JP2011085083A - Hermetic compressor - Google Patents
Hermetic compressor Download PDFInfo
- Publication number
- JP2011085083A JP2011085083A JP2009239038A JP2009239038A JP2011085083A JP 2011085083 A JP2011085083 A JP 2011085083A JP 2009239038 A JP2009239038 A JP 2009239038A JP 2009239038 A JP2009239038 A JP 2009239038A JP 2011085083 A JP2011085083 A JP 2011085083A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- oil
- vane
- hermetic compressor
- pressure difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
本発明は、空気調和機や冷蔵庫等の冷凍機器に用いられる密閉型圧縮機に関するものである。 The present invention relates to a hermetic compressor used in refrigeration equipment such as an air conditioner and a refrigerator.
従来から密閉型圧縮機について、ベーン摺動面の摩耗状況を改善するためにオイルを積極的にベーン摺動面へ導き、潤滑性を向上させる手法がとられている。 Conventionally, with respect to hermetic compressors, in order to improve the wear state of the vane sliding surface, oil has been actively guided to the vane sliding surface to improve lubricity.
図6は特許文献1に記載された従来の潤滑性を向上させる手法を表しており、吸入穴109とオイル溜まり112は、フィルター122、供給管126、ホルダー124、穴125で繋がっている。 FIG. 6 shows a conventional technique for improving lubricity described in Patent Document 1. The suction hole 109 and the oil reservoir 112 are connected by a filter 122, a supply pipe 126, a holder 124, and a hole 125.
しかしながら、前記従来の構成では常時差圧がついた状態であるため運転条件による圧力差によってオイル供給量の変化も大きく、差圧が大きい場合は過剰なオイルが供給され、性能が不安定になる場合もあった。また、前記従来の構成では部品点数が多くなり材料費上昇の原因となるだけでなく、組立上の工数も増加するため生産性が低下する課題があった。 However, in the conventional configuration, since the differential pressure is always applied, the oil supply amount changes greatly due to the pressure difference depending on the operating conditions. When the differential pressure is large, excessive oil is supplied and the performance becomes unstable. There was a case. Further, the conventional configuration has a problem that not only the number of parts is increased and the material cost is increased, but also man-hours for assembly are increased, so that productivity is lowered.
本発明は、前記従来の課題を解決するもので圧力差を利用しながらも間欠式給油でオイル供給量を制御し、潤滑性の向上も確保しながら性能の安定化を可能とする。また部品点数の増加もなく、組立の工数を増加させないため材料費の上昇や生産性を低下させない密閉型圧縮機を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and controls the oil supply amount by intermittent lubrication while utilizing a pressure difference, and enables stabilization of performance while ensuring improvement in lubricity. Another object of the present invention is to provide a hermetic compressor that does not increase the number of parts and does not increase the man-hours for assembling so that the material cost is not increased and the productivity is not lowered.
前記従来の課題を解決するために本発明の密閉型圧縮機は、ベーンが往復運動する部分と接する下軸受端面部に微小な溝を設け、その溝の一端は吸入側に通じるようにしたものである。 In order to solve the above-mentioned conventional problems, the hermetic compressor of the present invention is provided with a minute groove on the lower bearing end surface part in contact with the portion where the vane reciprocates, and one end of the groove communicates with the suction side. It is.
これによってシャフトとピストン内側と下軸受端面で囲まれる空間に溜まるオイルは、周囲が高圧であるため下軸受端面部に設けられた溝の一端より、低圧側である吸入側へ通じる別の一端に対して差圧によるオイルの流れができる。このとき溝は往復運動を行うベーン端面部に位置していることから、ベーン端面部を潤滑させることが可能となる。またこの方式に依れば材料費の上昇や生産性の低下を招くことも防ぐことが可能である。 As a result, the oil that accumulates in the space surrounded by the shaft, the inside of the piston, and the lower bearing end face has a high pressure around it, so that one end of the groove provided in the lower bearing end face portion is connected to another end that leads to the suction side that is the low pressure side. On the other hand, oil can flow due to differential pressure. At this time, since the groove is located on the vane end surface portion that performs reciprocating motion, the vane end surface portion can be lubricated. In addition, this method can prevent an increase in material costs and a decrease in productivity.
本発明の密閉型圧縮機は、ベーン摺動面の潤滑性を向上させ高信頼性かつ性能改善に優れた効果をもたらすことができる。 The hermetic compressor of the present invention can improve the lubricity of the vane sliding surface and can bring about an effect of high reliability and excellent performance.
第1の発明はベーンが往復運動する部分との摺動面に該当する下軸受端面部に、ベーン幅より小さい幅を持つ微小な溝を設け、さらに前記溝より圧縮機構の吸入側へ通じる連通溝を設けた構成となっている。 In the first invention, a minute groove having a width smaller than the vane width is provided in the lower bearing end surface corresponding to the sliding surface with the portion where the vane reciprocates, and the communication from the groove to the suction side of the compression mechanism is provided. It is the structure which provided the groove | channel.
上記構成により、シャフトとピストン内側と下軸受端面で囲まれる空間に溜まるオイルが高圧であるため下軸受端面部に設けられた溝の一端から、低圧側である吸入側へ通じる別の一端に対して差圧によるオイルの流れができることになり、このとき溝は往復運動を行うベーン端面部に位置していることから、ベーン端面部を潤滑させることが可能となり潤滑性を向上させ高信頼性かつ性能改善の効果があらわれる。 With the above configuration, since the oil accumulated in the space surrounded by the shaft, the piston inner surface and the lower bearing end surface is at a high pressure, from one end of the groove provided in the lower bearing end surface portion to the other end leading to the suction side which is the low pressure side Therefore, the oil flows due to the differential pressure.At this time, the groove is located on the end surface of the vane where the reciprocating motion is performed. Therefore, the end surface of the vane can be lubricated, and the lubricity is improved and the reliability is high. The effect of performance improvement appears.
第2の発明は、特に、第1の発明の溝形状について吸入側へ通じる連通溝の断面積を小さくした構成とすることにより、流量を調整することもでき第1の発明と同様、高信頼性かつ性能改善の効果を得ることができる。 In the second aspect of the invention, in particular, the flow rate can be adjusted by adopting a configuration in which the cross-sectional area of the communication groove leading to the suction side is reduced with respect to the groove shape of the first aspect of the invention. And an effect of improving the performance can be obtained.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の第1の実施の形態における密閉型圧縮機の圧縮機構部を示すものである。
(Embodiment 1)
FIG. 1 shows a compression mechanism portion of a hermetic compressor according to a first embodiment of the present invention.
図1において上軸受7、シリンダ6、ピストン3、下軸受1、ベーン2で囲まれる圧縮室8に入った冷媒は、シャフト2の回転により、シャフト2外周部に嵌められたピストン3の外周部がシリンダ6の内周部に沿うかたちで回転することにより圧縮され、吐出ポート(図示せず)より吐出される。また下軸受1の端面には、ベーンとの摺動面に設けた溝5及び溝5と圧縮機構吸入側とを連通する溝5aが設けてある。 In FIG. 1, the refrigerant that has entered the compression chamber 8 surrounded by the upper bearing 7, the cylinder 6, the piston 3, the lower bearing 1, and the vane 2 is rotated by the rotation of the shaft 2 and the outer peripheral portion of the piston 3 fitted on the outer peripheral portion of the shaft 2. Is compressed by rotating along the inner periphery of the cylinder 6 and discharged from a discharge port (not shown). Further, the end surface of the lower bearing 1 is provided with a groove 5 provided on the sliding surface with the vane and a groove 5a that communicates the groove 5 with the compression mechanism suction side.
以上のように構成された密閉型圧縮機について、以下その作用を説明する。 The operation of the hermetic compressor configured as described above will be described below.
下軸受1に設けられた溝5は、シャフト2の回転により往復運動を行うベーン端面に配置されその詳細は図2に示す構成をしており、溝5aの一端はシリンダ6の吸入穴9側に配置されている。 The groove 5 provided in the lower bearing 1 is arranged on the vane end face that reciprocates by the rotation of the shaft 2, and the details thereof are shown in FIG. 2. One end of the groove 5 a is on the suction hole 9 side of the cylinder 6. Are arranged.
密閉型圧縮機が運転されているとき、圧縮機機構部の摺動部の潤滑を行うため、圧力容器13の下部に溜まっているオイル12は、シャフト2の回転によりシャフト2内部に設けられたオイル吸込み穴11より吸上げられ、シャフト2にあるオイル穴10より噴出し、上軸受7の内周部や下軸受1の内周部、ピストン3の内周部の潤滑を行う。このときシャフト2とピストン3で囲まれるピストン内部空間14にはオイル12で満たされておりこのピストン内部空間14は高圧の状態で溝5の一端と繋がっている。溝5と連通する溝5aの一端はシリンダ6の吸入穴9側に配置され、周囲は低圧側であることからオイル12は溝5及び溝5aを通り差圧によりシリンダ6の吸入側9へ供給されることになる。このとき、溝5の上をベーン4が往復運動で通過することから潤滑性も向上することが可能となる。 When the hermetic compressor is in operation, the oil 12 accumulated in the lower portion of the pressure vessel 13 is provided inside the shaft 2 by the rotation of the shaft 2 in order to lubricate the sliding portion of the compressor mechanism. The oil is sucked up from the oil suction hole 11 and ejected from the oil hole 10 in the shaft 2 to lubricate the inner peripheral part of the upper bearing 7, the inner peripheral part of the lower bearing 1, and the inner peripheral part of the piston 3. At this time, the piston internal space 14 surrounded by the shaft 2 and the piston 3 is filled with oil 12, and this piston internal space 14 is connected to one end of the groove 5 in a high pressure state. One end of the groove 5a communicating with the groove 5 is disposed on the suction hole 9 side of the cylinder 6 and the periphery is on the low pressure side, so that the oil 12 passes through the groove 5 and the groove 5a and is supplied to the suction side 9 of the cylinder 6 by differential pressure. Will be. At this time, since the vane 4 passes through the groove 5 by reciprocating motion, the lubricity can be improved.
また、本実施の形態では図3に示すようにオイルが供給される状態と図4のようにピストン3の端面部で溝5の一端が閉塞となることで、オイルが無供給となる状態があるため間欠給油となり、常時給油方式に比べて上軸受7の内周部や下軸受1の内周部、ピストン3の内周部の潤滑も確保しやすく、溝5及び溝5aを通る吸入穴側9への流量も抑制できるため、吸入側の冷媒過熱も抑えることができ性能の安定化が可能となる。また、先行技術に対して部品点数の増加もなく材料費の上昇や組立工数の増加も防ぐことが可能である。 Further, in the present embodiment, the state in which oil is supplied as shown in FIG. 3 and the state in which one end of the groove 5 is closed at the end surface portion of the piston 3 as shown in FIG. Therefore, it becomes intermittent lubrication, and it is easier to ensure lubrication of the inner peripheral part of the upper bearing 7, the inner peripheral part of the lower bearing 1, and the inner peripheral part of the piston 3 than in the normal oiling method, and the suction holes passing through the grooves 5 and 5a Since the flow rate to the side 9 can also be suppressed, refrigerant overheating on the suction side can be suppressed, and performance can be stabilized. Moreover, it is possible to prevent an increase in material costs and an increase in the number of assembly steps without increasing the number of parts compared to the prior art.
(実施の形態2)
図5はまた、シリンダ6の吸入穴9側に配置される溝5aの断面積を、溝5すなわちピストン内部空間14と繋がる側の断面積に比べ小さく構成した形状を示す。
(Embodiment 2)
FIG. 5 also shows a shape in which the cross-sectional area of the groove 5 a disposed on the suction hole 9 side of the cylinder 6 is made smaller than the cross-sectional area on the side connected to the groove 5, that is, the piston internal space 14.
効果については上記実施の形態1と同様であるが、断面積を小さくすることで供給流量を調整することが可能となるため、目的に応じた潤滑性向上や性能改善を図ることが可能となる。 The effect is the same as in the first embodiment, but the supply flow rate can be adjusted by reducing the cross-sectional area, so that it is possible to improve lubricity and improve performance according to the purpose. .
以上のように、本発明にかかる密閉型圧縮機は、ベーン摺動面の潤滑性を向上させ高信頼性かつ性能改善が可能となるので、空気調和器や冷蔵庫等の冷凍機器に用いられる密閉型圧縮機の用途に適用できる。 As described above, since the hermetic compressor according to the present invention improves the lubricity of the vane sliding surface and enables high reliability and performance improvement, the hermetic compressor used in refrigeration equipment such as an air conditioner and a refrigerator. Applicable to mold compressor applications.
1 下軸受
2 シャフト
3 ピストン
4 ベーン
5 溝
5a 溝
6 シリンダ
7 上軸受
8 圧縮室
9 吸入穴
10 オイル穴
11 オイル吸込み穴
12 オイル
13 圧力容器
14 ピストン内部空間
109 吸入穴
112 オイル溜まり
122 フィルター
123 供給管
124 ホルダー
125 穴
DESCRIPTION OF SYMBOLS 1 Lower bearing 2 Shaft 3 Piston 4 Vane 5 Groove 5a Groove 6 Cylinder 7 Upper bearing 8 Compression chamber 9 Suction hole 10 Oil hole 11 Oil suction hole 12 Oil 13 Pressure vessel 14 Piston internal space 109 Suction hole 112 Oil reservoir 122 Filter 123 Supply Tube 124 Holder 125 Hole
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239038A JP2011085083A (en) | 2009-10-16 | 2009-10-16 | Hermetic compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239038A JP2011085083A (en) | 2009-10-16 | 2009-10-16 | Hermetic compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011085083A true JP2011085083A (en) | 2011-04-28 |
Family
ID=44078211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009239038A Pending JP2011085083A (en) | 2009-10-16 | 2009-10-16 | Hermetic compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011085083A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103742414A (en) * | 2013-12-25 | 2014-04-23 | 广东美芝精密制造有限公司 | Compression pump body of rotary compressor |
KR20140086492A (en) * | 2012-12-28 | 2014-07-08 | 엘지전자 주식회사 | Compressor |
CN106996375A (en) * | 2017-05-31 | 2017-08-01 | 广东美芝制冷设备有限公司 | Air-conditioning, rotary compressor and its pumping installations |
-
2009
- 2009-10-16 JP JP2009239038A patent/JP2011085083A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140086492A (en) * | 2012-12-28 | 2014-07-08 | 엘지전자 주식회사 | Compressor |
KR101970528B1 (en) | 2012-12-28 | 2019-04-19 | 엘지전자 주식회사 | Compressor |
CN103742414A (en) * | 2013-12-25 | 2014-04-23 | 广东美芝精密制造有限公司 | Compression pump body of rotary compressor |
CN106996375A (en) * | 2017-05-31 | 2017-08-01 | 广东美芝制冷设备有限公司 | Air-conditioning, rotary compressor and its pumping installations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9482231B2 (en) | Rotary compressor having an oil groove in an inner peripheral surface of a bearing | |
JP5870255B2 (en) | Hermetic compressor and refrigeration system | |
JP4337635B2 (en) | Hermetic compressor | |
JP4152678B2 (en) | Scroll compressor | |
EP3163084B1 (en) | Rotary compressor having two cylinders | |
US20140119972A1 (en) | Scroll -Type Compressor | |
JP2011085083A (en) | Hermetic compressor | |
JP5370450B2 (en) | Compressor | |
JP2005264743A (en) | Hermetic compressor | |
JP2009197684A (en) | Hermetic compressor and refrigerating cycle device | |
JP2004225578A (en) | Rotary compressor | |
JP6138625B2 (en) | Hermetic compressor and refrigerator using the same | |
KR100963987B1 (en) | Swash pate type compressor | |
JP2014163299A (en) | Hermetic type compressor and refrigerator using the same | |
JP2013024159A (en) | Rotary compressor | |
JP2011179452A (en) | Rotary compressor | |
KR20060065471A (en) | Enclosed type compressor | |
JP2009510298A (en) | Compressor | |
JP4576870B2 (en) | Compressor | |
JP2005264740A (en) | Hermetic compressor | |
JP5138300B2 (en) | Swash plate compressor | |
JP5429138B2 (en) | Scroll compressor | |
JP2015105577A (en) | Sealed compressor and refrigerating/freezing device using the same | |
JP2006283770A (en) | Hermetic electric compressor | |
JP2015010490A (en) | Sealed type compressor |