JP2011086548A - Solid electrolyte - Google Patents

Solid electrolyte Download PDF

Info

Publication number
JP2011086548A
JP2011086548A JP2009239519A JP2009239519A JP2011086548A JP 2011086548 A JP2011086548 A JP 2011086548A JP 2009239519 A JP2009239519 A JP 2009239519A JP 2009239519 A JP2009239519 A JP 2009239519A JP 2011086548 A JP2011086548 A JP 2011086548A
Authority
JP
Japan
Prior art keywords
metal salt
solid electrolyte
alkaline earth
alkali metal
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009239519A
Other languages
Japanese (ja)
Inventor
Joji Oshita
浄治 大下
Tomonobu Mizukumo
智信 水雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2009239519A priority Critical patent/JP2011086548A/en
Publication of JP2011086548A publication Critical patent/JP2011086548A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide solid electrolyte for a secondary battery excellent in ionic conductivity. <P>SOLUTION: The solid electrolyte is structured from a complex of a highly coordinated typical element compound and alkali metal salt or alkaline earth metal salt. The highly coordinated typical element compound contained in the solid electrolyte is of an anion capturing property. Since it does not capture alkali metal ions nor alkaline earth metal ions dissociated from the alkali metal salt or the alkaline earth metal salt and does not hinder movement of the alkali metal ions or the alkaline earth metal ions, it can be used as solid electrolyte for the secondary battery such as a lithium ion secondary battery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池用の固体電解質に関する。   The present invention relates to a solid electrolyte for a secondary battery.

近年、携帯電話やノートパソコンに代表される情報携帯機器、屋外における使用頻度の高いデジタルカメラ等の携帯機器、あるいは携帯用医療器具などの普及に伴い、より軽量、小容積、安価で、また、安定して使用可能で、高出力な二次電池に対する需要が高まっており、リチウム二次電池が実用化されている。   In recent years, with the widespread use of portable information devices such as mobile phones and laptop computers, portable devices such as digital cameras that are frequently used outdoors, or portable medical devices, it is lighter, smaller in volume, cheaper, There is an increasing demand for secondary batteries that can be used stably and have high output, and lithium secondary batteries have been put into practical use.

小型電子・電気機器用に市販されているリチウムイオン二次電池の多くは、可燃性の有機溶媒を電解液として使用しており、この有機溶媒電解液の液漏れ、及び、それに伴う発火などの危険性を有している。よって、より安全な電解質材料が求められ、その解決策のひとつとして電解質に固体ポリマー複合体を用いる高分子固体電解質電池が注目されている。   Many of the lithium ion secondary batteries marketed for small electronic and electrical equipment use flammable organic solvents as electrolytes. The leakage of organic solvent electrolytes and the accompanying ignition, etc. There is a danger. Therefore, a safer electrolyte material is required, and a polymer solid electrolyte battery using a solid polymer composite as an electrolyte has attracted attention as one of the solutions.

これまでに研究されてきた高分子固体電解質のマトリックスポリマー骨格としては、ポリエーテル系、ポリエステル系、ポリアミン系及びポリスルフィド系がある。これらの中でも比較的高いイオン導電性を示すことが知られているポリエーテル系のポリマーが注目を集め、直鎖状のポリエチレンオキシド(PEO)或いはその構造中にPEO構造を含むものについて数多くの報告がなされている(例えば、特許文献1、非特許文献1)。   Matrix polymer skeletons of polymer solid electrolytes that have been studied so far include polyether-based, polyester-based, polyamine-based, and polysulfide-based. Among these, polyether polymers known to exhibit relatively high ionic conductivity have attracted attention, and many reports have been made on linear polyethylene oxide (PEO) or those containing a PEO structure in the structure. (For example, Patent Document 1 and Non-Patent Document 1).

特開2006−318674号公報JP 2006-318664 A

High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers;Atsushi Nishimoto,Masayoshi Watanabe,Yuko Ikeda and Shinzo Kohjiya;Electrochimica Acta,Vol.43,Nos10−11,pp.1177−1184,1998High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers; Atsushi Nishimoto, Masayoshi Watanabe, Yuko Ikeda and Shinzo Kohjiya; Electrochimica Acta, Vol. 43, Nos10-11, pp. 1177-1184, 1998

特許文献1に代表されるPEOは熱分解温度が低いことに加え、PEO分子中のエーテル酸素とリチウムイオン間の双極子/イオン相互作用が強いため、カチオン捕捉性が強い。このため、リチウムイオンがPEOに捕捉されやすく、負極−正極間におけるリチウムイオンの速やかな移動が阻害されるので、充放電効率が低いという問題があった。   PEO represented by Patent Document 1 has a high cation scavenging property because it has a low thermal decomposition temperature and a strong dipole / ion interaction between ether oxygen and lithium ions in the PEO molecule. For this reason, lithium ions are easily captured by PEO, and the rapid movement of lithium ions between the negative electrode and the positive electrode is hindered, resulting in low charge / discharge efficiency.

本発明は、上記事項に鑑みてなされたものであり、その目的とするところは、イオン伝導度とカチオン輸送性に優れる二次電池用の固体電解質を提供することにある。   This invention is made | formed in view of the said matter, The place made into the objective is to provide the solid electrolyte for secondary batteries which is excellent in ion conductivity and cation transportability.

本発明に係る固体電解質は、
アルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物との複合体から構成されることを特徴とする。
The solid electrolyte according to the present invention is:
It is composed of a complex of an alkali metal salt or alkaline earth metal salt and a highly coordinated typical element compound.

また、前記高配位典型元素化合物が高配位ケイ素化合物であることが好ましい。   The highly coordinated typical element compound is preferably a highly coordinated silicon compound.

また、前記高配位ケイ素化合物がシラトランであることが好ましい。   The highly coordinated silicon compound is preferably silatrane.

また、前記シラトランがアルコキシシラトラン類又はアルキルシラトラン類であることが好ましい。   The silatrane is preferably an alkoxysilatrane or an alkylsilatrane.

また、前記アルカリ金属塩がリチウム塩であることが好ましい。   The alkali metal salt is preferably a lithium salt.

また、前記アルカリ土類金属塩がマグネシウム塩であることが好ましい。   The alkaline earth metal salt is preferably a magnesium salt.

本発明に係る固体電解質は、アルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物との固体状の複合体から構成される。この固体電解質に含まれている高配位典型元素化合物はアニオン捕捉性であり、アルカリ金属イオン或いはアルカリ土類金属イオン等のカチオンを捕捉しない。このため、アルカリ金属イオン或いはアルカリ土類金属イオンの移動を妨げず、負極−正極間におけるリチウムイオン等、カチオンの移動を速やかに進行させることができる。   The solid electrolyte according to the present invention is composed of a solid composite of an alkali metal salt or alkaline earth metal salt and a highly coordinated typical element compound. The highly coordinated typical element compound contained in the solid electrolyte has an anion scavenging property and does not trap cations such as alkali metal ions or alkaline earth metal ions. For this reason, the movement of cations such as lithium ions between the negative electrode and the positive electrode can be rapidly advanced without hindering the movement of alkali metal ions or alkaline earth metal ions.

実施例における各複合体のイオン伝導度を示すグラフである。It is a graph which shows the ionic conductivity of each composite_body | complex in an Example.

本実施の形態に係る固体電解質は、アルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物との複合体から構成される。   The solid electrolyte according to the present embodiment is composed of a complex of an alkali metal salt or alkaline earth metal salt and a highly coordinated typical element compound.

アルカリ金属塩又はアルカリ土類金属塩として種々の塩が用いられる。アルカリ金属塩の具体例としては、LiF、LiN(CFSO、LiPF、LiBF、LiCFSO、LiC(CFSO、LiC(CH)(CFSO、LiCH(CFSO、LiCH(CFSO)、LiCSO、LiN(CSO、LiB(CFSO、LiClO、LiI、LiSCN、LiAsF、LiCFCO等のリチウム塩、NaCFSO、NaPF、NaClO、NaI、NaBF、NaAsF、NaSCN、NaClO等のナトリウム塩、KCFSO、KPF、KI、KBF等のカリウム塩が挙げられる。 Various salts are used as the alkali metal salt or alkaline earth metal salt. Specific examples of the alkali metal salt include LiF, LiN (CF 3 SO 2 ) 2 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiC (CF 3 SO 2 ) 3 , LiC (CH 3 ) (CF 3 SO 2 ) 2 , LiCH (CF 3 SO 2 ) 2 , LiCH 2 (CF 3 SO 2 ), LiC 2 F 5 SO 3 , LiN (C 2 F 5 SO 2 ) 2 , LiB (CF 3 SO 2 ) 2 , LiClO 4 , LiI, LiSCN, LiAsF 6 , LiCF 3 CO 3 and other lithium salts, NaCF 3 SO 3 , NaPF 6 , NaClO 4 , NaI, NaBF 4 , NaAsF 6 , NaSCN, NaClO 3 and other sodium salts, KCF 3 SO 3 , Examples thereof include potassium salts such as KPF 6 , KI, KBF 4 and the like.

また、アルカリ土類金属塩の具体例としては、MgCl、Mg(ClO、Mg(ClO、Mg(BF、Mg(SOCF)等のマグネシウム塩が挙げられる。 Specific examples of the alkaline earth metal salt include magnesium salts such as MgCl 2 , Mg (ClO 4 ) 2 , Mg (ClO 4 ) 2 , Mg (BF 4 ) 2 , and Mg (SO 3 CF 3 ). It is done.

高配位典型元素化合物として、高配位ケイ素化合物が挙げられる。この高配位ケイ素化合物としてシラトランが挙げられる。シラトランは、極性ケイ素分子化合物であり、5配位ケイ素と4配位窒素を有する三翼かご型構造の化合物である。シラトランの具体例としては、例えば、エトキシシラトラン、ブトキシシラトラン等のアルコキシシラトラン類やアルキルシラトラン類が挙げられる。   Examples of the highly coordinated typical element compound include a highly coordinated silicon compound. An example of this highly coordinated silicon compound is silatrane. Silatrane is a polar silicon molecular compound and a compound with a three-wing cage structure having pentacoordinate silicon and tetracoordinate nitrogen. Specific examples of silatrane include alkoxysilatranes and alkylsilatranes such as ethoxysilatrane and butoxysilatrane.

シラトランは、分子内の窒素→ケイ素配位結合の方向に大きな双極子モーメントを有し、高い極性を有する。シラトランに代表されるように、高配位典型元素化合物は分子内の配位結合によって極性を有するため、複合体においてアルカリ金属塩又はアルカリ土類金属塩のイオン解離が生じやすい。   Silatrane has a large dipole moment in the direction of nitrogen → silicon coordination bond in the molecule and has a high polarity. As typified by silatrane, a highly coordinated typical element compound has polarity due to a coordination bond in the molecule, and therefore, ion dissociation of alkali metal salt or alkaline earth metal salt is likely to occur in the complex.

また、高配位典型元素化合物はアニオン捕捉性である。リチウムイオン二次電池等の二次電池では、リチウム塩から解離したリチウムイオン等のカチオンが負極−正極間を移動することで二次電池として機能するが、高配位典型元素化合物が解離したカチオンを捕捉しないため、負極−正極間におけるカチオンの行き来が速やかに進行する。   Further, the highly coordinated typical element compound has an anion scavenging property. In secondary batteries such as lithium ion secondary batteries, cations such as lithium ions dissociated from lithium salts function as secondary batteries by moving between the negative electrode and the positive electrode. Is not captured, the cation travels between the negative electrode and the positive electrode quickly.

したがって、高配位典型元素化合物とアルカリ金属塩又はアルカリ土類金属塩との複合体は、リチウムイオン二次電池に代表される二次電池の電解質として用いることができる。   Therefore, a complex of a highly coordinated typical element compound and an alkali metal salt or alkaline earth metal salt can be used as an electrolyte of a secondary battery typified by a lithium ion secondary battery.

また、複合体は固体状であるため、二次電池の電解質として用いた場合でも液漏れ及びそれに伴う発火等の危険性がなく、更には熱的安定性にも優れるため、安全な二次電池の実用化につながる。   In addition, since the composite is in a solid state, there is no risk of liquid leakage and accompanying ignition even when it is used as an electrolyte for a secondary battery, and it is also excellent in thermal stability. Leads to practical application of

なお、固体電解質を構成する複合体は高配位典型元素化合物とアルカリ金属塩又はアルカリ土類金属塩とが均一に分布していることが好ましく、これにより、優れたイオン伝導度を示すことになる。   In the composite constituting the solid electrolyte, it is preferable that the highly coordinated typical element compound and the alkali metal salt or alkaline earth metal salt are uniformly distributed, thereby exhibiting excellent ionic conductivity. Become.

上記固体電解質を構成する複合体は、例えば、以下のようにして得ることができる。   The composite which comprises the said solid electrolyte can be obtained as follows, for example.

それぞれ所定量のアルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物とを溶媒に添加し、溶媒中に双方を均一溶解させた後、溶媒を留去することで複合体を得ることができる。   A composite is obtained by adding a predetermined amount of an alkali metal salt or alkaline earth metal salt and a highly coordinated typical element compound to a solvent, and uniformly dissolving both in the solvent, and then distilling off the solvent. Can do.

溶媒としてアルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物とが均一に溶解するものを用いればよく、例えば、テトラヒドロフラン(THF)等の極性溶媒を用いればよい。   What is necessary is just to use what melt | dissolves an alkali metal salt or alkaline-earth metal salt and a highly coordinated typical element compound uniformly as a solvent, for example, polar solvents, such as tetrahydrofuran (THF), may be used.

アルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物との混合比について、特に制限はないが、高配位典型元素化合物の配合比が10重量%未満だと、溶媒中に塩が析出してしまうので、高配位典型元素化合物を10重量%以上とすることが好ましい。   The mixing ratio of the alkali metal salt or alkaline earth metal salt and the highly coordinated typical element compound is not particularly limited. However, if the compounding ratio of the highly coordinated typical element compound is less than 10% by weight, the salt is contained in the solvent. Since it will precipitate, it is preferable that a highly coordinated typical element compound shall be 10 weight% or more.

なお、アルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物とを複合化することができれば、上記の方法に限られない。   Note that the method is not limited to the above as long as the alkali metal salt or alkaline earth metal salt can be combined with the highly coordinated typical element compound.

高配位典型元素化合物としてブトキシシラトラン、リチウム塩としてビス(トリフルオロスルホニル)イミドリチウム(LiN(CFSO)を用いて複合体を作製し、イオン伝導度を測定した。 A composite was prepared using butoxysilatran as the highly coordinated typical element compound and bis (trifluorosulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ) as the lithium salt, and the ionic conductivity was measured.

まず、ブトキシシラトランとLiN(CFSOを乾燥テトラヒドロフラン(THF)中に添加し、均一溶解させた。その後、THFを留去することで、固体状の複合体を得た。 First, butoxysilatrane and LiN (CF 3 SO 2 ) 2 were added to dry tetrahydrofuran (THF) and uniformly dissolved. Thereafter, THF was distilled off to obtain a solid complex.

ブトキシシラトランとLiN(CFSOの配合比は、重量%比でそれぞれ100:0、90:10、75:25、50:50として調整した。以下、それぞれの複合体を複合体A1、複合体A2、複合体A3、複合体A4と記す。 The compounding ratio of butoxysilatrane and LiN (CF 3 SO 2 ) 2 was adjusted to be 100: 0, 90:10, 75:25, and 50:50, respectively, in weight% ratio. Hereinafter, the respective complexes are referred to as a complex A1, a complex A2, a complex A3, and a complex A4.

上記の複合体A1、A2、A3、A4の物性値を測定するとともに、複合体A2、A3、A4のイオン伝導度を測定した。   While measuring the physical property value of said composite_body | complex A1, A2, A3, A4, the ion conductivity of composite_body | complex A2, A3, A4 was measured.

表1に、複合体A1、A2、A3、A4の配合比、イオン伝導度(σ)、ガラス転位点(T)、融点(T)、分解点(T)、外観を示す。

Figure 2011086548
Table 1 shows the compounding ratio, ionic conductivity (σ i ), glass transition point (T g ), melting point (T m ), decomposition point (T d ), and appearance of the composites A1, A2, A3, and A4.
Figure 2011086548

また、参考例として、非特許文献1に記載されているP(EO/MEEGE)−5とLiN(CFSOの複合体(以下、複合体Bと記す)の配合比等を引用して表2に示す。なお、P(EO/MEEGE)−5は、エチレンオキサイドと2−(2−methoxyethoxy)ethyl glycidyl etherとを重合させ、エチレンオキサイドの主鎖に分岐鎖(−CHOCHOCHCHOCH)が導入されたポリマーであり、エチレンオキサイドと2−(2−methoxyethoxy)ethyl glycidyl etherとの組成比は95:5である。そして、複合体BにおけるP(EO/MEEGE)−5とLiN(CFSOの配合比は、重量%比で66:33である。

Figure 2011086548
In addition, as a reference example, the compounding ratio of a composite of P (EO / MEEGE) -5 and LiN (CF 3 SO 2 ) 2 (hereinafter referred to as composite B) described in Non-Patent Document 1 is cited. Table 2 shows. In addition, P (EO / MEEGE) -5 polymerizes ethylene oxide and 2- (2-methoxyethyl) ethyl glycidyl ether, and branches to the main chain of ethylene oxide (—CH 2 OCH 2 OCH 2 CH 2 OCH 3 ) And a composition ratio of ethylene oxide and 2- (2-methoxyethyl) ethyl glycidyl ether is 95: 5. Then, P (EO / MEEGE) -5 and LiN (CF 3 SO 2) 2 of the mixing ratio in the complex B is a 66:33 by weight percent ratio.
Figure 2011086548

また、図1に測定した複合体A2、A3、A4のイオン伝導度を示す。なお、図1には、複合体Bのイオン伝導度も非特許文献1から引用して示している。   Moreover, the ionic conductivity of composite_body | complex A2, A3, A4 measured in FIG. 1 is shown. In FIG. 1, the ionic conductivity of the composite B is also quoted from Non-Patent Document 1.

図1を見ると、複合体A2〜A4のイオン伝導度は、60℃以上の温度域において、複合体Bのイオン伝導度よりも高いことがわかる。また、表1の分解点(Td)を見ると、複合体A2、A3では200℃程度と、熱的安定性にも優れていることがわかる。このように、本実施例における複合体A2〜A4は温度依存性を有するものの、高温動作型のリチウムイオン二次電池の固体電解質として用い得ることがわかる。   When FIG. 1 is seen, it turns out that the ionic conductivity of composite_body | complex A2-A4 is higher than the ionic conductivity of composite_body | complex B in the temperature range of 60 degreeC or more. Moreover, when the decomposition point (Td) of Table 1 is seen, it turns out that composite A2 and A3 are also excellent in thermal stability at about 200 degreeC. Thus, it can be seen that the composites A2 to A4 in this example can be used as a solid electrolyte of a high-temperature operation type lithium ion secondary battery, although they have temperature dependency.

以上、説明したように、本発明に係る固体電解質は、高配位典型元素化合物とアルカリ金属塩又はアルカリ土類金属塩との固体状の複合体から構成されている。固体電解質に含まれる高配位典型元素化合物は、アルカリ金属イオン或いはアルカリ土類金属イオンを捕捉しないため、アルカリ金属イオン或いはアルカリ土類金属イオンの移動を妨げない。このため、リチウムイオン二次電池等、二次電池の固体電解質として利用することが可能である。   As described above, the solid electrolyte according to the present invention is composed of a solid complex of a highly coordinated typical element compound and an alkali metal salt or alkaline earth metal salt. Since the highly coordinated typical element compound contained in the solid electrolyte does not capture alkali metal ions or alkaline earth metal ions, it does not hinder the movement of alkali metal ions or alkaline earth metal ions. For this reason, it can be used as a solid electrolyte of a secondary battery such as a lithium ion secondary battery.

Claims (6)

アルカリ金属塩又はアルカリ土類金属塩と高配位典型元素化合物との複合体から構成されることを特徴とする固体電解質。   A solid electrolyte comprising a composite of an alkali metal salt or alkaline earth metal salt and a highly coordinated typical element compound. 前記高配位典型元素化合物が高配位ケイ素化合物であることを特徴とする請求項1に記載の固体電解質。   The solid electrolyte according to claim 1, wherein the highly coordinated typical element compound is a highly coordinated silicon compound. 前記高配位ケイ素化合物がシラトランであることを特徴とする請求項2に記載の固体電解質。   The solid electrolyte according to claim 2, wherein the highly coordinated silicon compound is silatrane. 前記シラトランがアルコキシシラトラン類又はアルキルシラトラン類であることを特徴とする請求項3に記載の固体電解質。   The solid electrolyte according to claim 3, wherein the silatrane is an alkoxysilatrane or an alkylsilatrane. 前記アルカリ金属塩がリチウム塩であることを特徴とする請求項1乃至4のいずれかに記載の固体電解質。   The solid electrolyte according to any one of claims 1 to 4, wherein the alkali metal salt is a lithium salt. 前記アルカリ土類金属塩がマグネシウム塩であることを特徴とする請求項1乃至4のいずれかに記載の固体電解質。   The solid electrolyte according to claim 1, wherein the alkaline earth metal salt is a magnesium salt.
JP2009239519A 2009-10-16 2009-10-16 Solid electrolyte Pending JP2011086548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239519A JP2011086548A (en) 2009-10-16 2009-10-16 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239519A JP2011086548A (en) 2009-10-16 2009-10-16 Solid electrolyte

Publications (1)

Publication Number Publication Date
JP2011086548A true JP2011086548A (en) 2011-04-28

Family

ID=44079342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239519A Pending JP2011086548A (en) 2009-10-16 2009-10-16 Solid electrolyte

Country Status (1)

Country Link
JP (1) JP2011086548A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376581A1 (en) * 2017-03-13 2018-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte and secondary battery
CN113517471A (en) * 2021-05-18 2021-10-19 中节能万润股份有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
EP4141991A1 (en) * 2021-08-24 2023-03-01 SK On Co., Ltd. Electrolyte solution for secondary battery and secondary battery including the same
US11955604B2 (en) * 2022-04-27 2024-04-09 Sk On Co., Ltd. Electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376581A1 (en) * 2017-03-13 2018-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte and secondary battery
CN108574113A (en) * 2017-03-13 2018-09-25 松下知识产权经营株式会社 Solid electrolyte and the secondary cell for using the solid electrolyte
JP2018152325A (en) * 2017-03-13 2018-09-27 パナソニックIpマネジメント株式会社 Solid electrolyte and secondary battery using the same
US10686216B2 (en) 2017-03-13 2020-06-16 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte having filler embedded in alkaline-earth metal containing matrix, and secondary battery including the same
JP7018571B2 (en) 2017-03-13 2022-02-14 パナソニックIpマネジメント株式会社 Solid electrolyte and secondary battery using it
CN113517471A (en) * 2021-05-18 2021-10-19 中节能万润股份有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
CN113517471B (en) * 2021-05-18 2022-07-22 中节能万润股份有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
EP4141991A1 (en) * 2021-08-24 2023-03-01 SK On Co., Ltd. Electrolyte solution for secondary battery and secondary battery including the same
US20230080189A1 (en) * 2021-08-24 2023-03-16 Sk On Co., Ltd. Electrolyte Solution for Secondary Battery and Secondary Battery Including the Same
US11955604B2 (en) * 2022-04-27 2024-04-09 Sk On Co., Ltd. Electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
Didwal et al. An advanced solid polymer electrolyte composed of poly (propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries
Zhang et al. Progress in electrolytes for beyond-lithium-ion batteries
Li et al. Electrolytes in organic batteries
Chen et al. Functional additives for solid polymer electrolytes in flexible and high‐energy‐density solid‐state lithium‐ion batteries
Ponrouch et al. Non-aqueous electrolytes for sodium-ion batteries
CN102208680B (en) Gel electrolyte and preparation method thereof and corresponding anode and lithium sulfur battery
CN108140891B (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP5058229B2 (en) Electrolyte for lithium secondary battery and rechargeable lithium battery
Katorova et al. Effect of concentrated diglyme-based electrolytes on the electrochemical performance of potassium-ion batteries
Zhang et al. Organic electrolyte design for rechargeable batteries: From lithium to magnesium
Zhang et al. From lithium to emerging mono-and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives
Nykaza et al. Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery
Aziam et al. Solid-state electrolytes for beyond lithium-ion batteries: A review
Verma et al. Recent progress in electrolyte development and design strategies for next‐generation potassium‐ion batteries
Man et al. Research development on electrolytes for magnesium-ion batteries
Ma et al. Ionic liquid/poly (ionic liquid)-based electrolytes for lithium batteries
Kulkarni et al. Recent progress in ‘water-in-salt’and ‘water-in-salt’-hybrid-electrolyte-based high voltage rechargeable batteries
Zhu et al. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries
JP2005158695A (en) Polyfluorinated boron cluster anion for lithium electrolyte
Aravindan et al. A novel gel electrolyte with lithium difluoro (oxalato) borate salt and Sb2O3 nanoparticles for lithium ion batteries
Jia et al. Insight into the key factors in high Li+ transference number composite electrolytes for solid lithium batteries
Wang et al. Electrolyte design for rechargeable anion shuttle batteries
Feng et al. Role of dinitrile plasticizer chain lengths in electrochemical performance of highly conductive polymer electrolyte membrane for lithium ion battery
Shaji et al. Multisalt chemistry in ion transport and interface of lithium metal polymer batteries
CN109585754A (en) Composite membrane for lithium battery, the anode for lithium battery and the lithium battery including the composite membrane