JP2011084861A - Stainless steel-reinforced embedded form - Google Patents

Stainless steel-reinforced embedded form Download PDF

Info

Publication number
JP2011084861A
JP2011084861A JP2009236034A JP2009236034A JP2011084861A JP 2011084861 A JP2011084861 A JP 2011084861A JP 2009236034 A JP2009236034 A JP 2009236034A JP 2009236034 A JP2009236034 A JP 2009236034A JP 2011084861 A JP2011084861 A JP 2011084861A
Authority
JP
Japan
Prior art keywords
stainless steel
formwork
embedded
vertical
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009236034A
Other languages
Japanese (ja)
Inventor
Yoshio Shinoda
佳男 篠田
Kazunori Kono
一徳 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CONCRETE GIJUTSU KK
Original Assignee
NIPPON CONCRETE GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CONCRETE GIJUTSU KK filed Critical NIPPON CONCRETE GIJUTSU KK
Priority to JP2009236034A priority Critical patent/JP2011084861A/en
Publication of JP2011084861A publication Critical patent/JP2011084861A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thinner embedded form which provides enhanced durability and earthquake resistance of a structure and whose structures of form joints transmit tensile force. <P>SOLUTION: Stainless steel reinforcements are arranged crosswise in a form body 2 which is made of a concrete-based molded article; a tensile force transfer structure is provided in the joint between the adjacent embedded form bodies: and the longitudinal and lateral stainless steel reinforcements are used as part of the main reinforcement and a hoop tie in a design of a reinforced concrete structure or a steel-framed reinforced concrete structure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基材にセメント系モルタル(以下、「基材モルタル」という。)を使用し、補強材としてステンレススチール鉄筋(以下、「ステンレス鉄筋」という。)を縦横の2方向に配置した埋設型枠に関する。   In the present invention, a cement-based mortar (hereinafter referred to as “base mortar”) is used as a base material, and stainless steel reinforcing bars (hereinafter referred to as “stainless steel reinforcing bars”) are disposed in two vertical and horizontal directions as reinforcing materials. Regarding formwork.

埋設型枠は、コンクリート躯体を構築するためのコンクリートの打ち込み時は型枠として機能し、打ち込んだコンクリートが硬化した後は、コンクリート躯体の一部として機能し、脱型枠作業が不要となるためコンクリート躯体構築工事の合理化に貢献している。   The buried formwork functions as a formwork when placing concrete to build a concrete frame, and after the poured concrete has hardened, it functions as a part of the concrete frame, eliminating the need for demolding work. Contributes to the rationalization of concrete frame construction work.

埋設型枠は、コンクリート打ち込み時の成形型枠としての機能と構造物の一部としての機能を持っている。構造物成形型枠としての埋設型枠はコンクリート打ち込み時の側圧に耐える強度が必要である。そのため、ステンレススチール製、スチール製や、ビニロン製などのファイバーを混入して補強する方式が実施されている。   The buried form has a function as a forming form at the time of placing concrete and a function as a part of the structure. An embedded form as a structure forming form must have a strength that can withstand a lateral pressure during concrete pouring. Therefore, a method of reinforcing by mixing fibers made of stainless steel, steel, or vinylon is being implemented.

特開2002−256640号公報JP 2002-256640 A

しかしながら、ステンレススチールファイバー、スチールファイバーやビニロンファイバーなどの各種繊維を補強材として混入した埋設型枠は、コンクリート打ち込み時の側圧には十分耐える強度を有するが、隣接する型枠間の接合部が埋設型枠に作用する引張力を伝達できない構造になっている。このため、従来の埋設型枠は構造物全体の耐久を向上させる機能を保有していない。 However, the embedded formwork mixed with various fibers such as stainless steel fiber, steel fiber, and vinylon fiber as a reinforcing material has sufficient strength to withstand the side pressure when placing concrete, but the joint between adjacent formwork is buried. It has a structure that cannot transmit the tensile force acting on the formwork. For this reason, the conventional embedded formwork does not have a function of improving the durability of the entire structure.

最近、埋設型枠においても構造物の耐久性や耐震性に寄与する性能が要求されるようになってきている。構造物の耐久性、耐震性の向上に寄与するために埋設型枠に補強鉄筋を配筋する補強方式は、表面ひび割れからの腐食性因子の浸入による補強鉄筋の腐食を防止する必要があり、かぶりコンクリートの厚みを大きくしなければならず、薄肉化が要求される埋設型枠として採用できないものであった。例えば、普通鉄筋を使用する場合は、鉄筋の腐食防止のために鉄筋かぶりが30mm以上必要であり、鉄筋として直径10mmの異形棒鋼を縦横2方向に配置すると埋設型枠の厚さは80mm以上必要となる。さらに、埋設型枠を厳しい塩害環境下で使用する場合には、鉄筋かぶりをより大きくする必要がある。このため、埋設型枠に鉄筋を配置することは、型枠の重量増に伴う運搬コストの上昇や現場での施工効率の低下を招くことになり現実的でなかった。   Recently, even in the embedded formwork, performance that contributes to the durability and earthquake resistance of the structure has been required. In order to contribute to improving the durability and seismic resistance of the structure, the reinforcement method that reinforces the reinforcing bars in the embedded formwork must prevent corrosion of the reinforcing bars due to the invasion of corrosive factors from surface cracks. The thickness of the cover concrete has to be increased and cannot be employed as an embedded formwork that requires a thinner wall. For example, when ordinary reinforcing bars are used, reinforcing steel cover is required to be 30 mm or more to prevent corrosion of the reinforcing bars. If deformed steel bars with a diameter of 10 mm are arranged in two vertical and horizontal directions as reinforcing bars, the thickness of the embedded formwork needs to be 80 mm or more. It becomes. Furthermore, when using the embedded formwork in a severe salt damage environment, it is necessary to make the reinforcing bar cover larger. For this reason, it is unrealistic to arrange reinforcing bars in the embedded formwork because it leads to an increase in transportation cost accompanying a weight increase of the formwork and a decrease in construction efficiency on site.

本発明は、上記従来技術の課題を解決する、薄肉化を実現しつつ構造物の耐久性及び耐力を向上させることが可能で、型枠同士の接合部が引張力を伝達させる構造になっている埋設型枠を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, can improve the durability and proof stress of the structure while realizing thinning, and has a structure in which a joint between molds transmits a tensile force. The purpose is to provide embedded formwork.

本発明のステンレス鉄筋補強埋設型枠は、前記課題を解決するために、コンクリート系成形体からなる型枠本体内にステンレス鉄筋を縦横に配置し、隣接する前記型枠本体同士の接合部に引張力伝達構造を備えることを特徴とする。   In order to solve the above-mentioned problem, the stainless steel reinforcing bar embedded formwork of the present invention has stainless steel reinforcing bars arranged vertically and horizontally in a formwork body made of a concrete-based molded body, and is pulled at a joint between adjacent formwork bodies. It is provided with a force transmission structure.

また、本発明のステンレス鉄筋補強埋設型枠は、前記型枠本体内の縦横のステンレス鉄筋の両端部を前記型枠本体の内側に向かうように配置し、前記縦横のステンレス鉄筋の両端部を前記型枠本体の端部内側から一定長さ露出させ、前記縦横のステンレス鉄筋の露出部が隣接する前記型枠本体同士の接合部の重ね継ぎ手とすることを特徴とする。   Further, the stainless steel reinforcing bar embedded formwork of the present invention is arranged such that both ends of the vertical and horizontal stainless steel reinforcing bars in the mold body are directed to the inside of the mold main body, and the both ends of the vertical and horizontal stainless steel reinforcing bars are A fixed length is exposed from the inside of the end of the mold body, and the exposed portions of the vertical and horizontal stainless steel bars serve as a lap joint of the joint portions of the adjacent mold bodies.

また、本発明のステンレス鉄筋補強埋設型枠は、前記型枠本体内の縦横のステンレス鉄筋の両端部を前記型枠本体内で止め、前記型枠本体の内側に隣接する前記型枠本体同士の接合部に配置する添え筋の保持部を取り付けることを特徴とする。   Further, the stainless steel reinforcing bar embedded formwork of the present invention, the both ends of the vertical and horizontal stainless steel reinforcing bars in the formwork body are stopped in the formwork body, and between the formwork bodies adjacent to each other inside the formwork body. It is characterized by attaching a holding portion of a supplementary bar to be arranged at the joint portion.

また、本発明のステンレス鉄筋補強埋設型枠は、前記縦横のステンレス鉄筋を、鉄筋コンクリート構造物や鉄骨鉄筋コンクリート構造物の設計において主鉄筋および帯鉄筋の一部として用いることを特徴とする。   Moreover, the stainless steel reinforcing bar embedded form according to the present invention is characterized in that the vertical and horizontal stainless steel reinforcing bars are used as a part of main reinforcing bars and belt reinforcing bars in the design of a reinforced concrete structure or a steel reinforced concrete structure.

また、本発明のステンレス鉄筋補強埋設型枠は、前記ステンレス鉄筋を異形棒鋼とすることを特徴とする。   Further, the stainless steel reinforcing bar embedded form according to the present invention is characterized in that the stainless steel reinforcing bar is a deformed steel bar.

また、本発明のステンレス鉄筋補強埋設型枠は、前記型枠本体の基材モルタルの水セメント比が25〜55%で、かつセメントに高炉セメントまたは普通ポルトランドセメントと高炉セメントを用いて成形することを特徴とする。   Moreover, the stainless steel reinforcement reinforced buried form of the present invention is formed by using a mortar cement or a normal Portland cement and a blast furnace cement as the cement in which the water-cement ratio of the base material mortar of the form body is 25 to 55%. It is characterized by.

また、本発明のステンレス鉄筋補強埋設型枠は、前記基材モルタルに膨張材を混入し、前記型枠本体内に縦横に配置した前記ステンレス鉄筋を介してプレストレス力を導入することを特徴とする。   Moreover, the stainless steel reinforcement reinforced embedded form of the present invention is characterized in that an expansion material is mixed into the base material mortar, and a prestressing force is introduced through the stainless steel reinforcement arranged vertically and horizontally in the form body. To do.

補強材として耐食性に優れたステンレス鉄筋を用いることでかぶりコンクリートの厚みを小さくでき、型枠本体の強度を増加させつつ薄肉化を図ることが可能となる。
また、縦横のステンレス鉄筋を、鉄筋コンクリート構造物や鉄骨鉄筋コンクリート構造物の設計において主鉄筋および帯鉄筋の一部として用いることで、埋設型枠自体が構造物の強度設計の一部として機能することが可能となる。
また、型枠本体内の縦横のステンレス鉄筋の両端部を前記型枠本体の内側に向かうように配置し、前記縦横のステンレス鉄筋の両端部を前記型枠本体の端部内側から一定長さ露出させることで、埋設型枠の接合部でのステンレス鉄筋同士の干渉を防止して接合部を密着させて接合することが可能となり、縦横のステンレス鉄筋の露出部が隣接する型枠本体同士の接合部で重ね継ぎ手を構成し、埋設型枠の接合部が引張力を伝達する構造とすることが可能となる。
また、型枠本体内の縦横のステンレス鉄筋の両端部を前記型枠本体内で止め、型枠本体の内側に隣接する型枠本体同士の接合部に配置される添え筋の保持部を取り付けることで、隣接する型枠本体同士の接合部が引張力を伝達する構造とすることが可能となる。
また、縦横のステンレス鉄筋を、鉄筋コンクリート構造物や鉄骨鉄筋コンクリート構造物の設計において主鉄筋および帯鉄筋の一部として用いることで、埋設型枠自体が構造物の強度設計に一部として機能することが可能となる。
また、ステンレス鉄筋を異形棒鋼とすることにより、型枠本体成形時のコンクリート系部材とステンレス鉄筋との付着性を向上させることが可能となる。
また、型枠本体の基材モルタルの水セメント比を小さくし、かつ高炉セメントを用いて成形させることで、拡散係数を小さくすることができ、塩害環境下での塩化物イオンの浸入抵抗を大きくすることができ、塩害環境下での構築物への適用において優位となる。
また、埋設型枠製造時に膨張材を使用して内部に縦横に配置したステンレス鉄筋を利用してプレストレスを導入することにより、埋設型枠を薄肉化することが可能となる。
By using a stainless steel bar having excellent corrosion resistance as a reinforcing material, the thickness of the cover concrete can be reduced, and the thickness can be reduced while increasing the strength of the formwork body.
In addition, by using vertical and horizontal stainless steel reinforcing bars as part of main reinforcing bars and strip reinforcing bars in the design of reinforced concrete structures and steel reinforced concrete structures, the embedded formwork itself can function as part of the structural strength design. It becomes possible.
Further, both end portions of the vertical and horizontal stainless steel bars in the mold body are arranged so as to face the inside of the mold body, and the both end portions of the vertical and horizontal stainless steel bars are exposed for a certain length from the inside of the end portion of the mold body. By doing so, it becomes possible to prevent the interference between the stainless steel rebars at the joint part of the embedded formwork and to bring the joint parts into close contact with each other. It is possible to form a structure in which a lap joint is constituted by the portion, and a joint portion of the embedded formwork transmits a tensile force.
In addition, both ends of the vertical and horizontal stainless steel reinforcing bars in the formwork main body are stopped in the formwork main body, and a holding portion of a supplementary bar arranged at a joint portion between adjacent formwork main bodies is attached inside the formwork main body. Thus, it is possible to adopt a structure in which the joint portion between adjacent mold body bodies transmits the tensile force.
In addition, by using vertical and horizontal stainless steel rebar as part of the main rebar and strip rebar in the design of reinforced concrete structures and steel reinforced concrete structures, the embedded formwork itself can function as part of the structural strength design. It becomes possible.
Moreover, it becomes possible to improve the adhesiveness of the concrete-type member and stainless steel reinforcing bar at the time of mold body forming by using a deformed steel bar as the stainless steel reinforcing bar.
In addition, by reducing the water cement ratio of the base material mortar of the mold body and molding it with blast furnace cement, the diffusion coefficient can be reduced, and the infiltration resistance of chloride ions in a salt damage environment is increased. And can be advantageous in application to construction in a salt damage environment.
Moreover, it becomes possible to make an embedded formwork thin by introducing a prestress using the stainless steel reinforcing bar arranged inside and outside using an expansion material at the time of manufacture of an embedded formwork.

本発明の埋設型枠の一実施形態を示す図である。It is a figure which shows one Embodiment of the embedded formwork of this invention. (a)(b)本発明の埋設型枠の他の実施形態を示す図である。(A) (b) It is a figure which shows other embodiment of the embedded formwork of this invention. 本発明の埋設型枠同士の接合状態を示す図である。It is a figure which shows the joining state of the embedded formwork of this invention. 本発明の埋設型枠同士の接合状態を示す図である。It is a figure which shows the joining state of the embedded formwork of this invention. 本発明の埋設型枠同士の接合状態を示す図である。It is a figure which shows the joining state of the embedded formwork of this invention. 本発明の埋設型枠同士の接合状態を示す図である。It is a figure which shows the joining state of the embedded formwork of this invention. 本発明の埋設型枠同士の接合状態を示す図である。It is a figure which shows the joining state of the embedded formwork of this invention. (a)(b)本発明の埋設型枠同士の接合状態を示す図である。(A) (b) It is a figure which shows the joining state of the embedded formwork of this invention.

本発明の実施の形態を図により説明する。図1は、本発明の埋設型枠1の一実施形態の平面図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of an embodiment of an embedded form 1 of the present invention.

埋設型枠1は、コンクリート系成形体からなる型枠本体2を有する。型枠本体2内には、縦方向の補強筋、横方向の補強筋として縦方向ステンレス鉄筋3と横方向ステンレス鉄筋4が所定間隔で配筋される。縦方向及び横方向ステンレス鉄筋3、4は防食性が高いためかぶりコンクリートの厚みを小さくすることができ、埋設型枠1の薄肉化に貢献することができる。   The embedded mold 1 has a mold body 2 made of a concrete-based molded body. In the mold body 2, vertical stainless steel bars 3 and horizontal stainless steel bars 4 are arranged at predetermined intervals as vertical reinforcing bars and horizontal reinforcing bars. Since the vertical and horizontal stainless steel rebars 3 and 4 have high anticorrosion properties, the thickness of the cover concrete can be reduced, and the thickness of the embedded formwork 1 can be reduced.

この実施形態の埋設型枠1は、縦方向及び横方向のステンレス鉄筋3、4の両端部は、型枠本体2の端部から所定長さ露出するようにする。縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出4aが型枠本体2の端部から所定長さ露出することによる作用、効果については後述する。   In the embedded mold 1 of this embodiment, both end portions of the vertical and horizontal stainless steel rebars 3 and 4 are exposed from the end portion of the mold body 2 by a predetermined length. The operation and effect of the vertical stainless steel bar exposed portion 3a and the horizontal stainless steel bar exposed 4a exposed from the end of the mold body 2 by a predetermined length will be described later.

図2(a)(b)は、本発明の埋設型枠の他の実施形態を示す図である。この実施形態の埋設型枠1は、縦方向及び横方向のステンレス鉄筋3、4の両端部は、型枠本体2内に位置するようにする。   FIGS. 2A and 2B are views showing another embodiment of the embedded formwork of the present invention. In the embedded form 1 of this embodiment, both ends of the longitudinal and lateral stainless steel rebars 3 and 4 are positioned in the form body 2.

型枠本体2は、基材モルタルの水セメント比は、一般的な構造物を対象とした場合55%以下、耐久性が要求される構造物が対象の場合25%を下限とする高強度モルタルを用いて成形する。さらに使用セメントを高炉セメントとすることで拡散係数が小さく高い耐塩害性能を有するコンクリート系成形体とすることができる。このように成形される埋設型枠1は、塩害環境下での塩化物イオンの浸入抵抗を大きくすることができ、耐久性を飛躍的に向上させる観点から塩害環境下での構造物の構築用に適している。   The mold body 2 is a high-strength mortar in which the water-cement ratio of the base mortar is 55% or less when a general structure is a target, and 25% is the lower limit when a structure requiring durability is a target. To mold. Furthermore, by using a blast furnace cement as the cement used, a concrete-based molded body having a small diffusion coefficient and high salt damage resistance can be obtained. The embedded form 1 molded in this way can increase the resistance of chloride ions to enter in a salt-damaged environment, and can be used to construct a structure in a salt-damaged environment from the viewpoint of dramatically improving durability. Suitable for

埋設型枠成形時に、セメント系材料に膨張材を加えることにより、成形された埋設型枠1に、縦方向及び横方向ステンレス鉄筋3、4を介してプレストレス(圧縮力)が導入され、このことにより、埋設型枠1を薄肉化することが可能になる。   Prestress (compression force) is introduced into the formed embedded mold 1 through the longitudinal and horizontal stainless steel rebars 3 and 4 by adding an expansion material to the cement-based material at the time of forming the embedded mold. This makes it possible to reduce the thickness of the embedded mold 1.

型枠本体2内に配置される縦方向及び横方向のステンレス鉄筋3、4は、異形棒鋼を用いるのが好ましい。縦方向及び横方向のステンレス鉄筋3、4を異形棒鋼とすることで、コンクリートとの付着性能が向上する。   It is preferable to use deformed steel bars for the longitudinal and lateral stainless steel rebars 3 and 4 disposed in the mold body 2. By making the vertical and horizontal stainless steel rebars 3 and 4 into deformed bar steel, the adhesion performance with concrete is improved.

図3は、図1に示される実施形態の埋設型枠1、1を横方向に接合する一例を示す図である。埋設型枠1、1の接合部では、それぞれの埋設型枠1の横方向ステンレス鉄筋4の型枠本体2から露出した横方向ステンレス鉄筋露出部4aが重なり、2倍のステンレス鉄筋量の重ね継ぎ手となるため、埋設型枠1の接合部の強度を増加し、隣接する埋設型枠1同士が引張力を伝達する構造とすることができる。図3では、埋設型枠1を横方向に接合する例を示すが、埋設型枠1を縦方向に接合する場合も同様である。   FIG. 3 is a view showing an example of joining the embedded molds 1 and 1 of the embodiment shown in FIG. 1 in the lateral direction. At the joint portions of the embedded molds 1 and 1, the lateral stainless steel bar exposed portions 4a exposed from the mold body 2 of the horizontal stainless steel bars 4 of the respective embedded molds 1 are overlapped, and the double joint of the double stainless steel reinforcing bar amount. Therefore, the strength of the joint portion of the embedded mold 1 can be increased, and a structure in which the adjacent embedded molds 1 transmit a tensile force to each other can be obtained. Although FIG. 3 shows an example in which the embedded form 1 is joined in the horizontal direction, the same applies to the case where the embedded form 1 is joined in the vertical direction.

図4は、図1に示される実施形態の埋設型枠1の型枠本体2が平板形状の場合、埋設型枠1を横方向に接合する一例を示す図である。型枠本体2の外側2a(構築される構造物の表面となる側)とし、型枠本体2の内側2b(構造物の構築のためコンクリートが打設される側)とすると、縦方向及び横方向のステンレス鉄筋3、4は、型枠本体2の縦方向及び横方向の端部に行くにしたがい型枠本体2の内側2bに寄るように配置される。そして、縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aは、型枠本体2の端部内側から所定長さ露出し、露出後、型枠本体2の内側に沿って平行に延びるように配置される。縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aを、型枠本体2の端部内側から露出させることで、接合部で縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aが重なることで、接合部が2倍のステンレス鉄筋量の重ね継ぎ手となり、埋設型枠1の接合部の強度を増加し、隣接する型枠本体2同士が引張力を伝達する構造となる。また、隣接する型枠本体2の接合部で縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aが干渉することなく、接合部を密着することができる。図4では、埋設型枠1を横方向に接合する例を示すが、埋設型枠1を縦方向に接合する場合も同様である。   FIG. 4 is a diagram showing an example of joining the embedded mold 1 in the lateral direction when the mold body 2 of the embedded mold 1 of the embodiment shown in FIG. Assuming that the outer side 2a of the mold body 2 is the side that will be the surface of the structure to be constructed, and the inner side 2b of the mold body 2 is the side on which the concrete is placed for the construction of the structure, The directional stainless steel bars 3 and 4 are arranged so as to approach the inner side 2b of the formwork body 2 as they go to the longitudinal and lateral ends of the formwork body 2. The vertical stainless steel bar exposed portion 3a and the horizontal stainless steel bar exposed portion 4a are exposed for a predetermined length from the inner side of the end of the mold body 2 and extend in parallel along the inner side of the mold body 2 after exposure. Placed in. By exposing the vertical stainless steel reinforcing bar exposed part 3a and the horizontal stainless steel reinforcing bar exposed part 4a from the inside of the end of the mold body 2, the vertical stainless steel reinforcing bar exposed part 3a and the horizontal stainless steel reinforcing bar exposed part 4a are joined at the joint. By overlapping, the joint portion becomes a double joint with a double stainless steel reinforcing bar amount, the strength of the joint portion of the embedded mold 1 is increased, and the adjacent mold body 2 transmits a tensile force. Moreover, a joining part can be closely_contact | adhered, without the vertical direction stainless steel rebar exposure part 3a and the horizontal direction stainless steel rebar exposure part 4a interfering in the joining part of the adjacent formwork main body 2. FIG. Although FIG. 4 shows an example in which the embedded form 1 is joined in the horizontal direction, the same applies to the case where the embedded form 1 is joined in the vertical direction.

図5は、図1に示される実施形態の埋設型枠1の型枠本体2が平板形状の場合、埋設型枠1を横方向に接合する他の例を示す図である。この例では、縦方向及び横方向のステンレス鉄筋3、4は、型枠本体2の縦方向及び横方向の端部に行くにしたがい型枠本体2の内側2bに寄るように配置される。この例では、型枠本体2の端部内側から露出し、露出後の縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aは斜め方向に延びるように配置される。縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aが斜め方向に露出することで、型枠本体2の内側に打設されるコンクリートとの定着性が向上する。接合部で縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aが重なることで、接合部が2倍のステンレス鉄筋量の重ね継ぎ手となり、埋設型枠1の接合部の強度を増加し、隣接する型枠本体2同士が引張力を伝達する構造となる。また、隣接する型枠本体2の接合部で縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aが干渉することなく、接合部を密着することができる。図5では、埋設型枠1を横方向に接合する例を示すが、埋設型枠1を縦方向に接合する場合も同様である。   FIG. 5 is a diagram showing another example of joining the embedded mold 1 in the lateral direction when the mold body 2 of the embedded mold 1 of the embodiment shown in FIG. 1 is flat. In this example, the vertical and horizontal stainless steel rebars 3 and 4 are arranged so as to approach the inner side 2b of the mold body 2 as they go to the longitudinal and lateral ends of the mold body 2. In this example, the vertical stainless steel bar exposed portion 3a and the horizontal stainless steel bar exposed portion 4a that are exposed from the inner side of the end of the mold body 2 are arranged to extend in an oblique direction. Since the vertical stainless steel bar exposed portion 3a and the horizontal stainless steel bar exposed portion 4a are exposed in an oblique direction, the fixing property with the concrete placed inside the mold body 2 is improved. By joining the vertical stainless steel rebar exposed part 3a and the horizontal stainless steel rebar exposed part 4a at the joint, the joint becomes a double joint of the amount of stainless steel rebar, and the strength of the joint of the embedded form 1 is increased. Adjacent mold body 2 has a structure for transmitting a tensile force. Moreover, a joining part can be closely_contact | adhered, without the vertical direction stainless steel rebar exposure part 3a and the horizontal direction stainless steel rebar exposure part 4a interfering in the joining part of the adjacent formwork main body 2. FIG. Although FIG. 5 shows an example in which the embedded form 1 is joined in the horizontal direction, the same applies to the case where the embedded form 1 is joined in the vertical direction.

図6は、図1に示される実施形態の埋設型枠1の型枠本体2が円弧形状の場合、埋設型枠1を横方向に接合する例を示す図である。型枠本体の形状を円弧形状とした場合でも、縦方向及び横方向のステンレス鉄筋3、4の配置構成、縦方向ステンレス鉄筋露出部3a及び横方向ステンレス鉄筋露出部4aの構成、作用、効果は、図4、図5に示される型枠本体2が平板形状の場合と同様であるので省略する。型枠本体2の形状の相違は、構築される構造物により様々に変化するので、本発明の埋設型枠1の形状は、図に示される形状に限定されるものではない   FIG. 6 is a diagram showing an example in which the embedded mold 1 is joined in the lateral direction when the mold body 2 of the embedded mold 1 of the embodiment shown in FIG. 1 has an arc shape. Even when the shape of the formwork body is an arc shape, the arrangement configuration of the vertical and horizontal stainless steel rebars 3 and 4, the configuration of the vertical stainless steel reinforcing bar exposed portion 3a and the configuration of the horizontal stainless steel reinforcing bar exposed portion 4a, actions and effects are 4 and 5 are the same as the case where the mold body 2 shown in FIG. Since the difference in the shape of the mold body 2 varies depending on the structure to be constructed, the shape of the embedded mold 1 of the present invention is not limited to the shape shown in the figure.

図7は、図2に示される実施形態の埋設型枠1の型枠本体2が平板形状の場合、埋設型枠1を横方向に接合する一例を示す図である。この例では、型枠本体2の内側2bにその一部が露出するようにスパイラル筋6を型枠本体2内に埋め込み固定する。型枠本体2の内側に露出するスパイラル筋6が、隣接する型枠本体同士の接合部に配置する添え筋5の保持部として機能する。隣接する型枠本体同士の接合部にスパイラル筋6により保持されて添え筋5が配置されることで、埋設型枠1の接合部の強度を増加し、隣接する型枠本体2同士が引張力を伝達する構造となる。図7では、埋設型枠1を横方向に接合する例を示すが、埋設型枠1を縦方向に接合する場合も同様である。   FIG. 7 is a diagram showing an example of joining the embedded mold 1 in the lateral direction when the mold body 2 of the embedded mold 1 of the embodiment shown in FIG. In this example, the spiral muscle 6 is embedded and fixed in the mold body 2 so that a part of the inner side 2b of the mold body 2 is exposed. The spiral line 6 exposed inside the mold body 2 functions as a holding part for the accessory bar 5 arranged at the joint between adjacent mold bodies. Since the splicing bar 5 is held by the spiral streaks 6 at the joints between the adjacent formwork bodies, the strength of the joint part of the embedded formwork 1 is increased, and the adjacent formwork main bodies 2 are pulled to each other. It becomes a structure to transmit. Although FIG. 7 shows an example in which the embedded form 1 is joined in the horizontal direction, the same applies to the case where the embedded form 1 is joined in the vertical direction.

図8は、図2に示される実施形態の埋設型枠1の型枠本体2が平板形状の場合、埋設型枠1を横方向に接合する他の例を示す図である。この例では、型枠本体2の内側2bにその一部が露出するようにU字筋7を型枠本体2内に埋設固定する。型枠本体2の内側に露出するU字筋7が、隣接する型枠本体同士の接合部に配置する添え筋5の保持部として機能する。隣接する型枠本体同士の接合部にU字筋7により保持されて添え筋5が配置されることで、埋設型枠1の接合部の強度を増加し、隣接する型枠本体2同士が引張力を伝達する構造となる。図7では、埋設型枠1を横方向に接合する例を示すが、埋設型枠1を縦方向に接合する場合も同様である。   FIG. 8 is a diagram showing another example of joining the embedded mold 1 in the horizontal direction when the mold body 2 of the embedded mold 1 of the embodiment shown in FIG. In this example, the U-shaped line 7 is embedded and fixed in the mold body 2 so that a part thereof is exposed on the inner side 2 b of the mold body 2. The U-shaped muscle 7 exposed on the inner side of the mold body 2 functions as a holding portion for the accessory muscle 5 arranged at the joint portion between the adjacent mold body bodies. By arranging the accessory bar 5 by being held by the U-shaped line 7 at the joint part between the adjacent formwork bodies, the strength of the joint part of the embedded formwork 1 is increased, and the adjacent formwork bodies 2 are pulled together. A structure that transmits force. Although FIG. 7 shows an example in which the embedded form 1 is joined in the horizontal direction, the same applies to the case where the embedded form 1 is joined in the vertical direction.

本発明の埋設型枠1は、様々な用途に使用可能である。例えば、既設の橋脚の外周に本発明の埋設型枠1を配置し、既設橋脚の外周と埋設型枠1の内側に固化材を充填し、既存の橋脚と埋設型枠1を一体として、既存橋脚の耐久性と耐震性を向上することができる。   The embedded form 1 of the present invention can be used for various applications. For example, the embedded formwork 1 of the present invention is arranged on the outer periphery of an existing pier, the outer periphery of the existing pier and the inside of the embedded formwork 1 are filled with a solidifying material, and the existing pier and the embedded formwork 1 are integrated into an existing The durability and earthquake resistance of the pier can be improved.

また、既存の床版の底面あるいは上面に本発明の埋設型枠1を配置して一体として、床版増厚工法に用いたりすることができる。   Further, the embedded formwork 1 of the present invention can be arranged on the bottom or top surface of an existing floor slab and used as an integral part in the floor slab thickening method.

以上のように、本発明の埋設型枠1の構成により、補強材として耐食性に優れたステンレス鉄筋を用いることでかぶりコンクリートの厚みを小さくでき、膨張材によりプレストレスを導入することで型枠本体2の強度を増加させつつ薄肉化を図ることが可能となり、縦横のステンレス鉄筋3、4を、鉄筋コンクリート構造物や鉄骨鉄筋コンクリート構造物の設計において主鉄筋および帯鉄筋の一部として用いることで、埋設型枠自体が構造物の強度設計の一部として機能し、型枠本体同士の接合部が埋設型枠同士を引張力が伝達される構造とすることができ、ステンレス鉄筋を異形棒鋼とすることにより、型枠本体成形時のコンクリート系部材とステンレス鉄筋との付着性を向上させ、型枠本体の基材モルタルの水セメント比を小さくし、かつ高炉セメントを用いて成形させることで、拡散係数を小さくすることができ、塩害環境下での塩化物イオンの浸入抵抗を大きくするこができ、塩害環境下での構築物への適用において優位となり、埋設型枠製造時に膨張材を使用して内部に縦横に配置したステンレス鉄筋を利用してプレストレスを導入することにより、埋設型枠を薄肉化することが可能になる。   As described above, with the configuration of the embedded form 1 of the present invention, the thickness of the cover concrete can be reduced by using a stainless steel rebar having excellent corrosion resistance as a reinforcing material, and the pre-stress is introduced by the expansion material. It is possible to reduce the thickness while increasing the strength of 2 and use the vertical and horizontal stainless steel rebars 3 and 4 as part of the main rebar and strip rebar in the design of reinforced concrete structures and steel reinforced concrete structures. The mold itself functions as part of the strength design of the structure, the joint between the mold bodies can be structured to transmit the tensile force between the embedded molds, and the stainless steel bar is a deformed steel bar This improves the adhesion between the concrete-based member and the stainless steel rebar during molding of the mold body, reduces the water-cement ratio of the base material mortar of the mold body, By forming with blast furnace cement, the diffusion coefficient can be reduced, the infiltration resistance of chloride ions in a salt damage environment can be increased, and it is superior in application to structures in a salt damage environment, By introducing prestress using stainless steel reinforcing bars arranged vertically and horizontally using an expanding material during the manufacturing of the embedded mold, it is possible to reduce the thickness of the embedded mold.

1:埋設型枠、2:型枠本体、2a:型枠本体の外側、2b:型枠本体の内側、3:縦方向ステンレス鉄筋、3a:縦方向ステンレス鉄筋露出部、4:横方向ステンレス鉄筋、4a:横方向ステンレス鉄筋露出部、5:添え筋、6:スパイラル筋、7:U字筋   1: Embedded formwork, 2: Formwork body, 2a: Outside of formwork body, 2b: Inside of formwork body, 3: Longitudinal stainless steel rebar, 3a: Longitudinal stainless steel bar exposed part, 4: Horizontal stainless steel bar 4a: laterally exposed stainless steel bar exposed portion, 5: splicing bar, 6: spiral bar, 7: U-shaped bar

Claims (7)

コンクリート系成形体からなる型枠本体内にステンレス鉄筋を縦横に配置し、隣接する前記型枠本体同士の接合部に引張力伝達構造を備えることを特徴とするステンレス鉄筋補強埋設型枠。   A stainless steel reinforcement reinforcing embedded form, wherein stainless steel reinforcing bars are arranged vertically and horizontally in a formwork body made of a concrete-based molded body, and a tensile force transmission structure is provided at a joint between adjacent formwork bodies. 前記型枠本体内の縦横のステンレス鉄筋の両端部を前記型枠本体の内側に向かうように配置し、前記縦横のステンレス鉄筋の両端部を前記型枠本体の端部内側から一定長さ露出させ、前記縦横のステンレス鉄筋の露出部を隣接する前記型枠本体同士の接合部の重ね継ぎ手とすることを特徴とする請求項1に記載のステンレス鉄筋補強埋設型枠。   The both ends of the vertical and horizontal stainless steel bars in the mold body are arranged so as to face the inside of the mold body, and the both ends of the vertical and horizontal stainless steel bars are exposed for a certain length from the inside of the edge of the mold body. The exposed portion of the vertical and horizontal stainless steel reinforcing bars is used as a lap joint of the joint portions of the adjacent mold body main bodies. 前記型枠本体内の縦横のステンレス鉄筋の両端部を前記型枠本体内で止め、前記型枠本体の内側に隣接する前記型枠本体同士の接合部に配置する添え筋の保持部を取り付けることを特徴とする請求項1に記載のステンレス鉄筋補強埋設型枠。   The both ends of the vertical and horizontal stainless steel reinforcing bars in the formwork body are stopped in the formwork body, and the holding portions of the accessory bars arranged at the joints between the formwork bodies adjacent to the inside of the formwork body are attached. The stainless steel reinforcement reinforcement embedding form of Claim 1 characterized by these. 前記縦横のステンレス鉄筋を、鉄筋コンクリート構造物や鉄骨鉄筋コンクリート構造物の設計において主鉄筋および帯鉄筋の一部として用いることを特徴とする請求項1ないし3のいずれか1項に記載のステンレス鉄筋補強埋設型枠。   The stainless steel reinforcing bar embedment according to any one of claims 1 to 3, wherein the vertical and horizontal stainless steel reinforcing bars are used as part of main reinforcing bars and strip reinforcing bars in the design of a reinforced concrete structure or a steel reinforced concrete structure. Formwork. 前記ステンレス鉄筋を異形棒鋼とすることを特徴とする請求項1ないし4のいずれか1項に記載のステンレス鉄筋補強埋設型枠。   The stainless steel reinforcing bar embedded form according to any one of claims 1 to 4, wherein the stainless steel reinforcing bar is a deformed steel bar. 前記型枠本体の基材モルタルの水セメントが25〜55%で、かつセメントに高炉セメンントまたは普通ポルトランドセメントと高炉セメントを用いて成形することを特徴とする請求項1ないし5のいずれか1項に記載のステンレス鉄筋補強埋設型枠。   6. The water base of the base material mortar of the mold body is 25 to 55%, and the cement is formed using blast furnace cement or ordinary Portland cement and blast furnace cement. The stainless steel reinforcement reinforcement embedding form of description. 前記セメント系部材に膨張材を混入し、前記型枠本体内に縦横に配置した前記ステンレス鉄筋を介してプレストレス力を導入することを特徴とする請求項1ないし6のいずれか1項に記載のステンレス鉄筋補強埋設型枠。   The expansion | swelling material is mixed in the said cement-type member, A prestress force is introduce | transduced through the said stainless steel rebar arrange | positioned in the said mold main body vertically and horizontally. Stainless steel reinforcement reinforced buried formwork.
JP2009236034A 2009-10-13 2009-10-13 Stainless steel-reinforced embedded form Pending JP2011084861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236034A JP2011084861A (en) 2009-10-13 2009-10-13 Stainless steel-reinforced embedded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236034A JP2011084861A (en) 2009-10-13 2009-10-13 Stainless steel-reinforced embedded form

Publications (1)

Publication Number Publication Date
JP2011084861A true JP2011084861A (en) 2011-04-28

Family

ID=44078008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236034A Pending JP2011084861A (en) 2009-10-13 2009-10-13 Stainless steel-reinforced embedded form

Country Status (1)

Country Link
JP (1) JP2011084861A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091961A (en) * 2012-11-02 2014-05-19 Yanagisawa Concrete Kogyo Kk Slab bridge
JP2015209721A (en) * 2014-04-30 2015-11-24 永井コンクリート工業株式会社 Concrete wind shield using stainless reinforcement
JP2017210774A (en) * 2016-05-24 2017-11-30 大成建設株式会社 Wall body, construction method thereof, and concrete mold-cum-wall member
JP2019190257A (en) * 2018-04-27 2019-10-31 日本コンクリート技術株式会社 Stainless reinforcement bar strengthening underground mold
CN111441510A (en) * 2020-04-07 2020-07-24 三一筑工科技有限公司 Vertical dowel bar structure of cavity shear wall and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299514A (en) * 1993-04-14 1994-10-25 Kajima Corp Reinforced concrete-made buried form
JP2566170Y2 (en) * 1992-01-09 1998-03-25 三菱化学株式会社 Carbon fiber reinforced concrete facade panels
JPH1086121A (en) * 1996-09-19 1998-04-07 Ozawa Concrete Kogyo Kk Concrete board for formwork and its manufacture
JP2002037657A (en) * 2000-07-26 2002-02-06 Taisei Corp Super-durable concrete structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566170Y2 (en) * 1992-01-09 1998-03-25 三菱化学株式会社 Carbon fiber reinforced concrete facade panels
JPH06299514A (en) * 1993-04-14 1994-10-25 Kajima Corp Reinforced concrete-made buried form
JPH1086121A (en) * 1996-09-19 1998-04-07 Ozawa Concrete Kogyo Kk Concrete board for formwork and its manufacture
JP2002037657A (en) * 2000-07-26 2002-02-06 Taisei Corp Super-durable concrete structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091961A (en) * 2012-11-02 2014-05-19 Yanagisawa Concrete Kogyo Kk Slab bridge
JP2015209721A (en) * 2014-04-30 2015-11-24 永井コンクリート工業株式会社 Concrete wind shield using stainless reinforcement
JP2017210774A (en) * 2016-05-24 2017-11-30 大成建設株式会社 Wall body, construction method thereof, and concrete mold-cum-wall member
JP2019190257A (en) * 2018-04-27 2019-10-31 日本コンクリート技術株式会社 Stainless reinforcement bar strengthening underground mold
JP7177421B2 (en) 2018-04-27 2022-11-24 日本コンクリート技術株式会社 Embedded formwork for reinforcing stainless steel bars
CN111441510A (en) * 2020-04-07 2020-07-24 三一筑工科技有限公司 Vertical dowel bar structure of cavity shear wall and production method thereof

Similar Documents

Publication Publication Date Title
KR100920204B1 (en) Constructing method of precast pier footing for bridge
JP5363930B2 (en) Precast member joining structure and construction method thereof
JP2012246749A (en) Structural steelwork structure
JP6338473B2 (en) Precast structure joining method
JP2011084861A (en) Stainless steel-reinforced embedded form
CN114197753B (en) UHPC shuttering type steel reinforced concrete composite cylinder-shaped steel beam combined frame and construction method
JP2003041708A (en) Member for structure
KR20140110490A (en) Half precast concrete column manufacturing method using prefabricated PC panels and constructing method using the same
CN115095054A (en) Positioning connecting piece, prefabricated anti-seismic superposed wall and construction method thereof
CN211143393U (en) Frame for preparing assembly type concrete core-filled wall and assembly type concrete core-filled wall
JP2003213623A (en) Upper structure of ridge
JP2009007925A (en) Floor slab for steel bridge
CN105971196A (en) Method for constructing masonry structure embedded square concrete filled steel tube ring beam-constructional column
JP4545667B2 (en) Floor slab repair method using buried formwork
JP2012057338A (en) Concrete structure member using stainless steel reinforcing bars
JP2013256788A (en) Structure body and lining method using fiber-reinforced cementitious composite with multiple fine cracks
KR20210076836A (en) Girder structure and construction method for continuity of supporting portion of girder using the same
CN113026985A (en) Vertical seam dislocation mutual anchor connection structure of prefabricated shear wall edge member department
JP7455931B1 (en) Precast board manufacturing method and precast board
CN216739761U (en) Reinforcing structure for concrete construction and underground building
JP2014058820A (en) Composite column structure and construction method for composite column
JP3442453B2 (en) Reinforcing unit, precast formwork with built-in rebar, and method of manufacturing precast formwork with built-in rebar
CN212506907U (en) Masonry wall structure
JP7424875B2 (en) Concrete members, their placement methods and segments
CN209975867U (en) Prefabricated constructional column structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Effective date: 20130911

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140205