JP2011086747A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2011086747A
JP2011086747A JP2009238055A JP2009238055A JP2011086747A JP 2011086747 A JP2011086747 A JP 2011086747A JP 2009238055 A JP2009238055 A JP 2009238055A JP 2009238055 A JP2009238055 A JP 2009238055A JP 2011086747 A JP2011086747 A JP 2011086747A
Authority
JP
Japan
Prior art keywords
dielectric window
electrode
chamber
plasma processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238055A
Other languages
Japanese (ja)
Other versions
JP5310469B2 (en
Inventor
Shogo Okita
尚吾 置田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009238055A priority Critical patent/JP5310469B2/en
Publication of JP2011086747A publication Critical patent/JP2011086747A/en
Application granted granted Critical
Publication of JP5310469B2 publication Critical patent/JP5310469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing apparatus capable of compatibly achieving removal of a reaction product deposited on a dielectric window and obtaining stability of an etching rate of a workpiece. <P>SOLUTION: An electrode 8 which is disposed facing an upper opening 2b of a chamber 2, shaped winding and spreading from a side of a center part 8a to a side of a circumferential part 8b, and operative to etch a substrate 4 held at a placement part 3 by making a reaction gas in the chamber 2 into plasma by induction coupling comprises a coil part 11 as an induction antenna component which winds and spreads from an outer circumferential surface of a vertically intermediate part of a cylinder shaft member 10 positioned at the center part 8a and applied with high-frequency electric power from an upper side, and an operation part as a capacitive antenna component such that a low-side end surface of the cylindrical shaft member 10 is disposed closely to an upper surface 5a of the dielectric window 5. Consequently, an induction component is not easily generated between the operation part and coil part and the plasma processing apparatus compatibly remove the reaction product deposited on the dielectric window and obtain the stability of the etching rate of a workpiece. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基板などの被処理体を対象としてプラズマ処理を行うプラズマ処理装置に関するものである。   The present invention relates to a plasma processing apparatus that performs plasma processing on a target object such as a substrate.

基板などの被処理体の表面をエッチング加工するプラズマ処理において、エッチング量の高精度の制御やエッチング状態の監視が必要とされる場合には、被処理体の表面のエッチング深さや表面状態をリアルタイムで測定することが行われる。測定技術の例としては、レーザ干渉、CCDカメラ、プラズマ発光分析測定等の光学的測定方法が用いられ、減圧可能なチャンバーの外部に光学測定器が設けられる。そしてプラズマ処理過程においては、チャンバーの一部に設けられた誘導体窓を介して光を透過させて、被処理体のエッチング深さ、表面状態の観察や認識処理、チャンバー内で発生したプラズマから生じた光等を、光学測定器によってリアルタイムで測定する。   In plasma processing that etches the surface of an object to be processed such as a substrate, the etching depth and surface state of the surface of the object to be processed are measured in real time when high-precision control of the etching amount or monitoring of the etching state is required. Measurement is performed at As an example of the measurement technique, an optical measurement method such as laser interference, a CCD camera, or a plasma emission analysis measurement is used, and an optical measurement device is provided outside the chamber that can be decompressed. In the plasma treatment process, light is transmitted through a derivative window provided in a part of the chamber, and the etching depth of the object to be processed, surface state observation and recognition treatment, and plasma generated in the chamber are generated. The measured light or the like is measured in real time by an optical measuring instrument.

これらの光学測定を正確に行うためには、誘導体窓の光の透過率は常に高く、且つ安定していることが望ましい。ところが、プラズマ処理でのドライエッチング処理時には、被処理体から発生する反応生成物がチャンバーの内面に付着する。このため、誘導体窓には反応生成物が付着して堆積することにより徐々に曇りが生じ、誘導体窓の光透過率が低下して正確な光学測定を連続して実施することが困難となる。   In order to perform these optical measurements accurately, it is desirable that the light transmittance of the derivative window is always high and stable. However, during the dry etching process in the plasma process, reaction products generated from the object to be processed adhere to the inner surface of the chamber. For this reason, the reaction product adheres to and accumulates on the derivative window, resulting in gradual cloudiness, and the light transmittance of the derivative window is lowered, making it difficult to carry out accurate optical measurements continuously.

このような反応生成物の付着による不具合を防止するため、誘導体窓に堆積する反応生成物を除去する機能を備えたプラズマ処理装置が用いられるようになっている(例えば特許文献1)。この特許文献に示す先行技術例においては、チャンバー内部(反応室内部)に誘導結合によりプラズマを発生させるための励起コイルの経路途中を誘電体窓に近接させて、誘導体窓に堆積する反応生成物をスパッタリング効果によって除去するための作用部として用いるようにしている。   In order to prevent such problems due to adhesion of reaction products, a plasma processing apparatus having a function of removing reaction products deposited on the derivative window has been used (for example, Patent Document 1). In the prior art example shown in this patent document, the reaction product deposited on the derivative window by bringing the path of the excitation coil for generating plasma by inductive coupling inside the chamber (inside the reaction chamber) close to the dielectric window Is used as an action part for removing the film by the sputtering effect.

特開2006−73801号公報JP 2006-73801 A

しかしながら上述の先行技術例においては、誘電体窓に堆積する反応生成物の除去と被処理体のエッチングレートの安定性とを両立させてエッチング処理を効率よく行う上で、次のような課題があった。すなわち上述の先行技術例の構成では、励起コイルの経路途中を作用部として誘電体窓に近接させて誘導体窓に堆積する反応生成物の除去を行っているが、励起コイルと作用部の間に生じる誘導成分が励起コイルによるエッチングのための誘導成分を阻害する要因となりやすく、このことが被処理体のエッチングレートの均一性を損なう不安定要因なっていた。   However, in the above prior art examples, the following problems are involved in efficiently performing the etching process while achieving both the removal of the reaction product deposited on the dielectric window and the stability of the etching rate of the object to be processed. there were. That is, in the configuration of the above-described prior art example, the reaction product deposited on the derivative window is removed by making the path of the excitation coil in the vicinity of the dielectric window as an action part, but between the excitation coil and the action part. The inductive component that is generated tends to be a factor that inhibits the inductive component for etching by the excitation coil, and this is an unstable factor that impairs the uniformity of the etching rate of the object to be processed.

これを防止するために引用文献1(段落0024参照)では、作用部の形状等を工夫することにより励起コイルと作用部の間に誘導成分が生じるのを防止している。ところが上述構成では作用部が励起コイルの経路途中に形成されているため、励起コイルにハイパワーの高周波電力を印加する上で、誘導体窓に堆積する反応生成物の作用部による除去と被処理体のエッチングレートの安定性とを両立させるためには、作用部の形状等を適切に設定するための複雑なバランス調整を必要とするという課題があった。   In order to prevent this, in Cited Document 1 (see paragraph 0024), an inductive component is prevented from being generated between the excitation coil and the action part by devising the shape of the action part. However, since the action part is formed in the path of the excitation coil in the above-described configuration, when applying high-power high-frequency power to the excitation coil, the reaction product deposited on the derivative window is removed by the action part and the object to be processed In order to achieve both the stability of the etching rate, there has been a problem that a complicated balance adjustment is required to appropriately set the shape of the action portion and the like.

そこで本発明は、誘電体窓に堆積する反応生成物の除去と被処理体のエッチングレートの安定性とを両立させることができるプラズマ処理装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a plasma processing apparatus capable of achieving both the removal of reaction products deposited on a dielectric window and the stability of the etching rate of an object to be processed.

本発明のプラズマ処理装置は、減圧可能なチャンバーと、前記チャンバーの内部の下側に設けられ被処理物が保持される載置部と、前記チャンバーに設けられた上部開口に臨むように配置され、高周波電力が中央部に印加されて中央部側から周辺部側に巻き広がる形状を有し、チャンバー内の反応ガスを誘導結合によりプラズマ化し、前記載置部に保持された前記被処理物をエッチングするための電極と、前記チャンバーの前記上部開口を封止して前記電極の下方に位置し透明で光が透過可能な光透過部を有する誘電体窓と、前記電極の上方に配置され、前記電極の平面視における隙間と前記誘電体窓の前記光透過部とを介して、前記チャンバー内の前記被処理物を測定あるいは観察可能な光学測定器とを備え、前記電極は、前記中央部に位置して高周波電力が上部側から印加される中央支持軸と、前記中央支持軸の上下方向の中間部の外周面より巻き広がる誘導アンテナ成分としてのコイル部と、前記中央支持軸の下部側の端面が前記誘電体窓の上面に近接して配置された容量アンテナ成分としての作用部を有する。   The plasma processing apparatus of the present invention is disposed so as to face a chamber capable of being depressurized, a mounting portion that is provided on the lower side of the chamber and holds an object to be processed, and an upper opening provided in the chamber. The high-frequency power is applied to the central part and has a shape that spreads from the central part side to the peripheral part side, the reaction gas in the chamber is turned into plasma by inductive coupling, and the object to be processed held in the mounting part is An electrode for etching, a dielectric window having a light transmitting portion that is transparent below the electrode and seals the upper opening of the chamber, and is disposed above the electrode; An optical measuring instrument capable of measuring or observing the object to be processed in the chamber through a gap in a plan view of the electrode and the light transmission part of the dielectric window; Position A central support shaft to which high-frequency power is applied from the upper side, a coil portion as an induction antenna component spreading from an outer peripheral surface of an intermediate portion in the vertical direction of the central support shaft, and an end surface on the lower side of the central support shaft Has an action portion as a capacitive antenna component arranged close to the upper surface of the dielectric window.

本発明によれば、プラズマ処理を行うチャンバーの上部開口に臨むように配置され、高周波電力が中央部に印加されて中央部側から周辺部側に巻き広がる形状を有し、チャンバー内の反応ガスを誘導結合によりプラズマ化して載置部に保持された被処理体をエッチングするための電極を、中央部に位置して高周波電力が上部側から印加される中央支持軸と、中央支持軸の上下方向の中間部の外周面より巻き広がる誘導アンテナ成分としてのコイル部と、中央支持軸の下部側の端面が誘電体窓の表面に近接して配置された容量アンテナ成分としての作用部を有する構成とすることにより、作用部とコイル部との間で誘導成分が生じにくく、誘電体窓に堆積する反応生成物の除去と被処理体のエッチングレートの安定性とを両立させることができる。   According to the present invention, the reaction gas in the chamber is disposed so as to face the upper opening of the chamber for plasma processing, and has a shape in which high-frequency power is applied to the central portion and spreads from the central portion side to the peripheral portion side. An electrode for etching the object to be processed held in the mounting part by inductive coupling into a plasma, a central support shaft that is located at the center and to which high-frequency power is applied from the upper side, and upper and lower of the central support shaft A coil portion as an induction antenna component that spreads from the outer peripheral surface of the intermediate portion in the direction, and a function portion as a capacitive antenna component in which the lower end surface of the central support shaft is disposed close to the surface of the dielectric window As a result, an inductive component is hardly generated between the action part and the coil part, and it is possible to achieve both the removal of the reaction product deposited on the dielectric window and the stability of the etching rate of the workpiece. .

本発明の実施の形態1のプラズマ処理装置の構成を示す断面図Sectional drawing which shows the structure of the plasma processing apparatus of Embodiment 1 of this invention 本発明の実施の形態1のプラズマ処理装置の分解斜視図1 is an exploded perspective view of a plasma processing apparatus according to a first embodiment of the present invention. 本発明の実施の形態1のプラズマ処理装置における電極のコイル部と作用部の構成説明図Structure explanatory drawing of the coil part of an electrode and an action part in the plasma processing apparatus of Embodiment 1 of this invention 本発明の実施の形態1のプラズマ処理装置における電極のコイル部と作用部の構成説明図Structure explanatory drawing of the coil part of an electrode and an action part in the plasma processing apparatus of Embodiment 1 of this invention 本発明の実施の形態1のプラズマ処理装置における電極のコイル部と作用部の構成説明図Structure explanatory drawing of the coil part of an electrode and an action part in the plasma processing apparatus of Embodiment 1 of this invention 本発明の実施の形態2のプラズマ処理装置の構成を示す断面図Sectional drawing which shows the structure of the plasma processing apparatus of Embodiment 2 of this invention 本発明の実施の形態2のプラズマ処理装置における誘電体窓に設けられた凹部の説明図Explanatory drawing of the recessed part provided in the dielectric material window in the plasma processing apparatus of Embodiment 2 of this invention. 本発明の実施の形態2のプラズマ処理装置における誘電体窓に設けられた凹部の説明図Explanatory drawing of the recessed part provided in the dielectric material window in the plasma processing apparatus of Embodiment 2 of this invention. 本発明の実施の形態2のプラズマ処理装置における誘電体窓に設けられた凹部の説明図Explanatory drawing of the recessed part provided in the dielectric material window in the plasma processing apparatus of Embodiment 2 of this invention.

(実施の形態1)
まず、図1,図2を参照して、本発明の実施の形態1におけるプラズマ処理装置1の構成を説明する。図1,図2において、チャンバー2は内部にプラズマ処理のための処理室
2aが設けられた略円筒状容器であり、上面側には上方に開口する上部開口2bが設けられている。処理室2aの下側には載置部3が設けられており、載置部3の上面には被処理体である基板4が保持される。
(Embodiment 1)
First, with reference to FIG. 1 and FIG. 2, the structure of the plasma processing apparatus 1 in Embodiment 1 of this invention is demonstrated. 1 and 2, a chamber 2 is a substantially cylindrical container having a processing chamber 2a for plasma processing therein, and an upper opening 2b that opens upward is provided on the upper surface side. A placement unit 3 is provided below the processing chamber 2 a, and a substrate 4 that is an object to be processed is held on the top surface of the placement unit 3.

チャンバー2の上部には上部開口2bを封止して処理室2aを密封する誘電体窓5が、以下に説明する電極8の下方に位置して配設されている。誘電体窓5は、石英やサファイアなど透明で光が透過可能な材質より成り、後述するように、載置部3に保持された基板4を処理室2aの外部から光学測定器14によって光学的に測定・観察できるようになっている。すなわち、誘電体窓5は、透明で光が透過可能な光透過部5c(図2)を有する形態となっている。   A dielectric window 5 that seals the processing chamber 2a by sealing the upper opening 2b is disposed below the electrode 8 described below. The dielectric window 5 is made of a transparent material that can transmit light, such as quartz or sapphire. As will be described later, the substrate 4 held on the mounting portion 3 is optically measured from the outside of the processing chamber 2a by the optical measuring instrument 14. It can be measured and observed. In other words, the dielectric window 5 has a light transmitting portion 5c (FIG. 2) that is transparent and can transmit light.

またチャンバー2の側面に設けられた開口部2c、2dには、それぞれ真空排気装置6、ガス供給源7が接続されている。真空排気装置6を駆動することにより、処理室2a内が真空排気されて減圧される。すなわち、チャンバー2は減圧可能となっている。そしてガス供給源7を駆動することにより、基板4をエッチング処理するための反応ガスが処理室2a内に供給される。真空排気装置6、ガス供給源7および高周波電力印加装置9は、コントローラ15によって制御され、これにより基板4を対象としたプラズマ処理が実行される。   Further, an evacuation device 6 and a gas supply source 7 are connected to the openings 2 c and 2 d provided on the side surface of the chamber 2, respectively. By driving the evacuation apparatus 6, the inside of the processing chamber 2a is evacuated and decompressed. That is, the chamber 2 can be depressurized. Then, by driving the gas supply source 7, a reaction gas for etching the substrate 4 is supplied into the processing chamber 2a. The vacuum exhaust device 6, the gas supply source 7, and the high-frequency power application device 9 are controlled by the controller 15, whereby plasma processing for the substrate 4 is executed.

誘電体窓5の上面5a側には、チャンバー2の処理室2a内の反応ガスを誘導結合によりプラズマ化して、載置部3に保持された基板4をエッチングするための電極8が配設されている。電極8は、チャンバー2に設けられた上部開口2bに臨むように配置され、図2に示すように、高周波電力印加装置9によって高周波電力が印加される中央部8a側から周辺部8b側に、複数のコイル部11(ここではコイル部11a〜11dの4つ)がスパイラル状に巻き広がる形状を有している。中央部8aには、複数のコイル部11の端部を支持する中央支持軸としての円筒軸部材10が、垂直姿勢で配置されている。   On the upper surface 5a side of the dielectric window 5, an electrode 8 is provided for etching the substrate 4 held on the mounting portion 3 by converting the reaction gas in the processing chamber 2a of the chamber 2 into plasma by inductive coupling. ing. The electrode 8 is disposed so as to face the upper opening 2b provided in the chamber 2, and as shown in FIG. 2, the high frequency power is applied by the high frequency power application device 9 from the central portion 8a side to the peripheral portion 8b side. A plurality of coil portions 11 (here, four of the coil portions 11 a to 11 d) have a shape that spreads in a spiral shape. A cylindrical shaft member 10 as a central support shaft that supports the ends of the plurality of coil portions 11 is disposed in the central portion 8a in a vertical posture.

図3に示すように、円筒軸部材10は上下方向に貫通する中空部10aを有する中空形状となっている。円筒軸部材10を高周波電力印加装置9と接続する接続端子9aは円筒軸部材10の上部の外周面の一方側に結合されており、高周波電力印加装置9から供給される高周波電力は、円筒軸部材10において上部側周辺から印加される形態となっている。コイル部11a〜11dは、円筒軸部材10の外周面10dにおいて平面視して4等配の位置からスパイラル状に延出する配置となっている。   As shown in FIG. 3, the cylindrical shaft member 10 has a hollow shape having a hollow portion 10a penetrating in the vertical direction. The connection terminal 9a for connecting the cylindrical shaft member 10 to the high frequency power application device 9 is coupled to one side of the outer peripheral surface of the upper portion of the cylindrical shaft member 10, and the high frequency power supplied from the high frequency power application device 9 is the cylindrical shaft. The member 10 is configured to be applied from the upper side periphery. The coil portions 11a to 11d are arranged to extend in a spiral shape from four equal positions in plan view on the outer peripheral surface 10d of the cylindrical shaft member 10.

またコイル部11a〜11dが円筒軸部材10から延出する高さ位置は、図3(b)に示すように、中間部10cの外周面10dにおいて接続端子9aが結合された円筒軸部材10の上部から所定距離Dだけ下方に離れた位置に設定されている。ここで所定距離Dは、円筒軸部材10の上部において一方側に偏った位置に結合された接続端子9aを介して供給される高周波電力を、外周面10dにおいて異なる位置から延出するコイル部11a〜11dに、略均等に偏りなく伝達するのに必要とされる距離である。さらに円筒軸部材10はコイル部11a〜11dの高さ位置から下方に延出して、円筒軸部材10の下部側の端面10bが誘電体窓5の上面5aに近接して、端面10bと上面5aとの間に所定の隙間Gが保たれるようになっている。   Moreover, the height position where the coil parts 11a-11d extend from the cylindrical shaft member 10 is as shown in FIG.3 (b), and the cylindrical shaft member 10 with which the connection terminal 9a was couple | bonded in the outer peripheral surface 10d of the intermediate part 10c. It is set at a position away from the top by a predetermined distance D. Here, the predetermined distance D is a coil portion 11a for extending high-frequency power supplied from a different position on the outer peripheral surface 10d through a connection terminal 9a coupled to a position biased to one side in the upper part of the cylindrical shaft member 10. It is a distance required to transmit to ˜11d substantially evenly. Further, the cylindrical shaft member 10 extends downward from the height positions of the coil portions 11a to 11d, the lower end surface 10b of the cylindrical shaft member 10 is close to the upper surface 5a of the dielectric window 5, and the end surface 10b and the upper surface 5a. A predetermined gap G is maintained between the two.

高周波電力印加装置9から上述構成の電極8に接続端子9aを介して高周波電力を印加すると、コイル部11a〜11dにそれぞれ高周波電流が流れ、この高周波電流による電磁誘導作用が誘電体窓5を介して処理室2a内に及ぶことにより、処理室2a内には反応ガスが誘導結合によって電離したプラズマPが発生する。電極8において、コイル部11a〜11dは、処理室2a内に電磁誘導作用を及ぼす誘導アンテナ成分(図1において点線で示す楕円形枠12参照)として機能する。   When high-frequency power is applied from the high-frequency power application device 9 to the electrode 8 having the above-described configuration via the connection terminal 9 a, high-frequency current flows through the coil portions 11 a to 11 d, and electromagnetic induction action due to this high-frequency current is transmitted through the dielectric window 5. As a result, the plasma P in which the reaction gas is ionized by inductive coupling is generated in the processing chamber 2a. In the electrode 8, the coil portions 11a to 11d function as an induction antenna component that exerts an electromagnetic induction action in the processing chamber 2a (see an elliptical frame 12 indicated by a dotted line in FIG. 1).

また電極8に接続端子9aを介して高周波電力を印加すると、上面5aに近接した端面10bの電位による電場が誘電体窓5を介して処理室2a内に作用する。この端面10bと誘電体窓5との容量結合により、誘電体窓5の下面5bにおいて端面10bの直下の位置には、処理室2a内の電子が衝突して負に帯電するセルフバイアスが生じる。これにより端面10bの直下の位置には、処理室2a内の正イオンが衝突するスパッタリング効果が発生し、プラズマ処理過程において誘電体窓5の下面5bに付着する反応生成物は、このスパッタリング効果によって除去される。電極8において、円筒軸部材10の端面10bは、誘電体窓5の上面5aに近接して配置され、端面10bの直下の位置においてスパッタリング効果を発生させる容量アンテナ成分(図1において点線で示す円形枠13参照)としての作用部の機能を有している。   When high frequency power is applied to the electrode 8 via the connection terminal 9 a, an electric field due to the potential of the end face 10 b close to the upper surface 5 a acts in the processing chamber 2 a via the dielectric window 5. Due to the capacitive coupling between the end face 10 b and the dielectric window 5, a self-bias in which electrons in the processing chamber 2 a collide and negatively charge is generated at a position immediately below the end face 10 b on the lower surface 5 b of the dielectric window 5. As a result, a sputtering effect in which positive ions in the processing chamber 2a collide occurs at a position immediately below the end face 10b, and reaction products adhering to the lower surface 5b of the dielectric window 5 during the plasma processing process are caused by this sputtering effect. Removed. In the electrode 8, the end surface 10 b of the cylindrical shaft member 10 is disposed close to the upper surface 5 a of the dielectric window 5, and a capacitive antenna component (circular indicated by a dotted line in FIG. 1) that generates a sputtering effect at a position immediately below the end surface 10 b. It has the function of the action part as a frame 13).

すなわち本実施の形態においては、電極8は、中央部8aに位置して高周波電力印加装置9により高周波電力が上部側から印加される中央支持軸である円筒軸部材10と、円筒軸部材10の上下方向の中間部10cの外周面10dより巻き広がる誘導アンテナ成分としてのコイル部11と、円筒軸部材10の下部側の端面が誘電体窓5の上面5aに近接して配置された容量アンテナ成分としての作用部(端面10b)を有する構成となっている。   That is, in the present embodiment, the electrode 8 is located at the central portion 8a and the cylindrical shaft member 10 that is a central support shaft to which high frequency power is applied from the upper side by the high frequency power applying device 9; A capacitive antenna component in which the coil portion 11 serving as an induction antenna component extending from the outer peripheral surface 10d of the intermediate portion 10c in the vertical direction and the lower end surface of the cylindrical shaft member 10 are disposed close to the upper surface 5a of the dielectric window 5 It has the structure which has an action part (end surface 10b) as.

そして図3に示す例では、電極8において、高周波電力が上部側周辺から印加される中央支持軸としての円筒軸部材10は中空形状からなり、誘導アンテナ成分としてのコイル部11a〜11dは、プラズマ処理装置1の上部側周辺の高周波電力の印加位置から、円筒軸部材10の中間部10cの外周面10dにおいて、コイル部11a〜11dの高周波電力の偏りを防止するために設定される所定距離Dだけ、上下方向に離れた位置より巻き広がる形態となっている。   In the example shown in FIG. 3, in the electrode 8, the cylindrical shaft member 10 serving as a central support shaft to which high-frequency power is applied from the upper side periphery has a hollow shape, and the coil portions 11 a to 11 d serving as induction antenna components are plasma. A predetermined distance D set to prevent the bias of the high frequency power of the coil portions 11 a to 11 d on the outer peripheral surface 10 d of the intermediate portion 10 c of the cylindrical shaft member 10 from the application position of the high frequency power around the upper side of the processing apparatus 1. However, it has a form that spreads from a position apart in the vertical direction.

電極8の上方には、光学測定器14が、測定光軸14aをチャンバー2の平面中心に位置する円筒軸部材10の中空部10aに一致させて配設されている。チャンバー2の平面中心は光学測定器14はレーザ変位計など、処理室2a内において載置部3に保持された被処理体である基板4のエッチング深さの測定、エッチング状態の観察などの機能を有するものである。光学測定器14による測定・観察の結果はコントローラ15に伝達され、この結果に基づきコントローラ15が真空排気装置6、ガス供給源7、高周波電力印加装置9を制御することにより、目的に応じたプラズマ処理を高精度で実行することができる。   Above the electrode 8, an optical measuring instrument 14 is arranged with the measuring optical axis 14 a aligned with the hollow portion 10 a of the cylindrical shaft member 10 positioned at the center of the plane of the chamber 2. The plane center of the chamber 2 is a function such as an optical measuring instrument 14 such as a laser displacement meter, measurement of the etching depth of the substrate 4 that is the object to be processed held in the mounting section 3 in the processing chamber 2a, and observation of the etching state. It is what has. The result of measurement / observation by the optical measuring instrument 14 is transmitted to the controller 15, and the controller 15 controls the evacuation device 6, the gas supply source 7, and the high-frequency power application device 9 based on this result, so that plasma corresponding to the purpose is obtained. Processing can be executed with high accuracy.

光学測定器14による測定あるいは観察は、円筒軸部材10の中空部10a、すなわち電極8の平面視における隙間および誘電体窓5の光透過部5cを介して光を透過させることにより行われる。ここで、前述のように誘電体窓5の下面5bにおいて端面10bの直下の位置、すなわち光透過部5cの下面には、プラズマ処理過程において常にスパッタリング効果が及ぶことから、反応生成物の付着堆積に起因する曇りが発生せず、良好な光透過率が維持される。したがって、光学測定器14による光学測定・観察を、正確に連続して行うことができる。   Measurement or observation by the optical measuring instrument 14 is performed by transmitting light through the hollow portion 10a of the cylindrical shaft member 10, that is, the gap in the plan view of the electrode 8 and the light transmitting portion 5c of the dielectric window 5. Here, as described above, since the sputtering effect is always applied to the position immediately below the end face 10b on the lower surface 5b of the dielectric window 5, that is, the lower surface of the light transmitting portion 5c, in the plasma processing process, the deposition of reaction products is deposited. No fogging due to the occurrence of fogging, and good light transmittance is maintained. Therefore, the optical measurement / observation by the optical measuring instrument 14 can be performed accurately and continuously.

なお上述実施例においては、中央支持軸として中空形状の円筒軸部材10を用いた例を示したが、図4に示すように、水平断面がクロス形状の十字軸部材18を中央支持軸として用いてもよい。図4において、十字軸部材18は4つの縁部18a〜18dを中央から90°等配の4方向に延出させたクロス形状となっている。この場合には、光学測定器14の平面位置を、測定光軸14aが十字軸部材18の水平断面中心から周辺部側に部材断面厚み分だけオフセットされるように配置する。すなわち図4に示す例においても、光学測定器14は電極108の平面視における隙間および誘電体窓5の光透過部5cを介して
チャンバー2内の基板4を測定・観察する。
In the embodiment described above, the hollow cylindrical shaft member 10 is used as the central support shaft. However, as shown in FIG. 4, the cross shaft member 18 having a cross-shaped horizontal cross section is used as the central support shaft. May be. In FIG. 4, the cross shaft member 18 has a cross shape in which four edge portions 18 a to 18 d are extended from the center in four directions equally spaced by 90 °. In this case, the planar position of the optical measuring instrument 14 is arranged so that the measurement optical axis 14a is offset from the center of the horizontal cross section of the cross shaft member 18 by the thickness of the member cross section. That is, also in the example shown in FIG. 4, the optical measuring instrument 14 measures and observes the substrate 4 in the chamber 2 through the gap in the plan view of the electrode 108 and the light transmission part 5 c of the dielectric window 5.

そしてコイル部11a〜11dは、同様に十字軸部材18の平面視して4等配の位置からスパイラル状に延出する配置となっている。十字軸部材18を高周波電力印加装置9と接続する接続端子9aは、十字軸部材18の上部の中央に結合されており、高周波電力印加装置9から供給される高周波電力は円筒軸部材10において上部側の中央から印加される。十字軸部材18はコイル部11a〜11dの高さ位置から下方に延出して、十字軸部材18の下部側の端面18eが誘電体窓5の上面5aに近接して、端面18eと上面5aとの間に所定の隙間Gが保たれるようになっている。この場合においても図3に示す例と同様に、十字軸部材18の端面18eは、誘電体窓5の上面5aに近接して配置され、端面18eの直下の位置においてスパッタリング効果を発生させる容量アンテナ成分としての作用部の機能を有している。   Similarly, the coil portions 11a to 11d are arranged so as to extend in a spiral shape from four equal positions in a plan view of the cross shaft member 18. The connection terminal 9 a that connects the cross shaft member 18 to the high frequency power application device 9 is coupled to the center of the upper portion of the cross shaft member 18, and the high frequency power supplied from the high frequency power application device 9 is upper in the cylindrical shaft member 10. Applied from the center of the side. The cross shaft member 18 extends downward from the height position of the coil portions 11a to 11d, the lower end surface 18e of the cross shaft member 18 is close to the upper surface 5a of the dielectric window 5, and the end surface 18e and the upper surface 5a A predetermined gap G is maintained between the two. Also in this case, as in the example shown in FIG. 3, the end face 18e of the cross shaft member 18 is disposed in the vicinity of the upper surface 5a of the dielectric window 5, and a capacitive antenna that generates a sputtering effect at a position directly below the end face 18e. It has the function of the action part as a component.

ここに示す例においては、高周波電力の印加位置が十字軸部材18の上部の中央であり、さらにコイル部11a〜11dは中央から放射形状の配置で結合されていることから、各コイル部11a〜11dには、高周波電力印加装置9から偏りなく均等に電力が伝達される。したがって、図3に示す例においてコイル部11a〜11dに偏りなく電力を伝達するのに必要とされる所定距離Dを考慮する必要がない。これにより、図4(b)に示すように、コイル部11a〜11dをそれぞれ縁部18a〜18dの上部に上端面を一致させて結合することができる。   In the example shown here, the application position of the high frequency power is the center of the upper part of the cross shaft member 18, and the coil portions 11a to 11d are coupled in a radial configuration from the center, so that each of the coil portions 11a to 11a. In 11d, power is evenly transmitted from the high-frequency power applying device 9 without deviation. Therefore, in the example shown in FIG. 3, it is not necessary to consider the predetermined distance D required to transmit power to the coil portions 11a to 11d without deviation. As a result, as shown in FIG. 4B, the coil portions 11a to 11d can be coupled to the upper portions of the edge portions 18a to 18d with their upper end surfaces aligned.

すなわち図4に示す例では、電極8において、高周波電力が上部側の中央から印加される中央支持軸としての十字軸部材18は中央から周辺に広がる放射形状からなり、十字軸部材18の下部側の端面18eが、誘電体窓5の表面5aに近接して配置された容量アンテナ成分としての作用部となっている。このような構成を採用することにより、誘導アンテナ成分を構成するコイル部11a〜11dと、作用部である端面18eとの間の間隔を極力大きく確保することができる。これにより、コイル部11a〜11dの誘導成分が作用部に及ぼす影響を抑制することができ、基板4に対するエッチングレートの低下を招くことなく、光透過部5cの曇り防止効果を確保することが可能となっている。   That is, in the example shown in FIG. 4, in the electrode 8, the cross shaft member 18 as a central support shaft to which high-frequency power is applied from the center on the upper side has a radial shape spreading from the center to the periphery, and the lower side of the cross shaft member 18. The end face 18e is an action portion as a capacitive antenna component disposed in the vicinity of the surface 5a of the dielectric window 5. By adopting such a configuration, it is possible to secure as large an interval as possible between the coil portions 11a to 11d constituting the induction antenna component and the end face 18e that is the action portion. Thereby, the influence which the induction | guidance | derivation component of coil part 11a-11d exerts on an action part can be suppressed, and it is possible to ensure the fog prevention effect of the light transmissive part 5c, without causing the fall of the etching rate with respect to the board | substrate 4. It has become.

なお、図3,図4に示す構成においては、中央部8aに配設された円筒軸部材10、十字軸部材18は、誘電体窓5に対して位置が固定されており、円筒軸部材10の端面10b、十字軸部材18の端面18eと、誘電体窓5の上面5aとの間の間隔は、予め設定された固定の所定間隔Gとなっている。これに対し、図5(a)に示す例においては、上面5aに近接して作用部を構成する円筒軸部材110を、中空部10Aに対して上下方向に移動調整可能な別体としている。また図5(b)に示す例においては、上面5aに近接して作用部を構成する十字軸部材118を、縁部18Aに対して上下方向に移動調整可能な別体としている。   3 and 4, the positions of the cylindrical shaft member 10 and the cross shaft member 18 disposed in the central portion 8a are fixed with respect to the dielectric window 5, and the cylindrical shaft member 10 The interval between the end surface 10b of the cross shaft member 18 and the end surface 18e of the cross shaft member 18 and the upper surface 5a of the dielectric window 5 is a fixed predetermined interval G set in advance. On the other hand, in the example shown in FIG. 5A, the cylindrical shaft member 110 that constitutes the action portion in the vicinity of the upper surface 5a is a separate body that can be moved and adjusted in the vertical direction with respect to the hollow portion 10A. In the example shown in FIG. 5B, the cross shaft member 118 that constitutes the action portion in the vicinity of the upper surface 5a is a separate body that can be moved and adjusted in the vertical direction with respect to the edge portion 18A.

すなわち、ここに示す例では、電極8の中央支持軸である円筒軸部材10A,十字軸部材18Aの下部側の端面110a、118aが誘電体窓5の表面5aに近接して配置された容量アンテナ成分としての作用部は、円筒軸部材10A,十字軸部材18Aに対して上下方向に移動調整可能な別体で構成されている。このような構成を採用することにより、高周波電力印加装置9によって印加される高周波電力の大きさに応じて、端面110a、118aと誘電体窓5の上面5aとの間の距離Gを適正に調整することができ、容量アンテナ成分としての作用部の効果を所望の状態に設定することが可能となっている。   That is, in the example shown here, the capacitive antenna in which the end surfaces 110a and 118a on the lower side of the cylindrical shaft member 10A and the cross shaft member 18A, which are the central support shafts of the electrodes 8, are arranged close to the surface 5a of the dielectric window 5. The action portion as a component is configured as a separate body that can be moved and adjusted in the vertical direction with respect to the cylindrical shaft member 10A and the cross shaft member 18A. By adopting such a configuration, the distance G between the end surfaces 110a and 118a and the upper surface 5a of the dielectric window 5 is appropriately adjusted according to the magnitude of the high-frequency power applied by the high-frequency power application device 9. It is possible to set the effect of the action part as a capacitive antenna component to a desired state.

上記説明したように、図1〜図5に示す電極8の構成においては、高周波電力が印加され誘導アンテナ成分として機能するコイル部11に対して、容量アンテナ成分としての中央支持軸の下部側の端面(作用部)が並列接続される構成となる。このため、誘導アンテ
ナ成分としてのコイル部と容量アンテナ成分としての作用部との間で誘導成分が生じにくく、誘電体窓5の下面5bに堆積する、反応生成物の除去と基板4のエッチングレートとのバランス調整が容易となっている。
As described above, in the configuration of the electrode 8 shown in FIGS. 1 to 5, the coil portion 11 to which high-frequency power is applied and functions as an induction antenna component is disposed on the lower side of the central support shaft as a capacitive antenna component. It becomes the structure by which an end surface (action part) is connected in parallel. For this reason, an inductive component is hardly generated between the coil portion as the inductive antenna component and the action portion as the capacitive antenna component, and the reaction product deposited on the lower surface 5b of the dielectric window 5 is removed and the etching rate of the substrate 4 is increased. And balance adjustment is easy.

なお、図1〜図5に示す構成において、電極8の円筒軸部材10、十字軸部材18の端面10b、端面18eが近接した誘電体窓5の上面5aの位置に対向する下面5bの位置に、基板4が保持された載置部3に向かって開放する円筒状の凹部(図6に示す凹部21参照)を設けるとともに、この凹部の内部から基板4をエッチングするための反応ガスあるいは希ガスを噴出させるようにして、凹部内の内圧をチャンバー2内の誘電体窓5の下面5b付近の内圧よりも高めるようにしてもよい。これにより、基板4をエッチングする際の反応生成物が凹部内に進入しにくくなり、誘電体窓5への反応生成物が付着することを抑制して、光透過部5cの曇り発生を防止することができる。   1 to 5, the cylindrical shaft member 10 of the electrode 8, the end surface 10 b of the cross shaft member 18, and the end surface 18 e are positioned at the position of the lower surface 5 b opposite to the position of the upper surface 5 a of the dielectric window 5. In addition to providing a cylindrical recess (see recess 21 shown in FIG. 6) that opens toward the mounting portion 3 on which the substrate 4 is held, a reactive gas or a noble gas for etching the substrate 4 from the inside of the recess The internal pressure in the recess may be made higher than the internal pressure near the lower surface 5b of the dielectric window 5 in the chamber 2. This makes it difficult for the reaction product when etching the substrate 4 to enter the recess, and prevents the reaction product from adhering to the dielectric window 5 to prevent the light transmission portion 5c from being fogged. be able to.

(実施の形態2)
次に図6を参照して、本実施の形態2のプラズマ処理装置101の構成を説明する。図6において、チャンバー2は実施の形態1の図1に示すものと同様であり、処理室2aの下側には載置部3が設けられており、載置部3の上面には被処理体である基板4が保持される。なお、ここではチャンバー2の下部は図示を省略している。
(Embodiment 2)
Next, the configuration of the plasma processing apparatus 101 according to the second embodiment will be described with reference to FIG. In FIG. 6, the chamber 2 is the same as that shown in FIG. 1 of the first embodiment, and a mounting portion 3 is provided below the processing chamber 2a. The substrate 4 which is a body is held. Here, the lower part of the chamber 2 is not shown.

チャンバー2の上部には上部開口2bを封止して処理室2aを密封する誘電体窓105が、実施の形態1における電極8に対応する電極108の下方に位置して配設されている。電極108は、上部開口2bに臨むように配置され、高周波電力印加装置9によって高周波電力が印加される中央部108a側から、周辺部108b側に、複数のコイル部11がスパイラル状に巻き広がる形状を有している。但し電極108は、電極8における円筒軸部材10のような中央支持軸を有しておらず、点線の楕円形状枠12で示す誘導アンテナ成分のみを備えた構成となっている。   A dielectric window 105 that seals the processing chamber 2a by sealing the upper opening 2b is disposed above the chamber 2 so as to be positioned below the electrode 108 corresponding to the electrode 8 in the first embodiment. The electrode 108 is disposed so as to face the upper opening 2b, and has a shape in which a plurality of coil portions 11 are spirally wound from the central portion 108a side to which the high frequency power is applied by the high frequency power applying device 9 to the peripheral portion 108b side. have. However, the electrode 108 does not have a central support shaft like the cylindrical shaft member 10 in the electrode 8, and is configured to include only the induction antenna component indicated by the dotted oval frame 12.

電極108の上方には、実施の形態1と同様の光学測定器14が、測定光軸14aをチャンバー2の平面中心に一致させて配設されている。光学測定器14による測定あるいは観察は、中央部108aの平面視における隙間および誘電体窓105に設けられた光透過部(図2に示す光透過部5c参照)を介して光を透過させることにより行われる。誘電体窓105は、実施の形態1における誘電体窓5と同様に、石英やサファイアなど透明で光が透過可能な材質より成る。   Above the electrode 108, an optical measuring instrument 14 similar to that of the first embodiment is disposed with the measurement optical axis 14 a aligned with the plane center of the chamber 2. Measurement or observation by the optical measuring instrument 14 is performed by transmitting light through a gap in the plan view of the central portion 108a and a light transmitting portion provided in the dielectric window 105 (see the light transmitting portion 5c shown in FIG. 2). Done. The dielectric window 105 is made of a transparent material capable of transmitting light, such as quartz or sapphire, like the dielectric window 5 in the first embodiment.

本実施の形態2においては、ガス供給源7から供給される反応ガスは、誘電体窓105に形成されたシャワー状のガス供給経路20を介して処理室2a内に供給される。ガス供給経路20は、ガス供給源7に接続されて反応ガスを上部開口2bの中央位置まで導くガス導入孔20aと、ガス導入孔20aの端部が下方に屈曲した部分から水平方向に分岐するガス分岐孔20bと、ガス分岐孔20bから下方に分岐して誘電体窓105の下面105bに開孔し、反応ガスを処理室2a内に噴射する複数のガス噴射孔20cとで構成される。ガス導入孔20aの端部が、上部開口2bの中央位置において下方に屈曲して下面105bに開口する位置は、上述のガス供給経路20におけるガス吹き出し中央部となっている。このガス吹き出し中央部には、載置部3側に開放した円筒状の凹部21が設けられており、中央に位置するガス噴射孔20cは凹部21の底面21aに開孔している。   In the second embodiment, the reaction gas supplied from the gas supply source 7 is supplied into the processing chamber 2 a via the shower-like gas supply path 20 formed in the dielectric window 105. The gas supply path 20 is connected to the gas supply source 7 to guide the reaction gas to the central position of the upper opening 2b, and branches in a horizontal direction from a portion where the end of the gas introduction hole 20a is bent downward. A gas branch hole 20b and a plurality of gas injection holes 20c branched downward from the gas branch hole 20b and opened in the lower surface 105b of the dielectric window 105 to inject the reaction gas into the processing chamber 2a. The position where the end portion of the gas introduction hole 20a is bent downward at the center position of the upper opening 2b and opens to the lower surface 105b is the gas blowing center portion in the gas supply path 20 described above. A cylindrical concave portion 21 opened to the placement portion 3 side is provided in the central portion of the gas blowing, and the gas injection hole 20 c located in the center is opened in the bottom surface 21 a of the concave portion 21.

凹部21の底面21aは平面形状でかつ光が透過可能であり、底面21aは誘電体窓105に設けられた光透過部となっている。光学測定器14による測定あるいは観察のための光は、図7に示すように、凹部21の底面21aを透過する。ここで、前述のようにプラズマ処理のための反応ガスは誘電体窓105に形成されたガス供給経路を介して処理室2a内に供給され、中央に位置するガス噴射孔20cを介して凹部21内にも噴出する。   The bottom surface 21 a of the recess 21 has a planar shape and can transmit light, and the bottom surface 21 a is a light transmission portion provided in the dielectric window 105. The light for measurement or observation by the optical measuring instrument 14 passes through the bottom surface 21a of the recess 21 as shown in FIG. Here, as described above, the reactive gas for the plasma processing is supplied into the processing chamber 2a through the gas supply path formed in the dielectric window 105, and the recess 21 is formed through the gas injection hole 20c located in the center. It also erupts inside.

これにより、凹部21内の内圧P1は、処理室2aにおける誘電体窓105の下面105b付近の内圧P2よりも高くなる。具体数値例を挙げれば、下面105b付近の内圧P2は、処理室2a内の処理圧力とほぼ等しい圧力(例えば1.3pa程度)であり、凹部21内の内圧P1は粘性流領域(例えば229pa)となるように、ガス供給経路20,凹部21の形状・サイズやガス流量(例えば200sccm)が設定される。   As a result, the internal pressure P1 in the recess 21 is higher than the internal pressure P2 near the lower surface 105b of the dielectric window 105 in the processing chamber 2a. As a specific numerical example, the internal pressure P2 in the vicinity of the lower surface 105b is substantially equal to the processing pressure in the processing chamber 2a (for example, about 1.3 pa), and the internal pressure P1 in the recess 21 is a viscous flow region (for example, 229 pa). The shape and size of the gas supply path 20 and the recess 21 and the gas flow rate (for example, 200 sccm) are set so that

上述数値に示す内圧P2は分子流領域であり、基板4を対象としたエッチングを目的としたプラズマ処理において、基板4から飛散した反応生成物の微粒子は、処理室2a内を誘電体窓105の下面105bに向かって自由に移動する。これに対し上述数値に示す内圧P1の真空圧領域では、凹部21内に噴出された反応ガスは粘性流の性質を有しているため、処理室2a内から凹部21の内部に向かって移動する反応生成物の微粒子は、反応ガスの流れによって移動が阻害され、凹部21内部への進入が抑制される。すなわち凹部21の底面21aへの反応生成物の付着堆積が生じにくく、反応生成物の付着堆積に起因する曇りが発生せず、良好な光透過率が維持される。したがって、光学測定器14による測定・観察を常に正確に行うことができる。   The internal pressure P2 shown in the above numerical value is a molecular flow region, and in the plasma processing for the purpose of etching the substrate 4, reaction product fine particles scattered from the substrate 4 pass through the processing chamber 2a in the dielectric window 105. It moves freely toward the lower surface 105b. On the other hand, in the vacuum pressure region of the internal pressure P1 shown in the above-mentioned numerical value, the reaction gas ejected into the recess 21 has a viscous flow property, and thus moves from the inside of the processing chamber 2a toward the inside of the recess 21. Movement of the fine particles of the reaction product is hindered by the flow of the reaction gas, and entry into the recess 21 is suppressed. That is, the reaction product is hardly deposited on the bottom surface 21a of the recess 21 and fogging due to the reaction product is not generated, and a good light transmittance is maintained. Therefore, measurement and observation by the optical measuring instrument 14 can always be performed accurately.

すなわち、本実施の形態2に示すプラズマ処理装置101においては、誘電体窓105の下面105b側に、載置部3側に開放し平面形状でかつ光が透過可能な底面21aを有する円筒状の凹部21を設けるとともに、その内部から被処理体である基板4をエッチングするための反応ガスあるいは希ガスを噴出することで、凹部21内の内圧P1をチャンバー2内の誘電体窓105の下面105b付近の内圧P2より高めた形態となっている。   That is, in the plasma processing apparatus 101 shown in the second embodiment, a cylindrical shape having a bottom surface 21a that is open to the mounting portion 3 side, has a planar shape, and can transmit light, on the lower surface 105b side of the dielectric window 105. The recess 21 is provided, and a reactive gas or a rare gas for etching the substrate 4 as an object to be processed is ejected from the inside thereof, whereby the internal pressure P1 in the recess 21 is reduced to the lower surface 105b of the dielectric window 105 in the chamber 2. It has a form that is higher than the nearby internal pressure P2.

なお、低真空(100Pa以上)の領域は粘性流であり、粘性流領域では、分子どうしの衝突は十分にあり、反応ガスあるいは希ガスの気体は連続流体として、液体のような性質の考え方でとらえることが出来る。これにより誘電体窓105の下面105b側に開孔し、また誘電体窓105の凹部21の底面21aに開孔している中央に位置するガス噴射孔20cのガス流出(噴出)速度Voは、簡易的に下記計算式(式1)で表される。
Vo=Q*(101325/(P+△P))*(T/273)/(A*x)・・(式1)
Note that the low vacuum (100 Pa or higher) region is a viscous flow. In the viscous flow region, there is sufficient collision between molecules, and the reaction gas or rare gas is a continuous fluid with a liquid-like concept. Can be captured. As a result, the gas outflow (spout) velocity Vo of the gas injection hole 20c that is opened in the lower surface 105b side of the dielectric window 105 and that is opened in the bottom surface 21a of the recess 21 of the dielectric window 105 is It is simply expressed by the following calculation formula (Formula 1).
Vo = Q * (101325 / (P + ΔP)) * (T / 273) / (A * x) (1)

ここでガス噴射孔20cのガス流出(噴出)速度Vo=323m/s、ガス流量Q=200sccm=3.33*10−6/s、ガス温度T=300K、ガス噴射孔20cの流出口(噴出口)の断面積A=1*10−6、チャンバー2(下面105b付近の内圧P2)の圧力P=1.3P、誘電体窓105の下面105b側からチャンバー2内へ反応ガスあるいは希ガスを噴出するガス噴射孔20cのガス孔(噴出口)個数x=5個(その内の中央の1個が凹部21の底面21aに開孔しているガス噴射孔20cである)とした場合、上記式(式1)よりチャンバー2の圧力Pに対する流出部(噴出部)の圧力差△P(凹部21内の内圧P1)=229Paとなる。同様に、ガス孔(噴出口)個数xを1、4、8とした場合の流出部圧力△Pの値を、(表1)に示す。 Here, the gas outlet (outlet) speed Vo = 323 m / s, the gas flow rate Q = 200 sccm = 3.33 * 10 −6 m 3 / s, the gas temperature T = 300 K, the outlet of the gas injection hole 20 c. The cross-sectional area A = 1 * 10 −6 m 2 of the (outlet), the pressure P = 1.3P of the chamber 2 (internal pressure P2 near the lower surface 105b), the reaction gas from the lower surface 105b side of the dielectric window 105 into the chamber 2 Alternatively, the number of gas holes (spout ports) x = 5 in the gas injection holes 20c through which the rare gas is injected (the center one of them is the gas injection hole 20c opened in the bottom surface 21a of the recess 21) and In this case, from the above formula (formula 1), the pressure difference ΔP (internal pressure P1 in the recess 21) of the outflow portion (spout portion) with respect to the pressure P of the chamber 2 is 229 Pa. Similarly, (Table 1) shows the value of the outflow part pressure ΔP when the number x of gas holes (jet ports) is 1, 4, and 8.

Figure 2011086747
Figure 2011086747

またここで、誘電体窓105に設けられた光透過部である凹部21は、誘電体窓105内に構成されたシャワー状のガス供給経路20におけるガス吹き出し中央部に設けられていることから、ガス供給源7からガスが供給されてガス吹き出し中央部側から分岐され周囲に設けられた複数のガス噴射孔20cからの処理室2a内の周辺部への反応ガスの噴射をバランス良く行うことができる。これにより、処理室2a内において、電極108のコイル巻き密度が高い周辺部108bに対応した部分に均一に反応ガスを供給することができ、安定したプラズマ分布を実現することが可能となっている。   Further, here, the concave portion 21 which is a light transmitting portion provided in the dielectric window 105 is provided in the central part of the gas blowing in the shower-like gas supply path 20 configured in the dielectric window 105. It is possible to perform a well-balanced injection of reaction gas from the gas supply source 7 to the peripheral portion in the processing chamber 2a through the plurality of gas injection holes 20c branched from the gas blowing center side and provided in the periphery. it can. Thereby, in the processing chamber 2a, the reactive gas can be uniformly supplied to the portion corresponding to the peripheral portion 108b where the coil winding density of the electrode 108 is high, and a stable plasma distribution can be realized. .

なお図7に示す例では、誘電体窓105に設けられた凹部21において、反応ガスまたは希ガスを、底面21aから噴出させる例を示したが、図8に示すように、凹部21の円筒部分の側壁21bに開孔したガス噴射孔20dを設け、側壁21bから反応ガスまたは希ガスを、凹部21内に噴出させるようにしてもよい。これにより、凹部21内の内圧P1が誘電体窓105の下面105b付近の内圧P2より高められる。このとき、側壁21bから反応ガスが噴射されることから、凹部21内において横方向に流動する気体流が発生し、この気体流によって底面21aへの反応生成物の付着を効率よく防止することができる。   In the example shown in FIG. 7, the example in which the reactive gas or the rare gas is ejected from the bottom surface 21a in the concave portion 21 provided in the dielectric window 105 is shown. However, as shown in FIG. A gas injection hole 20d opened in the side wall 21b may be provided, and the reaction gas or the rare gas may be ejected into the recess 21 from the side wall 21b. Thereby, the internal pressure P1 in the recess 21 is made higher than the internal pressure P2 near the lower surface 105b of the dielectric window 105. At this time, since the reaction gas is injected from the side wall 21b, a gas flow that flows in the lateral direction is generated in the recess 21, and this gas flow effectively prevents the reaction product from adhering to the bottom surface 21a. it can.

さらに上述のように、ガス噴射孔20dから反応ガスを噴出する構成を採用する場合には、図9に示すように、光透過部である凹部21の底面21aに相当する誘電体窓105の一部を、交換可能な別部品とすることができる。すなわち図9(a)に示すように、誘電体窓105の上面105aにおいて、凹部21の上方に相当する部分を円形に除去して嵌合凹部105dを形成し、嵌合凹部105dに嵌合する形状で光が透過可能な材質より成る光透過部材25を準備する。そしてプラズマ処理装置101の稼働時には、図9(b)に示すように、光透過部材25を嵌合凹部105dに嵌合させ、シール部材26によって光透過部材25を密封する。   Further, as described above, when the configuration in which the reactive gas is ejected from the gas injection hole 20d is adopted, as shown in FIG. 9, one of the dielectric windows 105 corresponding to the bottom surface 21a of the concave portion 21 which is a light transmission portion. The part can be a separate replaceable part. That is, as shown in FIG. 9A, on the upper surface 105a of the dielectric window 105, a portion corresponding to the upper part of the concave portion 21 is removed in a circular shape to form a fitting concave portion 105d and fitted into the fitting concave portion 105d. A light transmitting member 25 made of a material that can transmit light in a shape is prepared. When the plasma processing apparatus 101 is in operation, the light transmitting member 25 is fitted into the fitting recess 105 d and the light transmitting member 25 is sealed by the seal member 26 as shown in FIG. 9B.

これにより、光透過部材25の下面が凹部21の底面21aとして機能する。このような構成とすることにより、装置稼働を長時間継続する場合において、スパッタリングによって誘電体窓105の下面105aが損耗した場合においても、光透過部材25のみを交換することによりチャンバ2内の光測定器14による光学的測定に際しての光透過率を良好に保つことができる。したがって、装置メンテナンスに必要とされる交換部品コストを低減することができるとともに、光透過部材25は上部側から容易に交換可能であることから、保守作業に要する時間と手間を短縮することができる。   Thereby, the lower surface of the light transmission member 25 functions as the bottom surface 21 a of the recess 21. By adopting such a configuration, when the operation of the apparatus is continued for a long time, even if the lower surface 105a of the dielectric window 105 is worn by sputtering, the light in the chamber 2 can be replaced by replacing only the light transmitting member 25. The light transmittance during optical measurement by the measuring instrument 14 can be kept good. Therefore, the cost of replacement parts required for apparatus maintenance can be reduced, and the light transmission member 25 can be easily replaced from the upper side, so that the time and labor required for maintenance work can be shortened. .

本発明のプラズマ処理装置は、誘電体窓に堆積する反応生成物の除去と被処理体のエッチングレートの安定性とを両立させることができるという効果を有し、基板などの被処理
体の表面をエッチング処理する分野に利用可能である。
The plasma processing apparatus of the present invention has an effect that it is possible to achieve both the removal of reaction products deposited on the dielectric window and the stability of the etching rate of the target object, and the surface of the target object such as a substrate. Can be used in the field of etching.

1、101 プラズマ処理装置
2 チャンバー
2a 処理室
2b 上部開口
3 載置部
4 基板
5、105 誘電体窓
8、108 電極
8a、108a 中央部
8b、108b 周辺部
10 円筒軸部材
10a 中空部
10b 端面
11、11a、11b、11c、11d コイル部
14 光学測定器
18 十字軸部材
18e 端面
20 ガス供給経路
21 凹部
21a 底面
21b 側壁
25 光透過部材
DESCRIPTION OF SYMBOLS 1,101 Plasma processing apparatus 2 Chamber 2a Processing chamber 2b Upper opening 3 Placement part 4 Substrate 5, 105 Dielectric window 8, 108 Electrode 8a, 108a Central part 8b, 108b Peripheral part 10 Cylindrical shaft member 10a Hollow part 10b End surface 11 11a, 11b, 11c, 11d Coil unit 14 Optical measuring device 18 Cross shaft member 18e End surface 20 Gas supply path 21 Recessed portion 21a Bottom surface 21b Side wall 25 Light transmitting member

Claims (5)

減圧可能なチャンバーと、前記チャンバーの内部の下側に設けられ被処理物が保持される載置部と、
前記チャンバーに設けられた上部開口に臨むように配置され、高周波電力が印加される中央部側から周辺部側に巻き広がる形状を有し、チャンバー内の反応ガスを誘導結合によりプラズマ化して前記載置部に保持された前記被処理物をエッチングするための電極と、
前記チャンバーの前記上部開口を封止して前記電極の下方に位置し透明で光を透過可能な透過部を有する誘電体窓と、
前記電極の上方に配置され、前記電極の平面視における隙間と前記誘電体窓の前記透過部とを介して、前記チャンバー内の前記被処理物を測定あるいは観察可能な光学測定器とを備え、
前記電極は、前記中央部に位置して高周波電力が上部側から印加される中央支持軸と、前記中央支持軸の上下方向の中間部の外周面より巻き広がる誘導アンテナ成分としてのコイル部と、前記中央支持軸の下部側の端面が前記誘電体窓の表面に近接して配置された容量アンテナ成分としての作用部を有することを特徴とするプラズマ処理装置。
A chamber capable of being depressurized, and a mounting portion that is provided on the lower side of the chamber and holds an object to be processed;
It is arranged so as to face the upper opening provided in the chamber, has a shape spreading from the central part side to which the high-frequency power is applied, to the peripheral part side, and the reaction gas in the chamber is converted into plasma by inductive coupling as described above An electrode for etching the object to be processed held in the mounting portion;
A dielectric window having a transparent portion that is transparent to transmit light and is located below the electrode by sealing the upper opening of the chamber;
An optical measuring instrument that is disposed above the electrode and is capable of measuring or observing the object to be processed in the chamber via a gap in a plan view of the electrode and the transmission part of the dielectric window;
The electrode is a central support shaft that is located at the center and to which high-frequency power is applied from the upper side, and a coil portion as an induction antenna component that extends from the outer peripheral surface of the intermediate portion in the vertical direction of the center support shaft, The plasma processing apparatus according to claim 1, wherein a lower end face of the central support shaft has an action portion as a capacitive antenna component disposed close to the surface of the dielectric window.
前記電極において、高周波電力が上部側周辺から印加される中央支持軸は中空形状からなり、誘導アンテナ成分としての前記コイル部は、前記中央支持軸の上部側周辺の高周波電力の印加位置から、前記中間部の外周面においてコイル部の高周波電力の偏りを防止するために設定される所定距離だけ上下方向に離れた位置より巻き広がること特徴とする請求項1記載のプラズマ処理装置。   In the electrode, the central support shaft to which the high frequency power is applied from the upper side periphery has a hollow shape, and the coil part as the induction antenna component is from the application position of the high frequency power around the upper side of the central support shaft, The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus spreads from a position separated in a vertical direction by a predetermined distance set in order to prevent bias of high-frequency power of the coil portion on the outer peripheral surface of the intermediate portion. 前記電極において、高周波電力が上部側の中央から印加される中央支持軸は中央から周辺に広がる放射形状からなり、前記中央支持軸の下部側の端面が前記誘電体窓の表面に近接して配置された容量アンテナ成分としての作用部であること特徴とする請求項1記載のプラズマ処理装置。   In the electrode, a central support shaft to which high-frequency power is applied from the center on the upper side has a radial shape extending from the center to the periphery, and an end surface on the lower side of the center support shaft is disposed close to the surface of the dielectric window. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is an action portion serving as a capacitive antenna component. 前記電極の前記中央支持軸の下部側の端面が前記誘電体窓の表面に近接して配置された容量アンテナ成分としての作用部は、前記中央支持軸に対して上下方向に移動調整可能な別体で構成されていること特徴とする請求項1から3いずれかに記載のプラズマ処理装置。   The acting portion as a capacitive antenna component in which the lower end surface of the central support shaft of the electrode is disposed close to the surface of the dielectric window is separately movable and adjustable with respect to the central support shaft. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is formed of a body. 前記電極の中空の前記中央支持軸の端面が近接した前記誘電体窓の電極側の表面の位置に対向する前記誘電体窓の下面側の位置に、前記被処理物が保持された載置部側に向かって開放する円筒状の凹部を設けるとともに、その内部から被処理物をエッチングするための反応ガスあるいは希ガスを噴出することで、円筒状の前記凹部の内圧を前記チャンバー内の誘電体窓の下面付近の内圧より高めたことを特徴とする請求項1から4いずれか記載のプラズマ処理装置。   The mounting portion in which the object to be processed is held at a position on the lower surface side of the dielectric window facing the position of the electrode side surface of the dielectric window in which the end surface of the hollow central support shaft of the electrode is close A cylindrical recess that opens toward the side is provided, and a reactive gas or a rare gas for etching the object to be processed is ejected from the inside, thereby reducing the internal pressure of the cylindrical recess to the dielectric in the chamber. 5. The plasma processing apparatus according to claim 1, wherein the pressure is higher than the internal pressure in the vicinity of the lower surface of the window.
JP2009238055A 2009-10-15 2009-10-15 Plasma processing equipment Active JP5310469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238055A JP5310469B2 (en) 2009-10-15 2009-10-15 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238055A JP5310469B2 (en) 2009-10-15 2009-10-15 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2011086747A true JP2011086747A (en) 2011-04-28
JP5310469B2 JP5310469B2 (en) 2013-10-09

Family

ID=44079488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238055A Active JP5310469B2 (en) 2009-10-15 2009-10-15 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5310469B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209885A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Plasma etching apparatus
JP2006073801A (en) * 2004-09-02 2006-03-16 Samco Inc Dielectric window anti-mist type plasma processing device
JP2006186222A (en) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd Plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209885A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Plasma etching apparatus
JP2006073801A (en) * 2004-09-02 2006-03-16 Samco Inc Dielectric window anti-mist type plasma processing device
JP2006186222A (en) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd Plasma processing apparatus

Also Published As

Publication number Publication date
JP5310469B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US10424461B2 (en) Controlling ion energy within a plasma chamber
KR102033120B1 (en) Plasma-treatment method
US9593421B2 (en) Particle generation suppressor by DC bias modulation
TWI579912B (en) Plasma processing device
KR101071513B1 (en) Baffle plate and substrate processing apparatus
JP4393844B2 (en) Plasma film forming apparatus and plasma film forming method
KR20150051879A (en) Plasma processing apparatus
JP2012129222A (en) Plasma processing apparatus
KR101750002B1 (en) Plasma processing device and plasma processing method
US20130045604A1 (en) Plasma processing apparatus and plasma processing method
EP1748465A3 (en) Plasma etching apparatus
JP5310469B2 (en) Plasma processing equipment
JP5152145B2 (en) Plasma processing equipment
JP5065725B2 (en) Plasma processing equipment
US7022937B2 (en) Plasma processing method and apparatus for performing uniform plasma processing on a linear portion of an object
KR102409660B1 (en) plasma processing unit
JP2005209885A (en) Plasma etching apparatus
JP2002252207A (en) High frequency power supply, plasma processing apparatus, inspection method of plasma processing apparatus and plasma processing method
WO2017217555A1 (en) Film forming device
KR20160106226A (en) Antenna for inductively coupled plasma processing apparatus
JP5846077B2 (en) Resin film patterning method and sensor manufacturing method using the same
US11094515B2 (en) Sputtering apparatus and sputtering method
JP2004214298A (en) Plasma treatment apparatus and observation window thereof
WO2024101024A1 (en) Plasma processing device
JP2006073801A (en) Dielectric window anti-mist type plasma processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5310469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151