JP2011086114A - Conductive fabric, and touch panel using conductive fabric - Google Patents

Conductive fabric, and touch panel using conductive fabric Download PDF

Info

Publication number
JP2011086114A
JP2011086114A JP2009238395A JP2009238395A JP2011086114A JP 2011086114 A JP2011086114 A JP 2011086114A JP 2009238395 A JP2009238395 A JP 2009238395A JP 2009238395 A JP2009238395 A JP 2009238395A JP 2011086114 A JP2011086114 A JP 2011086114A
Authority
JP
Japan
Prior art keywords
conductive
yarn
signal
region
weft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238395A
Other languages
Japanese (ja)
Other versions
JP5493070B2 (en
Inventor
Koya Ohara
鉱也 大原
Hirotaka Mizuno
寛隆 水野
Masato Hoshino
正人 星野
Tatsuji Ikeguchi
達治 池口
Yuki Shimagami
祐樹 島上
Shoji Yamamoto
昌治 山本
Takahiro Horiba
隆広 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Prefecture
Tsuchiya KK
Original Assignee
Aichi Prefecture
Tsuchiya KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Prefecture, Tsuchiya KK filed Critical Aichi Prefecture
Priority to JP2009238395A priority Critical patent/JP5493070B2/en
Publication of JP2011086114A publication Critical patent/JP2011086114A/en
Application granted granted Critical
Publication of JP5493070B2 publication Critical patent/JP5493070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fabric having a woven structure devised for accurately detecting a touch position, and to provide a flexible touch panel device having a signal detection circuit suitable for the structure of the conductive fabric and using the conductive fabric as a touch panel. <P>SOLUTION: The conductive fabric 10 has an interlaced woven structure composed of a warp wherein a conductive warp area 16 constituted by vertically extending conductive yarns 12 and an insulating warp area constituted by vertically extending insulating yarns 14 are alternately arranged in the horizontal direction, and a weft wherein a conductive weft area 20 constituted by horizontally extending conductive yarns 12 and an insulating weft area 22 constituted by horizontally extending insulating yarns 14 are alternately arranged in the vertical direction, wherein the conductive yarns 12 are separated from each other by the insulating yarns 14. Then, a cell 24 formed with the vertical conducting yarns 12 and the horizontal conductive yarns 12 weaved thereinto at an intersection of the conductive warp area 16 and the conductive weft area 20 is allowed to function as a touch sensor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は導電性織物及び導電性織物を使用したタッチパネル装置に関する。さらに詳しくは、タッチ位置を正確に検出するために工夫された織り構造を有する導電性織物、及び、該導電性織物をタッチセンサに使用し、該導電性織物の構造に適した信号検出回路を備えたフレキシブルなタッチパネル装置に関する。   The present invention relates to a conductive fabric and a touch panel device using the conductive fabric. More specifically, a conductive fabric having a woven structure devised to accurately detect a touch position, and a signal detection circuit suitable for the structure of the conductive fabric using the conductive fabric as a touch sensor. The present invention relates to a flexible touch panel device provided.

従来技術であるフレキシブル性のあるタッチパネルは、タッチセンサが、特許文献1に記載のセンサのように樹脂基板上に構成されたものが多く、変化が緩やかな曲面には追随することはできるが、球面や自由曲面に追随することは困難である。
そこで、球面や自由曲面に追随できるタッチパネルとして、布製のタッチセンサを用いたタッチパネルが提案されている。特許文献2及び特許文献3には、導電性繊維を絶縁体で覆った導電糸を縦横に織り込んだ布をタッチセンサとして使用することが報告されている。特許文献2及び特許文献3に記載された導電性繊維を織り込んだ布は、物体が布に接触した時の導電性繊維の間の距離変化による静電容量の変化を検出することにより、タッチセンサとして作動させることができるものである。
As for the flexible touch panel which is a conventional technique, the touch sensor is often configured on a resin substrate like the sensor described in Patent Document 1, and can follow a curved surface with a gradual change. It is difficult to follow a spherical surface or a free-form surface.
Therefore, a touch panel using a cloth touch sensor has been proposed as a touch panel that can follow a spherical surface or a free-form surface. In Patent Document 2 and Patent Document 3, it is reported that a cloth in which conductive yarns in which conductive fibers are covered with an insulator are woven vertically and horizontally is used as a touch sensor. A cloth woven with conductive fibers described in Patent Document 2 and Patent Document 3 detects a change in capacitance due to a change in distance between the conductive fibers when an object comes into contact with the cloth. Can be operated as

国際公開番号WO2002/073148号公報International Publication Number WO2002 / 073148 特開2006−234716号公報JP 2006-234716 A 特開2008−170425号公報JP 2008-170425 A

しかしながら、上記のタッチセンサの織り構造では、隣り合った導電糸同士の静電容量の結合が無視できず、布全体としてはタッチセンサとして機能するが、タッチした場所を特定できるタッチパネルとして機能させることは難しい。   However, in the touch sensor weave structure described above, the capacitive coupling between adjacent conductive yarns cannot be ignored, and the entire cloth functions as a touch sensor, but it functions as a touch panel that can identify the touched location. Is difficult.

そこで、本発明が解決しようとする課題は、タッチ位置を正確に検出するために工夫された織り構造を有する導電性織物を提供することである。そして、該導電性織物の構造に適した信号検出回路を備え、該導電性織物をタッチパネルとして用いたフレキシブルなタッチパネル装置を提供することである。   Therefore, the problem to be solved by the present invention is to provide a conductive fabric having a woven structure devised to accurately detect a touch position. And it is providing the flexible touch panel apparatus provided with the signal detection circuit suitable for the structure of this conductive fabric, and using this conductive fabric as a touch panel.

従来の導電性織物では、全ての糸に導電性繊維が入っており、導電糸同士の静電容量の結合が無視できなかった。そこで、本願の発明者は鋭意検討の結果、導電糸同士の静電容量の結合を小さくするために、絶縁性の糸により導電糸同士を分離する、導電糸の間引き織り構造を有する導電性織物を発明した。
そこで、本発明の第1の発明は、導電性織物であって、
縦方向に延びる複数本の導電糸を横方向に並べた導電縦糸域と、縦方向に延びる複数本の絶縁糸を横方向に並べた絶縁縦糸域とが、横方向に交互に並べられた縦糸と、
横方向に延びる複数本の導電糸を縦方向に並べた導電横糸域と、横方向に延びる複数本の絶縁糸を縦方向に並べた絶縁横糸域とが、縦方向に交互に並べられた横糸とを備え、
導電縦糸域と導電横糸域との交差位置で、縦方向の導電糸と横方向の導電糸とが織り合わされて形成されるセルを、タッチセンサとして機能させることができる導電性織物である。
In the conventional conductive fabric, conductive fibers are contained in all yarns, and the coupling of electrostatic capacitance between the conductive yarns cannot be ignored. Accordingly, as a result of intensive studies, the inventors of the present application have conducted a conductive woven fabric having a thinned-out weaving structure of conductive yarns, in which conductive yarns are separated by insulating yarns in order to reduce the capacitance coupling between the conductive yarns. Was invented.
Therefore, the first invention of the present invention is a conductive fabric,
A warp yarn in which a plurality of conductive yarns extending in the longitudinal direction are arranged in the transverse direction and an insulating warp region in which a plurality of insulation yarns extending in the longitudinal direction are arranged in the transverse direction are alternately arranged in the transverse direction. When,
Weft yarn in which a plurality of electrically conductive yarns extending in the transverse direction are arranged in the longitudinal direction and an electrically conductive weft region in which a plurality of insulation yarns extending in the transverse direction are arranged in the longitudinal direction are alternately arranged in the longitudinal direction And
It is a conductive fabric that can function as a touch sensor in a cell formed by weaving a conductive yarn in the vertical direction and a conductive yarn in the horizontal direction at the intersection of the conductive warp region and the conductive weft region.

この第1の発明によれば、導電性織物は、縦糸の導電糸についても、横糸の導電糸についても絶縁糸により分離されて、間引き織り構造とされているので、導電糸同士の静電容量の結合を小さくすることができる。そのため、タッチ位置から離れた部分では静電容量の変化が少なくなる。そして、縦糸の導電糸と横糸の導電糸が織り合わされたセルでは2方向の導電糸が近接しているので、セルにタッチした場合は他の部位にタッチした場合に比べて静電容量の変化が大きい。この、導電性織物の間引き織り構造による静電容量の変化特性を利用することにより、導電性織物のセルをタッチセンサとして機能させることが可能となる。   According to the first aspect of the present invention, the conductive fabric is separated from the warp conductive yarn and the weft conductive yarn by the insulating yarn to form a thinned woven structure. Can be reduced. For this reason, the change in capacitance is reduced at a portion away from the touch position. In a cell in which warp conductive yarn and weft conductive yarn are interwoven, the conductive yarns in two directions are close to each other. Therefore, when the cell is touched, the capacitance changes compared to the case where the other part is touched. Is big. By utilizing the capacitance change characteristic due to the thin-out weaving structure of the conductive fabric, it becomes possible to function the cell of the conductive fabric as a touch sensor.

次に、本願の発明者は、上記の導電性織物をタッチパネルとして機能させるための回路構成について検討した。静電容量の変化を検出する手法としては、例えばCR発振の周波数変化を見る方法があるが、間引き織り構造の場合、隣り合うセル同士が電気的につながっているため混線してしまい正確な測定ができない。そこで、本願の発明者は、鋭意検討の結果、導電性織物の電気的につながった複数のセルの静電容量の変化を得るために、縦糸または横糸のうち一方の導電糸に周期信号を印加し、周期信号を印加しなかった導電糸から得られた信号との信号差を検出する方式を使用する信号検出回路を発明した。
そこで、本発明の第2の発明は、上記第1の発明に係る導電性織物に形成されたセルをタッチセンサとして使用するタッチパネル装置であって、
導電縦糸域または導電横糸域のいずれか一方の導電糸域の導電糸に導電糸域毎に相互に区別が可能な周期信号を印加し、周期信号を印加した導電糸域毎の導電糸との間の静電容量を介して周期信号を印加しなかった導電糸域の導電糸から出力される信号を取出し、
取出した信号と印加信号との信号差を検出することにより、タッチされたセルを検出することのできる信号検出回路を備えた、タッチパネル装置である。
Next, the inventor of the present application examined a circuit configuration for causing the conductive fabric to function as a touch panel. As a method for detecting the change in capacitance, for example, there is a method of looking at the change in the frequency of CR oscillation. However, in the case of a thinned woven structure, since adjacent cells are electrically connected to each other, they are mixed and accurate measurement is performed. I can't. Accordingly, the inventors of the present application applied a periodic signal to one of the warp yarns or the weft yarns in order to obtain a change in capacitance of a plurality of cells electrically connected to the conductive fabric as a result of intensive studies. Invented a signal detection circuit using a method for detecting a signal difference from a signal obtained from a conductive yarn to which no periodic signal was applied.
Therefore, a second invention of the present invention is a touch panel device that uses a cell formed in the conductive fabric according to the first invention as a touch sensor,
A periodic signal that can be distinguished from each other for each conductive yarn area is applied to the conductive yarn in either the conductive warp area or the conductive weft area, and the conductive yarn for each conductive yarn area to which the periodic signal is applied. Take out the signal output from the conductive yarn of the conductive yarn area that did not apply the periodic signal through the capacitance between,
This is a touch panel device including a signal detection circuit that can detect a touched cell by detecting a signal difference between an extracted signal and an applied signal.

この第2の発明によれば、一方の導電糸域の導電糸に導電糸域毎に相互に区別が可能な周期信号を印加し、周期信号を印加した導電糸域毎の導電糸との間の静電容量を介して周期信号を印加しなかった導電糸域の導電糸から出力される信号を取出す。そして、区別が可能な周期信号毎に、取出した信号と印加信号との信号差を検出する。これにより、回路上の混線なく、各セルにおける正確な静電容量の変化の信号が得られる。よって、導電性織物の各セルについてタッチされたか否かを検出することが可能となり、導電性織物をタッチパネルとして使用するタッチパネル装置を提供することができる。   According to the second aspect of the invention, a periodic signal that can be distinguished from each other for each conductive yarn region is applied to the conductive yarn of one conductive yarn region, and between the conductive yarns for each conductive yarn region to which the periodic signal is applied. A signal output from the conductive yarn in the conductive yarn region to which the periodic signal is not applied is taken out through the electrostatic capacitance. And the signal difference of the taken-out signal and an applied signal is detected for every periodic signal which can be distinguished. Thereby, an accurate change signal of capacitance in each cell can be obtained without crosstalk on the circuit. Therefore, it becomes possible to detect whether or not each cell of the conductive fabric is touched, and a touch panel device using the conductive fabric as a touch panel can be provided.

次に、本発明の第3の発明は、上記第2の発明に係るタッチパネル装置であって、
導電縦糸域または導電横糸域のいずれか一方の導電糸域の導電糸に印加される周期信号は、導電糸域毎に周波数が異なっていることを特徴とする。
この第3の発明によれば、導電糸域の導電糸に印加される周期信号は、導電糸域毎に周波数が異なっている。よって、周期信号を印加しなかった導電糸域の導電糸から出力される信号を取出し、周波数毎に信号差を検出することで、縦横の導電糸域が交差する各セルにおける正確な静電容量の変化の信号を得ることができ、各セルへのタッチの有無を検出することができる。
Next, a third invention of the present invention is the touch panel device according to the second invention,
The periodic signal applied to the conductive yarn in either the conductive warp region or the conductive weft region has a different frequency for each conductive yarn region.
According to the third aspect of the present invention, the frequency of the periodic signal applied to the conductive yarn in the conductive yarn region is different for each conductive yarn region. Therefore, by taking out the signal output from the conductive yarn in the conductive yarn area where no periodic signal was applied and detecting the signal difference for each frequency, the accurate capacitance in each cell where the vertical and horizontal conductive yarn areas intersect Change signal can be obtained, and the presence or absence of a touch on each cell can be detected.

次に、本発明の第4の発明は、上記第2の発明に係るタッチパネル装置であって、
導電縦糸域または導電横糸域のいずれか一方の導電糸域の導電糸に印加される周期信号は、各導電糸域に対して時分割で印加されることを特徴とする。
この第4の発明によれば、導電糸域の導電糸に印加される周期信号は、各導電糸域に対して時分割で印加される。よって、周期信号を印加しなかった導電糸域の導電糸から出力される信号を取出し、時分割で信号差を検出することで、縦横の導電糸域が交差する各セルにおける正確な静電容量の変化の信号を得ることができ、各セルへのタッチの有無を検出することができる。
Next, a fourth invention of the present invention is the touch panel device according to the second invention,
The periodic signal applied to the conductive yarns in either the conductive warp region or the conductive weft region is applied to each conductive yarn region in a time-sharing manner.
According to the fourth aspect of the invention, the periodic signal applied to the conductive yarns in the conductive yarn region is applied to each conductive yarn region in a time division manner. Therefore, by taking out the signal output from the conductive yarn of the conductive yarn area where the periodic signal was not applied and detecting the signal difference in time division, the accurate capacitance in each cell where the vertical and horizontal conductive yarn areas intersect Change signal can be obtained, and the presence or absence of a touch on each cell can be detected.

上述の本発明の各発明によれば、次の効果が得られる。
まず、上述の第1の発明によれば、導電性織物は、導電糸について間引き織り構造とされているので、導電糸同士の静電容量の結合を小さくすることができる。そして、縦糸の導電糸と横糸の導電糸が織り合わされたセルでは2方向の導電糸が近接しているので、セルにタッチした場合は他の部位にタッチした場合に比べて静電容量の変化が大きい。この、導電性織物の間引き織り構造による静電容量の変化特性を利用することにより、導電性織物のセルをタッチセンサとして機能させることが可能となる。
次に、上述の第2の発明によれば、縦糸または横糸のいずれか一方の導電糸に相互に区別が可能な周期信号を印加し、周期信号を印加しなかった導電糸から出力される信号を取出す。そして、区別が可能な周期信号毎に、取出した信号と印加信号との信号差を検出することで、回路上の混線なく各セルにおける正確な静電容量の変化の信号が得られる。よって、導電性織物の各セルについてタッチされたか否かを検出することが可能であり、導電性織物をタッチパネルとして使用するタッチパネル装置を提供することができる。
次に、上述の第3の発明によれば、縦糸または横糸のいずれか一方の導電糸に印加される周期信号は、導電糸域毎に周波数が異なっている。よって、周期信号を印加しなかった導電糸から出力される信号を取出し、周波数毎に信号差を検出することで、各セルにおける正確な静電容量の変化の信号が得ることができ、各セルへのタッチの有無を検出することができる。
次に、上述の第4の発明によれば、縦糸または横糸のいずれか一方の導電糸に印加される周期信号は、各導電糸域に対して時分割で印加される。よって、周期信号を印加しなかった導電糸から出力される信号を取出し、時分割で信号差を検出することで、各セルにおける正確な静電容量の変化の信号が得ることができ、各セルへのタッチの有無を検出することができる。
According to each invention of the present invention described above, the following effects can be obtained.
First, according to the above-described first invention, the conductive fabric has a thinned-out woven structure with respect to the conductive yarn, so that the coupling of the capacitance between the conductive yarns can be reduced. In a cell in which warp conductive yarn and weft conductive yarn are interwoven, the conductive yarns in two directions are close to each other. Therefore, when the cell is touched, the capacitance changes compared to the case of touching other parts. Is big. By utilizing the capacitance change characteristic due to the thin-out weaving structure of the conductive fabric, it becomes possible to function the cell of the conductive fabric as a touch sensor.
Next, according to the second invention described above, a periodic signal that can be distinguished from each other is applied to either the warp yarn or the weft yarn, and the signal output from the conductive yarn to which no periodic signal is applied. Take out. Then, by detecting the signal difference between the extracted signal and the applied signal for each distinguishable periodic signal, an accurate capacitance change signal in each cell can be obtained without crosstalk on the circuit. Therefore, it is possible to detect whether or not each cell of the conductive fabric is touched, and it is possible to provide a touch panel device that uses the conductive fabric as a touch panel.
Next, according to the above-mentioned third invention, the frequency of the periodic signal applied to either the warp yarn or the weft yarn is different for each conductive yarn region. Therefore, by taking out the signal output from the conductive yarn to which no periodic signal was applied and detecting the signal difference for each frequency, an accurate capacitance change signal in each cell can be obtained. The presence / absence of a touch on can be detected.
Next, according to the fourth aspect described above, the periodic signal applied to either the warp yarn or the weft yarn is applied to each conductive yarn region in a time-sharing manner. Therefore, by extracting the signal output from the conductive yarn to which no periodic signal was applied and detecting the signal difference in a time-sharing manner, it is possible to obtain an accurate capacitance change signal in each cell. The presence or absence of a touch on the can be detected.

実施例1における導電性織物を写真で示す図である。It is a figure which shows the electroconductive textile fabric in Example 1 with a photograph. 実施例1において、導電糸域の間隔と混線率の関係について計測した結果を示す図である。In Example 1, it is a figure which shows the result measured about the relationship between the space | interval of a conductive yarn area | region, and a crosstalk rate. 混線率について説明する図である。It is a figure explaining a crosstalk rate. 実施例1におけるタッチパネル装置の構成を示す図である。It is a figure which shows the structure of the touchscreen apparatus in Example 1. FIG. 実施例1のタッチパネル装置を用いて導電性織物のセル位置に対応したLEDがタッチ信号により消灯するタッチパネルを実現した図である。It is the figure which implement | achieved the touchscreen which LED corresponding to the cell position of an electroconductive textile fabric turns off with a touch signal using the touchscreen apparatus of Example 1. FIG. 実施例2におけるタッチパネル装置の構成を示す図である。It is a figure which shows the structure of the touchscreen apparatus in Example 2. FIG.

以下、本発明を実施するための形態について実施例にしたがって説明する。   Hereinafter, modes for carrying out the present invention will be described according to examples.

[導電性織物の構成]
図1に実施例1におけるタッチパネル装置30(図4参照)で使用する導電性織物10の写真を示す。
始めに、導電性織物10の構成について説明する。導電性織物10の縦糸は、縦方向に延びる複数本の導電糸12を横方向に並べた導電縦糸域16と、縦方向に延びる複数本の絶縁糸14を横方向に並べた絶縁縦糸域18とが、横方向に交互に並べられた構成とされている。そして、導電性織物10の横糸は、横方向に延びる複数本の導電糸12を縦方向に並べた導電横糸域20と、横方向に延びる複数本の絶縁糸14を縦方向に並べた絶縁横糸域22とが、縦方向に交互に並べられた構成とされている。
そして、導電糸12が絶縁糸14により分離された縦糸と、導電糸12が絶縁糸14により分離された横糸とが織り合わされて織物に形成されており、導電性織物10は、導電糸12同士が絶縁糸14により分離された間引き織り構造を有している。そして、導電縦糸域16と導電横糸域20の交差位置で、縦糸の導電糸12と横糸の導電糸12が織り合わされたセル24が形成されている。
なお、実施例1では、図1に白色で表された縦横双方の導電糸12、12には、芯糸にポリエステル銀めっき糸150D、鞘糸にポリエステル糸150D及びポリエステル糸20/1を使用したダブルカバリング糸を使用している。そして、図1に黒色で表された絶縁糸14には、綿糸20/2を使用している。
[Configuration of conductive fabric]
FIG. 1 shows a photograph of the conductive fabric 10 used in the touch panel device 30 (see FIG. 4) in Example 1.
First, the configuration of the conductive fabric 10 will be described. The warp of the conductive fabric 10 includes a conductive warp region 16 in which a plurality of conductive yarns 12 extending in the vertical direction are arranged in the horizontal direction, and an insulating warp region 18 in which a plurality of insulating yarns 14 extending in the vertical direction are arranged in the horizontal direction. Are arranged alternately in the horizontal direction. The weft yarn of the conductive fabric 10 is composed of a conductive weft region 20 in which a plurality of conductive yarns 12 extending in the transverse direction are arranged in the longitudinal direction and an insulating weft yarn in which a plurality of insulating yarns 14 extending in the transverse direction are arranged in the longitudinal direction. The areas 22 are arranged alternately in the vertical direction.
The warp yarn in which the conductive yarn 12 is separated by the insulating yarn 14 and the weft yarn in which the conductive yarn 12 is separated by the insulating yarn 14 are interwoven to form a woven fabric. Has a thinning woven structure separated by insulating yarns 14. A cell 24 in which the warp conductive yarn 12 and the weft conductive yarn 12 are interwoven is formed at the intersection of the conductive warp region 16 and the conductive weft region 20.
In Example 1, for both the longitudinal and lateral conductive yarns 12 and 12 shown in white in FIG. 1, a polyester silver plated yarn 150D was used as the core yarn, and a polyester yarn 150D and polyester yarn 20/1 were used as the sheath yarn. Double covering yarn is used. Further, cotton yarn 20/2 is used for the insulating yarn 14 shown in black in FIG.

[間引き織り構造の特性]
導電性織物10は、図1に示すように、導電糸12が絶縁糸14により分離された間引き織り構造とされているので、導電線同士の静電容量の結合が小さく、タッチ位置から離れた部分では静電容量の変化が少ない。そして、縦糸の導電糸12と横糸の導電糸12が織り合わされたセル24では2方向の導電糸12が近接しているので、セル24にタッチした場合は他の部位にタッチした場合に比べて静電容量の変化が大きい。
[Characteristics of thinned weave structure]
As shown in FIG. 1, the conductive fabric 10 has a thinned woven structure in which the conductive yarn 12 is separated by the insulating yarn 14, and therefore, the capacitive coupling between the conductive wires is small, and the conductive fabric 10 is separated from the touch position. There is little change in capacitance in the part. In the cell 24 in which the warp conductive yarn 12 and the weft conductive yarn 12 are interwoven, the conductive yarns 12 in two directions are close to each other. Therefore, when the cell 24 is touched, the other parts are touched. Large change in capacitance.

そこで、間引き織り構造の特性を確認するため、縦横の両方向について、導電糸12の本数を4本、導電糸域の幅を3.5mmに固定し、導電糸域を縦横それぞれ3箇所として、導電糸域を隔てる絶縁糸域の幅を20mmから65mmまで変化させた間引き織り構造の導電性織物を作製した。そして、比較用に、全て導電糸12で作製した導電性織物を作製した。図1に示した導電性織物10は、縦横の絶縁糸域の幅を20mmとした時のものである。   Therefore, in order to confirm the characteristics of the thinned-out weave structure, the conductive yarns 12 are fixed to four conductive yarns 12 in both the vertical and horizontal directions, the width of the conductive yarn regions is fixed to 3.5 mm, and the conductive yarn regions are arranged in three vertical and horizontal directions. A conductive fabric having a thinning woven structure was produced in which the width of the insulating yarn region separating the yarn regions was changed from 20 mm to 65 mm. For comparison, a conductive fabric made of all conductive yarns 12 was prepared. The conductive fabric 10 shown in FIG. 1 is obtained when the width of the vertical and horizontal insulating yarn regions is 20 mm.

そして、混線の影響を調べるために、これらの導電性織物に形成される9個のセル24のうち、中央のセル24の静電容量を検出するようにLCRメータを接続し、各セル24にタッチ信号を与えた時の中央のセル24の静電容量の変化の計測を行った。なお、タッチ信号は指先でセル24に触れることにより与えている。
この計測を導電糸域の間隔(絶縁糸域の幅)が異なる導電性織物で行い、解析した結果を図2に示す。図中、横軸は導電糸域の間隔、縦軸は混線率を表す。
ここで、混線率は、他のセルにタッチ信号を与えた時の中央のセルの静電容量の変化の平均値を中央のセルにタッチ信号を与えた時の静電容量の変化で割ったものとして定義しており、混線率が100%に近づくほど、セル間の混線が多いことを示している。
混線率は、図3に示すようにセルの番号を定めると、図3に示した混線率の式で表現することができる。
Then, in order to investigate the influence of crosstalk, an LCR meter is connected so as to detect the capacitance of the central cell 24 among the nine cells 24 formed in these conductive fabrics. The change in the capacitance of the central cell 24 when the touch signal was given was measured. The touch signal is given by touching the cell 24 with a fingertip.
This measurement is performed on conductive fabrics having different conductive yarn area intervals (widths of insulating yarn areas), and the analysis results are shown in FIG. In the figure, the horizontal axis represents the interval between the conductive yarn areas, and the vertical axis represents the crosstalk ratio.
Here, the crosstalk ratio is obtained by dividing the average value of the change in capacitance of the center cell when a touch signal is given to another cell by the change in capacitance when the touch signal is given to the center cell. It is defined as a thing, and it shows that there is much crossing between cells, so that crossing rate approaches 100%.
When the cell number is determined as shown in FIG. 3, the crossing rate can be expressed by the crossing rate equation shown in FIG.

そして、図2に示すとおり、導電糸域の間隔が大きくなるにつれて、混線率が大幅に減少することがわかる。導電糸域の間隔がゼロの時は混線率が90%程度となるため、タッチしたセルの検出が困難である。これは、従来技術による織物の全体が導電糸で構成されている導電性織物に相当する。これに対して、図1で示した導電糸域の間隔が縦横それぞれ20mmの導電性織物10では、混線率は60%程度に減少するので、タッチされたセルの検出が容易になる。
よって、実施例1の導電性織物10では、間引き織り構造による静電容量の変化特性を利用することにより、セル24をタッチセンサとして機能させることが可能となる。
なお、セル24を押す強さに応じて導電糸の距離が変化し、セル24の静電容量が変化するので、導電性織物10のセル24を圧力検知センサとして機能させることもできる。
And as shown in FIG. 2, it turns out that a crosstalk rate reduces significantly as the space | interval of a conductive yarn area becomes large. When the interval between the conductive yarn areas is zero, the crosstalk rate is about 90%, and it is difficult to detect the touched cell. This corresponds to a conductive fabric in which the entire fabric according to the prior art is composed of conductive yarns. On the other hand, in the conductive fabric 10 in which the distance between the conductive yarn regions shown in FIG. 1 is 20 mm in length and width, the crosstalk ratio is reduced to about 60%, so that the touched cell can be easily detected.
Therefore, in the conductive fabric 10 of Example 1, the cell 24 can be made to function as a touch sensor by utilizing the capacitance change characteristics due to the thinned-out weave structure.
In addition, since the distance of a conductive yarn changes according to the strength which pushes the cell 24, and the electrostatic capacitance of the cell 24 changes, the cell 24 of the conductive fabric 10 can also be functioned as a pressure detection sensor.

[タッチパネル装置の構成]
次に、実施例1におけるタッチパネル装置について説明する。図4に、実施例1における導電性織物10を使用したタッチパネル装置30の構成を示す。
図4に示すように、タッチパネル装置30を構成する導電性織物10の3箇所の導電縦糸域16a、導電縦糸域16b、導電縦糸域16cには、それぞれ、各導電縦糸域の導電糸12に周期信号を印加する第1発振器40、第2発振器42、第3発振器44が接続されている。そして、導電性織物10の3箇所の導電横糸域20a、導電横糸域20b、導電横糸域20cには、各導電横糸域の導電糸12から出力される信号を取出すマルチプレクサ32が接続されている。
そして、マルチプレクサ32には、導電糸12から取出した信号と印加した周期信号の信号差を検出する信号差検出回路34が接続されている。そして信号差検出回路34は、周期信号を基準信号として取り込むために、第1発振器40、第2発振器42および第3発振器44に接続されるとともに、タッチパネル装置30の動作を制御する動作処理回路36に接続されている。
[Configuration of touch panel device]
Next, the touch panel device according to the first embodiment will be described. In FIG. 4, the structure of the touchscreen apparatus 30 which uses the electroconductive textile fabric 10 in Example 1 is shown.
As shown in FIG. 4, the conductive warp region 16 a, the conductive warp region 16 b, and the conductive warp region 16 c of the conductive fabric 10 constituting the touch panel device 30 each have a period in the conductive yarn 12 of each conductive warp region. A first oscillator 40, a second oscillator 42, and a third oscillator 44 for applying a signal are connected. And the multiplexer 32 which takes out the signal output from the conductive yarn 12 of each conductive weft region is connected to the conductive weft region 20a, the conductive weft region 20b, and the conductive weft region 20c of the conductive fabric 10 at three locations.
The multiplexer 32 is connected to a signal difference detection circuit 34 that detects a signal difference between the signal extracted from the conductive yarn 12 and the applied periodic signal. The signal difference detection circuit 34 is connected to the first oscillator 40, the second oscillator 42, and the third oscillator 44 in order to take the periodic signal as a reference signal, and controls the operation of the touch panel device 30. It is connected to the.

[タッチされたセルの検出方法]
次に、タッチされたセルの検出方法を説明する。第1発振器40からは、図4にf1で示した1メガヘルツのサイン波が導電縦糸域16aの導電糸12に対して印加されると共に、信号差検出回路34に1メガヘルツのサイン波が基準信号として送られる。第2発振器42からは、図4にf2で示した1.5メガヘルツのサイン波が導電縦糸域16bの導電糸12に対して印加されると共に、信号差検出回路34に1.5メガヘルツのサイン波が基準信号として送られる。そして、第3発振器44からは、図4にf3で示した3.9メガヘルツのサイン波が導電縦糸域16cの導電糸12に対して印加されると共に、信号差検出回路34に3.9メガヘルツのサイン波が基準信号として送られる。なお、各導電縦糸域の導電糸12に印加される周波数f1、f2、f3は、互いに干渉しない周波数が選択されている。
そして、マルチプレクサ32は、導電横糸域20a、導電横糸域20b及び導電横糸域20cから取出した信号を、導電横糸域毎に3系列に分離した状態で、信号差検出回路34に送り出す。
セル24にタッチして、セル24の静電容量が変化すると、セル24に印加されている周期信号の位相及び振幅が変化する。そこで、セル24から取出した周期信号の位相あるいは振幅の、印加信号との差を調べることで静電容量の変化を生じたセルを知ることができる。
実施例1では、信号差検出回路34は、導電横糸域から取込んだ3系列の信号について、サイン波の周波数毎に各発振器から取込んだ基準信号との信号差から、位相差の検出を行う。そして、検出した位相差から、回路上の混線なく、各セル24毎の正確な静電容量の変化を検出し、タッチされたセル24を特定する。
[Detection method of touched cell]
Next, a method for detecting a touched cell will be described. A first megahertz sine wave indicated by f1 in FIG. 4 is applied from the first oscillator 40 to the conductive yarn 12 in the conductive warp region 16a, and a 1 megahertz sine wave is applied to the signal difference detection circuit 34 as a reference signal. Sent as. From the second oscillator 42, a 1.5 MHz sine wave indicated by f2 in FIG. 4 is applied to the conductive yarn 12 in the conductive warp region 16b, and a 1.5 MHz sine is applied to the signal difference detection circuit 34. A wave is sent as a reference signal. The third oscillator 44 applies a 3.9 megahertz sine wave indicated by f3 in FIG. 4 to the conductive yarn 12 in the conductive warp region 16c, and supplies the signal difference detection circuit 34 with 3.9 megahertz. The sine wave is sent as a reference signal. Note that the frequencies f1, f2, and f3 applied to the conductive yarns 12 in each conductive warp region are selected so as not to interfere with each other.
Then, the multiplexer 32 sends out signals taken from the conductive weft yarn area 20a, the conductive weft yarn area 20b, and the conductive weft yarn area 20c to the signal difference detection circuit 34 in a state where the signals are separated into three series for each conductive weft yarn area.
When the cell 24 is touched and the capacitance of the cell 24 changes, the phase and amplitude of the periodic signal applied to the cell 24 change. Thus, by examining the difference between the phase or amplitude of the periodic signal extracted from the cell 24 and the applied signal, it is possible to know the cell in which the change in capacitance has occurred.
In the first embodiment, the signal difference detection circuit 34 detects the phase difference from the signal difference between the three series of signals taken from the conductive weft region and the reference signal taken from each oscillator for each sine wave frequency. Do. Then, from the detected phase difference, an accurate change in capacitance for each cell 24 is detected without crosstalk on the circuit, and the touched cell 24 is specified.

例えば、導電横糸域から取込んだ3系列の信号について、サイン波の周波数毎に基準信号との位相差の検出を行った結果、導電横糸域20bから取得した1.5メガヘルツのサイン波での位相差の変化に対応する静電容量の変化が最大であれば、タッチ信号が与えられたセル24は、導電横糸域20b上のセル24であり、かつ、1.5メガヘルツのサイン波が印加された導電縦糸域16b上のセルであることがわかるので、タッチ信号が与えられたセル24は、図4の中央のセル24であることが特定できる。
図5は、タッチパネル装置30を用いて導電性織物10のセル24の位置に対応したLEDがタッチ信号により消灯するタッチ位置表示器48を実現した例である。図5(a)は、導電性織物10にタッチしておらず、9個のセル24に対応するLEDが全て点灯した状態を示す。図5(b)は、中央のセル24に触れたために、中央のLEDが消灯した状態を示す。
For example, as a result of detecting the phase difference from the reference signal for each sine wave frequency for three series of signals taken from the conductive weft region, the result is a 1.5 megahertz sine wave acquired from the conductive weft region 20b. If the change in the capacitance corresponding to the change in the phase difference is the maximum, the cell 24 to which the touch signal is given is the cell 24 on the conductive weft region 20b, and a 1.5 megahertz sine wave is applied. It can be seen that the cell is on the conductive warp region 16b, and the cell 24 to which the touch signal is applied can be identified as the center cell 24 in FIG.
FIG. 5 shows an example in which a touch position indicator 48 in which an LED corresponding to the position of the cell 24 of the conductive fabric 10 is turned off by a touch signal using the touch panel device 30 is realized. FIG. 5A shows a state where the conductive fabric 10 is not touched and all the LEDs corresponding to the nine cells 24 are lit. FIG. 5B shows a state in which the center LED is turned off because the center cell 24 is touched.

[変形例]
実施例1では、信号差検出回路34により、導電糸域から取込んだ信号と基準信号の信号差のうち、位相差を検出することで各セル24の静電容量の変化を検出したが、信号差検出回路34により、信号差のうちの振幅差を検出して、各セル24の静電容量の変化を検出しても良い。また、信号差検出回路34により、位相差と振幅差の双方を検出することで各セル24の静電容量の変化を検出しても良い。
また、実施例1では、周期信号としてサイン波を使用しているが、周期信号として矩形波を使用しても良い。
[Modification]
In Example 1, the signal difference detection circuit 34 detects the change in the capacitance of each cell 24 by detecting the phase difference of the signal difference between the signal captured from the conductive yarn area and the reference signal. The signal difference detection circuit 34 may detect an amplitude difference among the signal differences to detect a change in capacitance of each cell 24. Further, the change in capacitance of each cell 24 may be detected by detecting both the phase difference and the amplitude difference by the signal difference detection circuit 34.
In the first embodiment, a sine wave is used as the periodic signal, but a rectangular wave may be used as the periodic signal.

[効果]
実施例1で用いた導電性織物10によれば、導電糸の間引き織り構造により混線が減少して、高精度なタッチ位置検知が可能であるため、タッチパネルとしての使用が可能である。また、導電性繊維の使用量が減らせるため、コスト低減にもつながる。
そして、実施例1のタッチパネル装置30によれば、各導電縦糸域の導電糸12に周波数が異なり互いに干渉しない周期信号を印加し、導電縦糸域毎の導電糸12との間の静電容量を介して導電横糸域の導電糸12から出力される信号を取出す。そして、周波数毎に、取出した信号と印加信号との信号差のうち位相差または振幅差、あるいは位相差と振幅差の双方を検出する。これにより、回路上の混線なく、各セル24における正確な静電容量の変化の信号が得られる。
よって、導電性織物10の各セル24についてタッチされたか否かを検出することが可能となり、導電性織物10をタッチパネルとして使用するフレキシブルなタッチパネル装置を提供することができる。
[effect]
According to the conductive fabric 10 used in the first embodiment, the mixed line is reduced by the thinning-out structure of the conductive yarn, and the touch position can be detected with high accuracy, so that it can be used as a touch panel. Moreover, since the usage-amount of conductive fiber can be reduced, it leads also to cost reduction.
Then, according to the touch panel device 30 of the first embodiment, the periodic signals that have different frequencies and do not interfere with each other are applied to the conductive yarns 12 in each conductive warp region, and the capacitance between the conductive yarns 12 in each conductive warp region is increased. The signal output from the conductive yarn 12 in the conductive weft region is taken out. Then, for each frequency, a phase difference or an amplitude difference or both a phase difference and an amplitude difference are detected from the signal difference between the extracted signal and the applied signal. As a result, an accurate capacitance change signal in each cell 24 can be obtained without crosstalk on the circuit.
Therefore, it becomes possible to detect whether or not each cell 24 of the conductive fabric 10 is touched, and a flexible touch panel device that uses the conductive fabric 10 as a touch panel can be provided.

次に実施例2について説明する。図6に、実施例2におけるタッチパネル装置30Aの構成を示す。実施例2の実施例1との違いは、周期信号として、発振器58が発生する単一の周波数の信号を、分配マルチプレクサ56により、時分割して、導電縦糸域16a、導電縦糸域16b、導電縦糸域16cに印加している点である。
そして、マルチプレクサ50は、導電横糸域20a、導電横糸域20b及び導電横糸域20cから取出した信号を、導電横糸域毎に3系列に分離した状態で、信号差検出回路52に送り出す。そして、信号差検出回路52では、導電横糸域毎に取込んだ信号について、時分割された時間帯毎に発振器58から取込んだ基準信号との信号差から、位相差の検出を行い、回路上の混線なく、各セル24毎の正確な静電容量の変化を検出し、タッチされたセル24を特定する。
なお、信号差検出回路52に接続された動作処理回路54は、実施例1と同様に、タッチパネル装置30Aの動作を制御する。
なお、信号差から振幅差を検出しても良い点、周期信号が矩形波でも良い点は実施例1と同様である。
Next, Example 2 will be described. FIG. 6 illustrates a configuration of the touch panel device 30A according to the second embodiment. The difference between the second embodiment and the first embodiment is that a signal of a single frequency generated by the oscillator 58 is time-divided as a periodic signal by the distribution multiplexer 56 to conduct the conductive warp yarn region 16a, the conductive warp yarn region 16b, the conductive signal. It is a point applied to the warp yarn region 16c.
Then, the multiplexer 50 sends out signals taken from the conductive weft yarn area 20a, the conductive weft yarn area 20b, and the conductive weft yarn area 20c to the signal difference detection circuit 52 in a state where the signals are separated into three series for each conductive weft yarn area. Then, the signal difference detection circuit 52 detects the phase difference from the signal difference between the signal fetched for each conductive weft region and the reference signal fetched from the oscillator 58 for each time-divided time zone. An accurate change in capacitance for each cell 24 is detected without the above crossing line, and the touched cell 24 is specified.
The operation processing circuit 54 connected to the signal difference detection circuit 52 controls the operation of the touch panel device 30A as in the first embodiment.
The point that the amplitude difference may be detected from the signal difference and the point that the periodic signal may be a rectangular wave are the same as in the first embodiment.

実施例2によれば、実施例1と同様に、導電性織物10を用いたフレキシブルなタッチパネル装置を提供することができる。また、発振器を1台で済ますことができるため、タッチパネル装置のコストを低減することができる。   According to the second embodiment, a flexible touch panel device using the conductive fabric 10 can be provided as in the first embodiment. Further, since only one oscillator can be used, the cost of the touch panel device can be reduced.

上記の各実施例では、絶縁糸に綿を用いたが、絶縁糸については、ポリエステル、ナイロン、レーヨン、ポリビニルアルコール、ポリアクリロニトリル、ポリプロピレン、ポリエチレン、ポリウレタン等の合成繊維を用いても良く、天然繊維のウールを用いても良い。
そして、導電糸については、銅、アルミ、鉄、ステンレス、ニクロム、金、銀、チタンニッケル合金等の金属繊維、PAN系、ピッチ系の炭素繊維を用いても良い。また、導電糸として、絶縁糸に使用するポリエステル、ナイロン、レーヨン等の樹脂に導電成分としてカーボン、グラファイト、カーボナノチューブ等を混練後に紡糸した糸を用いることもできる。また、導電糸として、絶縁糸の表面に導電成分として銅、アルミ、銀、金等を金属メッキ手法により被覆した糸を用いることもできる。そして、導電糸として、導電糸に絶縁糸を撚糸した構造の導電糸や導電糸に絶縁性の樹脂をコーティングした構造の導電糸を用いることもできる。特に樹脂をコーティングした構造のものは、耐湿性・耐水性を向上することができるため、センサ性能の安定性向上や誤作動を防ぐことができる。
In each of the above examples, cotton was used for the insulating yarn, but for the insulating yarn, synthetic fibers such as polyester, nylon, rayon, polyvinyl alcohol, polyacrylonitrile, polypropylene, polyethylene, and polyurethane may be used. May be used.
For the conductive yarn, metal fibers such as copper, aluminum, iron, stainless steel, nichrome, gold, silver, and titanium nickel alloy, PAN-based, and pitch-based carbon fibers may be used. In addition, as a conductive yarn, a yarn obtained by spinning a carbon, graphite, carbon nanotube, or the like as a conductive component in a resin such as polyester, nylon, or rayon used for an insulating yarn can be used. Further, as the conductive yarn, a yarn obtained by coating the surface of the insulating yarn with copper, aluminum, silver, gold or the like as a conductive component by a metal plating method can be used. As the conductive yarn, a conductive yarn having a structure in which an insulating yarn is twisted on the conductive yarn or a conductive yarn having a structure in which an insulating resin is coated on the conductive yarn can be used. In particular, a resin-coated structure can improve moisture resistance and water resistance, and thus can improve sensor performance stability and prevent malfunction.

上記の各実施例では、導電縦糸域の導電糸に周期信号を印加し、導電横糸域の導電糸から出力される信号を取出す構成としたが、導電横糸域の導電糸に周期信号を印加し、導電縦糸域から出力される信号を取出す構成としても良い。
そして、上記の各実施例では、導電性織物は、導電縦糸域が3箇所、導電横糸域が3箇所の構成としているが、導電縦糸域及び導電横糸域の数はこれに限定されない。また、上記の各実施例では、導電性織物10は縦横の双方について導電糸が間引かれた間引き織り構造としているが、センサが一列に並んだタッチパネルとして機能させるのであれば、縦糸と横糸のうち一方のみを導電糸の間引き構成とし、他方は全て導電糸で構成しても良い。
その他、本発明に係る導電性織物及び導電性織物を使用したタッチパネル装置は、その発明の思想の範囲で、各種の形態で実施できるものである。
In each of the above embodiments, the periodic signal is applied to the conductive yarn in the conductive warp region and the signal output from the conductive yarn in the conductive weft region is taken out. However, the periodic signal is applied to the conductive yarn in the conductive weft region. A configuration may be adopted in which a signal output from the conductive warp region is taken out.
In each of the above embodiments, the conductive fabric has three conductive warp areas and three conductive weft areas, but the number of conductive warp areas and conductive weft areas is not limited thereto. In each of the above embodiments, the conductive fabric 10 has a thinning woven structure in which conductive yarns are thinned out in both the vertical and horizontal directions, but if the sensor functions as a touch panel arranged in a row, the warp and weft yarns Of these, only one of the conductive yarns may be thinned out, and the other may be composed of the conductive yarns.
In addition, the conductive fabric and the touch panel device using the conductive fabric according to the present invention can be implemented in various forms within the scope of the idea of the invention.

10 導電性織物
12 導電糸
14 絶縁糸
16、16a、16b、16c 導電縦糸域
18 絶縁縦糸域
20、20a、20b、20c 導電横糸域
22 絶縁横糸域
24 セル
30、30A タッチパネル装置
32 マルチプレクサ
34 信号差検出回路
36 動作処理回路
40 第1発振器
42 第2発振器
44 第3発振器
48 タッチ位置表示器
50 マルチプレクサ
52 信号差検出回路
54 動作処理回路
56 分配マルチプレクサ
58 発振器
10 conductive fabric 12 conductive yarn 14 insulating yarn 16, 16a, 16b, 16c conductive warp yarn region 18 insulating warp yarn region 20, 20a, 20b, 20c conductive weft yarn region 22 insulating weft yarn region 24 cell 30, 30A touch panel device 32 multiplexer 34 signal difference Detection circuit 36 Operation processing circuit 40 First oscillator 42 Second oscillator 44 Third oscillator 48 Touch position indicator 50 Multiplexer 52 Signal difference detection circuit 54 Operation processing circuit 56 Distribution multiplexer 58 Oscillator

Claims (4)

導電性織物であって、
縦方向に延びる複数本の導電糸を横方向に並べた導電縦糸域と、縦方向に延びる複数本の絶縁糸を横方向に並べた絶縁縦糸域とが、横方向に交互に並べられた縦糸と、
横方向に延びる複数本の導電糸を縦方向に並べた導電横糸域と、横方向に延びる複数本の絶縁糸を縦方向に並べた絶縁横糸域とが、縦方向に交互に並べられた横糸とを備え、
導電縦糸域と導電横糸域との交差位置で、縦方向の導電糸と横方向の導電糸とが織り合わされて形成されるセルを、タッチセンサとして機能させることができる導電性織物。
A conductive fabric,
A warp yarn in which a plurality of conductive yarns extending in the longitudinal direction are arranged in the transverse direction and an insulating warp region in which a plurality of insulation yarns extending in the longitudinal direction are arranged in the transverse direction are alternately arranged in the transverse direction. When,
Weft yarn in which a plurality of electrically conductive yarns extending in the transverse direction are arranged in the longitudinal direction and an electrically conductive weft region in which a plurality of insulation yarns extending in the transverse direction are arranged in the longitudinal direction are alternately arranged in the longitudinal direction And
A conductive fabric capable of functioning as a touch sensor a cell formed by weaving a conductive yarn in the longitudinal direction and a conductive yarn in the horizontal direction at the intersection of the conductive warp region and the conductive weft region.
請求項1に記載の導電性織物に形成されたセルをタッチセンサとして使用するタッチパネル装置であって、
導電縦糸域または導電横糸域のいずれか一方の導電糸域の導電糸に導電糸域毎に相互に区別が可能な周期信号を印加し、周期信号を印加した導電糸域毎の導電糸との間の容量を介して周期信号を印加しなかった導電糸域の導電糸から出力される信号を取出し、
取出した信号と印加信号との信号差を検出することにより、タッチされたセルを検出することのできる信号検出回路を備えた、タッチパネル装置。
A touch panel device using a cell formed on the conductive fabric according to claim 1 as a touch sensor,
A periodic signal that can be distinguished from each other for each conductive yarn area is applied to the conductive yarn in either the conductive warp area or the conductive weft area, and the conductive yarn for each conductive yarn area to which the periodic signal is applied. Take out the signal output from the conductive yarn of the conductive yarn area that did not apply the periodic signal through the capacitance between,
A touch panel device including a signal detection circuit capable of detecting a touched cell by detecting a signal difference between an extracted signal and an applied signal.
請求項2に記載のタッチパネル装置であって、
導電縦糸域または導電横糸域のいずれか一方の導電糸域の導電糸に印加される周期信号は、導電糸域毎に周波数が異なっていることを特徴とする、タッチパネル装置。
The touch panel device according to claim 2,
The touch panel device is characterized in that the periodic signal applied to the conductive yarn in one of the conductive warp region or the conductive weft region has a different frequency for each conductive yarn region.
請求項2に記載のタッチパネル装置であって、
導電縦糸域または導電横糸域のいずれか一方の導電糸域の導電糸に印加される周期信号は、各導電糸域に対して時分割で印加されることを特徴とする、タッチパネル装置。
The touch panel device according to claim 2,
The touch panel device, wherein the periodic signal applied to the conductive yarns in either the conductive warp region or the conductive weft region is applied to each conductive yarn region in a time-sharing manner.
JP2009238395A 2009-10-15 2009-10-15 Conductive fabric Active JP5493070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238395A JP5493070B2 (en) 2009-10-15 2009-10-15 Conductive fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238395A JP5493070B2 (en) 2009-10-15 2009-10-15 Conductive fabric

Publications (2)

Publication Number Publication Date
JP2011086114A true JP2011086114A (en) 2011-04-28
JP5493070B2 JP5493070B2 (en) 2014-05-14

Family

ID=44079012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238395A Active JP5493070B2 (en) 2009-10-15 2009-10-15 Conductive fabric

Country Status (1)

Country Link
JP (1) JP5493070B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129887A1 (en) * 2014-02-28 2015-09-03 学校法人北里研究所 Input device, fiber sheet, clothing, biometric information detection device
WO2016053624A1 (en) * 2014-09-30 2016-04-07 Arimtax Technologies Llc Fabric sensing device
JP2016161555A (en) * 2015-03-05 2016-09-05 株式会社槌屋 Conductive fabric and pressure sensor using conductive fabric
JP2017068780A (en) * 2015-10-02 2017-04-06 グンゼ株式会社 Capacitive touch sensor
JP2018076629A (en) * 2016-06-06 2018-05-17 株式会社村田製作所 Cloth, clothing, and medical component
JP2018102830A (en) * 2016-12-28 2018-07-05 株式会社槌屋 Seat device
JP2018105827A (en) * 2016-12-28 2018-07-05 株式会社槌屋 Pressure distribution detector
JP2018534445A (en) * 2015-11-09 2018-11-22 サンコ テキスタイル イスレットメレリ サン ベ ティク エーエスSanko Tekstil Isletmeleri San. Ve Tic. A.S. Textile structure implementing capacitive grid
JP2019061692A (en) * 2014-08-15 2019-04-18 グーグル エルエルシー Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
JP2019183348A (en) * 2018-04-14 2019-10-24 株式会社レジナ Woven fabric and textile product using the same
US10496182B2 (en) 2015-04-30 2019-12-03 Google Llc Type-agnostic RF signal representations
CN110941371A (en) * 2018-09-25 2020-03-31 尚科纺织企业工业及贸易公司 Capacitive touch sensor
CN111258460A (en) * 2018-12-03 2020-06-09 东华镜月(苏州)纺织技术研究有限公司 Intelligent clothing
CN111251668A (en) * 2018-12-03 2020-06-09 东华镜月(苏州)纺织技术研究有限公司 Intelligent knitted fabric and control system
US10768712B2 (en) 2015-10-06 2020-09-08 Google Llc Gesture component with gesture library
CN111736732A (en) * 2019-03-22 2020-10-02 尚科纺织企业工业及贸易公司 Capacitive touch sensor
US10817070B2 (en) 2015-04-30 2020-10-27 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US10936081B2 (en) 2014-08-22 2021-03-02 Google Llc Occluded gesture recognition
US10936085B2 (en) 2015-05-27 2021-03-02 Google Llc Gesture detection and interactions
US10948996B2 (en) 2014-06-03 2021-03-16 Google Llc Radar-based gesture-recognition at a surface of an object
US11041260B2 (en) 2016-06-06 2021-06-22 Murata Manufacturing Co., Ltd. Charge-generating thread for bacterium-countermeasure, cloth for bacterium-countermeasure, cloth, clothing article, medical member, charge-generating thread that acts on living body, and charge-generating thread for substance-adsorption
US11105023B2 (en) 2016-11-01 2021-08-31 Murata Manufacturing Co., Ltd. Antibacterial nonwoven member, antibacterial nonwoven fabric, and antibacterial buffer material
US11140787B2 (en) 2016-05-03 2021-10-05 Google Llc Connecting an electronic component to an interactive textile
US11163371B2 (en) 2014-10-02 2021-11-02 Google Llc Non-line-of-sight radar-based gesture recognition
WO2022138862A1 (en) * 2020-12-23 2022-06-30 旭化成アドバンス株式会社 Sensing fiber member
US11816101B2 (en) 2014-08-22 2023-11-14 Google Llc Radar recognition-aided search

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3307137B1 (en) * 2015-06-09 2020-07-08 Continental - Indústria Têxtil do Ave, S.A. Multifuncional textile sensor
WO2019146546A1 (en) 2018-01-23 2019-08-01 パナソニックIpマネジメント株式会社 Secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110734A (en) * 1984-05-04 1986-01-18 レイケム・リミテツド Sensor arrangement
JPS61157926A (en) * 1984-12-28 1986-07-17 Wacom Co Ltd Position detector
JP2003529901A (en) * 2000-04-03 2003-10-07 ブルーネル ユニバーシティ Conductive fabric
JP2006234716A (en) * 2005-02-28 2006-09-07 Aichi Prefecture Sheet-like sensor device
WO2007080959A1 (en) * 2006-01-13 2007-07-19 Nissan Motor Co., Ltd. Cloth for electrical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110734A (en) * 1984-05-04 1986-01-18 レイケム・リミテツド Sensor arrangement
JPS61157926A (en) * 1984-12-28 1986-07-17 Wacom Co Ltd Position detector
JP2003529901A (en) * 2000-04-03 2003-10-07 ブルーネル ユニバーシティ Conductive fabric
JP2006234716A (en) * 2005-02-28 2006-09-07 Aichi Prefecture Sheet-like sensor device
WO2007080959A1 (en) * 2006-01-13 2007-07-19 Nissan Motor Co., Ltd. Cloth for electrical device

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129887A1 (en) * 2014-02-28 2015-09-03 学校法人北里研究所 Input device, fiber sheet, clothing, biometric information detection device
JPWO2015129887A1 (en) * 2014-02-28 2017-03-30 学校法人北里研究所 Input device, fiber sheet, clothing, biological information detection device
EP3711665A1 (en) 2014-02-28 2020-09-23 School Juridical Person Kitasato Institute Input device, fiber sheet, clothing, biometric information detection device
US11647951B2 (en) 2014-02-28 2023-05-16 School Juridical Person Kitasato Institute Input device, fiber sheet, clothing, and biological information detection device
US10948996B2 (en) 2014-06-03 2021-03-16 Google Llc Radar-based gesture-recognition at a surface of an object
JP2019061692A (en) * 2014-08-15 2019-04-18 グーグル エルエルシー Interactive textiles
EP3180682B1 (en) * 2014-08-15 2020-10-14 Google LLC Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
DE112015002332B4 (en) 2014-08-15 2023-02-02 Google LLC (n.d.Ges.d. Staates Delaware) Interactive textiles
US11816101B2 (en) 2014-08-22 2023-11-14 Google Llc Radar recognition-aided search
US11221682B2 (en) 2014-08-22 2022-01-11 Google Llc Occluded gesture recognition
US10936081B2 (en) 2014-08-22 2021-03-02 Google Llc Occluded gesture recognition
US10338755B2 (en) 2014-09-30 2019-07-02 Apple Inc. Fabric sensing device
US20170249033A1 (en) * 2014-09-30 2017-08-31 Apple Inc. Fabric sensing device
WO2016053624A1 (en) * 2014-09-30 2016-04-07 Arimtax Technologies Llc Fabric sensing device
JP7162583B2 (en) 2014-09-30 2022-10-28 アップル インコーポレイテッド fabric sensing device
CN107111411A (en) * 2014-09-30 2017-08-29 苹果公司 Fabric sensor device
CN114296574A (en) * 2014-09-30 2022-04-08 苹果公司 Fabric sensing device
JP2020057398A (en) * 2014-09-30 2020-04-09 アップル インコーポレイテッドApple Inc. Fabric sensing device
JP2017536607A (en) * 2014-09-30 2017-12-07 アップル インコーポレイテッド This application claims priority to US Provisional Application No. 62 / 058,027, filed Sep. 30, 2014, which is hereby incorporated by reference in its entirety. Incorporated in.
US11204656B2 (en) 2014-09-30 2021-12-21 Apple Inc. Fabric sensing device
US10739924B2 (en) 2014-09-30 2020-08-11 Apple Inc. Fabric sensing device
US11656697B2 (en) 2014-09-30 2023-05-23 Apple Inc. Fabric sensing device
US11163371B2 (en) 2014-10-02 2021-11-02 Google Llc Non-line-of-sight radar-based gesture recognition
JP2016161555A (en) * 2015-03-05 2016-09-05 株式会社槌屋 Conductive fabric and pressure sensor using conductive fabric
US10496182B2 (en) 2015-04-30 2019-12-03 Google Llc Type-agnostic RF signal representations
US10817070B2 (en) 2015-04-30 2020-10-27 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US11709552B2 (en) 2015-04-30 2023-07-25 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US10936085B2 (en) 2015-05-27 2021-03-02 Google Llc Gesture detection and interactions
JP2017068780A (en) * 2015-10-02 2017-04-06 グンゼ株式会社 Capacitive touch sensor
US11385721B2 (en) 2015-10-06 2022-07-12 Google Llc Application-based signal processing parameters in radar-based detection
US11698439B2 (en) 2015-10-06 2023-07-11 Google Llc Gesture recognition using multiple antenna
US11481040B2 (en) 2015-10-06 2022-10-25 Google Llc User-customizable machine-learning in radar-based gesture detection
US11132065B2 (en) 2015-10-06 2021-09-28 Google Llc Radar-enabled sensor fusion
US11698438B2 (en) 2015-10-06 2023-07-11 Google Llc Gesture recognition using multiple antenna
US10768712B2 (en) 2015-10-06 2020-09-08 Google Llc Gesture component with gesture library
US11175743B2 (en) 2015-10-06 2021-11-16 Google Llc Gesture recognition using multiple antenna
US11592909B2 (en) 2015-10-06 2023-02-28 Google Llc Fine-motion virtual-reality or augmented-reality control using radar
US11693092B2 (en) 2015-10-06 2023-07-04 Google Llc Gesture recognition using multiple antenna
US11256335B2 (en) 2015-10-06 2022-02-22 Google Llc Fine-motion virtual-reality or augmented-reality control using radar
US10908696B2 (en) 2015-10-06 2021-02-02 Google Llc Advanced gaming and virtual reality control using radar
US11656336B2 (en) 2015-10-06 2023-05-23 Google Llc Advanced gaming and virtual reality control using radar
JP2018534445A (en) * 2015-11-09 2018-11-22 サンコ テキスタイル イスレットメレリ サン ベ ティク エーエスSanko Tekstil Isletmeleri San. Ve Tic. A.S. Textile structure implementing capacitive grid
JP7033063B2 (en) 2015-11-09 2022-03-09 サンコ テキスタイル イスレットメレリ サン ベ ティク エーエス Textile structure with capacitive grid implemented
US11140787B2 (en) 2016-05-03 2021-10-05 Google Llc Connecting an electronic component to an interactive textile
JP2018076629A (en) * 2016-06-06 2018-05-17 株式会社村田製作所 Cloth, clothing, and medical component
US11739446B2 (en) 2016-06-06 2023-08-29 Murata Manufacturing Co., Ltd. Charge-generating thread for bacterium-countermeasure, cloth for bacterium-countermeasure, cloth, clothing article, medical member, charge-generating thread that acts on living body, and charge-generating thread for substance-adsorption
US11041260B2 (en) 2016-06-06 2021-06-22 Murata Manufacturing Co., Ltd. Charge-generating thread for bacterium-countermeasure, cloth for bacterium-countermeasure, cloth, clothing article, medical member, charge-generating thread that acts on living body, and charge-generating thread for substance-adsorption
US11105023B2 (en) 2016-11-01 2021-08-31 Murata Manufacturing Co., Ltd. Antibacterial nonwoven member, antibacterial nonwoven fabric, and antibacterial buffer material
JP2018105827A (en) * 2016-12-28 2018-07-05 株式会社槌屋 Pressure distribution detector
JP2018102830A (en) * 2016-12-28 2018-07-05 株式会社槌屋 Seat device
JP2019183348A (en) * 2018-04-14 2019-10-24 株式会社レジナ Woven fabric and textile product using the same
CN110941371A (en) * 2018-09-25 2020-03-31 尚科纺织企业工业及贸易公司 Capacitive touch sensor
JP7381059B2 (en) 2018-09-25 2023-11-15 サンコ テキスタイル イスレットメレリ サン ベ ティク エーエス capacitive touch sensor
CN110941371B (en) * 2018-09-25 2024-04-05 尚科纺织企业工业及贸易公司 Capacitive touch sensor, article including the same, and method of detecting touch events
CN111258460A (en) * 2018-12-03 2020-06-09 东华镜月(苏州)纺织技术研究有限公司 Intelligent clothing
CN111251668A (en) * 2018-12-03 2020-06-09 东华镜月(苏州)纺织技术研究有限公司 Intelligent knitted fabric and control system
CN111736732A (en) * 2019-03-22 2020-10-02 尚科纺织企业工业及贸易公司 Capacitive touch sensor
WO2022138862A1 (en) * 2020-12-23 2022-06-30 旭化成アドバンス株式会社 Sensing fiber member

Also Published As

Publication number Publication date
JP5493070B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5493070B2 (en) Conductive fabric
JP5668966B2 (en) Conductive fabric and touch sensor device using conductive fabric
US20230127108A1 (en) Textile fabric implementing a capacitive grid
CN101473188B (en) Object detecting device for detecting an object by electromagnetic induction
JP5754946B2 (en) Conductive three-layer fabric
US9048013B2 (en) Pressure sensible textile and pressure sensible device thereof
JP7186179B2 (en) Use of formed knitted fabrics and formed knitted fabrics
KR20130081762A (en) Textile touch sensor
JP6119482B2 (en) Touch sensor
KR20120132467A (en) Sensor electonics for a plurality of sensor elements and method for determining a position of an object at the sensor elements
JP2010133791A (en) Sheet-form sensor device
JP2012177565A (en) Tensile deformation detection fabric
CN203953649U (en) A kind of flexible electrocardioelectrode
JP2013147765A (en) Fabric structure
JP2017068780A (en) Capacitive touch sensor
JP7405402B2 (en) Large area touch fiber
WO2005093397A1 (en) Moisture sensing apparatus
KR102502929B1 (en) Sensor for detecting pressrue
KR20140014767A (en) Sensor for measuring tilt base on electronic textile and method thereof
KR102172021B1 (en) Fabric for Sensor
KR101858343B1 (en) Conductive textile
EP2770093A1 (en) Moisture-retaining and electrically conductive structure
CN110411618A (en) A kind of point contact type flexibility dynamometer
CN111251668A (en) Intelligent knitted fabric and control system
JP2022032514A (en) Sensor and controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5493070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250