JP2011087757A - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
JP2011087757A
JP2011087757A JP2009243436A JP2009243436A JP2011087757A JP 2011087757 A JP2011087757 A JP 2011087757A JP 2009243436 A JP2009243436 A JP 2009243436A JP 2009243436 A JP2009243436 A JP 2009243436A JP 2011087757 A JP2011087757 A JP 2011087757A
Authority
JP
Japan
Prior art keywords
fibrous
washing
conductive member
water
particle removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009243436A
Other languages
Japanese (ja)
Other versions
JP5468348B2 (en
Inventor
Toru Kubota
亨 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2009243436A priority Critical patent/JP5468348B2/en
Publication of JP2011087757A publication Critical patent/JP2011087757A/en
Application granted granted Critical
Publication of JP5468348B2 publication Critical patent/JP5468348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a washing machine exhibiting an attracting effect for attracting staining particles existing in washing water when necessary. <P>SOLUTION: A staining particle removing filter 43 is disposed on the bottom of a water tub 5 at a position in contact with washing water. The staining particle removing filter 43 is composed of a fibrous conductive member 43A, which is fibrous and conductive, intermingled with a fibrous non-conductive member 43B which is fibrous but non-conductive. The washing machine has a voltage applying device 42 for applying voltage to the fibrous conductive member 43A, and has a control device 38 for applying potential different from zeta potential of the fibrous non-conductive member 43B to the fibrous conductive member 43A by the voltage applying device 42 during a washing step. As the potential is applied to the fibrous conductive member 43A in the washing step, the staining particles are attracted in the member (the fibrous non-conductive member 43B) with high potential of the staining particle removing filter 43, so that the staining particles can be removed from washing water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、洗濯槽内の洗濯水から汚れ粒子を除去する機能を備えた洗濯機に関する。   The present invention relates to a washing machine having a function of removing dirt particles from washing water in a washing tub.

最近の洗濯機は、節水指向の要望に応えるために、使用水量が少なくなってきている。しかし、洗濯物に対する使用水量が少なくなると、すすぎ性能が低下し、洗濯物から脱離した汚れ粒子(油滴等)が、すすぎ行程時に洗濯物に再付着する可能性が高くなってしまう。   In recent washing machines, the amount of water used is decreasing in order to meet demands for water saving. However, when the amount of water used for the laundry decreases, the rinsing performance decreases, and the possibility that the dirt particles (oil droplets, etc.) detached from the laundry will reattach to the laundry during the rinsing process increases.

そのため、例えば特許文献1には、洗濯物から脱離した汚れ粒子を除去する機能を備えた洗濯機が提案されている。この特許文献1には、洗濯水中に存在するカーボン等の疎水性微小粒子等の汚れ粒子が正に帯電しやすいことを利用して、正に帯電する汚れ粒子を静電気により吸着体に吸着させることが開示されている。即ち、負に帯電しやすい吸着体を洗濯水に接触する位置に設け、汚れ粒子を吸着体に吸着させ、汚れ粒子が洗濯物に再付着してしまうことを低減する構成が開示されている。この特許文献1の吸着体は、水に接触しただけでも負に帯電しやすいポリプロピレンを主材とする繊維(不織布)で構成されている。   Therefore, for example, Patent Document 1 proposes a washing machine having a function of removing dirt particles detached from the laundry. In this patent document 1, the fact that dirt particles such as hydrophobic fine particles such as carbon existing in washing water are positively charged is used to adsorb positively charged dirt particles to the adsorbent by static electricity. Is disclosed. That is, a configuration is disclosed in which an adsorbent that is easily negatively charged is provided at a position in contact with the washing water so that dirt particles are adsorbed to the adsorbent and the dirt particles are prevented from reattaching to the laundry. The adsorbent of this Patent Document 1 is composed of fibers (nonwoven fabric) whose main material is polypropylene that is easily negatively charged even when it is in contact with water.

特開2003−311085号公報JP 2003-311085 A

しかしながら、特許文献1の構成では、吸着体は、洗い行程時のみならずすすぎ行程時にも汚れ粒子を吸着する。従って、短時間で吸着体の吸着作用が低下してしまうことがあり、汚れ粒子除去フィルタを頻繁に交換、清掃する必要がある。   However, in the configuration of Patent Document 1, the adsorbent adsorbs dirt particles not only during the washing process but also during the rinsing process. Therefore, the adsorption action of the adsorbent may be reduced in a short time, and it is necessary to frequently replace and clean the dirt particle removal filter.

本発明は上記した事情に鑑みてなされたものであり、その目的は、洗濯水中に存在する汚れ粒子を吸着する吸着作用を必要に応じて発揮することができる洗濯機を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a washing machine capable of exhibiting an adsorption action for adsorbing dirt particles present in washing water as needed.

上記した目的を達成するために、本発明の洗濯機は、水槽と、前記水槽内に設けられ、洗濯物が収容される洗濯槽と、繊維状で導電性を有する繊維状導電性部材と繊維状で非導電性を有する繊維状非導電性部材とを混在して構成され、洗濯水に接触する位置に設けられる汚れ粒子除去フィルタと、前記繊維状導電性部材に電圧を印加する電圧印加手段と、洗い行程時に、前記電圧印加手段によって前記繊維状非導電性部材のゼータ電位と異なる電位を前記繊維状導電性部材に付与する電圧制御手段とを備えていることを特徴とする。   In order to achieve the above-described object, a washing machine of the present invention includes a water tub, a laundry tub provided in the water tub, in which laundry is accommodated, a fibrous conductive member and fibers that are fibrous and conductive. And a non-conductive fibrous non-conductive member, and a dirt particle removing filter provided at a position in contact with washing water, and a voltage applying means for applying a voltage to the fibrous conductive member And voltage control means for applying a potential different from the zeta potential of the fibrous non-conductive member to the fibrous conductive member by the voltage applying means during the washing process.

洗濯に用いられる洗剤にはアルカリ成分及び陰イオン界面活性剤が含まれている。洗い行程時は洗剤の濃度が高いので、洗濯水のpHは高く(アルカリ性であり)、陰イオン界面活性剤の濃度も高い。一方、すすぎ行程時は洗剤の濃度が低くなるので、洗濯水のpHは低く(ほぼ中性であり)、陰イオン界面活性剤の濃度も低い。   The detergent used for washing contains an alkaline component and an anionic surfactant. Since the concentration of the detergent is high during the washing process, the pH of the washing water is high (alkaline) and the concentration of the anionic surfactant is also high. On the other hand, since the concentration of the detergent is low during the rinsing process, the pH of the washing water is low (almost neutral) and the concentration of the anionic surfactant is also low.

ここで、洗い行程時の洗濯水には、洗濯物から脱離した油汚れ、泥汚れ、ディーゼルエンジンの排ガスに含まれるカーボンブラック、水道管中に含まれる鉄さび等の汚れ粒子が存在していることがある。これらの汚れ粒子は、図21に示すように、一般に洗濯水のpHが高くなるほど、洗濯水中の水酸基が汚れ粒子に吸着されることにより、ゼータ電位が低くなり負側に大きな値となっていく傾向がある。図示はしないが、同様の理由で、汚れ粒子は、陰イオン界面活性剤の濃度が高くなるほど、ゼータ電位が低くなり負側に大きくなっていく傾向がある。   Here, in the washing water during the washing process, dirt particles such as oil stains, mud stains, carbon black contained in exhaust gas from diesel engines, and iron rust contained in water pipes are present. Sometimes. As shown in FIG. 21, these soil particles generally have a higher zeta potential and a larger negative value as the pH of the wash water becomes higher, because hydroxyl groups in the wash water are adsorbed by the soil particles. Tend. Although not shown, for the same reason, the dirt particles tend to have a lower zeta potential and become larger on the negative side as the concentration of the anionic surfactant increases.

一方、一般的な洗濯物(衣類)の繊維も、洗濯水のpHが高くなるほど及び陰イオン界面活性剤の濃度が高くなるほど、ゼータ電位が低くなり負側に大きな値となっていく傾向がある。従って、洗い行程時には、汚れ粒子と洗濯物の繊維とは反発し合い、洗濯水中に汚れ粒子が存在しやすくなっている。そのため、洗い行程が終わった後(すすぎ行程時)に、汚れ粒子が洗濯物に再付着するおそれがある。   On the other hand, general laundry (clothing) fibers also tend to have a lower zeta potential and a greater negative value as the pH of the washing water increases and the concentration of the anionic surfactant increases. . Therefore, during the washing process, the dirt particles and the laundry fibers repel each other, and the dirt particles are likely to be present in the wash water. Therefore, after the washing process is finished (during the rinsing process), there is a possibility that the dirt particles will re-adhere to the laundry.

本発明の洗濯機は、繊維状導電性部材と繊維状非導電性部材とを混在してなる汚れ粒子除去フィルタを洗濯水に接触する位置に設け、洗い行程に、繊維状非導電性部材のゼータ電位と異なる電位を繊維状導電性部材に付与している。
この構成により、洗い行程時に、繊維状導電性部材と繊維状非導電性部材との間に電位差(電界)が生じ、負の大きなゼータ電位を持つ汚れ粒子は、汚れ粒子除去フィルタを構成する繊維状非導電性部材と繊維状導電性部材とのうち、電位の高い方の部材に引っ張られ易く、吸着され易くなる。
In the washing machine of the present invention, a dirt particle removal filter comprising a mixture of a fibrous conductive member and a fibrous nonconductive member is provided at a position in contact with the washing water. A potential different from the zeta potential is applied to the fibrous conductive member.
With this configuration, during the washing process, a potential difference (electric field) is generated between the fibrous conductive member and the fibrous non-conductive member, and dirt particles having a large negative zeta potential are fibers constituting the dirt particle removal filter. Of the conductive non-conductive member and the fibrous conductive member, it is easily pulled and adsorbed by the member having the higher potential.

更に、本発明では、汚れ粒子除去フィルタが繊維状導電性部材と繊維状非導電性部材とを混在して構成されているため、電位の異なる部材同士が極近傍に存在し、繊維状導電性部材と繊維状非導電性部材との間に形成される電界強度は極めて高くなる。これにより、汚れ粒子は、汚れ粒子除去フィルタに一層引っ張られ易く、吸着されやすくなる。   Furthermore, in the present invention, since the dirt particle removal filter is configured by mixing the fibrous conductive member and the fibrous nonconductive member, the members having different potentials exist in the vicinity of the fibrous conductive member. The electric field strength formed between the member and the fibrous non-conductive member is extremely high. As a result, the dirt particles are more easily pulled by the dirt particle removal filter and are easily adsorbed.

本発明によれば、汚れ粒子を除去したいときに繊維状導電性部材に電圧を印加することによって洗濯水中に存在する汚れ粒子を吸着する吸着作用を発揮することができる。
更に、本発明によれば、繊維状導電性部材と繊維状非導電性部材との間に極めて高い電界強度が発生するので、繊維状導電性部材に電圧を印加することによって洗濯水中から汚れ粒子をより多く除去することができる。
ADVANTAGE OF THE INVENTION According to this invention, the adsorption | suction effect | action which adsorb | sucks the dirt particle which exists in washing water can be exhibited by applying a voltage to a fibrous conductive member when it is desired to remove a dirt particle.
Furthermore, according to the present invention, since extremely high electric field strength is generated between the fibrous conductive member and the fibrous nonconductive member, the dirt particles from the washing water can be obtained by applying a voltage to the fibrous conductive member. Can be removed more.

本発明の第1の実施形態を示す洗濯機の水槽の下部近傍部分を拡大して示す縦断側面図The vertical side view which expands and shows the lower part vicinity of the water tank of the washing machine which shows the 1st Embodiment of this invention 外蓋を閉じた状態の洗濯機の斜視図Perspective view of washing machine with outer lid closed 外蓋及び内蓋を開けた状態の洗濯機の斜視図Perspective view of washing machine with outer lid and inner lid open 洗濯機の縦断側面図Longitudinal side view of washing machine フィルタ部材の正面図Front view of filter member フィルタ部材の背面図Rear view of filter member 繊維状導電性部材と繊維状非導電性部材との混在状態を示す図The figure which shows the mixed state of a fibrous conductive member and a fibrous nonelectroconductive member 電気的な概略構成を示すブロック線図Block diagram showing schematic electrical configuration 洗濯水のpHと各種の部材のゼータ電位の関係を示す図The figure which shows the relationship between the pH of washing water, and the zeta potential of various members 繊維状導電性部材の有無と汚れ粒子の付着率の関係を示す図The figure which shows the relationship between the presence or absence of a fibrous conductive member and the adhesion rate of dirt particles 汚れ粒子除去フィルタの単位質量あたりの表面積と汚れ粒子の付着率の関係を示す図Diagram showing the relationship between the surface area per unit mass of the dirt particle removal filter and the adhesion rate of dirt particles 本発明の第2の実施形態を示す図9相当図FIG. 9 equivalent view showing the second embodiment of the present invention 本発明の第3の実施形態を示すもので、陰イオン界面活性剤の濃度と各種の部材のゼータ電位の関係を示す図The figure which shows the 3rd Embodiment of this invention and shows the relationship between the density | concentration of an anionic surfactant and the zeta potential of various members. 本発明の第4の実施形態を示す洗濯機の斜視図The perspective view of the washing machine which shows the 4th Embodiment of this invention 洗濯機の破断斜視図Broken perspective view of washing machine 洗濯機の縦断側面図Longitudinal side view of washing machine フィルタ部材の近傍部分を拡大して示す縦断側面図Longitudinal side view showing enlarged vicinity of filter member 図17中のA−A線に沿う断面図Sectional drawing which follows the AA line in FIG. フィルタ部材を取り出した状態を洗濯機の正面側から見た図The figure which looked at the state which took out the filter member from the front side of a washing machine 電気的な概略構成を示すブロック線図Block diagram showing schematic electrical configuration 洗濯水のpHと汚れ粒子のゼータ電位の関係を示す図Figure showing the relationship between the pH of the wash water and the zeta potential of the dirt particles

(第1の実施形態)
以下、本発明の第1の実施形態について図1から図11、必要に応じて図12及び図21を参照して説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 11 and FIGS. 12 and 21 as necessary.

第1の実施形態では、本発明を縦型の洗濯機に適用して説明する。まず図2から図4に示すように、洗濯機の外箱1は矩形箱状をなしていて、この外箱1の上部にトップカバー2が設けられている。外箱1の一部は、金属製であり、その金属部分は接地されている。トップカバー2のほぼ中央部には、図4に示すように、洗濯物を出し入れする洗濯物出入口3が設けられていると共に、この洗濯物出入口3を開閉する外蓋4が設けられている。外箱1の内部には、有底円筒状をなす水槽5が弾性吊持機構6により弾性支持され、その水槽5の内部には、洗濯物を収容するための有底円筒状の洗濯槽7が垂直な縦軸周りに回転可能に設けられている。洗濯槽7の周壁部には、脱水孔8が多数個形成されている。   In the first embodiment, the present invention is described by applying it to a vertical washing machine. First, as shown in FIGS. 2 to 4, the outer box 1 of the washing machine has a rectangular box shape, and a top cover 2 is provided on the outer box 1. A part of the outer box 1 is made of metal, and the metal part is grounded. As shown in FIG. 4, a laundry entrance / exit 3 for taking in and out laundry is provided at an almost central portion of the top cover 2, and an outer lid 4 for opening and closing the laundry entrance 3 is provided. A water tank 5 having a bottomed cylindrical shape is elastically supported inside the outer box 1 by an elastic suspension mechanism 6, and inside the water tank 5, a bottomed cylindrical laundry tank 7 for storing laundry. Is provided to be rotatable around a vertical longitudinal axis. A large number of dewatering holes 8 are formed in the peripheral wall portion of the washing tub 7.

水槽5の上部には、水槽カバー10が設けられている。この水槽カバー10には、洗濯物出入口3の下方に位置する開口部11が形成され、開口部11を開閉する内蓋12が設けられている。洗濯槽7の上端部には、バランスリング13が設けられている。洗濯槽7内の底部には、撹拌体14が回転可能に設けられている。水槽5の外底部には、洗濯槽7と撹拌体14とを選択的に回転駆動させる駆動装置15が設けられている。この駆動装置15は、正逆回転が可能なモータ16(図8参照)と、図示しないクラッチ機構等から構成されている。   A water tank cover 10 is provided at the top of the water tank 5. The water tank cover 10 is formed with an opening 11 positioned below the laundry entrance 3 and is provided with an inner lid 12 for opening and closing the opening 11. A balance ring 13 is provided at the upper end of the washing tub 7. A stirring body 14 is rotatably provided at the bottom of the washing tub 7. A driving device 15 for selectively rotating the washing tub 7 and the stirring body 14 is provided on the outer bottom of the water tub 5. The drive device 15 includes a motor 16 (see FIG. 8) capable of forward and reverse rotation, a clutch mechanism (not shown), and the like.

トップカバー2には、洗濯物出入口3の後方に位置させて給水弁18及び注水ケース19が設けられている。給水弁18には、ホース接続口20が設けられている。このホース接続口20には、図示しないが、水道(給水源)の蛇口に接続された接続ホースが接続される。注水ケース19の出口には、蛇腹状の給水ホース21が接続されている。この給水ホース21の下端部は給水口22とされていて、この給水口22が水槽カバー10に接続されている。給水口22は、洗濯槽7に上方から臨んでいる。ここで、ホース接続口20に接続ホースが接続された状態で、給水弁18が開放されると、水道水が接続ホース、給水弁18、注水ケース19及び給水ホース21を介して給水口22から洗濯槽7内、ひいては水槽5内に供給される。この水道水は、洗剤と混ざることにより、洗濯水となる。   The top cover 2 is provided with a water supply valve 18 and a water injection case 19 positioned behind the laundry entrance 3. The water supply valve 18 is provided with a hose connection port 20. Although not shown, the hose connection port 20 is connected to a connection hose connected to a faucet of a water supply (water supply source). A bellows-shaped water supply hose 21 is connected to the outlet of the water injection case 19. The lower end portion of the water supply hose 21 is a water supply port 22, and the water supply port 22 is connected to the water tank cover 10. The water supply port 22 faces the washing tub 7 from above. Here, when the water supply valve 18 is opened in a state where the connection hose is connected to the hose connection port 20, tap water is supplied from the water supply port 22 through the connection hose, the water supply valve 18, the water injection case 19, and the water supply hose 21. It is supplied into the washing tub 7 and thus into the water tub 5. This tap water becomes laundry water when mixed with detergent.

洗濯槽7内には、周壁部に沿って上下方向に延びる循環水路形成用カバー24が装着されている。これにより、循環水路形成用カバー24と洗濯槽7の内面との間に、上下方向に延びる循環水路25が形成される。又、洗濯槽7内の撹拌体14の裏側には、ポンプ室26が設けられている。ポンプ室26は、撹拌体14の裏側に設けられた複数のポンプ羽根27を有する部屋である。そして、循環水路25の下端部の入口28は、ポンプ室26に連通している。   A circulation water channel forming cover 24 extending in the vertical direction along the peripheral wall portion is mounted in the washing tub 7. Thereby, a circulating water channel 25 extending in the vertical direction is formed between the circulating water channel forming cover 24 and the inner surface of the washing tub 7. A pump chamber 26 is provided on the back side of the stirring body 14 in the washing tub 7. The pump chamber 26 is a chamber having a plurality of pump blades 27 provided on the back side of the stirring body 14. The inlet 28 at the lower end of the circulating water channel 25 communicates with the pump chamber 26.

循環水路形成用カバー24の上部(循環水路25の上部)には、循環口29が形成され、循環口29には、洗濯水中の糸屑等を捕獲するリントフィルタ30が設けられている。これにより、水槽5内、ひいては洗濯槽7内に水が貯留された状態で、撹拌体14が回転されると、ポンプ羽根27も回転される。すると、ポンプ羽根27のポンプ作用により、ポンプ室26内の洗濯水は、循環水路25の入口28を通って循環水路25内に流入する。この循環水路25内に流入した洗濯水は、循環水路25内を上方向に流れた後、循環口29からリントフィルタ30を介して洗濯槽7内に吐出されるというように循環する。   A circulation port 29 is formed in an upper part of the circulation water channel forming cover 24 (upper part of the circulation water channel 25), and a lint filter 30 is provided in the circulation port 29 to capture lint and the like in the wash water. As a result, when the agitator 14 is rotated in a state where water is stored in the water tub 5 and thus in the washing tub 7, the pump blade 27 is also rotated. Then, the washing water in the pump chamber 26 flows into the circulating water channel 25 through the inlet 28 of the circulating water channel 25 by the pumping action of the pump blade 27. The washing water that has flowed into the circulation water channel 25 circulates in such a manner that it flows upward in the circulation water channel 25 and is then discharged from the circulation port 29 into the washing tub 7 through the lint filter 30.

水槽5の底部には、排水口31が形成され、排水口31には排水管32が接続されている。又、排水管32の途中には排水弁33が接続されている。これにより、排水弁33が開放されると、水槽5内の洗濯水は排水口31及び排水管32を介して機外へ排出される。   A drain port 31 is formed at the bottom of the water tank 5, and a drain pipe 32 is connected to the drain port 31. A drain valve 33 is connected in the middle of the drain pipe 32. As a result, when the drain valve 33 is opened, the washing water in the water tank 5 is discharged outside the machine through the drain port 31 and the drain pipe 32.

洗濯水に接触する位置、例えば、水槽5の底部には、矩形板状のフィルタ部材34が設けられている。フィルタ部材34は、水槽5に設けられた複数の突起部5Aによって斜めに立てかけられている。これにより、水槽5の底面及び側面と、フィルタ部材34との間に、空間が形成される。フィルタ部材34については、後述する。   A rectangular plate-like filter member 34 is provided at a position in contact with the washing water, for example, at the bottom of the water tank 5. The filter member 34 is leaned diagonally by a plurality of protrusions 5 </ b> A provided in the water tank 5. Thereby, a space is formed between the bottom and side surfaces of the water tank 5 and the filter member 34. The filter member 34 will be described later.

トップカバー2の前部には、操作パネル35が設けられている。操作パネル35には、図3に示すように、操作スイッチからなる複数の入力部36及び運転状態等を表示する表示部37が設けられている。又、操作パネル35の裏側には、図1に示すように、マイクロコンピュータを有する制御手段たる制御装置38が設けられている。制御装置38は、洗い、すすぎ、脱水の各行程を実行するように洗濯機負荷を制御するものである。即ち、制御装置38には、図8に示すように、入力部36、モータ16に設けられた回転センサ39、水位センサ40からの信号等が入力される。このうち、回転センサ39は、駆動装置15のモータ16の回転速度を検出するものであり、水位センサ40は、水槽5内ひいては洗濯槽7内の水位を検出するものである。制御装置38は、これらの入力信号と、予め有する制御プログラムに基づき洗濯機負荷である、モータ16、給水弁18、排水弁33等を駆動回路41を介して制御している。制御装置38は、さらに、表示部37の表示、及び後述する電圧印加装置42を制御する機能を有している。   An operation panel 35 is provided at the front portion of the top cover 2. As shown in FIG. 3, the operation panel 35 is provided with a plurality of input units 36 including operation switches and a display unit 37 that displays an operation state and the like. Further, as shown in FIG. 1, a control device 38 as control means having a microcomputer is provided on the back side of the operation panel 35. The control device 38 controls the washing machine load so as to execute washing, rinsing, and dewatering processes. That is, as shown in FIG. 8, signals from the input unit 36, the rotation sensor 39 provided in the motor 16, and the water level sensor 40 are input to the control device 38. Among these, the rotation sensor 39 detects the rotation speed of the motor 16 of the driving device 15, and the water level sensor 40 detects the water level in the water tub 5 and thus in the washing tub 7. The control device 38 controls the motor 16, the water supply valve 18, the drain valve 33, and the like, which are washing machine loads, via the drive circuit 41 based on these input signals and a control program that is previously stored. The control device 38 further has a function of controlling the display of the display unit 37 and a voltage application device 42 described later.

さて、フィルタ部材34は、図1、図5から図7に示すように、矩形の汚れ粒子除去フィルタ43と、汚れ粒子除去フィルタ43を保持する支持部材44とから形成されている。支持部材44は、枠部44Aと、格子部44Bと、下部形成部44Cとから構成されている。枠部44Aは、非導電性の樹脂製で、汚れ粒子除去フィルタ43の外周部を囲うフレームである。この枠部44Aのうち一方の面(図5に示す正面)側の下部の辺部には、下部形成部44Cが取り付けられている。下部形成部44Cは、導電性を有する板部材である。格子部44Bは、枠部44Aの面のうち下部形成部44Cと反対側の面(図6に示す背面)の内周側に設けられる格子であり、非導電性の樹脂からなる。   As shown in FIGS. 1 and 5 to 7, the filter member 34 is formed of a rectangular dirt particle removal filter 43 and a support member 44 that holds the dirt particle removal filter 43. The support member 44 includes a frame portion 44A, a lattice portion 44B, and a lower formation portion 44C. The frame portion 44 </ b> A is a frame made of non-conductive resin and surrounding the outer peripheral portion of the dirt particle removal filter 43. A lower forming portion 44C is attached to a lower side portion on one surface (front surface shown in FIG. 5) side of the frame portion 44A. The lower formation portion 44C is a conductive plate member. The lattice portion 44B is a lattice provided on the inner peripheral side of the surface of the frame portion 44A opposite to the lower formation portion 44C (the back surface shown in FIG. 6), and is made of a nonconductive resin.

汚れ粒子除去フィルタ43は、外周部が枠部44A内に収まり、下端部が格子部44Bと下部形成部44Cとに挟まれて保持されている。汚れ粒子除去フィルタ43は、多数の繊維状(糸状)の繊維状導電性部材43Aと、多数の繊維状(糸状)の繊維状非導電性部材43Bとから構成されている。   The dirt particle removal filter 43 has an outer peripheral portion that fits within the frame portion 44A and a lower end portion that is sandwiched and held between the lattice portion 44B and the lower portion forming portion 44C. The dirt particle removal filter 43 includes a large number of fibrous (thread-like) fibrous conductive members 43A and a large number of fibrous (thread-like) fibrous non-conductive members 43B.

まず、繊維状導電性部材43Aについて説明する。
繊維状導電性部材43Aは、導電性を有する材料、例えば金属材料、又は炭素を含有する材料、本実施形態ではSUS(ステンレス)で構成されている。この繊維状導電性部材43Aは、一端部が支持部材44の下部形成部44Cに電気的に接続され、他端部が支持部材44の上部に向かって延びている。即ち、繊維状導電性部材43Aは、図7に示すように支持部材44の上下方向に延びた繊維である。この繊維状導電性部材43Aには、電圧印加手段たる電圧印加装置42によって発生した電圧が印加される。
First, the fibrous conductive member 43A will be described.
The fibrous conductive member 43A is made of a conductive material, for example, a metal material or a material containing carbon, which is SUS (stainless steel) in the present embodiment. One end of the fibrous conductive member 43 </ b> A is electrically connected to the lower formation portion 44 </ b> C of the support member 44, and the other end extends toward the upper portion of the support member 44. That is, the fibrous conductive member 43A is a fiber extending in the vertical direction of the support member 44 as shown in FIG. A voltage generated by a voltage applying device 42 as voltage applying means is applied to the fibrous conductive member 43A.

電圧印加装置42は、商用電源電圧を降圧、整流、安定化し、0Vからマイナス数百mVまでの範囲の所定の定電圧を発生し、そのマイナスの電位を繊維状導電性部材43Aに付与する装置である。これに代えて、電池と分圧抵抗を組み合わせて構成してもよい。上記マイナス電位を発生するため、本実施形態では、電圧印加装置42のプラス側の電極(図示せず)は、リード線45を介して外箱1の金属部分に接続(接地)されている。電圧印加装置42は、制御装置38からの信号に基づいて、電圧発生動作のON,OFFを切替え、出力電圧の大きさを変更する。   The voltage applying device 42 steps down, rectifies and stabilizes the commercial power supply voltage, generates a predetermined constant voltage ranging from 0 V to minus several hundred mV, and applies the minus potential to the fibrous conductive member 43A. It is. Instead of this, a battery and a voltage dividing resistor may be combined. In order to generate the negative potential, in this embodiment, the positive electrode (not shown) of the voltage application device 42 is connected (grounded) to the metal portion of the outer box 1 via the lead wire 45. Based on a signal from the control device 38, the voltage application device 42 switches ON / OFF of the voltage generation operation and changes the magnitude of the output voltage.

電圧印加装置42は、マイナスの電位を有する電極ロッド46を備えている。電極ロッド46は、円柱状の外周部にねじが形成されてなるロッド部46Aと、ロッド部46Aの中間部に溶接によって取り付けられたナット46Bとを有している。ロッド部46Aは、上端部(先端部)が水槽5の底部を貫通し、支持部材44の下部形成部44Cに電気的に接続されている。電極ロッド46は、ナット46Bと水槽5内に設けられロッド部46Aの先端部に取付けられるナット(図示しない)とで水槽5の底部を挟むことによって水槽5に固定されている。   The voltage application device 42 includes an electrode rod 46 having a negative potential. The electrode rod 46 has a rod portion 46A in which a screw is formed on a cylindrical outer peripheral portion, and a nut 46B attached to an intermediate portion of the rod portion 46A by welding. The rod portion 46 </ b> A has an upper end portion (tip portion) that penetrates the bottom portion of the water tank 5 and is electrically connected to the lower formation portion 44 </ b> C of the support member 44. The electrode rod 46 is fixed to the water tank 5 by sandwiching the bottom of the water tank 5 between a nut 46B and a nut (not shown) provided in the water tank 5 and attached to the tip of the rod portion 46A.

電極ロッド46のロッド部46Aと水槽5の底部との隙間は、シリコーンゴム等のパッキン47によって塞がれている。これにより、水槽5の底部におけるロッド部46Aが貫通する部分は水密の状態となる。   A gap between the rod portion 46A of the electrode rod 46 and the bottom portion of the water tank 5 is closed by a packing 47 such as silicone rubber. Thereby, the part which 46 A of rod parts in the bottom part of the water tank 5 penetrates will be in a watertight state.

次に、繊維状非導電性部材43Bについて説明する。
繊維状非導電性部材43Bは、非導電性を有する材料、例えば、「綿」、「ガラス繊維」、「ガラス繊維シランカップリング処理」、「ナイロン」及び「綿ポリアクリルアミド処理」からなり、図7に示すように支持部材44の左右方向に延びて設けられている。この繊維状非導電性部材43Bは、図9に示すように、洗濯水のpHが高くなっても、洗濯水が中性のときのゼータ電位の値とほぼ同じである(pHの変化による変動幅が小さい)特性を有している。この繊維状非導電性部材43Bは、ある繊維に表面処理を施すことによって得ることができる。例えば、ある繊維(例えば綿)の表面をポリアクリルアミド又はヒドロキシプロピルセルロースでコーティングし、繊維の表面を不活性にする表面処理を施すことによって得ることができる。
Next, the fibrous nonconductive member 43B will be described.
The fibrous non-conductive member 43B is made of a non-conductive material, for example, “cotton”, “glass fiber”, “glass fiber silane coupling treatment”, “nylon”, and “cotton polyacrylamide treatment”. As shown in FIG. As shown in FIG. 9, the fibrous non-conductive member 43B is substantially the same as the zeta potential value when the washing water is neutral even when the washing water has a high pH (variation due to change in pH). (Width is small). The fibrous nonconductive member 43B can be obtained by subjecting a certain fiber to a surface treatment. For example, it can be obtained by coating the surface of a certain fiber (for example, cotton) with polyacrylamide or hydroxypropyl cellulose and applying a surface treatment that renders the surface of the fiber inert.

ある繊維(例えば綿)にポリアクリルアミド処理(表面処理)を施してなる繊維状非導電性部材43B(綿ポリアクリルアミド処理)は、分子量10000〜50000程度のポリアクリルアミド水溶液中に、綿を浸漬し、高温乾燥し、キュアリング(curing:一定の温度湿度で保つ)することにより得られる。綿に表面処理としてアミド基による塩基性基処理(ポリアクリルアミド処理)を施すことにより、繊維状非導電性部材43Bのゼータ電位は、pHが高くなっても低下し難くなる。   A fibrous non-conductive member 43B (cotton polyacrylamide treatment) formed by subjecting a certain fiber (for example, cotton) to polyacrylamide treatment (surface treatment) is obtained by immersing cotton in a polyacrylamide aqueous solution having a molecular weight of about 10,000 to 50,000, It is obtained by drying at a high temperature and curing (maintaining at a constant temperature and humidity). By applying a basic group treatment (polyacrylamide treatment) with an amide group as a surface treatment to cotton, the zeta potential of the fibrous nonconductive member 43B is unlikely to decrease even when the pH increases.

ガラス繊維シランカップリング処理は、ガラス繊維にシランカップリング剤(例えばγ−アミノプロピルトリエトキシシラン)処理によって、ある繊維の表面にアミノ基を設ける処理である。
ある繊維を繊維状非導電性部材43Bにする表面処理としては、他に、ある繊維の表面に表面処理としてポリエチレングリコール、アミノアルキルメタアクリレートアクリルアミド共重合体、ポリエチレンイミン、ポリアクリル酸ナトリウム、ナフタレンスルホン酸塩のホルマリン縮合体物、ポリジメチルアミノメタクリレートを施して繊維状非導電性部材43Bを得る方法もある。
The glass fiber silane coupling treatment is a treatment for forming an amino group on the surface of a certain fiber by treating the glass fiber with a silane coupling agent (for example, γ-aminopropyltriethoxysilane).
Other surface treatments that make certain fibers into fibrous non-conductive members 43B include polyethylene glycol, aminoalkyl methacrylate acrylamide copolymer, polyethyleneimine, sodium polyacrylate, naphthalene sulfone on the surface of certain fibers. There is also a method of obtaining a fibrous non-conductive member 43B by applying a formalin condensate of acid salt and polydimethylaminomethacrylate.

繊維状非導電性部材43Bは、上記以外に、繊維状で非導電性を有する材料で、且つゼータ電位が洗濯水のpHが高く(アルカリ性)なっても変動し難い繊維であれば良く、合成繊維又は天然繊維を問わない。
尚、表面処理を施さない場合の「ある繊維」とは、洗濯水が中性及びアルカリ性の場合においてゼータ電位の値がほぼ同じである繊維である。又、繊維に表面処理(繊維状非導電性部材43Bにする表面処理)を施す場合の「ある繊維」とは、いずれの繊維でもよい。
In addition to the above, the fibrous non-conductive member 43B may be any material that is fibrous and non-conductive, and has a zeta potential that hardly fluctuates even when the washing water has a high pH (alkaline). It does not matter whether it is fiber or natural fiber.
The “certain fiber” when the surface treatment is not performed is a fiber having substantially the same zeta potential when the washing water is neutral and alkaline. Moreover, any fiber may be sufficient as "a certain fiber" in the case of performing surface treatment (surface treatment which makes the fibrous nonelectroconductive member 43B) to a fiber.

繊維状非導電性部材43Bは、平均直径、言い換えると平均繊維径が小さく、単位質量あたりの表面積が大きいもので構成されているものが好ましい。繊維状非導電性部材43Bの平均繊維径及び表面積については、後述する。   The fibrous non-conductive member 43B preferably has a small average diameter, in other words, a small average fiber diameter and a large surface area per unit mass. The average fiber diameter and surface area of the fibrous nonconductive member 43B will be described later.

汚れ粒子除去フィルタ43は、上述したように、繊維状導電性部材43Aの繊維が支持部材44の上下方向に、繊維状非導電性部材43Bが支持部材44の左右方向に延びて設けられている。この場合、繊維状導電性部材43Aと繊維状非導電性部材43Bは、交差部分において交互に織り込まれている。これにより、フィルタ部材34は、繊維状導電性部材43Aと繊維状非導電性部材43Bとが混在(混紡)して構成されている。   As described above, the dirt particle removal filter 43 is provided so that the fibers of the fibrous conductive member 43A extend in the vertical direction of the support member 44 and the fibrous nonconductive member 43B extends in the horizontal direction of the support member 44. . In this case, the fibrous conductive member 43A and the fibrous nonconductive member 43B are woven alternately at the intersection. Thereby, the filter member 34 is configured by mixing (mixing) the fibrous conductive member 43A and the fibrous nonconductive member 43B.

本実施形態では、制御装置38は、洗い行程時及びすすぎ行程時に、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位が異なるように、繊維状導電性部材43Aに電位を付与する(電圧を印加する)制御を行う。本実施形態では、制御装置38は、電圧印加装置42によって繊維状非導電性部材43Bのゼータ電位と異なる電位を繊維状導電性部材43Aに付与する制御を行っている。この場合、制御装置38は、電圧制御手段として機能する。例えば、洗い行程時の洗濯水に汚れ粒子除去フィルタ43が浸されているとき繊維状非導電性部材43Bのゼータ電位が−20mVであった場合、制御装置38は、繊維状導電性部材43Aの電位が−20mVよりも低く、例えば−120mVになるように、電圧印加装置42を制御する。   In the present embodiment, the control device 38 applies a potential to the fibrous conductive member 43A so that the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B are different during the washing process and the rinsing process. Is applied (voltage is applied). In the present embodiment, the control device 38 performs control to apply a potential different from the zeta potential of the fibrous nonconductive member 43B to the fibrous conductive member 43A by the voltage application device 42. In this case, the control device 38 functions as voltage control means. For example, when the zeta potential of the fibrous non-conductive member 43B is −20 mV when the dirt particle removal filter 43 is immersed in the washing water during the washing process, the control device 38 controls the fibrous conductive member 43A. The voltage application device 42 is controlled so that the potential is lower than −20 mV, for example, −120 mV.

又、制御装置38は、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位との差が、汚れ粒子除去フィルタ43が洗い行程時の洗濯水に浸されているときよりもすすぎ行程時の洗濯水に浸されているときの方が小さくなるように電圧印加装置42の制御を行っている。例えば、洗い行程時の洗濯水に汚れ粒子除去フィルタ43が浸されているとき繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位との差(電位差)が100mVであった場合、制御装置38は、すすぎ行程に、汚れ粒子除去フィルタ43が、この電位差が100mVよりも小さく、例えば10mVになるように、電圧印加装置42を制御する。この制御装置38による電圧印加装置42の制御は、後で詳細に説明する。   Further, the control device 38 determines that the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B is greater than when the dirt particle removal filter 43 is immersed in the washing water during the washing process. The voltage application device 42 is controlled so that the time when the water is immersed in the washing water during the rinsing process is smaller. For example, the difference (potential difference) between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B was 100 mV when the dirt particle removal filter 43 was immersed in the washing water during the washing process. In this case, in the rinsing process, the control device 38 controls the voltage application device 42 so that the dirt particle removal filter 43 has a potential difference smaller than 100 mV, for example, 10 mV. The control of the voltage application device 42 by the control device 38 will be described in detail later.

次に上記構成の作用を説明する。
使用者が、洗濯槽7内に洗濯物(図示せず)を収容した状態で、入力部36を操作し、洗濯運転を開始させると、制御装置38は、洗濯槽7内に収容された洗濯物の布量検知を行う。尚、この場合、洗濯運転としては標準コースが設定されているとする。
Next, the operation of the above configuration will be described.
When the user operates the input unit 36 in a state where laundry (not shown) is accommodated in the washing tub 7 and starts the washing operation, the control device 38 performs the washing accommodated in the washing tub 7. Detects the amount of cloth. In this case, it is assumed that a standard course is set as the washing operation.

布量検知は、駆動装置15のモータ16により撹拌体14のみを回転させ、そのときの回転センサ39の回転速度の大きさと、制御装置38が予め有したテーブルに基づき、布量を判断する。布量が多く重い場合には、回転センサ39が検出する回転速度が低く、布量が少なく軽い場合には、この回転センサ39が検出する回転速度が高くなる。制御装置38は、この布量の判断に基づき給水水位を決定し、この給水水位を、表示部37に表示する。これにより、使用者は、適量の洗剤を洗濯槽7内に供給する。   In the cloth amount detection, only the stirrer 14 is rotated by the motor 16 of the driving device 15, and the cloth amount is determined based on the magnitude of the rotation speed of the rotation sensor 39 at that time and a table previously held by the control device 38. When the amount of cloth is large and heavy, the rotation speed detected by the rotation sensor 39 is low, and when the amount of cloth is small and light, the rotation speed detected by the rotation sensor 39 is high. The control device 38 determines the feed water level based on the determination of the amount of cloth, and displays the feed water level on the display unit 37. Thereby, the user supplies an appropriate amount of detergent into the washing tub 7.

制御装置38は、布量検知後に、洗い行程を実行する。洗い行程では、制御装置38は、排水弁33を閉鎖させた状態で給水弁18を開放させて給水をする。給水弁18が開放されると、水道水が、注水ケース19、給水ホース21を介して給水口22から洗濯槽7内、ひいては水槽5内に供給されて貯留される。給水口22から洗濯槽7内に供給された水道水は、洗剤と混ざって洗濯水となり、給水口22の下方に存する洗濯物は、その洗濯水に濡らされる。又、水槽5内に貯留された洗濯水の水位は、水位センサ40にて検出される。   The control apparatus 38 performs a washing process after the cloth amount is detected. In the washing process, the control device 38 supplies the water by opening the water supply valve 18 with the drain valve 33 closed. When the water supply valve 18 is opened, the tap water is supplied from the water supply port 22 through the water supply case 19 and the water supply hose 21 into the washing tub 7 and eventually into the water tub 5 to be stored. The tap water supplied into the washing tub 7 from the water supply port 22 is mixed with the detergent to become wash water, and the laundry existing below the water supply port 22 is wetted by the wash water. Further, the water level of the washing water stored in the water tank 5 is detected by the water level sensor 40.

制御装置38は、水槽5内の水位が前記布量検知に基づき設定された給水水位に達すると、給水弁18を閉鎖して給水を停止させ、駆動装置15のモータ16により撹拌体14を正逆回転させる。すると、撹拌体14により洗濯槽7内の洗濯物が撹拌されると共に、撹拌体14の裏側に設けられたポンプ羽根27のポンプ作用により、洗濯槽7内の洗濯水が循環水路25の入口28を通って、循環水路25内に入り、循環口29からリントフィルタ30を通って、洗濯槽7内に吐出される。   When the water level in the water tank 5 reaches the water supply level set based on the cloth amount detection, the control device 38 closes the water supply valve 18 to stop the water supply, and the motor 16 of the drive device 15 corrects the stirring body 14. Reverse rotation. Then, the laundry in the washing tub 7 is agitated by the agitating body 14, and the washing water in the washing tub 7 is pumped by the pump blade 27 provided on the back side of the agitating body 14 so that the washing water in the washing tub 7 enters the inlet 28 of the circulation channel 25. Then, it enters the circulation channel 25, passes through the lint filter 30 from the circulation port 29, and is discharged into the washing tub 7.

そして、予め設定された時間が経過すると、制御装置38は、撹拌体14の回転を停止させ、排水弁33を開放させて洗濯水の排水を行う。
次に、制御装置38は、すすぎ行程を実行する。すすぎ行程では、制御装置38は、排水弁33を閉鎖し、給水弁18を開放させて洗濯槽7内へ、所定水位まで給水する(すすぎ用の洗濯水(水道水)を供給する)。そして、撹拌体14を低速で正逆回転させることにより、洗濯槽7内の洗濯物はすすがれる。又、すすぎ行程時に生成された比較的きれいな洗濯水(洗濯水が水道水で薄まったほぼ中性(pH約8の水)。以下、すすぎ水と称する)は、汚れ粒子除去フィルタ43に接触する。そして、所定時間後、排水弁33が開放され、水槽5内ひいては洗濯槽7内のすすぎ水は機外へ順次排出される。すすぎ行程では、給水、すすぎ、排水が複数回行われる。
And when preset time passes, the control apparatus 38 will stop rotation of the stirring body 14, will open the drain valve 33, and will drain washing water.
Next, the control apparatus 38 performs a rinse process. In the rinsing process, the control device 38 closes the drain valve 33 and opens the water supply valve 18 to supply water into the washing tub 7 to a predetermined water level (supplying rinsing water (tap water)). And the laundry in the washing tub 7 is rinsed by rotating the stirring body 14 forward and backward at low speed. Further, the relatively clean washing water generated during the rinsing process (almost neutral (water having a pH of about 8) in which the washing water is diluted with tap water; hereinafter referred to as rinsing water) contacts the dirt particle removal filter 43. . Then, after a predetermined time, the drain valve 33 is opened, and the rinsing water in the water tub 5 and thus in the washing tub 7 is sequentially discharged out of the apparatus. In the rinsing process, water supply, rinsing and draining are performed multiple times.

次に、制御装置38は、脱水行程を実行する。脱水行程では、制御装置38は、排水弁33を開放した状態で洗濯槽7を一方向に高速回転をさせ、洗濯物に対して遠心脱水を行う。
脱水行程が終了することにより、通常の運転コースが終了する。
Next, the control apparatus 38 performs a dehydration process. In the dehydration process, the control device 38 rotates the washing tub 7 in one direction at a high speed with the drain valve 33 opened, and performs centrifugal dehydration on the laundry.
When the dehydration process is completed, the normal driving course is completed.

次に、汚れ粒子除去フィルタ43の作用について説明する。
水槽5の底部にフィルタ部材34が設けられているので、洗濯水(すすぎ行程時には、すすぎ水)は、洗い行程及びすすぎ行程中にフィルタ部材34に接触した状態となる。
ここで、洗濯に用いられる洗剤にはアルカリ成分が含まれている。洗い行程時には洗剤の濃度が高いので洗濯水のpHは高くなり(アルカリ性になり)、すすぎ行程時では洗剤の濃度は低いのでpHは低くなる(ほぼ中性になる)。そのため、本実施形態では、洗い行程時の洗濯水のpHを10とし、すすぎ行程時の洗濯水のpHを8として説明する。
Next, the operation of the dirt particle removal filter 43 will be described.
Since the filter member 34 is provided at the bottom of the water tank 5, the washing water (in the rinsing process, the rinsing water) comes into contact with the filter member 34 during the washing process and the rinsing process.
Here, the detergent used for washing contains an alkaline component. Since the detergent concentration is high during the washing process, the pH of the washing water is high (becomes alkaline), and during the rinsing process, the detergent concentration is low and the pH is low (almost neutral). Therefore, in the present embodiment, the description will be made assuming that the pH of the washing water during the washing process is 10 and the pH of the washing water during the rinsing process is 8.

洗い行程時の洗濯水には、洗濯物から脱離した油汚れ(油滴)、泥汚れ(本実施形態では例えば関東ローム土)、ディーゼルエンジンの排ガスに含まれるカーボンブラック、水道管中に含まれる鉄さびの汚れ粒子が存在していることがある。これらの汚れ粒子は、図21に示すように、一般に洗濯水のpHが高くなるほど、洗濯水中の水酸基が汚れ粒子に吸着されることにより、ゼータ電位が低くなり負側に大きな値となっていく。   The washing water during the washing process includes oil stains (oil droplets) detached from the laundry, mud stains (for example, Kanto loam soil in this embodiment), carbon black contained in exhaust gas from diesel engines, and water pipes. There may be iron rust dirt particles. As shown in FIG. 21, these soil particles generally have a higher zeta potential and a larger negative value as the pH of the wash water becomes higher, because hydroxyl groups in the wash water are adsorbed by the soil particles. .

又、一般的な洗濯物(衣類)の繊維(例えばポリエステルが主材の衣類)も、洗濯水のpHが高くなるほど、ゼータ電位が低くなり負側に大きな値となっていく。従って、洗い行程時においては、汚れ粒子と洗濯物の繊維とは反発し合い、洗濯水中に汚れ粒子が存在し易くなっている。そのため、洗い行程が終わった後に、汚れ粒子が洗濯物に再付着するおそれがある。   In addition, in general laundry (clothing) fibers (for example, clothing mainly made of polyester), the zeta potential decreases as the washing water pH increases, and the negative value increases. Accordingly, during the washing process, the dirt particles and the laundry fibers repel each other, and the dirt particles are likely to be present in the wash water. For this reason, after the washing process is finished, the dirt particles may be reattached to the laundry.

本実施形態では、繊維状導電性部材43Aと繊維状非導電性部材43Bとを混在してなる汚れ粒子除去フィルタ43を水槽5の底部に設け、制御装置38は、洗い行程時に、繊維状非導電性部材43Bのゼータ電位と異なる電位を繊維状導電性部材43Aに付与している。   In this embodiment, the dirt particle removal filter 43 formed by mixing the fibrous conductive member 43A and the fibrous nonconductive member 43B is provided at the bottom of the water tank 5, and the control device 38 is not A potential different from the zeta potential of the conductive member 43B is applied to the fibrous conductive member 43A.

例えば、汚れ粒子がカーボンブラックである場合、洗濯水のpHが10(洗い行程)のときゼータ電位は約−48mVであり、洗濯水のpHが8(すすぎ行程)のときゼータ電位は約−40mVである。又、汚れ粒子除去フィルタ43の繊維状導電性部材43AがSUSからなり、繊維状非導電性部材43Bが綿ポリアクリルアミド処理からなる場合で、洗濯水のpHが10(洗い行程)のとき、図9に示すように、繊維状非導電性部材43Bのゼータ電位は約−19mVである。本実施形態では、洗い行程時に、繊維状導電性部材43Aの電位を繊維状非導電性部材の約−19mVと異なる電位、この場合、−120mVになるように、制御装置38は電圧印加装置42を制御する。これにより、洗い行程時の繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差は、101mV(120mV−19mV)になる。   For example, when the dirt particles are carbon black, the zeta potential is about −48 mV when the pH of the washing water is 10 (washing process), and the zeta potential is about −40 mV when the pH of the washing water is 8 (rinsing process). It is. Further, when the fibrous conductive member 43A of the dirt particle removal filter 43 is made of SUS and the fibrous nonconductive member 43B is made of cotton polyacrylamide, the pH of the washing water is 10 (washing process). As shown in FIG. 9, the zeta potential of the fibrous nonconductive member 43B is about −19 mV. In the present embodiment, during the washing process, the controller 38 controls the voltage application device 42 so that the potential of the fibrous conductive member 43A is different from about −19 mV of the fibrous nonconductive member, in this case, −120 mV. To control. Thereby, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B during the washing process is 101 mV (120 mV-19 mV).

この構成により、洗い行程時に、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間に電位差(電界)が生じ、負の大きなゼータ電位を持つ汚れ粒子は、電位の高い繊維状非導電性部材43Bに引っ張られ易く、吸着され易くなる。   With this configuration, a potential difference (electric field) is generated between the fibrous conductive member 43A and the fibrous nonconductive member 43B during the washing process, and dirt particles having a large negative zeta potential It is easy to be pulled and attracted to the conductive member 43B.

更に、汚れ粒子除去フィルタ43が繊維状導電性部材43Aと繊維状非導電性部材43Bとを混在して構成されているため、電位の異なる繊維状導電性部材43Aと繊維状非導電性部材43Bとが極近傍に存在し、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間に形成される電界強度は極めて高くなる。これにより、汚れ粒子は、汚れ粒子除去フィルタ43のうち電位の高い繊維状非導電性部材43Bに一層引っ張られ易く、吸着されやすくなる。   Further, since the dirt particle removal filter 43 is configured by mixing the fibrous conductive member 43A and the fibrous nonconductive member 43B, the fibrous conductive member 43A and the fibrous nonconductive member 43B having different potentials are used. Exist in the very vicinity, and the electric field strength formed between the fibrous conductive member 43A and the fibrous nonconductive member 43B is extremely high. Accordingly, the dirt particles are more easily pulled and adsorbed by the fibrous non-conductive member 43B having a high potential in the dirt particle removal filter 43.

又、本実施形態の制御装置38は、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位との差が、汚れ粒子除去フィルタ43が洗い行程時の洗濯水に浸されているときよりもすすぎ行程時の洗濯水に浸されているときの方が小さくなるように電圧印加装置42を制御している。   Further, in the control device 38 of the present embodiment, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B is determined so that the dirt particle removal filter 43 is immersed in the washing water during the washing process. The voltage application device 42 is controlled so as to be smaller when it is immersed in the washing water during the rinsing process than when it is being rinsed.

例えば、上述したように、洗い行程時の繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差が上述した約101mVである汚れ粒子除去フィルタ43においては、洗濯水のpHが8(すすぎ行程)のときも、綿ポリアクリルアミド処理からなる繊維状非導電性部材43Bのゼータ電位は約−19mVである。そして、すすぎ行程に、繊維状導電性部材43Aの電位を繊維状非導電性部材のゼータ電位(約−19mV)と異なる電位で、且つpH10(洗い行程)時の繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差が約101mVよりも小さくなる電位、この場合、−20mVになるように、制御装置38は電圧印加装置42を制御する。これにより、すすぎ行程時の繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差は、約1mV(20mV−19mV)となる。   For example, as described above, in the dirt particle removal filter 43 in which the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B during the washing process is about 101 mV, the washing water Even when the pH is 8 (rinsing step), the zeta potential of the fibrous non-conductive member 43B made of the cotton polyacrylamide treatment is about −19 mV. In the rinsing step, the potential of the fibrous conductive member 43A is different from the zeta potential (about −19 mV) of the fibrous nonconductive member and the potential of the fibrous conductive member 43A at pH 10 (washing step). The control device 38 controls the voltage application device 42 so that the difference between the zeta potentials of the non-conductive member 43B and the fibrous non-conductive member 43B is lower than about 101 mV, in this case, −20 mV. Thereby, the difference between the potential of the fibrous conductive member 43A during the rinsing process and the zeta potential of the fibrous non-conductive member 43B is about 1 mV (20 mV-19 mV).

この構成により、すすぎ行程時に、洗濯水のpHが低くなり、例えば洗濯水のpHが9よりも低くなる(本実施形態ではpH8になる)と、汚れ粒子のゼータ電位は高くなる(図21参照)。このとき、繊維状導電性部材43Aに印加する電圧を小さくすることにより、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差は小さくなる。これにより、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間の電界強度は弱くなり、汚れ粒子は、繊維状非導電性部材43B側に引っ張られ難くなる。   With this configuration, when the pH of the washing water is lowered during the rinsing process, for example, when the pH of the washing water is lower than 9 (pH 8 in this embodiment), the zeta potential of the dirt particles becomes higher (see FIG. 21). ). At this time, by reducing the voltage applied to the fibrous conductive member 43A, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B is reduced. Thereby, the electric field strength between the fibrous conductive member 43A and the fibrous nonconductive member 43B becomes weak, and the dirt particles are hardly pulled toward the fibrous nonconductive member 43B.

よって、洗い行程時に汚れ粒子除去フィルタ43に吸着した汚れ粒子は、すすぎ行程時に汚れ粒子除去フィルタ43から脱離し、すすぎ水中に放出される。この場合、すすぎ行程時に、汚れ粒子除去フィルタ43から洗濯槽7に汚れ粒子が放出されることになるが、すすぎ行程時には、洗濯槽7中のすすぎ水は適宜(複数回)排水され、新しい水(すすぎ用の洗濯水(水道水))が供給されるため、汚れ粒子除去フィルタ43から洗濯槽7に放出された汚れ粒子は、このすすぎ水によって希釈され、このすすぎ水と共に排水される。従って、すすぎ水中には、汚れ粒子はほとんど存在しない。   Therefore, the dirt particles adsorbed to the dirt particle removal filter 43 during the washing process are desorbed from the dirt particle removal filter 43 during the rinsing process and are released into the rinse water. In this case, dirt particles are discharged from the dirt particle removal filter 43 to the washing tub 7 during the rinsing process, but the rinsing water in the washing tub 7 is drained as appropriate (multiple times) during the rinsing process, and new water is added. Since (washing water for rinsing (tap water)) is supplied, the dirt particles released from the dirt particle removal filter 43 to the washing tub 7 are diluted with the rinse water and discharged together with the rinse water. Therefore, there are almost no dirt particles in the rinse water.

上記した実施形態によれば、次の効果を得ることができる。
洗い行程時等の汚れ粒子を除去したいときに繊維状導電性部材43Aに電圧を印加することによって洗濯水中に存在する汚れ粒子を吸着する吸着作用を発揮することができる。
更に、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間に極めて高い電界強度が発生し、汚れ粒子を除去したいときに繊維状導電性部材43Aに電圧を印加することによって洗濯水中から汚れ粒子をより多く繊維状非導電性部材43Bに吸着させることができ、洗濯水中から汚れ粒子をより多く除去することができる。
According to the above-described embodiment, the following effects can be obtained.
By applying a voltage to the fibrous conductive member 43A when it is desired to remove the dirt particles, such as during the washing process, an adsorption action for adsorbing the dirt particles present in the wash water can be exhibited.
Further, an extremely high electric field strength is generated between the fibrous conductive member 43A and the fibrous non-conductive member 43B, and when it is desired to remove the dirt particles, a voltage is applied to the fibrous conductive member 43A to wash water. More dirt particles can be adsorbed to the fibrous nonconductive member 43B, and more dirt particles can be removed from the washing water.

本発明者は、この汚れ粒子除去フィルタ43を構成する繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位とで電位に差を設けた構成の効果の確認を行った。図10に、汚れ粒子除去フィルタを構成する繊維の種類を変えた場合の汚れ粒子の付着率の確認試験の結果を示す。   The inventor has confirmed the effect of the configuration in which the potential is different between the potential of the fibrous conductive member 43A constituting the dirt particle removal filter 43 and the zeta potential of the fibrous nonconductive member 43B. FIG. 10 shows the result of a confirmation test of the adhesion rate of dirt particles when the type of fiber constituting the dirt particle removal filter is changed.

この付着率の確認試験では、汚れ粒子として、平均粒径が500nmのカーボンブラックを用い、まず、この汚れ粒子を洗濯槽7に収容された洗濯水に入れて撹拌する。本実施例品は、SUS製の繊維状導電性部材43Aと、綿の表面にポリアクリルアミド処理を行った繊維状非導電性部材43Bとから構成される汚れ粒子除去フィルタである。比較例品は、実施例品の繊維状導電性部材43Aの代わりにポリエステルを用いた汚れ粒子除去フィルタである。この比較例品のポリエステルは、繊維径が1μmである。又、図10中に示す「繊維径」は、実施例品及び比較例品とも綿の繊維径を示し、「表面積/質量」は、繊維状非導電性部材43B(綿ポリアクリルアミド処理)の単位質量あたりの表面積を示している。単位質量は質量計で測定し、表面積は繊維径及び長さを測定して計算によって求めている。図示はしないが、直径が1μmでSUS製の繊維状導電性部材43Aは、単位質量あたりの表面積が0.57μm2/μgである。 In this adhesion rate confirmation test, carbon black having an average particle size of 500 nm is used as the dirt particles. First, the dirt particles are put in the washing water contained in the washing tub 7 and stirred. The product of this example is a dirt particle removal filter composed of a fibrous conductive member 43A made of SUS and a fibrous nonconductive member 43B obtained by polyacrylamide treatment on the surface of cotton. The comparative example product is a dirt particle removing filter using polyester instead of the fibrous conductive member 43A of the example product. The polyester of this comparative example has a fiber diameter of 1 μm. In addition, “fiber diameter” shown in FIG. 10 indicates the fiber diameter of cotton in both the example product and the comparative product, and “surface area / mass” is a unit of the fibrous non-conductive member 43B (cotton polyacrylamide treatment). The surface area per mass is shown. The unit mass is measured with a mass meter, and the surface area is obtained by measuring the fiber diameter and length. Although not shown, the fibrous conductive member 43A made of SUS having a diameter of 1 μm has a surface area per unit mass of 0.57 μm 2 / μg.

次に、これらの繊維からなる両汚れ粒子除去フィルタを一定の大きさに調整して上記洗濯水に浸し、当該洗濯水を撹拌する(洗い行程を実施する)。ここで、実施例品の繊維状導電性部材43Aには、−120mVの電圧を印加している。そして、所定時間後(洗い行程後)にこれらの汚れ粒子除去フィルタを取り出し、各汚れ粒子除去フィルタについて反射率の変化から汚れの付着(吸着)割合を測定した。反射率の変化は、各汚れ粒子除去フィルタに所定の強さの光を当てた場合、どれだけの光が反射されたかを測定したものであり、反射率(%)=(汚れ粒子除去フィルタから反射された光の強さ÷汚れ粒子除去フィルタに当てる光の強さ)×100(%)で求められる。   Next, both the soil particle removing filters made of these fibers are adjusted to a certain size, soaked in the washing water, and the washing water is stirred (a washing step is performed). Here, a voltage of −120 mV is applied to the fibrous conductive member 43A of the example product. Then, after a predetermined time (after the washing process), these dirt particle removal filters were taken out, and the dirt adhesion (adsorption) ratio was measured from the change in reflectance of each dirt particle removal filter. The change in reflectance is a measure of how much light is reflected when each dirt particle removal filter is irradiated with a predetermined intensity of light. Reflectance (%) = (from the dirt particle removal filter The intensity of the reflected light / the intensity of the light applied to the dirt particle removal filter) × 100 (%).

図10に上記汚れ粒子除去フィルタの付着率の結果を示す。「初期反射率」は、試験前(汚れ粒子が付着する前)の各汚れ粒子除去フィルタの反射率である。「洗い後の反射率」は、各汚れ粒子除去フィルタを用いて洗い行程を行った後の当該各汚れ粒子除去フィルタの反射率である。「付着率」は、付着率(%)=[初期反射率(%)÷洗い後の反射率(%)−1]×100(%)で求められ、この付着率の値が小さいほど、即ち洗い行程後の反射率が高いほど、汚れ粒子除去フィルタに汚れ粒子が付着していないことを示している。   FIG. 10 shows the result of the adhesion rate of the dirt particle removal filter. “Initial reflectance” is the reflectance of each dirt particle removal filter before the test (before dirt particles adhere). “Reflectance after washing” is the reflectance of each dirt particle removal filter after the washing process is performed using each dirt particle removal filter. “Adhesion rate” is obtained by the following equation: Adhesion rate (%) = [initial reflectance (%) ÷ reflectance after washing (%) − 1] × 100 (%). The higher the reflectivity after the washing process, the more dirt particles are not attached to the dirt particle removal filter.

この試験結果から、汚れ粒子除去フィルタが繊維状導電性部材43Aと繊維状非導電性部材43B(綿ポリアクリルアミド処理)とからなるものが、ポリエステルと綿ポリアクリルアミド処理からなるものよりも付着率が大きいことが理解される。これは、図9に示すように、洗い行程時の洗濯水がpH10であったとき、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位との差は約101mVであった。一方、ポリエステルのpH10洗濯水に浸されたときのゼータ電位は約−100mVであり(図12を参照)、ポリエステルのゼータ電位と繊維状非導電性部材43Bのゼータ電位の差は約81mVであった。よって、2つの部材間の電位差は、実施例品の方が比較例品よりも大きい。負に帯電した汚れ粒子は、電位差が大きいほど、正側に帯電した部材に吸着され易いため、実施例品の方が、比較例品よりも多くの汚れ粒子を除去できたと考えられる。   From this test result, the dirt particle removal filter is composed of the fibrous conductive member 43A and the fibrous non-conductive member 43B (cotton polyacrylamide treatment), and the adhesion rate is higher than that of the polyester and cotton polyacrylamide treatment. It is understood that it is big. As shown in FIG. 9, when the washing water during the washing process has a pH of 10, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B is about 101 mV. It was. On the other hand, the zeta potential when the polyester is immersed in wash water of pH 10 is about −100 mV (see FIG. 12), and the difference between the zeta potential of the polyester and the zeta potential of the fibrous non-conductive member 43B is about 81 mV. It was. Therefore, the potential difference between the two members is larger in the example product than in the comparative example product. The negatively charged dirt particles are more likely to be adsorbed to the positively charged member as the potential difference is larger, so it is considered that the example product was able to remove more dirt particles than the comparative example product.

本実施形態では、すすぎ行程時に、すすぎ水(洗濯水)が汚れ粒子除去フィルタ43に接触する構成である。そして、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位との差が、汚れ粒子除去フィルタ43が洗い行程時の洗濯水に浸されているときよりもすすぎ行程時の洗濯水に浸されているときの方が小さくなるように制御している。これにより、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間の電界強度は弱くなり、洗濯水中に存在している汚れ粒子は、繊維状非導電性部材43B側に引っ張られ難くなる。又、汚れ粒子除去フィルタ43に電気的に吸着していた汚れ粒子は当該汚れ粒子除去フィルタ43から脱離し易くなって、汚れ粒子をすすぎ水の排水と共に機外に排出させることができ、汚れ粒子除去フィルタ43の吸着力を再生させることができる。従って、汚れ粒子除去フィルタ43により、長期間にわたって、洗濯水中から汚れ粒子を除去することができ、汚れ粒子除去フィルタ43の清掃をできるだけ少なくすることが可能となる。   In the present embodiment, the rinsing water (washing water) is in contact with the dirt particle removal filter 43 during the rinsing process. The difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous non-conductive member 43B is greater in the rinsing process than in the case where the dirt particle removal filter 43 is immersed in the washing water during the washing process. It is controlled so that it is smaller when it is immersed in washing water. As a result, the electric field strength between the fibrous conductive member 43A and the fibrous nonconductive member 43B becomes weak, and the dirt particles present in the wash water are hardly pulled toward the fibrous nonconductive member 43B. Become. Further, the dirt particles electrically adsorbed on the dirt particle removal filter 43 can be easily detached from the dirt particle removal filter 43, and the dirt particles can be discharged out of the apparatus together with the drainage of the rinse water. The adsorption force of the removal filter 43 can be regenerated. Therefore, the dirt particle removal filter 43 can remove the dirt particles from the washing water over a long period of time, and it is possible to reduce the cleaning of the dirt particle removal filter 43 as much as possible.

汚れ粒子除去フィルタ43の繊維状非導電性部材43Bを、ある繊維に、ポリアクリルアミド又はヒドロキシプロピルセルロースによる表面処理が施して形成した場合、又はアミド基による塩基性基処理を施して形成した場合、洗濯水のpHが変化しても繊維状非導電性部材43Bのゼータ電位の変動を小さくでき、これにより、洗濯水がアルカリ性になってもゼータ電位の低下を抑制することができる。   When the fibrous non-conductive member 43B of the dirt particle removal filter 43 is formed by subjecting a certain fiber to a surface treatment with polyacrylamide or hydroxypropyl cellulose, or a basic group treatment with an amide group, Even if the pH of the washing water changes, the fluctuation of the zeta potential of the fibrous non-conductive member 43B can be reduced, so that the reduction of the zeta potential can be suppressed even when the washing water becomes alkaline.

繊維状非導電性部材43Bは、平均繊維径ができるだけ小さく、単位質量あたりの表面積ができるだけ大きい材料を用いて構成されている。これにより、汚れ粒子を吸着することができる表面積が増し、多くの汚れ粒子を除去することができる。更に、繊維状非導電性部材43Bの表面の電荷密度が高くなって、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間の電界強度が多くなり、洗い行程時に汚れ粒子を汚れ粒子除去フィルタ43の繊維状非導電性部材43Bに吸着させ易くすることができる。この汚れ粒子除去フィルタ43の繊維状非導電性部材の単位質量あたりの表面積の違いによる汚れ粒子の付着のし易さについて、本発明者は確認試験を行った。   The fibrous nonconductive member 43B is configured using a material having an average fiber diameter as small as possible and a surface area per unit mass as large as possible. Thereby, the surface area which can adsorb | suck dirt particles increases, and many dirt particles can be removed. Further, the charge density on the surface of the fibrous nonconductive member 43B is increased, the electric field strength between the fibrous conductive member 43A and the fibrous nonconductive member 43B is increased, and dirt particles are contaminated during the washing process. It can be made easy to adsorb to the fibrous non-conductive member 43B of the particle removal filter 43. The inventor conducted a confirmation test on the ease of adhesion of dirt particles due to the difference in surface area per unit mass of the fibrous nonconductive member of the dirt particle removal filter 43.

図11に、汚れ粒子除去フィルタ43を構成する繊維状非導電性部材43Bの単位質量あたりの表面積を変更した場合の汚れ粒子の付着率の確認試験の結果を示す。単位質量あたりの表面積は、繊維状非導電性部材43Bを構成する材料の平均繊維径の変更で調整されている。   In FIG. 11, the result of the confirmation test of the adhesion rate of a dirt particle at the time of changing the surface area per unit mass of the fibrous nonelectroconductive member 43B which comprises the dirt particle removal filter 43 is shown. The surface area per unit mass is adjusted by changing the average fiber diameter of the material constituting the fibrous non-conductive member 43B.

この確認試験では、汚れ粒子としては、平均粒径が500nmのカーボンブラックを用いている。又、繊維状導電性部材43Aはいずれも直径が1μmのSUS製を用いている(単位質量あたりの表面積が0.57μm2/μg)。繊維状非導電性部材43Bとしては、ポリエステルを用いている。この試験では、ポリエステルからなる繊維状非導電性部材43Bの平均繊維径を、30μm、15μm、10μm、5μm、1μm、0.5μmにして、この各繊維状非導電性部材43Bと繊維状導電性部材43Aとを混在して各汚れ粒子除去フィルタを作製した。そして、上述の図10の確認試験と同様に、各汚れ粒子除去フィルタの反射率の変化から汚れ吸着割合を測定した。尚、図11中の「初期反射率」、「洗い後の反射率」、「付着率」の求め方は、上述の図10の確認試験と同じである。図11中の「繊維径」は、ポリエステルの繊維状非導電性部材43Bの平均繊維径のことである。 In this confirmation test, carbon black having an average particle diameter of 500 nm is used as the dirt particles. Further, the fibrous conductive member 43A is made of SUS having a diameter of 1 μm (surface area per unit mass is 0.57 μm 2 / μg). Polyester is used as the fibrous nonconductive member 43B. In this test, the average fiber diameter of the fibrous nonconductive member 43B made of polyester is set to 30 μm, 15 μm, 10 μm, 5 μm, 1 μm, and 0.5 μm. Each dirt particle removal filter was produced by mixing the member 43A. Then, as in the confirmation test of FIG. 10 described above, the dirt adsorption ratio was measured from the change in reflectance of each dirt particle removal filter. In addition, how to obtain the “initial reflectance”, “reflectance after washing”, and “adhesion rate” in FIG. 11 is the same as the confirmation test in FIG. “Fiber diameter” in FIG. 11 is an average fiber diameter of the fibrous non-conductive member 43B made of polyester.

この結果から、汚れ粒子除去フィルタ43を構成する繊維状非導電性部材43Bの平均繊維径が小さく、単位質量あたりの表面積が大きいほど、付着率は高くなることがわかる。繊維状非導電性部材43Bの単位質量あたりの表面積が0.36μm2/μg(平均繊維径が10μm以下)の場合に、付着率が20%以上となり、汚れ粒子の除去の効果が目視において確認できた。繊維状非導電性部材43Bの単位質量あたりの表面積が0.72μm2/μg以上(平均繊維径が5μm以下)の場合に、汚れ粒子の除去の付着率が30%を超え、よりよい除去効果が得られた。又、図示はしないが、その他の繊維状非導電性部材43Bの材料を用いた場合も、単位質量あたりの表面積が大きいほど、付着率は高くなった。 From this result, it is understood that the adhesion rate increases as the average fiber diameter of the fibrous non-conductive member 43B constituting the dirt particle removal filter 43 is smaller and the surface area per unit mass is larger. When the surface area per unit mass of the fibrous non-conductive member 43B is 0.36 μm 2 / μg (average fiber diameter is 10 μm or less), the adhesion rate is 20% or more, and the effect of removing dirt particles is visually confirmed. did it. When the surface area per unit mass of the fibrous non-conductive member 43B is 0.72 μm 2 / μg or more (average fiber diameter is 5 μm or less), the removal rate of dirt particles exceeds 30%, and the better removal effect was gotten. Although not shown in the figure, when the other fibrous non-conductive member 43B is used, the larger the surface area per unit mass, the higher the adhesion rate.

(第2の実施形態)
次に本発明の第2の実施形態について図12を参照して説明する。
第2の実施形態の汚れ粒子除去フィルタは、第1の実施形態の汚れ粒子除去フィルタ43を構成する部材が異なる。尚、第2の実施形態は、第1の実施形態の汚れ粒子除去フィルタを構成する部材のみが異なるので、第1の実施形態と異なるものに「´」(ダッシュ)を付して説明する。この場合、第2の実施形態の汚れ粒子除去フィルタ43´は、第1の実施形態と同じ繊維状導電性部材43Aと、繊維状非導電性部材43B´とから構成されている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.
The dirt particle removal filter of the second embodiment is different in the members constituting the dirt particle removal filter 43 of the first embodiment. The second embodiment is different from the first embodiment only in the members constituting the dirt particle removal filter of the first embodiment. Therefore, the second embodiment will be described by adding “′” (dash). In this case, the dirt particle removal filter 43 ′ of the second embodiment is composed of the same fibrous conductive member 43A and the fibrous nonconductive member 43B ′ as in the first embodiment.

繊維状非導電性部材43B´は、繊維状で非導電性を有する材料、例えば、「ポリエステル」からなっている。この繊維状非導電性部材43B´は、図12に示すように、洗濯水のpHが高くなる(アルカリ性になる)ほど、ゼータ電位が低くなり負側に大きな値となる特性を有している。尚、図示はしないが、この繊維状非導電性部材43B´は、ある繊維に表面処理を施すことによっても得ることができる。ある繊維に表面処理、例えば、ある繊維の表面に表面処理としてカルボキシル基による酸性基処理を施すことによって、このポリエステルと同じ特性を得ることができる。又、他に、ある繊維の表面に表面処理として酸化剤を付与して、繊維の表面のメチル基等の基を強制的に酸化させて繊維状非導電性部材43B´を得る方法がある。   The fibrous non-conductive member 43B ′ is made of a fibrous and non-conductive material, for example, “polyester”. As shown in FIG. 12, the fibrous nonconductive member 43B ′ has a characteristic that the zeta potential becomes lower and the negative value becomes larger as the pH of the washing water becomes higher (alkaline). . Although not shown, the fibrous non-conductive member 43B ′ can be obtained by subjecting a certain fiber to a surface treatment. The same properties as this polyester can be obtained by subjecting a certain fiber to a surface treatment, for example, subjecting the surface of a certain fiber to an acid group treatment with a carboxyl group as a surface treatment. In addition, there is a method in which an oxidizing agent is applied to the surface of a certain fiber as a surface treatment to forcibly oxidize groups such as methyl groups on the surface of the fiber to obtain a fibrous nonconductive member 43B ′.

尚、表面処理を施さない場合の「ある繊維」とは、pHが9以上(アルカリ性)の洗濯水に浸した場合のゼータ電位が、pHが9未満の洗濯水に浸した場合のゼータ電位よりも低い繊維である。又、繊維に表面処理(繊維状非導電性部材43B´にする表面処理)を施す場合の「ある繊維」とは、いずれの繊維でもよい。   The “certain fiber” when the surface treatment is not performed means that the zeta potential when immersed in washing water having a pH of 9 or more (alkaline) is higher than the zeta potential when immersed in washing water having a pH of less than 9. Is also a low fiber. Further, the “certain fiber” in the case where the surface treatment (surface treatment for forming the fibrous nonconductive member 43B ′) is applied to the fiber may be any fiber.

本実施形態では、制御装置38は、洗い行程時及びすすぎ行程時に、繊維状導電性部材43Aの電位と繊維状非導電性部材43B´のゼータ電位が異なるように、繊維状導電性部材43Aに電圧を印加する制御を行う。即ち、制御装置38は、繊維状導電性部材43Aの電位が電圧印加装置42によって繊維状非導電性部材43B´のゼータ電位と異なる電位になるように、繊維状導電性部材43Aに電位を付与する(繊維状導電性部材43Aに電圧を印加する)制御を行っている。例えば、図12に示すように、汚れ粒子除去フィルタ43´が洗い行程時の洗濯水(例えばpH10の洗濯水)に浸されたとき、ポリエステルからなる繊維状非導電性部材43B´のゼータ電位は約−100mVであった。このとき、制御装置38は、繊維状導電性部材43Aの電位が繊維状非導電性部材43B´のゼータ電位と異なる電位、例えば−20mVになるように、電圧印加装置42を制御する。   In the present embodiment, the controller 38 controls the fibrous conductive member 43A so that the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B ′ are different during the washing process and the rinsing process. Control to apply voltage. That is, the control device 38 applies a potential to the fibrous conductive member 43A so that the potential of the fibrous conductive member 43A is different from the zeta potential of the fibrous nonconductive member 43B ′ by the voltage application device 42. (The voltage is applied to the fibrous conductive member 43A) is controlled. For example, as shown in FIG. 12, when the dirt particle removal filter 43 ′ is immersed in washing water (for example, washing water having a pH of 10) during the washing process, the zeta potential of the fibrous nonconductive member 43B ′ made of polyester is It was about −100 mV. At this time, the control device 38 controls the voltage applying device 42 so that the potential of the fibrous conductive member 43A is different from the zeta potential of the fibrous nonconductive member 43B ′, for example, −20 mV.

又、制御装置38は、繊維状導電性部材43Aの電位と繊維状非導電性部材43B´のゼータ電位との差が、汚れ粒子除去フィルタ43が洗い行程時の洗濯水に浸されているときよりもすすぎ行程時の洗濯水に浸されているときの方が小さくなるように電圧印加装置42の制御を行っている。例えば、図12に示すように、汚れ粒子除去フィルタ43´がすすぎ行程時のすすぎ水に浸されたとき、ポリエステルからなる繊維状非導電性部材43B´のゼータ電位は約−80mVである。このとき、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位との差が、汚れ粒子除去フィルタ43が洗い行程時の洗濯水に浸されているとき約80mV(繊維状導電性部材の電位が−20mV、繊維状非導電性部材のゼータ電位が−100mV)であった場合、制御装置38は、すすぎ行程時のすすぎ水に浸されているとき80mVよりも小さく、例えば約60mVになるように、繊維状導電性部材43Aに−20mVの電圧を印加する制御を行う。   Further, the control device 38 determines that the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B ′ is such that the dirt particle removal filter 43 is immersed in the washing water during the washing process. The voltage application device 42 is controlled so as to be smaller when immersed in the washing water during the rinsing process. For example, as shown in FIG. 12, when the dirt particle removal filter 43 ′ is immersed in the rinse water during the rinsing process, the zeta potential of the fibrous non-conductive member 43B ′ made of polyester is about −80 mV. At this time, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B is approximately 80 mV (fibrous when the dirt particle removal filter 43 is immersed in the washing water during the washing process. When the potential of the conductive member is −20 mV and the zeta potential of the fibrous non-conductive member is −100 mV), the control device 38 is smaller than 80 mV when immersed in the rinse water during the rinsing process, for example, Control is performed so that a voltage of −20 mV is applied to the fibrous conductive member 43A so as to be about 60 mV.

上記した実施形態によれば、次の効果を得ることができる。
洗い行程時等の汚れ粒子を除去したいときに、制御装置38は、繊維状導電性部材43Aに−20mVの電圧を印加している。これにより、洗濯水中に存在する汚れ粒子は、繊維状非導電性部材43Bのゼータ電位(−80mV)よりも電位が高い(−20mV)繊維状導電性部材43Aに吸着する。これにより、洗い行程時等の汚れ粒子を除去したいときに繊維状導電性部材43Aに電圧を印加することによって、洗濯水中から汚れ粒子を除去することができる。
According to the above-described embodiment, the following effects can be obtained.
When it is desired to remove dirt particles during the washing process, the control device 38 applies a voltage of −20 mV to the fibrous conductive member 43A. Accordingly, the dirt particles present in the washing water are adsorbed to the fibrous conductive member 43A having a higher potential (−20 mV) than the zeta potential (−80 mV) of the fibrous nonconductive member 43B. Thereby, when it is desired to remove the dirt particles during the washing process, the dirt particles can be removed from the washing water by applying a voltage to the fibrous conductive member 43A.

更に、繊維状導電性部材43Aと繊維状非導電性部材43B´との間に極めて高い電界強度が発生し、汚れ粒子を除去したいときに繊維状導電性部材43Aに電圧を印加することによって洗濯水中から汚れ粒子をより多く繊維状非導電性部材43B´に吸着させることができ、洗濯水中から汚れ粒子をより多く除去することができる。   Further, when a very high electric field strength is generated between the fibrous conductive member 43A and the fibrous nonconductive member 43B ', and it is desired to remove the dirt particles, the washing is performed by applying a voltage to the fibrous conductive member 43A. More dirt particles can be adsorbed to the fibrous non-conductive member 43B ′ from the water, and more dirt particles can be removed from the washing water.

(第3の実施形態)
次に本発明の第3の実施形態について図13を参照して説明する。
第3の実施形態では、第1の実施形態及び第2の実施形態と構成は同じであるが、陰イオン界面活性剤の濃度とゼータ電位の関係に着目している。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG.
In the third embodiment, the configuration is the same as in the first and second embodiments, but attention is paid to the relationship between the concentration of the anionic surfactant and the zeta potential.

第3の実施形態で用いられる汚れ粒子除去フィルタは、第1の実施形態の汚れ粒子除去フィルタ43、及び第2の実施形態の汚れ粒子除去フィルタ43´のどちらでもよい。例えば、汚れ粒子除去フィルタ43は、第1の実施形態と同様に、繊維状導電性部材43Aと「綿ポリアクリルアミド処理」からなる繊維状非導電性部材43Bとを混在して構成されているとして説明する。又、汚れ粒子除去フィルタ43´は、第2の実施形態と同様に、繊維状導電性部材43Aと「ポリエステル」からなる繊維状非導電性部材43B´とを混在して構成されているとして説明する。   The dirt particle removal filter used in the third embodiment may be either the dirt particle removal filter 43 of the first embodiment or the dirt particle removal filter 43 ′ of the second embodiment. For example, as in the first embodiment, the dirt particle removal filter 43 is configured by mixing a fibrous conductive member 43A and a fibrous non-conductive member 43B made of “cotton polyacrylamide treatment”. explain. Also, the dirt particle removal filter 43 ′ is described as being configured by mixing a fibrous conductive member 43A and a fibrous non-conductive member 43B ′ made of “polyester”, as in the second embodiment. To do.

洗濯に用いられる洗剤には一般に陰イオン界面活性剤が含まれている。洗い行程時では洗剤の濃度が高いので洗濯水中の陰イオン界面活性剤の濃度は高くなり、すすぎ行程時では洗剤の濃度が低いので洗濯水中の陰イオン界面活性剤の濃度は低くなる。   The detergent used for washing generally contains an anionic surfactant. Since the concentration of the detergent is high during the washing step, the concentration of the anionic surfactant in the washing water is high, and since the concentration of the detergent is low during the rinsing step, the concentration of the anionic surfactant in the washing water is low.

ここで、汚れ粒子は、図示はしないが、第1の実施形態に記載したpHの場合のゼータ電位の変化と同様に、一般に洗濯水の陰イオン界面活性剤の濃度が高くなるほど、ゼータ電位が低くなり負側に大きな値となっていく。又、一般的な洗濯物(衣類)の繊維も、洗濯水中の陰イオン界面活性剤の濃度が高くなるほど、ゼータ電位が低くなり負側に大きな値となっていく。従って、洗い行程時においては、汚れ粒子と洗濯物の繊維とは反発し合い、洗濯水中に汚れ粒子が存在しやすくなっている。そのため、洗い行程が終わった後に、汚れ粒子が洗濯物に再付着するおそれがある。   Here, the dirt particles are not shown, but the zeta potential generally increases as the concentration of the anionic surfactant in the washing water increases, similarly to the change in the zeta potential in the case of pH described in the first embodiment. It becomes lower and becomes larger on the negative side. Further, in general laundry (clothing) fibers, as the concentration of the anionic surfactant in the washing water increases, the zeta potential decreases and becomes a negative value. Accordingly, during the washing process, the dirt particles and the laundry fibers repel each other, and the dirt particles are likely to be present in the wash water. For this reason, after the washing process is finished, the dirt particles may be reattached to the laundry.

以下、まず、汚れ粒子除去フィルタ43と陰イオン界面活性剤の濃度との関係について説明する。
汚れ粒子除去フィルタ43の繊維状非導電性部材43Bのゼータ電位は、洗濯水中の陰イオン界面活性剤の濃度が高くなっても、洗濯水中に陰イオン界面活性剤がほとんど存在していないときのゼータ電位の値とほぼ同じである。ここで、汚れ粒子除去フィルタ43の繊維状非導電性部材43Bの電位は、第1の実施形態と同様に、電圧印加装置42で制御される構成である。
Hereinafter, the relationship between the dirt particle removal filter 43 and the concentration of the anionic surfactant will be described first.
The zeta potential of the fibrous non-conductive member 43B of the dirt particle removal filter 43 is obtained when there is almost no anionic surfactant in the washing water even when the concentration of the anionic surfactant in the washing water increases. It is almost the same as the value of the zeta potential. Here, the potential of the fibrous non-conductive member 43B of the dirt particle removal filter 43 is configured to be controlled by the voltage application device 42 as in the first embodiment.

例えば、洗い行程時の洗濯水の陰イオン界面活性剤の濃度を100(ppm)とし、すすぎ行程時の洗濯水の陰イオン界面活性剤の濃度を10(ppm)とする。そして、図13に示すように、繊維状非導電性部材43Bが「綿ポリアクリルアミド処理」である場合、洗濯水の陰イオン界面活性剤の濃度が100(ppm)(洗い行程)のときゼータ電位は約−10mVであり、洗濯水の陰イオン界面活性剤の濃度が10(ppm)(すすぎ行程)のときゼータ電位は約−8mVである。ここで、繊維状導電性部材43Aの電位を、洗い行程時に繊維状非導電性部材43Bのゼータ電位と異なる電位、例えば洗濯水の陰イオン界面活性剤の濃度が100(ppm)(洗い行程)のとき、−200mVにする。そして、繊維状導電性部材43Aの電位を、洗濯水の陰イオン界面活性剤の濃度が10(ppm)(すすぎ行程)のとき、−20mVにする。   For example, the concentration of the anionic surfactant in the washing water during the washing step is set to 100 (ppm), and the concentration of the anionic surfactant in the washing water during the rinsing step is set to 10 (ppm). As shown in FIG. 13, when the fibrous non-conductive member 43B is “cotton polyacrylamide treatment”, the zeta potential is obtained when the concentration of the anionic surfactant in the washing water is 100 (ppm) (washing process). Is about −10 mV, and the zeta potential is about −8 mV when the concentration of the anionic surfactant in the wash water is 10 (ppm) (rinsing step). Here, the potential of the fibrous conductive member 43A is different from the zeta potential of the fibrous nonconductive member 43B during the washing process, for example, the concentration of the anionic surfactant in the washing water is 100 ppm (washing process). At -200 mV. Then, the potential of the fibrous conductive member 43A is set to −20 mV when the concentration of the anionic surfactant in the washing water is 10 (ppm) (rinsing process).

この構成によれば、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差は、洗濯水の陰イオン界面活性剤の濃度が100(ppm)のとき約90mV(100mV−10mV)であり、洗濯水の陰イオン界面活性剤の濃度が10(ppm)のとき約12mV(20mV−8mV)である。   According to this configuration, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B is about 90 mV (100 mV) when the concentration of the anionic surfactant in the washing water is 100 (ppm). -10 mV) and about 12 mV (20 mV-8 mV) when the concentration of the anionic surfactant in the wash water is 10 (ppm).

これにより、洗い行程時に洗濯水の陰イオン界面活性剤の濃度が高くなると、汚れ粒子は、ゼータ電位が低くなり負側に大きな値となり、汚れ粒子除去フィルタ43を構成する繊維状導電性部材43A及び繊維状非導電性部材43Bのうち、電位の高い繊維状非導電性部材43Bに吸着され易くなる。   Accordingly, when the concentration of the anionic surfactant in the washing water increases during the washing process, the dirt particles have a low zeta potential and become a large value on the negative side, and the fibrous conductive member 43A constituting the dirt particle removal filter 43. Of the fibrous non-conductive members 43B, the high-potential fibrous non-conductive members 43B are easily adsorbed.

更に、汚れ粒子除去フィルタ43は繊維状導電性部材43A及び繊維状非導電性部材43Bを混在して構成されるため、第1の実施形態と同様に、陰イオン界面活性剤の濃度が高い洗濯水に浸された汚れ粒子除去フィルタの繊維状導電性部材43A及び繊維状非導電性部材43B間は電界強度が極めて高くなっており、汚れ粒子は、電位の高い繊維状非導電性部材43B側により引っ張られ易く、吸着され易くなる。   Further, since the dirt particle removal filter 43 is configured by mixing the fibrous conductive member 43A and the fibrous non-conductive member 43B, as in the first embodiment, the laundry having a high concentration of the anionic surfactant. The electric field strength is very high between the fibrous conductive member 43A and the fibrous nonconductive member 43B of the dirt particle removal filter immersed in water, and the dirt particles are on the fibrous nonconductive member 43B side having a high potential. It is easy to be pulled and adsorbed.

そして、すすぎ行程時に、洗濯水の陰イオン界面活性剤の濃度が低くなると、汚れ粒子のゼータ電位は高くなると共に、繊維状導電性部材43Aの電位と繊維状非導電性部材43Bのゼータ電位の差は小さくなる。これにより、繊維状導電性部材43Aと繊維状非導電性部材43Bとの間の電界強度は弱くなり、汚れ粒子は、繊維状非導電性部材43B側に引っ張られ難くなる。その結果、洗い行程時に汚れ粒子除去フィルタ43に吸着した汚れ粒子は、すすぎ行程時に汚れ粒子除去フィルタ43から脱離し、すすぎ水(洗濯水)の排水と共に機外に排出され、汚れ粒子除去フィルタの吸着力は再生される。   When the concentration of the anionic surfactant in the washing water decreases during the rinsing process, the zeta potential of the dirt particles increases and the zeta potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B. The difference is smaller. Thereby, the electric field strength between the fibrous conductive member 43A and the fibrous nonconductive member 43B becomes weak, and the dirt particles are hardly pulled toward the fibrous nonconductive member 43B. As a result, the dirt particles adsorbed to the dirt particle removal filter 43 during the washing process are detached from the dirt particle removal filter 43 during the rinsing process and are discharged out of the apparatus together with the drain of the rinse water (washing water). The adsorption power is regenerated.

次に、汚れ粒子除去フィルタ43´と陰イオン界面活性剤の濃度との関係について説明する。
汚れ粒子除去フィルタ43´の繊維状非導電性部材43B´のゼータ電位は、洗濯水中の陰イオン界面活性剤の濃度が高くなると、第1の実施形態の繊維状非導電性部材43Bよりも少し負側に大きくなる。ここで、汚れ粒子除去フィルタ43の繊維状非導電性部材43Bの電位は、第1及び第2の実施形態と同様に、電圧印加装置42で制御される構成である。
Next, the relationship between the dirt particle removal filter 43 'and the concentration of the anionic surfactant will be described.
The zeta potential of the fibrous nonconductive member 43B ′ of the dirt particle removal filter 43 ′ is slightly lower than that of the fibrous nonconductive member 43B of the first embodiment when the concentration of the anionic surfactant in the washing water increases. Increases to the negative side. Here, the potential of the fibrous non-conductive member 43B of the dirt particle removal filter 43 is controlled by the voltage application device 42, as in the first and second embodiments.

例えば、洗い行程時の洗濯水の陰イオン界面活性剤の濃度を100(ppm)とし、すすぎ行程時の洗濯水の陰イオン界面活性剤の濃度を10(ppm)とする。そして、図13に示すように、繊維状非導電性部材43B´が「ポリエステル」である場合、洗濯水の陰イオン界面活性剤の濃度が100(ppm)(洗い行程)のときゼータ電位は約−30mVであり、洗濯水の陰イオン界面活性剤の濃度が10(ppm)(すすぎ行程)のときゼータ電位は約−19mVである。ここで、繊維状導電性部材43Aの電位を、洗い行程時に繊維状非導電性部材43B´のゼータ電位と異なる電位、例えば洗濯水の陰イオン界面活性剤の濃度が100(ppm)(洗い行程)のとき、−200mVにする。そして、繊維状導電性部材43Aの電位を、洗濯水の陰イオン界面活性剤の濃度が10(ppm)(すすぎ行程)のとき、−20mVにする。   For example, the concentration of the anionic surfactant in the washing water during the washing step is set to 100 (ppm), and the concentration of the anionic surfactant in the washing water during the rinsing step is set to 10 (ppm). As shown in FIG. 13, when the fibrous non-conductive member 43B ′ is “polyester”, when the concentration of the anionic surfactant in the washing water is 100 (ppm) (washing process), the zeta potential is about When the concentration of the anionic surfactant in the washing water is 10 (ppm) (rinsing process), the zeta potential is about -19 mV. Here, the potential of the fibrous conductive member 43A is different from the zeta potential of the fibrous nonconductive member 43B ′ during the washing process, for example, the concentration of the anionic surfactant in the washing water is 100 ppm (washing process). ) -200 mV. Then, the potential of the fibrous conductive member 43A is set to −20 mV when the concentration of the anionic surfactant in the washing water is 10 (ppm) (rinsing process).

この構成によれば、繊維状導電性部材43Aの電位と繊維状非導電性部材43B´のゼータ電位の差は、洗濯水の陰イオン界面活性剤の濃度が100(ppm)のとき約70mV(100mV−30mV)であり、洗濯水の陰イオン界面活性剤の濃度が10(ppm)のとき約1mV(20mV−19mV)である。   According to this configuration, the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B ′ is about 70 mV when the concentration of the anionic surfactant in the washing water is 100 (ppm). 100 mV-30 mV) and about 1 mV (20 mV-19 mV) when the concentration of the anionic surfactant in the washing water is 10 (ppm).

この構成により、汚れ粒子は、上述の第2の実施形態の汚れ粒子除去フィルタ43と同様に、洗い行程時には、電位の高い繊維状非導電性部材43B´に吸着され易くなり、すすぎ行程時には、繊維状非導電性部材43B側に引っ張られ難くなる。これにより、汚れ粒子除去フィルタ43´の吸着力を再生させることができる。   With this configuration, like the dirt particle removal filter 43 of the second embodiment, the dirt particles are easily adsorbed by the fibrous non-conductive member 43B ′ having a high potential during the washing process, and during the rinsing process, It becomes difficult to be pulled to the fibrous nonconductive member 43B side. Thereby, the adsorption | suction force of dirt particle removal filter 43 'can be reproduced | regenerated.

尚、繊維状非導電性部材43B,43B´として、「綿表面酸化処理(カルボキシル基処理)」「綿」、「ガラス繊維」、「ガラス繊維シランカップリング処理」、「ナイロン」、「綿ポリアクリルアミド処理」を用いても、同様の汚れ粒子の吸着及び離脱作用が生じ、汚れ粒子除去フィルタ43,43´の吸着力を再生させることができる。   As the fibrous non-conductive members 43B and 43B ′, “cotton surface oxidation treatment (carboxyl group treatment)” “cotton”, “glass fiber”, “glass fiber silane coupling treatment”, “nylon”, “cotton poly” Even when “acrylamide treatment” is used, the same adsorption and desorption action of dirt particles occurs, and the adsorption force of the dirt particle removal filters 43 and 43 ′ can be regenerated.

(第4の実施形態)
第4の実施形態では、本発明をドラム式の洗濯機に適用し、図14から図20を参照して説明する。尚、図16においては、フィルタケース付近を一部破断し模式的に示す。
(Fourth embodiment)
In the fourth embodiment, the present invention is applied to a drum type washing machine and will be described with reference to FIGS. In FIG. 16, the vicinity of the filter case is partially broken and schematically shown.

まず、図14から図16に示すように、洗濯機の外郭をなす外箱51は、基台51Aと、これに被着結合した箱本体51Bとからなるものである。箱本体51Bは、接地されている。箱本体51Bの前面部(図16で左側)のほぼ中央部には、洗濯物出入口53が設けられていると共に、この洗濯物出入口53を開閉する扉54が設けられている。外箱51の内部には、有底円筒状をなす水槽55が設けられている。この水槽55は、軸方向が前後(図16で左右)の横軸円筒状をなし、左右一対(一方のみ図示)の弾性吊持機構56により前上がりの傾斜状に弾性支持されている。   First, as shown in FIGS. 14 to 16, an outer box 51 that forms the outer shell of the washing machine includes a base 51 </ b> A and a box body 51 </ b> B that is attached and bonded thereto. The box body 51B is grounded. A laundry doorway 53 is provided at a substantially central portion of the front surface portion (left side in FIG. 16) of the box body 51B, and a door 54 for opening and closing the laundry doorway 53 is provided. Inside the outer box 51, a water tank 55 having a bottomed cylindrical shape is provided. The water tank 55 is formed in a horizontal cylindrical shape whose axial direction is front and rear (left and right in FIG. 16), and is elastically supported by a pair of left and right (only one shown) elastic suspension mechanisms 56 so as to rise forward.

水槽55の背面側の外側には、モータ57が設けられている。このモータ57は、例えば直流のブラシレスモータからなるもので、アウターロータ形であり、ステータ57A及びロータ57Bを有している。ステータ57Aは、水槽55の背面側の外側に取付けられ、ロータ57Bの中心部の回転軸57Cは、軸受ブラケット58に軸受59を介して支承されて水槽55の内部に挿通されている。   A motor 57 is provided outside the back side of the water tank 55. The motor 57 is formed of, for example, a direct current brushless motor, is an outer rotor type, and includes a stator 57A and a rotor 57B. The stator 57 </ b> A is attached to the outside on the back side of the water tank 55, and the rotation shaft 57 </ b> C at the center of the rotor 57 </ b> B is supported by the bearing bracket 58 via the bearing 59 and is inserted into the water tank 55.

水槽55の内部には、金属製の洗濯槽(ドラム)60が回転可能に設けられている。洗濯槽60は、軸方向が前後の横軸円筒状を成し、後部の中心部が上記モータ57の回転軸57Cの先端部に取り付けられ、水槽55と同軸の前上がりの傾斜状に支持されている。又、その結果、洗濯槽60はモータ57により直に回転される。このモータ57は、洗濯槽60を回転させる駆動手段として機能するようになっている。   Inside the water tub 55, a metal washing tub (drum) 60 is rotatably provided. The washing tub 60 has a horizontal cylindrical shape in which the axial direction is front and rear, the center of the rear portion is attached to the tip of the rotating shaft 57C of the motor 57, and is supported in an upwardly inclined shape coaxial with the water tub 55. ing. As a result, the washing tub 60 is directly rotated by the motor 57. The motor 57 functions as a driving unit that rotates the washing tub 60.

洗濯槽60の周側部(胴部)には、小孔61が全域にわたって多数(図16には一部のみ図示)形成され、又、洗濯物掻き上げ用のバッフル62が複数設けられている(1つのみ図示)。洗濯槽60及び水槽55は、ともに前面部に開口部63,64を有しており、そのうちの洗濯槽60の開口部63の周囲部内側には、例えば液体封入形のバランスリング65が設けられている。水槽55の開口部64には、環状のゴム製のベローズ66が設けられている。このベローズ66は洗濯物出入口53と連なっている。この結果、洗濯物出入口53は、ベローズ66、水槽55の開口部64、及び洗濯槽60の開口部63を介して、洗濯槽60の内部に連なっている。   A large number of small holes 61 (only a part of which is shown in FIG. 16) are formed in the circumferential side portion (body portion) of the washing tub 60, and a plurality of baffles 62 for washing the laundry are provided. (Only one is shown). Both the washing tub 60 and the water tub 55 have openings 63 and 64 on the front surface, and a liquid-filled balance ring 65 is provided inside the periphery of the opening 63 of the washing tub 60, for example. ing. An annular rubber bellows 66 is provided in the opening 64 of the water tank 55. The bellows 66 is continuous with the laundry entrance 53. As a result, the laundry entrance 53 is connected to the inside of the washing tub 60 via the bellows 66, the opening 64 of the water tub 55, and the opening 63 of the washing tub 60.

水槽55の底部には、排水口71が形成され、この排水口71は機内排水ホース72の基端部に接続され、機内排水ホース72の先端部は、前記外箱51の基台51Aの前部に配設したフィルタケース73の機内排水ホース接続口74に接続されている。
フィルタケース73は、上部に前記機内排水ホース接続口74を有している。このフィルタケース73内には、図17から図19に示すように、フィルタ部材75が収容されている。フィルタ部材75の前端部にはキャップ76が設けられている。このフィルタ部材75は、後で詳述する。
A drain port 71 is formed at the bottom of the water tank 55, and this drain port 71 is connected to the base end of the in-machine drain hose 72, and the tip of the in-machine drain hose 72 is in front of the base 51 </ b> A of the outer box 51. It is connected to the in-machine drain hose connection port 74 of the filter case 73 disposed in the section.
The filter case 73 has the in-machine drain hose connection port 74 at the top. A filter member 75 is accommodated in the filter case 73 as shown in FIGS. A cap 76 is provided at the front end of the filter member 75. The filter member 75 will be described in detail later.

外箱51の前下部のキャップ76に対応した位置には、小扉77が設けられている。この小扉77を開けることにより、フィルタケース73に収容されているフィルタ部材75をフィルタケース73から取り出すことが可能である。
フィルタケース73の後側の下部側方には排水弁81が接続されており、この排水弁81の出口部に排水パイプ82が接続されている。排水パイプ82の先端部は、外箱51の基台1Aから機外に臨み、図示しない機外排水ホースに接続されるようになっている。
A small door 77 is provided at a position corresponding to the front lower cap 76 of the outer box 51. By opening the small door 77, the filter member 75 accommodated in the filter case 73 can be taken out from the filter case 73.
A drain valve 81 is connected to the lower side of the rear side of the filter case 73, and a drain pipe 82 is connected to the outlet of the drain valve 81. The distal end portion of the drainage pipe 82 faces the outside of the machine from the base 1A of the outer box 51 and is connected to an outside drainage hose (not shown).

一方、フィルタケース73の後端部には循環ポンプ83が設けられている。この循環ポンプ83は、水槽55内の洗濯水を、排水口71、機内排水ホース72及びフィルタケース73を介して吸引するもので、周側部(図で上部)に吐出口84を有している。循環ポンプ83の吐出口84には、送水ホース85の基端部が接続されている。送水ホース85は、中間部を前記ベローズ66の周側方から上方へと配管しており、先端部を、ベローズ66の上部に設けた噴水ノズル86に接続して、前記洗濯槽60の内部に臨ませている。   On the other hand, a circulation pump 83 is provided at the rear end of the filter case 73. This circulation pump 83 sucks the washing water in the water tank 55 through the drain port 71, the in-machine drain hose 72 and the filter case 73, and has a discharge port 84 on the peripheral side (upper part in the figure). Yes. A proximal end portion of a water supply hose 85 is connected to the discharge port 84 of the circulation pump 83. The water supply hose 85 has an intermediate portion piped upward from the circumferential side of the bellows 66, and a tip portion is connected to a fountain nozzle 86 provided on the upper portion of the bellows 66 so that the inside of the washing tub 60 is provided. I ’m here.

この結果、循環ポンプ83は、図16に矢印で示すように、水槽55内の洗濯水を排水口71から機内排水ホース72−フィルタケース73(フィルタ部材75)−循環ポンプ83の経路で吸入し、この吸引した洗濯水を、送水ホース85を通じて圧送し、噴水ノズル86から洗濯槽60の内部にシャワー状に供給するものである。又、水槽55(排水口71)と、機内排水ホース72と、フィルタケース73(フィルタ部材75)と、循環ポンプ83と、送水ホース85と、噴水ノズル86と、洗濯槽60とによって、循環ポンプ83が駆動して洗濯水が循環される循環水路87が構成される。又、この場合、フィルタ部材75は、水槽55の排水口71と排水弁81との間に配置される。   As a result, as shown by an arrow in FIG. 16, the circulation pump 83 sucks the wash water in the water tank 55 from the drain port 71 through the path of the in-machine drain hose 72 -filter case 73 (filter member 75) -circulation pump 83. The sucked washing water is pumped through the water supply hose 85 and supplied from the fountain nozzle 86 to the inside of the washing tub 60 in the form of a shower. Further, a circulation pump is constituted by a water tank 55 (drain port 71), an in-machine drain hose 72, a filter case 73 (filter member 75), a circulation pump 83, a water supply hose 85, a fountain nozzle 86, and a washing tub 60. A circulation water channel 87 through which washing water is circulated by driving 83 is configured. In this case, the filter member 75 is disposed between the drain port 71 of the water tank 55 and the drain valve 81.

フィルタケース73の前部の上部には、エアトラップ88が設けられており、このエアトラップ88と外箱1内の最上部に配設した水位センサ89との間は、エアチューブ90によって接続されている。従って、水位センサ89は、水槽55内の水位を、機内排水ホース72、フィルタケース73、エアトラップ88、及びエアチューブ90を介して検知するようになっており、水位検知手段として機能するようになっている。   An air trap 88 is provided in the upper part of the front portion of the filter case 73, and the air trap 88 is connected to the water level sensor 89 disposed at the uppermost part in the outer box 1 by an air tube 90. ing. Accordingly, the water level sensor 89 detects the water level in the water tank 55 via the in-machine drain hose 72, the filter case 73, the air trap 88, and the air tube 90, and functions as a water level detection means. It has become.

その他、外箱51内の最上部には、給水弁91及び給水ケース92が設けられている。このうち、給水弁91は、入口部が図示しない水道の蛇口に接続した機外給水ホース(図示せず)に接続され、出口部が接続パイプ93に接続されている。接続パイプ93の他端部は、給水ケース92に接続されている。給水ケース92は、内部に洗剤貯留部(図示せず)を有している。給水ケース92の底部には、機内給水ホース94の基端部が接続され、機内給水ホース94の他端部は、水槽55の上部に接続されている。従って、水道水は、給水弁91、給水ケース92を介して水槽55内に供給される。   In addition, a water supply valve 91 and a water supply case 92 are provided at the top of the outer box 51. Among these, the water supply valve 91 is connected to an external water supply hose (not shown) connected to a water tap (not shown) at the inlet, and connected to the connection pipe 93 at the outlet. The other end of the connection pipe 93 is connected to the water supply case 92. The water supply case 92 has a detergent storage part (not shown) inside. The base end of the in-machine water supply hose 94 is connected to the bottom of the water supply case 92, and the other end of the in-machine water supply hose 94 is connected to the upper part of the water tank 55. Therefore, tap water is supplied into the water tank 55 through the water supply valve 91 and the water supply case 92.

又、箱本体51Bの前面部の上部には、操作パネル95が設けられている。操作パネル95には、図14に示すように、操作スイッチからなる複数の入力部96及び運転状態等を表示する表示部97が設けられている。又、操作パネル95の裏側には、図16及び図20に示すように、マイクロコンピュータを有する制御装置98が設けられている。   An operation panel 95 is provided on the upper portion of the front surface of the box body 51B. As shown in FIG. 14, the operation panel 95 is provided with a plurality of input units 96 including operation switches and a display unit 97 for displaying an operation state and the like. A control device 98 having a microcomputer is provided on the back side of the operation panel 95 as shown in FIGS.

制御装置98には、図20に示すように、水位センサ89からの水位検知信号と、モータ57の回転を検知する回転センサ99からの回転検知信号と、その他、図示はしないが、モータ57に流れる電流を検知する電流センサからの電流検知信号と、振動センサからの振動検知信号と、温度を検知する温度センサからの温度検知信号等が入力されるようになっている。この制御装置98は、回転センサ99からの回転検知信号に基づき、モータ57の回転数ひいては洗濯槽60の回転数を検知所要時間で除する演算をするようになっている。又、制御装置98は、これらの入力信号と、予め有する制御プログラムに基づき駆動回路106を介して、洗濯機負荷である、表示部97、モータ57、給水弁91、排水弁81等を制御する機能を有している。制御装置98は、後述するように、洗い、すすぎ、脱水の各行程を実行するように洗濯機負荷を制御するもので、本発明の制御手段を構成する。   As shown in FIG. 20, the control device 98 includes a water level detection signal from the water level sensor 89, a rotation detection signal from the rotation sensor 99 that detects the rotation of the motor 57, and others, although not shown. A current detection signal from a current sensor that detects a flowing current, a vibration detection signal from a vibration sensor, a temperature detection signal from a temperature sensor that detects temperature, and the like are input. Based on the rotation detection signal from the rotation sensor 99, the control device 98 calculates the number of rotations of the motor 57 and hence the number of rotations of the washing tub 60 by the required detection time. Further, the control device 98 controls the display unit 97, the motor 57, the water supply valve 91, the drainage valve 81, and the like, which are washing machine loads, through the drive circuit 106 based on these input signals and a previously stored control program. It has a function. As will be described later, the control device 98 controls the washing machine load so as to execute washing, rinsing and dewatering steps, and constitutes a control means of the present invention.

さて、上述のフィルタ部材75は、上述したように水槽55と排水弁81との間、即ち、洗濯水に接触する位置に設けられるものである。フィルタ部材75は、図17から図19に示すように、洗濯水中の糸屑等を捕獲するリントフィルタ100と、このリントフィルタ100を支持する支持部材101とを有して構成されている。支持部材101は、リントフィルタ100を下側から受ける本体部101Aと、前述したキャップ76と、本体部101Aとキャップ76とをつなぐ連結部101Bとを有して構成されている。本体部101Aは、洗濯機の前後方向に延びて、前後方向に垂直な断面が凹状をなしている。本体部101Aの面(内周部)は、格子状になっている。連結部101Bには、外周部にねじ部101Cが形成されている。ねじ部101Cは、フィルタケース73側に設けられたねじ部73Aと螺着可能である。これにより、フィルタ部材75は、回転しながらフィルタケース73に収容或いはフィルタケース73から取り出しされる。   As described above, the filter member 75 is provided between the water tank 55 and the drain valve 81, that is, at a position in contact with the washing water. As shown in FIGS. 17 to 19, the filter member 75 includes a lint filter 100 that captures lint and the like in the wash water and a support member 101 that supports the lint filter 100. The support member 101 includes a main body 101 </ b> A that receives the lint filter 100 from below, a cap 76 described above, and a connecting portion 101 </ b> B that connects the main body 101 </ b> A and the cap 76. The main body 101A extends in the front-rear direction of the washing machine and has a concave cross section perpendicular to the front-rear direction. The surface (inner peripheral part) of the main body 101A has a lattice shape. A threaded portion 101C is formed on the outer peripheral portion of the connecting portion 101B. The screw portion 101C can be screwed to a screw portion 73A provided on the filter case 73 side. As a result, the filter member 75 is accommodated in or removed from the filter case 73 while rotating.

連結部101Bのねじ部101Cの前方の外周面には、電極部102が取り付けている。電極部102は、金属製、例えばSUS製であり、断面が連結部101Bに倣った凹状をなしている。電極部102の下部には、電極端子102Aが設けられている。電極端子102Aは、金属製、例えばリン青銅製のバネ材である。更に、連結部101Bのねじ部101Cの後方の外周面には、O状のパッキン103が取り付けられている。パッキン103は、フィルタ部材75がフィルタケース73に収容されたときに、フィルタ部材75とフィルタケース73とを水密の状態にする。   An electrode portion 102 is attached to the outer peripheral surface in front of the screw portion 101C of the connecting portion 101B. The electrode portion 102 is made of metal, for example, SUS, and has a concave shape whose cross section follows the connecting portion 101B. An electrode terminal 102 </ b> A is provided below the electrode portion 102. The electrode terminal 102A is a spring material made of metal, for example, phosphor bronze. Further, an O-shaped packing 103 is attached to the outer peripheral surface behind the screw portion 101C of the connecting portion 101B. The packing 103 brings the filter member 75 and the filter case 73 into a watertight state when the filter member 75 is accommodated in the filter case 73.

このリントフィルタ100には、当該リントフィルタ100を構成するメッシュ部分を上側から覆うようにして汚れ粒子除去フィルタ104が取り付けられている。
汚れ粒子除去フィルタ104は、第1の実施形態に示す繊維状導電性部材43Aと繊維状非導電性部材43Bを混在して、或いは第2の実施形態に示す繊維状導電性部材43Aと繊維状非導電性部材43B´を混在して構成されたものである。
A dirt particle removal filter 104 is attached to the lint filter 100 so as to cover the mesh portion constituting the lint filter 100 from above.
The dirt particle removal filter 104 is a mixture of the fibrous conductive member 43A and the fibrous nonconductive member 43B shown in the first embodiment, or the fibrous conductive member 43A and the fibrous shape shown in the second embodiment. The non-conductive member 43B ′ is mixed.

汚れ粒子除去フィルタ104の繊維状導電性部材43Aは、電極部102に電気的に接続されている。汚れ粒子除去フィルタ104は、例えば、繊維状導電性部材43Aが洗濯機の前後方向に延び、繊維状非導電性部材43B(43B´)が、繊維状導電性部材43Aと交差する方向に延びて構成されている。この繊維状導電性部材43Aと繊維状非導電性部材43B(43B´)とは、第1の実施形態の図7に示すように混在(混紡)されている。   The fibrous conductive member 43 </ b> A of the dirt particle removal filter 104 is electrically connected to the electrode unit 102. In the dirt particle removal filter 104, for example, the fibrous conductive member 43A extends in the front-rear direction of the washing machine, and the fibrous non-conductive member 43B (43B ′) extends in a direction intersecting the fibrous conductive member 43A. It is configured. The fibrous conductive member 43A and the fibrous nonconductive member 43B (43B ′) are mixed (mixed) as shown in FIG. 7 of the first embodiment.

フィルタケース73の外側には、他の実施形態と同様に、電極ロッド46を有する電圧印加装置42が設けられている。この電圧印加装置42は、汚れ粒子除去フィルタ104の繊維状導電性部材43Aに電位を付与(電圧を印加する)ものである。電圧印加装置42の電極ロッド46のロッド部46Aは、上端部(先端部)がフィルタケース73の底部を貫通し、フィルタケース73内に設けられた電極端子部105に電気的に接続されている。電極端子部105は、金属製、例えばSUS製の板部材である。電極端子部105は、フィルタケース73にフィルタ部材75が収容されたときに、電極部102の電極端子102Aに接触する位置に設けられている。これにより、フィルタ部材75がフィルタケース73に収容された状態のときに、電圧印加装置42によって発生する電圧は、電極ロッド46(ロッド部46A)、電極端子部105及び電極部102(電極端子102A)を介して繊維状導電性部材43Aに印加される。又、電極ロッド46は、ナット46Bとフィルタケース73内に設けられロッド部46Aの先端部に取付けられるナット(図示しない)とでフィルタケース73の底部を挟むことによってフィルタケース73に固定されている。   A voltage application device 42 having an electrode rod 46 is provided outside the filter case 73 as in the other embodiments. The voltage application device 42 applies a potential (applies a voltage) to the fibrous conductive member 43A of the dirt particle removal filter 104. The rod portion 46 </ b> A of the electrode rod 46 of the voltage application device 42 has an upper end portion (tip portion) that penetrates the bottom portion of the filter case 73 and is electrically connected to an electrode terminal portion 105 provided in the filter case 73. . The electrode terminal portion 105 is a plate member made of metal, for example, SUS. The electrode terminal portion 105 is provided at a position in contact with the electrode terminal 102 </ b> A of the electrode portion 102 when the filter member 75 is accommodated in the filter case 73. Thereby, when the filter member 75 is accommodated in the filter case 73, the voltage generated by the voltage application device 42 is the electrode rod 46 (rod portion 46A), the electrode terminal portion 105, and the electrode portion 102 (electrode terminal 102A). ) To the fibrous conductive member 43A. The electrode rod 46 is fixed to the filter case 73 by sandwiching the bottom of the filter case 73 with a nut 46B and a nut (not shown) provided in the filter case 73 and attached to the tip of the rod portion 46A. .

電極ロッド46のロッド部46Aとフィルタケース73の底部との隙間は、シリコーンゴム等のパッキン107によって塞がれている。これにより、フィルタケース73の底部におけるロッド部46Aが貫通する部分は水密の状態となる。   A gap between the rod portion 46A of the electrode rod 46 and the bottom portion of the filter case 73 is closed by a packing 107 such as silicone rubber. As a result, the portion of the bottom of the filter case 73 through which the rod portion 46A passes is in a watertight state.

次に、上記構成の作用について説明する。尚、洗濯槽60の中には洗濯物(図示せず)が予め収容されている。
本実施形態では、例えば、使用者が操作パネル95の入力部96を操作して通常の運転コース(洗い行程、すすぎ行程、脱水行程を行うコース)を選択すると、制御装置98は、入力部96から出力される信号に基づいて、まず洗濯物重量の検出を行う。洗濯物重量の検出は、洗濯槽60を所定の回転速度まで回転させ、それに要した時間と、その後、モータ57による洗濯槽60の駆動を停止させて洗濯槽60を惰性回転させ、それによって洗濯槽60の回転速度が所定の回転速度まで下降するのに要した時間とから演算するもので、洗濯物の重量をモータ57の回転負荷でもって検出するものである。この後、上記洗濯物重量の検出結果から、洗濯物重量を判定し、それに応じた、洗剤量の決定と、洗い行程及びすすぎ行程における水位の決定をする。この場合、モータ57の回転速度を検出する速度検出手段が、洗濯槽60内の洗濯物の重量を検出する重量検出手段となる。
Next, the operation of the above configuration will be described. Note that laundry (not shown) is stored in the washing tub 60 in advance.
In the present embodiment, for example, when the user operates the input unit 96 of the operation panel 95 and selects a normal driving course (a course for performing a washing process, a rinsing process, and a dehydrating process), the control device 98 includes the input unit 96. First, the weight of the laundry is detected based on the signal output from. The laundry weight is detected by rotating the washing tub 60 to a predetermined rotational speed, and then stopping the driving of the washing tub 60 by the motor 57 and rotating the washing tub 60 by inertia, thereby washing the laundry. It is calculated from the time required for the rotational speed of the tub 60 to drop to a predetermined rotational speed, and the weight of the laundry is detected by the rotational load of the motor 57. Thereafter, the laundry weight is determined from the detection result of the laundry weight, and the amount of the detergent and the water level in the washing process and the rinsing process are determined accordingly. In this case, speed detection means for detecting the rotational speed of the motor 57 serves as weight detection means for detecting the weight of the laundry in the washing tub 60.

又、制御装置98は、重量検出手段である速度検出手段から出力される信号に基づいて、洗濯物の量(負荷量)に対応して洗い行程時及びすすぎ行程時の洗濯槽60の正逆回転の制御を行っている。
制御装置98は、重量検出後、給水弁91を開放して、洗い行程用に決定した水位(洗濯物が浸される水位)まで水道水を供給する。この場合、給水ケース92の洗剤貯留部には、制御装置98による洗剤量の判定に応じた量の洗剤が予め供給されている。尚、水道水は、洗剤と混ざって洗濯水となる。
Also, the control device 98 is based on the signal output from the speed detection means, which is the weight detection means, in accordance with the amount of laundry (load amount), and whether the washing tub 60 is normal or reverse during the washing process and the rinsing process. The rotation is controlled.
After detecting the weight, the control device 98 opens the water supply valve 91 and supplies the tap water to the water level determined for the washing process (the water level where the laundry is immersed). In this case, the detergent storage unit of the water supply case 92 is supplied in advance with an amount of detergent corresponding to the determination of the amount of detergent by the control device 98. The tap water is mixed with a detergent to become washing water.

次に、制御装置98は、洗い行程を実行する。この洗い行程は、洗濯槽60を低速で正逆両方向に交互に回転させることにより行うものであり、これにより、洗濯槽60内に予め収容された洗濯物がバッフル62により掻き上げられて落とされる叩き洗いが繰り返し行われる。又、制御装置98は、洗い行程中、適宜循環ポンプ83を駆動して、水槽55(洗濯槽60)内の洗濯水を、水槽55の排水口71から排水し、循環水路87、即ち、水槽55(排水口71)と、機内排水ホース72と、フィルタケース73(フィルタ部材75)と、循環ポンプ83と、送水ホース85とを通るように送り、水槽55の開口部64の上部の噴水ノズル86から洗濯槽60内に向かってシャワー状に供給させる。これにより、洗濯槽60内の洗濯水は、洗濯槽60に戻される循環が行われると共に、循環水路87を流れる際にフィルタ部材75の汚れ粒子除去フィルタ104に接触するようになる。ここで、制御装置98は、洗い行程のときに、電圧印加装置42を制御して、汚れ粒子除去フィルタ104の繊維状導電性部材43Aに所定の電圧を印加する制御を行う。電圧の印加の制御は第1及び第2の実施形態と同様である。   Next, the control apparatus 98 performs a washing process. This washing process is performed by alternately rotating the washing tub 60 in both forward and reverse directions at a low speed, whereby the laundry previously stored in the washing tub 60 is picked up by the baffle 62 and dropped. Tap and wash repeatedly. Further, the control device 98 appropriately drives the circulation pump 83 during the washing process to drain the washing water in the water tank 55 (washing tank 60) from the drain port 71 of the water tank 55, and the circulation water channel 87, that is, the water tank. 55 (drain port 71), in-machine drain hose 72, filter case 73 (filter member 75), circulation pump 83, and water feed hose 85, and the fountain nozzle above the opening 64 of the water tank 55. From 86, it is made to supply in the washing tub 60 in the shape of a shower. Accordingly, the washing water in the washing tub 60 is circulated back to the washing tub 60 and comes into contact with the dirt particle removal filter 104 of the filter member 75 when flowing through the circulation water passage 87. Here, the control device 98 controls the voltage application device 42 to apply a predetermined voltage to the fibrous conductive member 43A of the dirt particle removal filter 104 during the washing process. Control of voltage application is the same as in the first and second embodiments.

これにより、洗濯水中の汚れ粒子は、汚れ粒子除去フィルタ104を構成する繊維のうち高い電位の部材(汚れ粒子除去フィルタ104が第1の実施形態の構成でなっているときは繊維状非導電性部材43B、汚れ粒子除去フィルタ104が第2の実施形態の構成でなっているときは繊維状導電性部材43A)に吸着される。従って、汚れ粒子は、洗濯水中から除去される。汚れ粒子が除去された洗濯水は、噴水ノズル86から洗濯槽60内に向かって供給される。   As a result, the dirt particles in the wash water are high-potential members among the fibers constituting the dirt particle removal filter 104 (when the dirt particle removal filter 104 has the configuration of the first embodiment, the fibrous non-conductive When the member 43B and the dirt particle removal filter 104 have the configuration of the second embodiment, they are adsorbed by the fibrous conductive member 43A). Accordingly, the dirt particles are removed from the washing water. The washing water from which the dirt particles are removed is supplied from the fountain nozzle 86 into the washing tub 60.

そして、予め設定された時間が経過すると、制御装置98は、洗濯槽60の回転を停止させると共に循環ポンプ83を停止させ、排水弁81を開放させて洗濯水の排水を行う。
次に、制御装置98は、すすぎ行程を実行する。すすぎ行程では、制御装置98は、排水弁81を閉鎖し、給水弁91を開放させて洗濯槽60内へ、所定水位まで給水する。この後、洗濯槽60を低速で正逆回転させることにより、洗濯槽60内の洗濯物はすすがれる。すすぎ水(洗濯水)は、フィルタ部材75(汚れ粒子除去フィルタ104)に接触する。この場合、制御装置98は、第1の実施形態或いは第2の実施形態と同様にして、繊維状導電性部材43Aの電位と繊維状非導電性部材43B(43B´)のゼータ電位との差が、汚れ粒子除去フィルタ104が洗い行程時の洗濯水に浸されているときよりもすすぎ行程時の洗濯水に浸されているときの方が小さくなるように制御している。
When a preset time elapses, the control device 98 stops the rotation of the washing tub 60, stops the circulation pump 83, opens the drain valve 81, and drains the washing water.
Next, the control apparatus 98 performs a rinse process. In the rinsing process, the control device 98 closes the drain valve 81 and opens the water supply valve 91 to supply water into the washing tub 60 to a predetermined water level. Thereafter, the laundry in the washing tub 60 is rinsed by rotating the washing tub 60 forward and backward at a low speed. The rinsing water (washing water) comes into contact with the filter member 75 (dirt particle removal filter 104). In this case, similarly to the first embodiment or the second embodiment, the control device 98 determines the difference between the potential of the fibrous conductive member 43A and the zeta potential of the fibrous nonconductive member 43B (43B ′). However, the control is performed so that the dirt particle removal filter 104 is smaller when it is immersed in the washing water during the rinsing process than when it is immersed in the washing water during the rinsing process.

これにより、繊維状導電性部材43Aと繊維状非導電性部材43B(43B´)との間の電界強度は弱くなり、汚れ粒子は、電位の高い部材側に引っ張られ難くなる。又、汚れ粒子除去フィルタ43に電気的に吸着していた汚れ粒子は当該汚れ粒子除去フィルタ104から脱離し易くなって、汚れ粒子をすすぎ水の排水と共に機外に排出させることができ、汚れ粒子除去フィルタ104の吸着力を再生させることができる。   As a result, the electric field strength between the fibrous conductive member 43A and the fibrous nonconductive member 43B (43B ′) becomes weak, and the dirt particles are hardly pulled toward the member having a high potential. Further, the dirt particles electrically adsorbed to the dirt particle removal filter 43 are easily detached from the dirt particle removal filter 104, and the dirt particles can be discharged out of the apparatus together with the drainage of the rinse water. The adsorption force of the removal filter 104 can be regenerated.

制御装置98は、所定時間後に、排水弁81を開放させる。これにより、水槽55(洗濯槽60)内のすすぎ水は、水槽55の排水口71から機内排水ホース72、フィルタケース73(フィルタ部材75)、排水弁81、排水パイプ82及び機外排水ホースを通じて機外へ排出される。ここで、本実施形態のすすぎ行程では、循環ポンプ83は停止しているので、汚れ粒子は、洗濯槽60を経由せず(洗濯槽60に戻されず)に、すすぎ水の排水と共に機外に排出される。これにより、汚れ粒子除去フィルタ104から離脱した汚れ粒子は、洗濯物に再付着しない。   The control device 98 opens the drain valve 81 after a predetermined time. As a result, the rinsing water in the water tank 55 (washing tub 60) passes from the drain port 71 of the water tank 55 through the in-machine drain hose 72, the filter case 73 (filter member 75), the drain valve 81, the drain pipe 82, and the outside drain hose. It is discharged outside the machine. Here, in the rinsing process of the present embodiment, since the circulation pump 83 is stopped, the dirt particles do not pass through the washing tub 60 (not returned to the washing tub 60), and are discharged outside the machine together with the drain of the rinsing water. Discharged. Thereby, the dirt particles detached from the dirt particle removal filter 104 do not reattach to the laundry.

次に、制御装置98は、脱水行程を実行する。脱水行程では、制御装置98は、排水弁81を開放した状態で洗濯槽60を一方向に高速回転をさせ、洗濯物に対して遠心脱水を行う。
脱水行程が終了することにより、通常の運転コースが終了する。
Next, the control device 98 performs a dehydration process. In the dehydration process, the control device 98 rotates the washing tub 60 in one direction at a high speed with the drain valve 81 opened, and performs centrifugal dehydration on the laundry.
When the dehydration process is completed, the normal driving course is completed.

上記構成によれば、洗い行程時には、洗濯槽60の洗濯水を汚れ粒子除去フィルタ104に接触させた後、洗濯槽60に戻すように循環させているので、洗い行程時の洗濯水中から汚れ粒子を汚れ粒子除去フィルタ104で除去することができる。更に、すすぎ行程時には、循環ポンプ83が停止しているので、汚れ粒子除去フィルタ104から脱離した汚れ粒子は、洗濯槽60を経由せずに排水弁81から排出される。これにより、すすぎ行程時に汚れ粒子除去フィルタ104から脱離した汚れ粒子が、洗濯槽60内の洗濯物に再付着してしまうことを防止することができる。
その他、洗濯機がドラム式である場合においても、第1から第3の実施形態と同様の作用効果を得ることができる。
According to the above configuration, the washing water in the washing tub 60 is circulated so as to be returned to the washing tub 60 after being brought into contact with the dirt particle removal filter 104 during the washing process. Can be removed by the dirt particle removal filter 104. Further, since the circulation pump 83 is stopped during the rinsing process, the dirt particles detached from the dirt particle removal filter 104 are discharged from the drain valve 81 without passing through the washing tub 60. Thereby, it is possible to prevent the dirt particles detached from the dirt particle removal filter 104 during the rinsing process from reattaching to the laundry in the washing tub 60.
In addition, even when the washing machine is a drum type, the same operational effects as those of the first to third embodiments can be obtained.

尚、本発明は上記し且つ図面に示す実施例に限定されず、次のような変形、拡張が可能である。
第1及び第4実施形態の汚れ防止除去フィルタ43,43´、104は、繊維状導電性部材43A及び繊維状非導電性部材43B,43B´を、不織布のように複雑に絡み合わせて混在させて構成してもよい。
The present invention is not limited to the embodiment described above and shown in the drawings, and the following modifications and expansions are possible.
The antifouling removal filters 43, 43 'and 104 of the first and fourth embodiments are made by mixing the fibrous conductive member 43A and the fibrous non-conductive members 43B and 43B' in a complicated manner like a nonwoven fabric. May be configured.

第1及び第4実施形態において、電極ロッド46を示したが、この電極ロッド46の代わりに、リード線を用いてもよい。リード線を用いることにより、電圧印加装置42を任意の場所、例えば操作パネル35,95の近傍に設けてもよい。又、電極印加装置42のアースのためのリード線45の接地先は、上記実施形態に示した場所は一例に過ぎず、接地されている部材に接続しても良く、或いはリード線45を直接接地してもよい。   Although the electrode rod 46 is shown in the first and fourth embodiments, a lead wire may be used instead of the electrode rod 46. By using a lead wire, the voltage application device 42 may be provided in an arbitrary place, for example, in the vicinity of the operation panels 35 and 95. Further, the grounding destination of the lead wire 45 for grounding the electrode applying device 42 is merely an example, and may be connected to a grounded member, or the lead wire 45 may be directly connected. It may be grounded.

第1から第3の実施形態において、汚れ粒子除去フィルタ43,43´を、水槽5の下部に設けて説明したが、それ以外の場所、例えば、水槽5の内周側側面に設けてもよい。又、汚れ粒子除去フィルタ43を水槽5の内周側の上部(リントフィルタ30)に設けることにより、洗濯水の上層に浮遊する汚れ粒子を効率良く吸着することができる。   In the first to third embodiments, the dirt particle removal filters 43 and 43 ′ are described in the lower part of the water tank 5, but may be provided in other places, for example, the inner peripheral side surface of the water tank 5. . Further, by providing the dirt particle removal filter 43 on the inner peripheral upper part (the lint filter 30) of the water tank 5, dirt particles floating on the upper layer of the washing water can be adsorbed efficiently.

リントフィルタ30,100を、汚れ粒子除去フィルタを構成する繊維で構成し、このリントフィルタ30,100を汚れ粒子除去フィルタとしてもよい。
第3の実施形態において、繊維状非導電性部材43Bとして「ポリエステル」を用いた場合、繊維状導電性部材43Aに印加する電圧は、第2の実施形態に示すように、繊維状非導電性部材43Bよりも低い電圧としてもよい。
The lint filters 30 and 100 may be made of fibers constituting a dirt particle removal filter, and the lint filters 30 and 100 may be used as a dirt particle removal filter.
In the third embodiment, when “polyester” is used as the fibrous nonconductive member 43B, the voltage applied to the fibrous conductive member 43A is, as shown in the second embodiment, a fibrous nonconductive. The voltage may be lower than that of the member 43B.

第2から第4に示す繊維状非導電性部材43A,43B´の繊維径は、第1の実施形態と同様に、細くすることが好ましい。又、第1から第4に示す繊維状導電性部材43A,43A´、繊維状非導電性部材43B,43B´の表面にシボを設けたり、断面を例えば星形にしたりして、汚れ粒子と接触する表面積を大きくする構成としてもよい。   The fiber diameters of the fibrous non-conductive members 43A and 43B ′ shown from the second to the fourth are preferably thin, as in the first embodiment. In addition, the surface of each of the fibrous conductive members 43A and 43A ′ and the fibrous nonconductive members 43B and 43B ′ shown in the first to fourth is provided with a texture, or the cross section is made, for example, a star shape, It is good also as a structure which enlarges the surface area which contacts.

繊維状導電性部材43A,43A´、繊維状非導電性部材43B,43B´として挙げた材料、寸法は、一例に過ぎず、適宜変更し得る。又、汚れ粒子除去フィルタ43,43´,104の繊維状非導電性部材43B,43B´は、2種類以上の繊維状非導電性部材から構成してもよい。
その他、本発明の要旨を逸脱しない範囲内で適宜変更して実施し得る。
The materials and dimensions mentioned as the fibrous conductive members 43A and 43A ′ and the fibrous nonconductive members 43B and 43B ′ are merely examples, and can be changed as appropriate. Further, the fibrous nonconductive members 43B and 43B 'of the dirt particle removal filters 43, 43' and 104 may be composed of two or more kinds of fibrous nonconductive members.
In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.

図面中、5は水槽、7は洗濯槽、43,43´,104は汚れ粒子除去フィルタ、43Aは繊維状導電性部材、43B,43B´は繊維状導電性部材、42は電圧印加装置(電圧印加手段)、38,98は制御装置(電圧制御手段)を示す。   In the drawings, 5 is a water tub, 7 is a washing tub, 43, 43 'and 104 are dirt particle removal filters, 43A is a fibrous conductive member, 43B and 43B' are fibrous conductive members, and 42 is a voltage application device (voltage Application means), 38 and 98 denote control devices (voltage control means).

Claims (4)

水槽と、
前記水槽内に設けられ、洗濯物が収容される洗濯槽と、
繊維状で導電性を有する繊維状導電性部材と繊維状で非導電性を有する繊維状非導電性部材とを混在して構成され、洗濯水に接触する位置に設けられる汚れ粒子除去フィルタと、
前記繊維状導電性部材に電圧を印加する電圧印加手段と、
洗い行程時に、前記電圧印加手段によって前記繊維状非導電性部材のゼータ電位と異なる電位を前記繊維状導電性部材に付与する電圧制御手段とを備えていることを特徴とする洗濯機。
A tank,
A laundry tub provided in the water tub, in which laundry is stored;
A soiled particle removal filter that is configured by mixing a fibrous conductive member that is fibrous and conductive and a fibrous nonconductive member that is fibrous and non-conductive, and is provided at a position in contact with washing water;
Voltage applying means for applying a voltage to the fibrous conductive member;
A washing machine comprising voltage control means for applying a potential different from the zeta potential of the fibrous non-conductive member to the fibrous conductive member by the voltage applying means during the washing process.
前記電圧制御手段は、前記繊維状導電性部材の電位と前記繊維状非導電性部材のゼータ電位との差が、前記汚れ粒子除去フィルタが洗い行程時の洗濯水に浸されているときよりもすすぎ行程時の洗濯水に浸されているときの方が小さくなるように前記電圧印加手段を制御することを特徴とする請求項1記載の洗濯機。   The voltage control means is configured such that the difference between the potential of the fibrous conductive member and the zeta potential of the fibrous nonconductive member is greater than when the dirt particle removal filter is immersed in the washing water during the washing process. 2. The washing machine according to claim 1, wherein the voltage application means is controlled so as to be smaller when immersed in the washing water during the rinsing process. 前記繊維状非導電性部材に、ポリアクリルアミド又はヒドロキシプロピルセルロースによる表面処理が施されていることを特徴とする請求項1又は2記載の洗濯機。   The washing machine according to claim 1 or 2, wherein the fibrous non-conductive member is subjected to a surface treatment with polyacrylamide or hydroxypropyl cellulose. 前記繊維状非導電性部材は、前記繊維状導電性部材よりも単位質量あたりの表面積が大きいことを特徴とする請求項1から3のいずれか一項に記載の洗濯機。   The washing machine according to any one of claims 1 to 3, wherein the fibrous non-conductive member has a larger surface area per unit mass than the fibrous conductive member.
JP2009243436A 2009-10-22 2009-10-22 Washing machine Expired - Fee Related JP5468348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243436A JP5468348B2 (en) 2009-10-22 2009-10-22 Washing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243436A JP5468348B2 (en) 2009-10-22 2009-10-22 Washing machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012201505A Division JP5468658B2 (en) 2012-09-13 2012-09-13 Washing machine

Publications (2)

Publication Number Publication Date
JP2011087757A true JP2011087757A (en) 2011-05-06
JP5468348B2 JP5468348B2 (en) 2014-04-09

Family

ID=44106620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243436A Expired - Fee Related JP5468348B2 (en) 2009-10-22 2009-10-22 Washing machine

Country Status (1)

Country Link
JP (1) JP5468348B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101527A (en) * 2016-01-29 2016-06-02 トップ産業株式会社 Disposable filter for drum-type washing machine
WO2018077029A1 (en) * 2016-10-31 2018-05-03 青岛海尔洗衣机有限公司 Washing machine
KR20180045973A (en) * 2016-10-26 2018-05-08 주식회사 서울세미텍 wiper cleanser and cleaning method
EP3896208A1 (en) * 2020-04-17 2021-10-20 Arçelik Anonim Sirketi A washer or washer-dryer comprising a baffle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101721A (en) * 1981-12-11 1983-06-17 Toa Nenryo Kogyo Kk Filter
JPH08102456A (en) * 1994-09-30 1996-04-16 Kobe Steel Ltd Electronic material cleaning method and cleaning equipment
JPH09298182A (en) * 1996-05-09 1997-11-18 Nippon Steel Corp Fine particle removing method
JPH10328512A (en) * 1997-06-02 1998-12-15 Yamashin Kogyo Kk Filter with foreign matter sensor function
JPH11276788A (en) * 1998-03-27 1999-10-12 Sharp Corp Washing machine
JP2003311085A (en) * 2002-04-24 2003-11-05 Sanyo Electric Co Ltd Washing machine
JP2005044488A (en) * 2003-07-09 2005-02-17 Fuji Electric Device Technology Co Ltd Substrate for magnetic recording medium, method for manufacturing magnetic recording medium, and substrate cleaning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101721A (en) * 1981-12-11 1983-06-17 Toa Nenryo Kogyo Kk Filter
JPH08102456A (en) * 1994-09-30 1996-04-16 Kobe Steel Ltd Electronic material cleaning method and cleaning equipment
JPH09298182A (en) * 1996-05-09 1997-11-18 Nippon Steel Corp Fine particle removing method
JPH10328512A (en) * 1997-06-02 1998-12-15 Yamashin Kogyo Kk Filter with foreign matter sensor function
JPH11276788A (en) * 1998-03-27 1999-10-12 Sharp Corp Washing machine
JP2003311085A (en) * 2002-04-24 2003-11-05 Sanyo Electric Co Ltd Washing machine
JP2005044488A (en) * 2003-07-09 2005-02-17 Fuji Electric Device Technology Co Ltd Substrate for magnetic recording medium, method for manufacturing magnetic recording medium, and substrate cleaning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101527A (en) * 2016-01-29 2016-06-02 トップ産業株式会社 Disposable filter for drum-type washing machine
KR20180045973A (en) * 2016-10-26 2018-05-08 주식회사 서울세미텍 wiper cleanser and cleaning method
KR101881929B1 (en) * 2016-10-26 2018-07-27 주식회사 서울세미텍 wiper cleanser and cleaning method
WO2018077029A1 (en) * 2016-10-31 2018-05-03 青岛海尔洗衣机有限公司 Washing machine
EP3896208A1 (en) * 2020-04-17 2021-10-20 Arçelik Anonim Sirketi A washer or washer-dryer comprising a baffle

Also Published As

Publication number Publication date
JP5468348B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP2003260290A (en) Drum type washing machine
EP1813705A1 (en) Dryer
JP5468348B2 (en) Washing machine
JP6749340B2 (en) Washing machine and control method
JP2011041643A (en) Washing machine
JP4929297B2 (en) Washing and drying machine
JP2009034258A (en) Washing/drying machine
JP2004105692A (en) Washer
JP2004057423A (en) Washing machine
JP5468658B2 (en) Washing machine
JP2011200519A (en) Drum type washing machine
JP2013141538A (en) Washing machine and electrical equipment
JP2011062332A (en) Washing machine
JP5306148B2 (en) Washing and drying machine
JP4935877B2 (en) Drum washing machine
CN1291099C (en) Washing machine
JP5039081B2 (en) Mist generator and washer / dryer
JP4135873B2 (en) Washing and drying machine
CN218910864U (en) Clothes treatment equipment
JP2004208712A (en) Drum washing machine
JP2003311085A (en) Washing machine
JP5024344B2 (en) Drum washing machine
JP5390339B2 (en) Landry equipment
JP4417404B2 (en) Washing machine
CN111101321B (en) Washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R150 Certificate of patent or registration of utility model

Ref document number: 5468348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees