part irradiated with the laser beam and the part shielded from light is aligned. That is, the signal processing circuit 17 of the light receiver 5 can receive the laser light irradiated from any one of the laser oscillators 3a to 3g by the bullet 8 that passes through the measurement region 13 and the light receiving element 15 that has received the laser light. The position and range of the shadow formed by the bullet 8 passing through the measurement region 13 is detected from the position of the light receiving element 15 that has not been present.

弾丸通過位置演算部9は、受光器5の信号処理回路17で検出した影の位置及び範囲の情報と、レーザ発振器3a−3gのうち、その影の位置及び範囲の情報を検出したときに発光していたレーザ光発振器の位置を特定するための発光制御回路7からの情報とに基づいて、レーザ発振器3a−3gのうち、影の位置及び範囲の情報を検出したときに発振していたレーザ光発振器の位置に対する弾丸8の中心の位置の方向に対応する角度を演算する。そして、弾丸通過位置演算部9は、その演算した角度に基づいて計測領域13における弾丸8の通過位置を演算する。   The bullet passage position calculation unit 9 emits light when detecting the shadow position and range information detected by the signal processing circuit 17 of the light receiver 5 and the position and range information of the shadow among the laser oscillators 3a to 3g. Based on the information from the light emission control circuit 7 for specifying the position of the laser light oscillator, the laser that was oscillating when detecting the position and range information of the shadow among the laser oscillators 3a to 3g An angle corresponding to the direction of the center position of the bullet 8 relative to the position of the optical oscillator is calculated. The bullet passage position calculation unit 9 calculates the passage position of the bullet 8 in the measurement region 13 based on the calculated angle.

このように、本基本例の弾丸通過位置計測装置1は、発光制御回路7が各レーザ発振器3a−3gを順次発光させたときの制御情報などにより、計測領域13を通過する弾丸8の影を受光器5が検出したときに、各レーザ発振器3a−3gのうちのどのレーザ発振器からの光によって作られた影であるかを判別可能になっている。なお、弾丸通過位置演算部9と受光器5の信号処理回路17、そして、弾丸通過位置演算部9と発光制御回路7は、各々、配線14を介して電気的に接続されている。また、弾丸通過位置演算部9は、通信回線23を有しており、例えば弾丸通過位置演算部9からの弾丸8の通過位置の情報に基づいて弾丸8の標的11への着弾位置を演算する外部機器などに対して弾丸8の通過位置の情報を出力可能になっている。   As described above, the bullet passage position measuring apparatus 1 of the basic example shows the shadow of the bullet 8 passing through the measurement region 13 based on the control information when the light emission control circuit 7 sequentially emits the laser oscillators 3a to 3g. When the light receiver 5 detects, it is possible to determine which one of the laser oscillators 3a to 3g is a shadow produced by light. The bullet passage position calculation unit 9 and the signal processing circuit 17 of the light receiver 5, and the bullet passage position calculation unit 9 and the light emission control circuit 7 are electrically connected to each other via a wiring 14. Further, the bullet passage position calculation unit 9 has a communication line 23, and calculates the landing position of the bullet 8 on the target 11 based on information on the passage position of the bullet 8 from the bullet passage position calculation unit 9, for example. Information on the passing position of the bullet 8 can be output to an external device or the like.

このような構成の弾丸通過位置計測装置1における弾丸8の通過位置の計測方法などについて説明する。本基本例の弾丸通過位置計測装置1では、順次発光する各レーザ発振器3a−3gの発光周期は、発光制御回路7において、次式(1)により決定している。

T=(Lb−L1)/Vb ・・・(1)

なお、式(1)において、順次発光する各レーザ発振器3a−3gの発光周期をT、計測する弾丸8の最小長さをLb、計測する弾丸8の最大速度をVb、レーザ幕状の光の厚さと、受光器5の受光面の幅つまり受光素子15の幅とのうち、小さいほうをL1とする。
A method for measuring the passage position of the bullet 8 in the bullet passage position measuring apparatus 1 having such a configuration will be described. In the bullet passage position measuring apparatus 1 of this basic example, the light emission period of each laser oscillator 3a-3g that emits light sequentially is determined by the light emission control circuit 7 according to the following equation (1).

T = (Lb−L1) / Vb (1)

In equation (1), T is the emission period of each laser oscillator 3a-3g that emits light sequentially, Lb is the minimum length of the bullet 8 to be measured, Vb is the maximum velocity of the bullet 8 to be measured, and L1 is the smaller of the thickness and the width of the light receiving surface of the light receiver 5, that is, the width of the light receiving element 15.

このように発光制御回路7によってレーザ発振器3a、3b、3c、3d、3e、3f、3gの順に順次繰り返しレーザ発振器3a−3gが発光されることで、レーザ発振器3a−3gの発光によって形成される幕状のレーザ光25a−25gは、図2に示すように、幕状のレーザ光25a、25b、25c、25d、25e、25f、25gの順に順次繰り返し照射される。そして、レーザ発振器3a−3gのうち少なくとも2のレーザ発振器から発光された幕状のレーザ光が重なる部分を併せた範囲が計測領域13となり得る。なお、計測領域13は、図2に実線で示した受光器5の受光面の長さつまり受光素子15が並ぶ長さによっても規定される。   Thus, the light emission control circuit 7 sequentially and repeatedly emits the laser oscillators 3a-3g in the order of the laser oscillators 3a, 3b, 3c, 3d, 3e, 3f, and 3g, thereby forming the light emitted from the laser oscillators 3a-3g. As shown in FIG. 2, the curtain-shaped laser beams 25a to 25g are sequentially and repeatedly irradiated in the order of the curtain-shaped laser beams 25a, 25b, 25c, 25d, 25e, 25f, and 25g. The range including the overlapping portions of the laser light emitted from at least two laser oscillators of the laser oscillators 3a to 3g can be the measurement region 13. The measurement region 13 is also defined by the length of the light receiving surface of the light receiver 5 indicated by a solid line in FIG. 2, that is, the length in which the light receiving elements 15 are arranged.

順次発光された幕状のレーザ光25a−25gは、受光器5で受光されるが、計測領域13を弾丸8が通過するとき、幕状のレーザ光の一部が弾丸8で遮光されることによって、受光器5は、幕状のレーザ光を受光できない場所を弾丸8の影として認識し、影の位置及び範囲の情報を弾丸通過位置演算部9に出力する。弾丸通過位置演算部9は、予め、各レーザ発振器3a−3gの位置情報を有しており、発光制御回路7からのレーザ発振器3a−3gのうち発光させたレーザ発振器を識別する情報から、発光させたレーザ発振器の位置情報を得る。   Sequentially emitted curtain-like laser beams 25 a to 25 g are received by the light receiver 5, but when the bullet 8 passes through the measurement region 13, a part of the curtain-like laser light is shielded by the bullet 8. Thus, the light receiver 5 recognizes a place where the curtain-shaped laser beam cannot be received as a shadow of the bullet 8 and outputs information on the position and range of the shadow to the bullet passage position calculation unit 9. The bullet passage position calculation unit 9 has position information of each laser oscillator 3a-3g in advance, and emits light from information identifying the emitted laser oscillator among the laser oscillators 3a-3g from the light emission control circuit 7. The position information of the laser oscillator is obtained.

そして、本基本例の弾丸通過位置演算部9は、受光器5からの影の位置及び範囲の情報と、その影を検出したときに発光していたレーザ発振器の位置情報とに基づいて、図3に示すように、その影を検出したときに発光していたレーザ発振器3に対する弾丸8の中心Cの位置の方向に対応する角度として、その影を検出したときに発光していたレーザ発振器3と弾丸8の中心Cの位置とを結ぶ線と水平線とのなす角度θを演算する。   Then, the bullet passage position calculation unit 9 of this basic example is based on the information on the position and range of the shadow from the light receiver 5 and the position information of the laser oscillator that emits light when the shadow is detected. As shown in FIG. 3, the laser oscillator 3 emitting light when the shadow is detected as an angle corresponding to the direction of the position of the center C of the bullet 8 relative to the laser oscillator 3 emitting light when the shadow is detected. And an angle θ formed by a line connecting the position of the center C of the bullet 8 and the horizontal line is calculated.

ここで、受光器5によって得られる影の位置及び範囲の情報とは、受光器5内の複数の受光素子15のうち、どの受光素子15が、レーザ光が照射されている部分とレーザ光が照射されていない部分の境界であるかを示す情報である。そこで、弾丸8が計測領域13を通過しているときに影となる部分の範囲をR(n)からR(n+1)とし、そのとき発光しているレーザ発振器3の座標を(XL,YL)、受光素子15の配置ピッチをPとすると、レーザ発振器3と弾丸8の中心Cの位置とを結ぶ線と水平線とがなす角度θは、次式(2)−(4)によって計算できる。

θmax=tan−1{YL/(XL−R(n)×P)} ・・・(2)
θmin=tan−1{YL/(XL−R(n+1)×P)} ・・・(3)
θ=(θmax+θmin)/2 ・・・(4)

なお、θmaxは、レーザ発振器3と弾丸8の外周面とを結ぶ線と水平線とがなす角度のうち大きい方の角度を、θminは、レーザ発振器3と弾丸8の外周面とを結ぶ線と水平線とがなす角度のうち小さい方の角度とする。
Here, the information on the position and range of the shadow obtained by the light receiver 5 means that among the plurality of light receiving elements 15 in the light receiver 5, which light receiving elements 15 are irradiated with the laser light and the laser light. It is information indicating whether or not the boundary of the part that has not been irradiated. Therefore, the range of the shadowed portion when the bullet 8 passes through the measurement region 13 is changed from R (n) to R (n + 1), and the coordinates of the laser oscillator 3 emitting at that time are (XL, YL). When the arrangement pitch of the light receiving elements 15 is P, the angle θ formed by the line connecting the laser oscillator 3 and the position of the center C of the bullet 8 and the horizontal line can be calculated by the following equations (2)-(4).

θmax = tan −1 {YL / (XL−R (n) × P)} (2)
θmin = tan −1 {YL / (XL−R (n + 1) × P)} (3)
θ = (θmax + θmin) / 2 (4)

Θmax is the larger angle of the angle between the line connecting the laser oscillator 3 and the outer peripheral surface of the bullet 8 and the horizontal line, and θmin is the horizontal line connecting the line connecting the laser oscillator 3 and the outer peripheral surface of the bullet 8. The smaller one of the angles formed by.

さらに、弾丸通過位置演算部9は、図2に示すように、弾丸8の影を検出できたレーザ発振器3a、3b、3c、3dのうち、すなわち、発光によって弾丸の影が形成されたレーザ発振器3a、3b、3c、3dのうち、最もレーザ発振器間の離間距離が大きい位置のレーザ発振器3a、3dに対して上記のように計算された2つの角度θから弾丸8の位置を演算する。ここで、図4に示すように、レーザ発振器3a、3dに対する弾丸8の中心Cの位置の2つの角度をそれぞれθ1、θ2とし、2つのレーザ発振器3a、3dの座標をそれぞれ(X1,Y1)、(X2,Y2)とすると、弾丸8の通過位置座標(Xp,Yp)は、次式(5)−(8)により計算できる。

A=Y1−X1×tanθ1 ・・・(5)
B=Y2−X2×tanθ2 ・・・(6)
Xp=(B−A)/(tanθ1−tanθ2) ・・・(7)
Yp=Xp×tanθ1+A ・・・(8)

そして、弾丸通過位置演算部9で計算した計測領域13における弾丸8の通過位置の座標つまり弾丸8の通過位置の情報は、図1に示すように、通信回線23を介して外部機器などに出力される。
Further, as shown in FIG. 2, the bullet passage position calculation unit 9 is a laser oscillator in which a shadow of a bullet is formed by light emission among the laser oscillators 3a, 3b, 3c, and 3d that can detect the shadow of the bullet 8. The position of the bullet 8 is calculated from the two angles θ calculated as described above with respect to the laser oscillators 3a, 3d at the position where the separation distance between the laser oscillators is the longest among 3a, 3b, 3c, 3d. Here, as shown in FIG. 4, two angles of the position of the center C of the bullet 8 relative to the laser oscillators 3a and 3d are θ1 and θ2, respectively, and the coordinates of the two laser oscillators 3a and 3d are (X1, Y1), respectively. , (X2, Y2), the passing position coordinates (Xp, Yp) of the bullet 8 can be calculated by the following equations (5)-(8).

A = Y1-X1 × tan θ1 (5)
B = Y2−X2 × tan θ2 (6)
Xp = (B−A) / (tan θ1−tan θ2) (7)
Yp = Xp × tan θ1 + A (8)

Then, the coordinates of the passage position of the bullet 8 in the measurement region 13 calculated by the bullet passage position calculation unit 9, that is, the information on the passage position of the bullet 8 are output to an external device or the like via the communication line 23 as shown in FIG. Is done.

このように、本基本例の弾丸通過位置計測装置1では、幕状の光を形成するために予め設定した間隔で離して設置される複数の光発生器となるレーザ発振器3a−3g、レーザ発振器3a−3gからのレーザ光を受光する受光器5、レーザ発振器3a−3gを順次発光させる発光制御部となる発光制御回路7、計測領域13を通過する弾丸8の位置を演算する弾丸通過位置演算部9などを備えていることによって、レーザ光が弾丸8で遮光されることによって形成された影に関する情報に基づいて弾丸8の計測領域13の通過位置を計測できる。つまり、弾丸からの反射光を用いずに弾丸の通過位置を計測できる。このため、例えば鉛製の訓練弾やプラスチック製の訓練弾、その他の表面材質などによって反射光を得ることができない弾丸の種類であっても弾丸の通過位置を計測でき、計測できる弾丸の種類に制限が生じ難い。一方、光発生器であるレーザ発振器の数に制限がないため、レーザ発振器の数を増やすことなどにより、弾丸の通過位置を計測できない無駄な領域を低減でき、また、計測領域を拡げるために複数の光発生器と受光器との間の間隔を離す必要がなく、計測領域の広さに制限が生じ難い。したがって、計測領域の広さ及び計測できる弾丸の種類が制限され難くい弾丸位置計測装置を提供できる。   As described above, in the bullet passing position measuring apparatus 1 of this basic example, the laser oscillators 3a to 3g, which are a plurality of light generators installed at predetermined intervals to form curtain-like light, and laser oscillators The light receiver 5 that receives the laser light from 3a-3g, the light emission control circuit 7 that is a light emission control unit that sequentially emits the laser oscillator 3a-3g, and the bullet passage position calculation that calculates the position of the bullet 8 that passes through the measurement region 13 By providing the unit 9 and the like, the passing position of the bullet 8 in the measurement region 13 can be measured based on the information about the shadow formed by the laser beam being shielded by the bullet 8. That is, the bullet passing position can be measured without using the reflected light from the bullet. For this reason, for example, it is possible to measure the passing position of a bullet even if it is a type of bullet that cannot be reflected by lead training bullets, plastic training bullets, or other surface materials. Restrictions are unlikely to occur. On the other hand, since there is no limit to the number of laser oscillators that are light generators, by increasing the number of laser oscillators, etc., it is possible to reduce the useless area where the bullet passage position cannot be measured, and to increase the number of measurement areas. It is not necessary to increase the distance between the light generator and the light receiver, and it is difficult to limit the size of the measurement area. Therefore, it is possible to provide a bullet position measuring device in which the size of the measurement area and the types of bullets that can be measured are not easily limited.

ところで、レーザ光の弾丸による反射を利用した従来の弾丸の弾丸通過位置計測装置では、弾丸の大きさつまり弾丸の径が考慮されていないため、反射光の発生角度を弾丸の半径の分だけ誤って計算してしまい、実際の弾丸の通過位置と計算した通過位置に誤差が発生する。   By the way, the conventional bullet passage position measuring device that uses the reflection of laser light bullets does not take into account the size of the bullets, that is, the diameter of the bullets. An error occurs between the actual bullet passing position and the calculated passing position.

これに対して、本基本例の弾丸通過位置計測装置1では、受光器5は、3つ以上設置されているレーザ発振器3a−3gが発生したレーザ光が計測領域13を通過する弾丸で遮光されることにより生成される影の位置及び範囲の情報を弾丸通過位置演算部9に出力している。そして、弾丸通過位置演算部9は、発光によって弾丸の影が形成されたレーザ発振器3a、3b、3c、3dのうち、最も距離が離れた位置に設置された2つのレーザ発振器3a、3dが発光しているときに得られた弾丸の影の位置及び範囲の情報と、そのとき発光していたレーザ発振器3a、3dの位置の情報とに基づいて演算した2つの異なるレーザ発振器3a、3dの位置に対する弾丸の中心Cの位置の方向に対応する角度θ1、θ2に基づいて計測領域13を通過する弾丸の位置を演算している。これにより、計測した弾丸の通過位置と実際の弾丸の通過位置との誤差を補正でき、弾丸の通過位置の計測精度を向上できる。   On the other hand, in the bullet passage position measuring apparatus 1 of this basic example, the light receiver 5 is shielded by the bullets passing through the measurement region 13 with the laser light generated by the three or more installed laser oscillators 3a-3g. The information on the position and range of the shadow generated by this is output to the bullet passage position calculation unit 9. The bullet passage position calculation unit 9 emits light from the two laser oscillators 3a, 3d installed at the farthest positions among the laser oscillators 3a, 3b, 3c, 3d in which bullet shadows are formed by light emission. The positions of two different laser oscillators 3a, 3d calculated based on the information on the position and range of the shadow of the bullet obtained during the operation and the information on the positions of the laser oscillators 3a, 3d emitting at that time The position of the bullet passing through the measurement region 13 is calculated based on the angles θ1 and θ2 corresponding to the direction of the position of the center C of the bullet relative to. Thereby, the error between the measured bullet passage position and the actual bullet passage position can be corrected, and the measurement accuracy of the bullet passage position can be improved.

ただし、発光により弾丸8の影の幅を検出できた任意の少なくとも2つのレーザ発振器に対する角度を選択し、それらの角度に基づいて弾丸の通過位置を計算することもできる。この場合、計測した弾丸の通過位置と実際の弾丸の通過位置との誤差を補正して、弾丸の通過位置の計測精度を向上するためには、計算に用いるレーザ発振器に対する角度の数を増やすか、または、計算された複数の弾丸通過位置の平均値を求めることになる。   However, it is also possible to select an angle with respect to any at least two laser oscillators that can detect the shadow width of the bullet 8 by light emission, and calculate the bullet passing position based on these angles. In this case, in order to correct the error between the measured bullet passage position and the actual bullet passage position and improve the measurement accuracy of the bullet passage position, increase the number of angles to the laser oscillator used in the calculation. Alternatively, an average value of the calculated plurality of bullet passing positions is obtained.

したがって、本基本例の弾丸通過位置計測装置1のように、弾丸の影が形成された3つ以上のレーザ発振器のうち、最も距離が離れた位置に設置された2つのレーザ発振器が発光しているときに得られた弾丸の影の位置及び範囲の情報と、そのとき発光していたレーザ発振器の位置の情報とに基づいて演算した2つの角度に基づいて計測領域13を通過する弾丸の位置を演算する弾丸通過位置演算部9を備えた構成とした方が、2つの角度の値から弾丸の通過位置を計算する場合、計測した弾丸の通過位置と実際の弾丸の通過位置との誤差をより正確に補正でき、弾丸の通過位置の計測精度をさらに向上できる。また、同程度の計測精度で弾丸の通過位置を得ようとした場合、本基本例の弾丸通過位置計測装置1の方がより簡単な演算処理で弾丸の通過位置を得ることができる。   Therefore, like the bullet passage position measuring apparatus 1 of the basic example, two laser oscillators installed at the farthest positions out of the three or more laser oscillators formed with bullet shadows emit light. Position of the bullet passing through the measurement region 13 based on two angles calculated based on the information on the position and range of the shadow of the bullet obtained at the time and the information on the position of the laser oscillator emitting light at that time When the bullet passage position calculation unit 9 is configured to calculate the bullet passage position from two angle values, the error between the measured bullet passage position and the actual bullet passage position is calculated. It can correct more accurately and can further improve the measurement accuracy of the bullet passage position. In addition, when trying to obtain a bullet passage position with the same degree of measurement accuracy, the bullet passage position measurement device 1 of the present basic example can obtain the bullet passage position with simpler arithmetic processing.

さらに、本基本例の弾丸通過位置計測装置1では、レーザ光が弾丸で遮光されることによって形成された影に関する情報に基づいて弾丸の通過位置を計測するため、弾丸の弾速に影響されずに弾丸の通過位置を計測できる。加えて、本基本例の弾丸通過位置計測装置1では、弾丸の中心が通過した位置を計測できるため、弾丸の大きさに影響されずに弾丸の通過位置を計測できる。さらに、本基本例の弾丸通過位置計測装置1で得た弾丸の通過位置の情報を用いて標的に命中した弾丸の位置を計算することによって、標的に命中した弾丸の位置の検出精度も向上できる。   Furthermore, in the bullet passage position measuring apparatus 1 of the present basic example, the bullet passage position is measured based on the information about the shadow formed by the laser light being shielded by the bullet, so that it is not affected by the bullet velocity. It is possible to measure the bullet passage position. In addition, in the bullet passage position measuring apparatus 1 of this basic example, the position through which the center of the bullet has passed can be measured, so the bullet passage position can be measured without being influenced by the size of the bullet. Further, by calculating the position of the bullet hitting the target using the bullet passage position information obtained by the bullet passage position measuring apparatus 1 of the basic example, the detection accuracy of the position of the bullet hitting the target can be improved. .

本基本例では、発光制御部となる発光制御回路7がレーザ発振器3a−3gを順に交代で発光させている場合、つまり、常に1つのレーザ発振器のみが発光するようにレーザ発振器3a−3gの発光を制御している場合を例として説明している。しかし、発光制御部として、後述するように、光発生器によって形成される幕状の光が重なり合わない位置にある複数の光発生器を同時に発光させるように制御する発光制御部を備えた構成にすることもできる。   In this basic example, when the light emission control circuit 7 serving as a light emission control unit causes the laser oscillators 3a-3g to alternately emit light in turn, that is, the light emission of the laser oscillator 3a-3g so that only one laser oscillator always emits light. The case where is controlled is described as an example. However, as will be described later, the light emission control unit includes a light emission control unit that controls a plurality of light generators at positions where the curtain-like light formed by the light generators do not overlap at the same time. It can also be.

(実施の形態)
ここで、本発明の実施形態について説明する。例えば、図5に示すように、上記の基本例よりも多数のレーザ発振器3が設置されているとき、同時に発光させても形成される幕状のレーザ光25が重なり合わないレーザ発振器3x、3y、3zが得られる場合がある。この場合、発光制御部は、形成される幕状のレーザ光25が重なり合わないレーザ発振器3x、3y、3zを同時に発光させる。さらに、発光制御部は、レーザ発振器3x、3y、3zのような形成される幕状のレーザ光25が重なり合わない位置にあるレーザ発振器3を1つの組として同時に発光させるとともに、このような位置関係にあるレーザ発振器3の組を順に繰り返し発光させる。このような発光制御部を設けた構成とすれば、より多数のレーザ発振器3を設けた場合でも、少なくとも2つのレーザ発振器3にて照射されたレーザ光25が重なる部分を併せた領域を弾丸の通過位置を計測するための計測領域13にでき、これにより、計測領域を拡げることが可能となる。
(Embodiment)
Here, an embodiment of the present invention will be described. For example, as shown in FIG. 5, when a larger number of laser oscillators 3 are installed than in the above basic example, the laser oscillators 3x and 3y in which the curtain-like laser light 25 formed even if they are simultaneously emitted do not overlap. 3z may be obtained. In this case, the light emission control unit simultaneously emits the laser oscillators 3x, 3y, and 3z in which the formed curtain-like laser light 25 does not overlap. Furthermore, the light emission control unit simultaneously emits the laser oscillators 3 at positions where the formed curtain-like laser lights 25 such as the laser oscillators 3x, 3y, and 3z do not overlap as one set, and at such positions. The set of laser oscillators 3 that are related are repeatedly emitted in order. With such a configuration in which the light emission control unit is provided, even when a larger number of laser oscillators 3 are provided, the region including the overlapping portions of the laser beams 25 irradiated by at least two laser oscillators 3 is combined with a bullet. The measurement area 13 for measuring the passage position can be formed, and thus the measurement area can be expanded.

また、本発明の弾丸通過位置計測装置は、上記の構成の弾丸通過位置計測装置1に限らず、複数の光発生器、発光制御部、受光器、弾丸通過位置演算部などを備えていれば、様々な構成で形成することができる。例えば、発光制御部や弾丸通過位置演算部を一体にした構成、発光制御部や弾丸通過位置演算部を受光器の信号処理回路と一体にして受光器に納めた構成など様々な構成で形成できる。また、複数の光発生器をLEDやランプなどの点光源とし、受光器との組み合わせによって、弾丸の位置を計測するための平たい幕状の計測領域を形成する構成などにすることもできる。   In addition, the bullet passage position measuring device of the present invention is not limited to the bullet passage position measuring device 1 having the above-described configuration, and may include a plurality of light generators, a light emission control unit, a light receiver, a bullet passage position calculation unit, and the like. Can be formed in various configurations. For example, it can be formed in various configurations, such as a configuration in which the light emission control unit and the bullet passage position calculation unit are integrated, or a configuration in which the light emission control unit and the bullet passage position calculation unit are integrated with the signal processing circuit of the light receiver. . Further, a configuration in which a plurality of light generators are point light sources such as LEDs and lamps, and a flat curtain-shaped measurement region for measuring the position of a bullet is formed by combination with a light receiver.

1 弾丸通過位置計測装置
3a−3g レーザ発振器
5 受光器
7 発光制御回路
8 弾丸
9 弾丸通過位置演算部
11 標的
13 計測領域
15 受光素子
17 信号処理回路
DESCRIPTION OF SYMBOLS 1 Bullet passing position measuring device 3a-3g Laser oscillator 5 Light receiver 7 Light emission control circuit 8 Bullet 9 Bullet passing position calculating part 11 Target 13 Measurement area 15 Light receiving element 17 Signal processing circuit

Claims (1)

射撃の目標となる標的への射撃を行う側に弾丸の弾道と交わる方向の平たい幕状の光を照射し、予め設定した間隔で離して直線状に設置される複数の光発生器と、該光発生器の発光を制御する発光制御部と、前記複数の光発生器と対向する位置に、該複数の光発生器が並ぶ方向で、該光発生器で形成する幕状の光に対応して延在する受光器と、該受光器からの出力信号に基づいて、少なくとも2つの前記光発生器によって形成される幕状の光が重なり合う領域を併せた領域を計測領域として該計測領域を通過する弾丸の位置を演算する弾丸通過位置演算部とを備え、前記光発生器は、前記計測領域が少なくとも前記標的と同じ大きさの平面状の空間をカバーするように間隔を開けて配置されてなり、
前記発光制御部は、前記幕状の光が互いに重なり合わない位置にある複数の前記光発生器を1つの組として複数組を形成し、前記弾丸の長さから前記計測領域の幕状の光の厚さと前記受光器の受光面の幅のうち小さい方を引いた値を前記弾丸の速度で割った値に基づいて設定される発光周期で、前記複数組の各組を順番に繰り返し発光させてなり、
前記受光器は、前記光発生器が発生した光が前記計測領域を通過する弾丸で遮光されることにより生成される影の位置及び範囲の情報を前記弾丸通過位置演算部に出力し、該弾丸通過位置演算部は、2つの異なる前記光発光器が発光しているときに得られた弾丸の影の位置及び範囲の情報と、そのとき発光していた前記2つの異なる光発生器の位置の情報とに基づいて、前記2つの異なる光発光器の位置に対する弾丸の中心位置の方向に対応する2つの角度を演算し、該演算した2つの角度に基づいて、前記計測領域を通過する弾丸の位置を演算してなる弾丸位置計測装置。
A plurality of light generators arranged in a straight line at a predetermined interval, irradiating a target that is a target of shooting with a flat curtain-like light in a direction intersecting with the bullet trajectory; A light emission control unit that controls light emission of the light generator, and a curtain-like light formed by the light generator in a direction in which the light generators are arranged at positions facing the light generators. And passing through the measurement region, the region including the region where the curtain-shaped light formed by at least two of the light generators overlap is measured based on the output signal from the light receiver. A bullet passage position calculating unit for calculating the position of a bullet to be operated, and the light generator is arranged at an interval so that the measurement region covers at least a planar space having the same size as the target. Become
The light emission control unit forms a plurality of sets of the plurality of light generators at positions where the curtain light does not overlap with each other, and the curtain light of the measurement region is determined from the length of the bullet. Each set of the plurality of sets is caused to emit light repeatedly in order with a light emission period set based on a value obtained by dividing a value obtained by subtracting the smaller one of the thickness of the light receiving surface and the width of the light receiving surface of the light receiver by the speed of the bullet. And
The light receiver outputs information on the position and range of a shadow generated when the light generated by the light generator is blocked by a bullet passing through the measurement region to the bullet passage position calculation unit, and the bullet The passing position calculation unit includes information on the position and range of the bullet shadow obtained when two different light emitters emit light, and the positions of the two different light generators emitted at that time. Based on the information, two angles corresponding to the direction of the center position of the bullet with respect to the two different light emitter positions are calculated, and based on the two calculated angles, the bullets passing through the measurement region are calculated. A bullet position measuring device that calculates the position.
JP2010272458A 2010-12-07 2010-12-07 Bullet position measuring device Expired - Fee Related JP5092010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272458A JP5092010B2 (en) 2010-12-07 2010-12-07 Bullet position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272458A JP5092010B2 (en) 2010-12-07 2010-12-07 Bullet position measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004360429A Division JP4699018B2 (en) 2004-12-13 2004-12-13 Bullet position measuring device

Publications (2)

Publication Number Publication Date
JP2011089763A true JP2011089763A (en) 2011-05-06
JP5092010B2 JP5092010B2 (en) 2012-12-05

Family

ID=44108164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272458A Expired - Fee Related JP5092010B2 (en) 2010-12-07 2010-12-07 Bullet position measuring device

Country Status (1)

Country Link
JP (1) JP5092010B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913626A1 (en) * 2014-03-01 2015-09-02 Patents Factory Ltd. Sp. z o.o. Method and apparatus for detecting the location of an object on a virtual surface
CN105716524A (en) * 2016-02-04 2016-06-29 西安工业大学 Laser multi-target vertical target measuring device and measuring method
JP2019045477A (en) * 2017-09-01 2019-03-22 株式会社Soken Torque detection device and magnetic sensor module
CN110360892A (en) * 2019-06-21 2019-10-22 石家庄铁道大学 Based on infrared or laser electronics target system
CN110412612A (en) * 2019-08-01 2019-11-05 中誉装备科技(广东)有限公司 A kind of seamless laser curtain splicing
JP2020011031A (en) * 2018-07-16 2020-01-23 北京曠視科技有限公司Beijing Kuangshi Technology Co., Ltd. Method, device and system for associating target object with item
WO2021161320A1 (en) * 2020-02-16 2021-08-19 Smart Detection Initiatives Ltd. An optical shooting accuracy indication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571405B (en) * 2015-12-16 2017-09-29 北京航天控制仪器研究所 Optical fiber underwater sound impact site and miss distance measurement system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271106A (en) * 1988-09-07 1990-03-09 Kokusai Electric Co Ltd Apparatus for detecting passing position of flight body
US4949972A (en) * 1986-01-31 1990-08-21 Max W. Goodwin Target scoring and display system
JPH07225100A (en) * 1994-02-13 1995-08-22 Hideaki Maehara Electronic type target for shooting
US5577733A (en) * 1994-04-08 1996-11-26 Downing; Dennis L. Targeting system
JPH09197037A (en) * 1996-01-18 1997-07-31 Babcock Hitachi Kk Flying object position detection device
US20020027190A1 (en) * 2000-09-05 2002-03-07 Ulrich Hellak Device for electronic targeting evaluation of shots fired on a shooting range
JP2004522148A (en) * 2001-01-22 2004-07-22 サイバーオプティクス コーポレーション Improved laser alignment sensor for component placement
JP2006170671A (en) * 2004-12-13 2006-06-29 Babcock Hitachi Kk Device for measuring bullet position
JP2007162989A (en) * 2005-12-12 2007-06-28 Babcock Hitachi Kk Bullet position measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949972A (en) * 1986-01-31 1990-08-21 Max W. Goodwin Target scoring and display system
JPH0271106A (en) * 1988-09-07 1990-03-09 Kokusai Electric Co Ltd Apparatus for detecting passing position of flight body
JPH07225100A (en) * 1994-02-13 1995-08-22 Hideaki Maehara Electronic type target for shooting
US5577733A (en) * 1994-04-08 1996-11-26 Downing; Dennis L. Targeting system
JPH09197037A (en) * 1996-01-18 1997-07-31 Babcock Hitachi Kk Flying object position detection device
US20020027190A1 (en) * 2000-09-05 2002-03-07 Ulrich Hellak Device for electronic targeting evaluation of shots fired on a shooting range
JP2004522148A (en) * 2001-01-22 2004-07-22 サイバーオプティクス コーポレーション Improved laser alignment sensor for component placement
JP2006170671A (en) * 2004-12-13 2006-06-29 Babcock Hitachi Kk Device for measuring bullet position
JP2007162989A (en) * 2005-12-12 2007-06-28 Babcock Hitachi Kk Bullet position measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913626A1 (en) * 2014-03-01 2015-09-02 Patents Factory Ltd. Sp. z o.o. Method and apparatus for detecting the location of an object on a virtual surface
CN105716524A (en) * 2016-02-04 2016-06-29 西安工业大学 Laser multi-target vertical target measuring device and measuring method
JP2019045477A (en) * 2017-09-01 2019-03-22 株式会社Soken Torque detection device and magnetic sensor module
JP2021012218A (en) * 2017-09-01 2021-02-04 株式会社Soken Torque detector and magnetic sensor module
JP2020011031A (en) * 2018-07-16 2020-01-23 北京曠視科技有限公司Beijing Kuangshi Technology Co., Ltd. Method, device and system for associating target object with item
CN110360892A (en) * 2019-06-21 2019-10-22 石家庄铁道大学 Based on infrared or laser electronics target system
CN110412612A (en) * 2019-08-01 2019-11-05 中誉装备科技(广东)有限公司 A kind of seamless laser curtain splicing
WO2021161320A1 (en) * 2020-02-16 2021-08-19 Smart Detection Initiatives Ltd. An optical shooting accuracy indication system

Also Published As

Publication number Publication date
JP5092010B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5092010B2 (en) Bullet position measuring device
JP6348174B2 (en) Measuring frame and corresponding measuring method for optically determining the penetration position without contact
CN105593633B (en) System and method for determining position of the bullet bullet on objective plane
JP4796384B2 (en) Bullet position measuring device
US9519059B2 (en) Limited-area reflection type optical sensor and electronic device
ES2424289T3 (en) Method for electronically determining the impact position on a shooting target
JP6863185B2 (en) Distance measuring device, distance measuring method and program
US20150144772A1 (en) Light Grid
US20170045339A1 (en) Laser Electronic Target System Using Non-Overlapping and Crossing Rectangular Laser Screens
JP2017096792A (en) Traffic density measuring device
KR101213987B1 (en) Apparatus for measurementing distance and method for controlling the same
JP6116710B2 (en) Appearance inspection apparatus and appearance inspection method
KR20130040026A (en) Method and apparatus for measuring distance of object
US20190120966A1 (en) Depth map measuring device and depth map measuring method
JP4699018B2 (en) Bullet position measuring device
KR101393282B1 (en) Golf ball tracing apparatus
JP2007003333A5 (en)
TWI472988B (en) Optical touch-sensing system and method
JPH07159117A (en) Light detection and measurement device for moving body
KR101200036B1 (en) System and method of measuring the location of a moving object in the space
JP3787740B2 (en) Bullet target position measurement device
JP2017103497A5 (en)
JP2011191253A (en) Laser shape recognition sensor and measuring device
KR101268525B1 (en) Device of measuring the location of a moving object in the space
KR101388400B1 (en) putting device the compensation function, with starting point

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees