JP2011083857A - Method of manufacturing grindstone core and method of manufacturing grindstone - Google Patents

Method of manufacturing grindstone core and method of manufacturing grindstone Download PDF

Info

Publication number
JP2011083857A
JP2011083857A JP2009238392A JP2009238392A JP2011083857A JP 2011083857 A JP2011083857 A JP 2011083857A JP 2009238392 A JP2009238392 A JP 2009238392A JP 2009238392 A JP2009238392 A JP 2009238392A JP 2011083857 A JP2011083857 A JP 2011083857A
Authority
JP
Japan
Prior art keywords
grindstone
core
manufacturing
silicon
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238392A
Other languages
Japanese (ja)
Other versions
JP5499619B2 (en
Inventor
Takumi Mio
巧美 三尾
Koji Nishi
幸二 西
Hajime Fukami
肇 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009238392A priority Critical patent/JP5499619B2/en
Publication of JP2011083857A publication Critical patent/JP2011083857A/en
Application granted granted Critical
Publication of JP5499619B2 publication Critical patent/JP5499619B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for inexpensively manufacturing a high quality aluminum grindstone core having a high content ratio of silicon such as more than 20 wt.% and an efficient manufacturing method of a grindstone having a grindstone segment bonded to an outer periphery of the grindstone core. <P>SOLUTION: In the manufacturing method of the substantially disk shaped grindstone core 1 used for the grindstone rotated on a rotating shaft of the grindstone, as a material of the grindstone core, aluminum (Al) including 20 wt.% or more (or 30 to 40 wt.%) of silicon (Si) is used to cast the grindstone core 1 by using a semi-solid die-casting method. When the grindstone core is cast by using the semi-solid die-casting method, a plurality of grooves M are formed on an outer peripheral surface of the grindstone core 1. The grooves M are filled with adhesive agent and the grindstone segment is bonded thereon to manufacture the grindstone. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アルミニウム(Al)とケイ素(Si)の合金にて鋳造した砥石コアの製造方法、及び当該砥石コアに砥石セグメントを貼り付けて砥石を製造する砥石の製造方法に関する。   The present invention relates to a method for producing a grindstone core cast from an alloy of aluminum (Al) and silicon (Si), and a grindstone production method for producing a grindstone by attaching a grindstone segment to the grindstone core.

近年、研削盤等で用いる回転砥石は、一般的には略円盤形状の金属製の砥石コアの外周面に砥粒を含んだ砥石セグメントを貼り付けて構成されている。
従来、砥石コアの材料は、主に鉄(Fe)を主成分とした棒鋼を鍛圧して製造しており、直径が数十[cm]となるような砥石コアの場合は、主成分が鉄であるため、重量が大きい。このため、砥石の運搬や交換の際の作業性が悪く、またエネルギー効率等の観点からも軽量化が求められている。
In recent years, a rotating grindstone used in a grinder or the like is generally configured by attaching a grindstone segment containing abrasive grains to the outer peripheral surface of a substantially disc-shaped metal grindstone core.
Conventionally, the material of a grindstone core is manufactured by forging a steel bar mainly composed of iron (Fe). In the case of a grindstone core having a diameter of several tens [cm], the main component is iron. Therefore, the weight is large. For this reason, workability | operativity at the time of conveyance and replacement | exchange of a grindstone is bad, and weight reduction is calculated | required also from viewpoints, such as energy efficiency.

軽量化のアプローチとして材料を鉄よりも軽い材料に置換する方法が考えられる。鉄よりも軽い材料としてアルミニウムを用いた場合、アルミニウムは鉄よりも線膨張係数が大きいので、砥石の高速回転により砥石コアが鉄の場合より大きく遠心膨張する。このため、このような砥石で研削加工を行うと、加工精度が低下するという問題がある。
そこで、アルミニウムの線膨張係数を小さくするためにケイ素(Si)を含有させるが、鉄の線膨張係数と同等の線膨張係数とするためには、ケイ素を30〜40重量%の割合で含有させる必要がある。なお、アルミニウムとケイ素の合金における共晶点は、ケイ素の含有割合が12.6重量%の点である。
As a light weight approach, a method of replacing the material with a material lighter than iron can be considered. When aluminum is used as a lighter material than iron, aluminum has a larger coefficient of linear expansion than iron, so that the grindstone core is centrifugally expanded more than the case of iron due to high-speed rotation of the grindstone. For this reason, when grinding is performed with such a grindstone, there is a problem that processing accuracy is lowered.
Therefore, silicon (Si) is contained in order to reduce the linear expansion coefficient of aluminum, but in order to obtain a linear expansion coefficient equivalent to that of iron, silicon is contained in a proportion of 30 to 40% by weight. There is a need. The eutectic point in the alloy of aluminum and silicon is that the silicon content is 12.6% by weight.

このようにケイ素の含有割合が高い(共晶点より高い)砥石コアの製造方法としては、特許文献1や特許文献2に開示されているように、合金粉末を焼結する方法が採用されている。
なお、砥石コアとは異なる機械部品としてではあるが、ケイ素を9〜13重量%含有したアルミニウム合金の製造方法が特許文献3に開示されている。
As described above, as disclosed in Patent Document 1 and Patent Document 2, a method of sintering an alloy powder is employed as a method for manufacturing a grindstone core having a high silicon content (higher than the eutectic point). Yes.
In addition, although it is as a machine part different from a grindstone core, the manufacturing method of the aluminum alloy containing 9 to 13 weight% of silicon is disclosed by patent document 3. FIG.

特開平7−171767号公報Japanese Patent Laid-Open No. 7-171767 特開平8−257917号公報JP-A-8-257717 特開2005−089827号公報Japanese Patent Laying-Open No. 2005-089827

特許文献1や特許文献2に記載された従来技術により製造された砥石コアは、線膨張係数が鉄に近いので、これを用いた研削加工では高精度な加工を行うことができる。しかしながら、アルミニウムとケイ素の合金粉末を大型プレス等にて加圧しながら焼結するため、直径が数十[cm]にも及ぶ砥石コアを製造する場合、非常に大型のプレス機が必要となる。また、粉体を加圧焼結する方法では、内部に気泡が発生し、これを完全に排除することはできないので、強度が低下するという課題がある。
本発明は、このような点に鑑みて創案されたものであり、20重量%を超えるような高いケイ素含有率のアルミニウム砥石コアを低コストで高品質に製造できる製造方法を提供することを課題とする。また、この砥石コアの外周に砥石セグメントを貼り付けてなる砥石の効率的な製造方法を提供することを課題とする。
Since the grindstone core manufactured by the prior art described in Patent Document 1 and Patent Document 2 has a linear expansion coefficient close to that of iron, high-precision processing can be performed by grinding using this. However, since aluminum and silicon alloy powder is sintered while being pressed with a large press or the like, a very large press machine is required when manufacturing a grindstone core having a diameter of several tens [cm]. Further, in the method of pressure sintering powder, bubbles are generated inside and cannot be completely eliminated, so that there is a problem that strength is lowered.
The present invention has been made in view of the above points, and it is an object of the present invention to provide a manufacturing method capable of manufacturing a high-quality aluminum grindstone core having a high silicon content exceeding 20% by weight at a low cost. And It is another object of the present invention to provide an efficient method for producing a grindstone in which a grindstone segment is bonded to the outer periphery of the grindstone core.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの砥石コアの製造方法である。
請求項1に記載の砥石コアの製造方法は、砥石回転軸回りに回転させる砥石に用いる略円盤形状の砥石コアの製造方法であって、前記砥石コアの材料として、20重量%以上のケイ素(Si)を含有するアルミニウム(Al)を用い、セミソリッドダイキャスト法を用いて前記砥石コアを鋳造する。
As means for solving the above-mentioned problems, a first invention of the present invention is a method for manufacturing a grindstone core as set forth in claim 1.
The method for producing a grindstone core according to claim 1 is a method for producing a substantially disc-shaped grindstone core used for a grindstone that is rotated around a grindstone rotation axis. The grindstone core is cast using a semi-solid die casting method using aluminum (Al) containing Si).

また、本発明の第2発明は、請求項2に記載されたとおりの砥石コアの製造方法である。
請求項2に記載の砥石コアの製造方法は、砥石回転軸回りに回転させる砥石に用いる略円盤形状の砥石コアの製造方法であって、前記砥石コアの材料として、30重量%以上かつ40重量%以下のケイ素(Si)を含有するアルミニウム(Al)を用い、セミソリッドダイキャスト法を用いて前記砥石コアを鋳造する。
The second invention of the present invention is a method for manufacturing a grindstone core as set forth in claim 2.
The method for producing a grindstone core according to claim 2 is a method for producing a substantially disc-shaped grindstone core used for a grindstone rotated around a grindstone rotation axis, and the material for the grindstone core is 30 wt% or more and 40 wt%. The grindstone core is cast using a semi-solid die casting method using aluminum (Al) containing no more than% silicon (Si).

また、本発明の第3発明は、請求項3に記載されたとおりの砥石コアの製造方法である。
請求項3に記載の砥石コアの製造方法は、請求項1または2に記載の砥石コアの製造方法であって、前記セミソリッドダイキャスト法を用いて鋳造した時点において、前記砥石コアの外周面には複数の溝が形成されている。
The third invention of the present invention is a method for manufacturing a grindstone core as set forth in claim 3.
The method for producing a grindstone core according to claim 3 is the method for producing a grindstone core according to claim 1 or 2, wherein the outer peripheral surface of the grindstone core at the time of casting using the semi-solid die casting method. A plurality of grooves are formed in.

また、本発明の第4発明は、請求項4に記載されたとおりの砥石の製造方法である。
請求項4に記載の砥石の製造方法は、請求項3に記載の砥石コアの製造方法にて鋳造した砥石コアを用いた砥石の製造方法であって、前記砥石コアの外周面に形成されている溝に接着剤を充填させるステップ、及び、接着剤を充填させた溝の上から、砥粒を含む砥石セグメントを貼り付けるステップとからなる砥石の製造方法である。
A fourth invention of the present invention is a method for manufacturing a grindstone as set forth in claim 4.
The method for producing a grindstone according to claim 4 is a method for producing a grindstone using a grindstone core cast by the method for producing a grindstone core according to claim 3, and is formed on the outer peripheral surface of the grindstone core. A method of manufacturing a grindstone comprising the steps of filling a groove with an adhesive and attaching a grindstone segment containing abrasive grains on the groove filled with the adhesive.

請求項1または請求項2に記載の砥石コアの製造方法を用いれば、セミソリッドダイキャスト法を用いて鋳造することで、ケイ素を含有するアルミニウムにおいて、ケイ素の含有量が共晶点である12.6重量%よりも大きな20重量%を超える場合であっても、液相と固相が混在した溶湯状態でなく、バター状態(セミソリッド状態)にした合金を用いて鋳造することで、大型のプレス機を必要とすることなく、均一な鋳造品を製造することができる。   If the method for producing a grinding stone core according to claim 1 or 2 is used, in the aluminum containing silicon, the silicon content is the eutectic point by casting using a semi-solid die casting method. Even when it exceeds 20% by weight, which is larger than 6% by weight, it is not a molten state in which a liquid phase and a solid phase are mixed, but is cast by using an alloy in a butter state (semi-solid state). A uniform casting can be produced without the need for a pressing machine.

また、請求項3に記載の砥石コアの製造方法によれば、従来の一般的な鍛圧や加圧焼結法では、型に材料を充填することが困難であった外周部の溝形状を実現することができる。   In addition, according to the method for manufacturing a grindstone core according to claim 3, the groove shape of the outer peripheral portion, which has been difficult to fill the mold with the material by the conventional general forging pressure or pressure sintering method, is realized. can do.

また、請求項4に記載の砥石の製造方法によれば、砥石コアの外周部に形成した溝に接着剤を充填することで、砥石セグメントを貼り付ける際の接着剤の量(厚さ)の管理を容易にすることが可能であり、安定した品質を得ることができるとともに、製造時間をより短縮化することができ、効率的に砥石を製造することができる。   Moreover, according to the manufacturing method of the grindstone of Claim 4, the quantity (thickness) of the adhesive at the time of affixing a grindstone segment is filled by filling an adhesive into the groove | channel formed in the outer peripheral part of the grindstone core. Management can be facilitated, stable quality can be obtained, manufacturing time can be further shortened, and a grindstone can be manufactured efficiently.

本発明の砥石コアの製造方法を用いて鋳造した砥石コアの外観の例を説明する図である。It is a figure explaining the example of the external appearance of the grindstone core cast using the manufacturing method of the grindstone core of this invention. セミソリッドダイキャスト法の概略を説明する図である。It is a figure explaining the outline of a semi-solid die-casting method. アルミニウムとケイ素の二元系平衡状態図である。It is a binary system equilibrium state diagram of aluminum and silicon. 砥石コア1への砥石セグメントTSの貼り付けを説明する図である。It is a figure explaining sticking of the grindstone segment TS to the grindstone core.

以下に本発明を実施するための形態を図面を用いて説明する。図1は、本発明の「砥石コアの製造方法」を用いて鋳造した砥石コア1の概略外観図(斜視図)の例を示しており、図2はセミソリッドダイキャスト法の概略説明図である。また図3は、アルミニウムとケイ素の二元系平衡状態図の例を示しており、(A)領域は液相、(B)領域は液相+固相(アルミニウムの固相)、(C)領域は液相+固相(ケイ素の固相)、(D)領域は固相、を示している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. FIG. 1 shows an example of a schematic external view (perspective view) of a grindstone core 1 cast using the “method for producing a grindstone core” of the present invention, and FIG. 2 is a schematic explanatory view of a semi-solid die casting method. is there. FIG. 3 shows an example of a binary equilibrium diagram of aluminum and silicon. (A) region is a liquid phase, (B) region is a liquid phase + solid phase (aluminum solid phase), (C) The region indicates the liquid phase + solid phase (silicon solid phase), and the region (D) indicates the solid phase.

●[鋳造する砥石コア1の外観(図1)とセミソリッドダイキャスト法の概略(図2)]
本実施の形態にて説明するセミソリッドダイキャスト法にて鋳造された砥石コア1は、研削盤等にて砥石回転軸回りに回転させて用いる砥石であり、略円盤形状を有している。また、材料として、30〜40重量%のケイ素(Si)を含むアルミニウム(Al)の合金を用いて鋳造される。30〜40重量%のケイ素を含有させることで、線膨張係数を鉄(Fe)と同等にすることができる。また、アルミニウムを主成分とすることで、鉄を主成分とした場合よりも大幅な軽量化を実現することができる。
● [External appearance of cast stone core 1 (Fig. 1) and outline of semi-solid die casting method (Fig. 2)]
A grindstone core 1 cast by the semi-solid die casting method described in the present embodiment is a grindstone that is used by being rotated around a grindstone rotation axis by a grinder or the like, and has a substantially disc shape. Moreover, it casts using the alloy of aluminum (Al) containing 30 to 40 weight% of silicon (Si) as a material. By containing 30 to 40% by weight of silicon, the linear expansion coefficient can be made equivalent to iron (Fe). Further, by using aluminum as a main component, it is possible to realize a significant weight reduction as compared with the case of using iron as a main component.

また、本実施の形態にて説明する砥石コア1は、鋳造された時点における形状にも特徴がある。
ケイ素の含有量を共晶点である12.6重量%よりも多い30〜40重量%とした場合、温度を一般的な680℃の近傍に設定して鍛圧にて溶湯を鋳型に流し込んで鋳造する方法では、溶湯が液相(液体状のアルミニウムとケイ素)と固相(粒子状の固体のケイ素)の混合状態となり、溶湯が不均一となり易く、砥石コア1の外周部に形成した溝Mの形状に溶湯を十分に充填させることは非常に困難であった。ケイ素の含有量が30〜40重量%の場合、680℃では図3に示す平衡状態図における(C)領域となるため、固相となったケイ素を含む。
なお、ケイ素が30〜40重量%であっても溶湯を900℃以上とすれば、液相のみの均一な溶湯を得ることが可能であるが、設備の大幅な改造を伴うとともに、鋳造の冷却時間が増加して作業効率が低下し、鋳型の耐久性も低下するので好ましくない。
また、ケイ素が30〜40重量%であるため、液相を急冷しなければケイ素の偏析が発生する。液相を急冷するには鋳型を急冷する必要があるが、鋳型を急冷するのは非常に困難である。従って、ケイ素を30〜40重量%の割合で含有させた場合、均一な鋳造品を製造することは非常に困難である。
また、加圧焼結法を用いても、アルミニウムとケイ素の合金の粉末を型の端部となる溝Mの形状に十分に充填させながら加圧焼結することは非常に困難であった。
The grindstone core 1 described in the present embodiment is also characterized by the shape at the time of casting.
When the silicon content is 30 to 40% by weight, which is higher than the eutectic point of 12.6% by weight, the temperature is set in the vicinity of the general 680 ° C., and the molten metal is poured into the mold by forging and casting. In this method, the molten metal is in a mixed state of a liquid phase (liquid aluminum and silicon) and a solid phase (particulate solid silicon), so that the molten metal is likely to be non-uniform, and the groove M formed in the outer peripheral portion of the grindstone core 1. It was very difficult to sufficiently fill the molten metal into the shape. In the case where the silicon content is 30 to 40% by weight, since it becomes the (C) region in the equilibrium diagram shown in FIG.
Even if the silicon content is 30 to 40% by weight, if the molten metal is set to 900 ° C. or higher, it is possible to obtain a uniform molten metal only in the liquid phase. It is not preferable because time is increased, working efficiency is lowered, and mold durability is also lowered.
Moreover, since silicon is 30 to 40% by weight, segregation of silicon occurs unless the liquid phase is quenched. In order to quench the liquid phase, it is necessary to quench the mold, but it is very difficult to quench the mold. Therefore, when silicon is contained in a proportion of 30 to 40% by weight, it is very difficult to produce a uniform cast product.
Further, even if the pressure sintering method is used, it is very difficult to perform pressure sintering while sufficiently filling the shape of the groove M serving as the end of the mold with an aluminum-silicon alloy powder.

本願では、図2の略図に示すように、型S1とS2にて形成された型空間Kに、バター状態(セミソリッド状態)にした材料を、ピストンP等にて高圧で押し込んで鋳造するセミソリッドダイキャスト法を用いて、砥石コア1を鋳造する。
この方法を用いることで、ケイ素の含有量が30〜40重量%であっても、型空間K内に均一に材料を充填することができるので、砥石コア1の外周部に形成した溝Mを、鋳造時点において適切に形成することができる。また、ケイ素が固相とならないように900℃以上の温度に設定する必要もない。
In the present application, as shown in the schematic diagram of FIG. 2, a semi-solid material is formed by pushing a butter (semi-solid) material into a mold space K formed by the molds S1 and S2 with a piston P or the like at high pressure. The grindstone core 1 is cast using a solid die casting method.
By using this method, even if the silicon content is 30 to 40% by weight, the mold space K can be filled with the material uniformly. Therefore, the grooves M formed in the outer peripheral portion of the grindstone core 1 are formed. It can be formed appropriately at the time of casting. Moreover, it is not necessary to set the temperature at 900 ° C. or higher so that silicon does not become a solid phase.

●[砥石コア1への砥石セグメント20の貼り付け手順(図4)]
次に図4(A)〜(C)を用いて、外周部に溝Mが形成された砥石コア1に砥石セグメントを貼り付けて砥石を製造する手順について説明する。
従来より、例えば非常に硬度が高いCBN砥石は、CBN砥粒を含んだ砥石セグメントを、砥石コアの外周面に接着剤にて貼り付けて製造されている。
従来の製造方法は、鍛圧または焼結時点において砥石コアの外周面に溝を形成することは非常に困難であったため、外周面は平面状であった。
そこで従来では、まず砥石コアの外周面にショットブラスト等にて細かい凹凸を形成していた。
そして図4(D)に示すように、砥石コアの外周面にテグスTGを固定して、当該テグスTGの径Rと同じ均一な厚さとなるように接着剤Aを塗布し、砥石セグメントを貼り付けていた。このように、従来では接着剤Aの厚さを均一とするために非常に手間がかかっていた。
[Procedure for attaching the grindstone segment 20 to the grindstone core 1 (FIG. 4)]
Next, with reference to FIGS. 4A to 4C, a procedure for manufacturing a grindstone by attaching a grindstone segment to the grindstone core 1 in which the groove M is formed in the outer peripheral portion will be described.
Conventionally, for example, a CBN grindstone having a very high hardness is manufactured by attaching a grindstone segment containing CBN abrasive grains to the outer peripheral surface of a grindstone core with an adhesive.
In the conventional manufacturing method, since it was very difficult to form grooves on the outer peripheral surface of the grindstone core at the time of forging or sintering, the outer peripheral surface was flat.
Therefore, conventionally, fine irregularities are first formed on the outer peripheral surface of the grindstone core by shot blasting or the like.
Then, as shown in FIG. 4 (D), the Tegs TG is fixed to the outer peripheral surface of the grindstone core, the adhesive A is applied so as to have the same uniform thickness as the diameter R of the Tegs TG, and the grindstone segments are pasted. It was attached. As described above, conventionally, it has been very troublesome to make the thickness of the adhesive A uniform.

これに対して本実施の形態にて説明する砥石コア1は、鋳造時点において外周面に溝Mを形することが可能であるため、ショットブラスト処理を行う必要はない。
まず最初のステップでは、図4(A)に示すように、この溝Mに接着剤Aを充填させる。
また、従来のようにテグスTG等を用いて接着剤Aの厚さを管理する必要がなく、溝Mの周囲の凸部とほぼ同じ高さとなるように接着剤Aを充填させる(すりきり状態となるように充填させる)だけでよいので、短時間に、且つ安定的に、接着剤Aを溝Mに充填することができる。
そして次のステップでは、図4(B)に示すように、砥粒を含んだ砥石セグメントTSを砥石コア1の外周面に貼り付けていく(接着剤Aを充填させた溝Mの上から砥石セグメントTSを貼り付けていく)。
On the other hand, since the grindstone core 1 described in the present embodiment can form the groove M on the outer peripheral surface at the time of casting, it is not necessary to perform shot blasting.
In the first step, as shown in FIG. 4A, the groove M is filled with the adhesive A.
Further, it is not necessary to control the thickness of the adhesive A using Teggs TG or the like as in the prior art, and the adhesive A is filled so as to be almost the same height as the convex portion around the groove M (a ground state) Therefore, the adhesive A can be filled in the groove M in a short time and stably.
In the next step, as shown in FIG. 4 (B), a grindstone segment TS containing abrasive grains is pasted on the outer peripheral surface of the grindstone core 1 (the grindstone from above the groove M filled with the adhesive A). Paste segment TS).

以上の説明では、単純な板状形状の砥石セグメントTSを、砥石コア1の外周面の形状に沿って湾曲させて貼り付ける例を説明した。
次に図4(C)を用いて、砥石セグメントTSの形状を特殊な形状とした例を説明する。図4(C)に示す砥石セグメントTSは、砥石コア1における隣り合う凸部Nに嵌合するように、砥石セグメントTSの内周側における砥石コア1の円周方向の両端部に切欠部が形成されている。
溝Mには接着剤Aが適切な厚さで塗布されている(余分な接着剤は砥石セグメントTSを嵌め込んだ際に周囲から押出される)。そして、砥石セグメントTSの切欠部を隣り合う凸部Nの間に嵌め込み、砥石を製造する。
図4(C)に示す構造は、図4(B)に示す構造に対して、砥石セグメントTSにおける円周方向の強度が高いという効果がある。
In the above description, the example in which the simple plate-shaped grindstone segment TS is curved and pasted along the shape of the outer peripheral surface of the grindstone core 1 has been described.
Next, an example in which the shape of the grindstone segment TS is a special shape will be described with reference to FIG. The grindstone segment TS shown in FIG. 4 (C) has notches at both ends in the circumferential direction of the grindstone core 1 on the inner circumference side of the grindstone segment TS so as to fit to adjacent convex portions N in the grindstone core 1. Is formed.
Adhesive A is applied to groove M at an appropriate thickness (excess adhesive is pushed out from the periphery when grindstone segment TS is fitted). And the notch part of the grindstone segment TS is fitted between the adjacent convex parts N, and a grindstone is manufactured.
The structure shown in FIG. 4C has an effect that the strength in the circumferential direction of the grindstone segment TS is higher than the structure shown in FIG.

以上、本実施の形態にて説明した砥石コアの製造方法、及び砥石の製造方法では、ケイ素の含有量が30〜40重量%のアルミニウムを材料とした例で説明したが、本実施の形態にて説明したセミソリッドダイキャスト法では、ケイ素の含有量が20重量%以上のアルミニウムを材料として鋳造することが十分可能である。
また、加圧焼結では非常に大型なプレス機等が必要となる大型の砥石コアであっても、大型な設備を必要とすることなくコストを抑制することができる。また、加圧焼結法では発生し易い内部欠陥(気泡)の発生等もなく、十分な強度を確保することができる。
更に、従来の鍛圧や加圧焼結法では形成が非常に困難であった外周部の溝Mを、鋳造時点にて形成することができるので、接着剤を用いて砥石セグメントを貼り付ける際の、接着剤の塗布(充填)工程をより短時間にすることが可能である。
以上により、従来の鉄を主成分とする砥石コアに対して、線膨張係数を同等としたアルミニウムを主成分とした砥石コア1の重量を約1/3に軽量化することを実現できた。
As described above, in the method for manufacturing a grindstone core and the method for manufacturing a grindstone described in the present embodiment, an example in which aluminum having a silicon content of 30 to 40% by weight is used as a material has been described. In the semi-solid die casting method described above, it is sufficiently possible to cast aluminum having a silicon content of 20% by weight or more as a material.
Moreover, even if it is a large grindstone core which requires a very large press machine etc. by pressure sintering, cost can be suppressed, without requiring a large installation. Moreover, there is no generation of internal defects (bubbles) that are likely to occur in the pressure sintering method, and sufficient strength can be ensured.
Furthermore, since the outer peripheral groove M, which has been very difficult to form by conventional forging and pressure sintering methods, can be formed at the time of casting, when a grindstone segment is pasted using an adhesive. It is possible to make the adhesive application (filling) step in a shorter time.
As described above, the weight of the grindstone core 1 mainly composed of aluminum having a linear expansion coefficient equivalent to that of the conventional grindstone core composed mainly of iron can be reduced to about 1/3.

本発明の砥石コアの製造方法、及び砥石の製造方法は、本実施の形態で説明した手順、処理等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
砥石コア1の外周面に形成する溝Mの寸法は、数百[μm]〜数[mm]等、種々の寸法に設定することができる。
本発明の砥石コアの製造方法は、砥石コアに限定されることなく、種々の鋳造品に適用することが可能である。
また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。
The method for producing a grindstone core and the method for producing a grindstone according to the present invention are not limited to the procedures and processes described in the present embodiment, and various modifications, additions, and deletions are possible without departing from the scope of the present invention. It is.
The dimension of the groove | channel M formed in the outer peripheral surface of the grindstone core 1 can be set to various dimensions, such as several hundred [μm] to several [mm].
The method for producing a grindstone core of the present invention is not limited to a grindstone core, and can be applied to various cast products.
Further, the above (≧), the following (≦), the greater (>), the less (<), etc. may or may not include an equal sign.

1 砥石コア
A 接着剤
M 溝
N 凸部
TS 砥石セグメント

1 Grindstone core A Adhesive M Groove N Protrusion TS Grinding stone segment

Claims (4)

砥石回転軸回りに回転させる砥石に用いる略円盤形状の砥石コアの製造方法であって、
前記砥石コアの材料として、20重量%以上のケイ素(Si)を含有するアルミニウム(Al)を用い、
セミソリッドダイキャスト法を用いて前記砥石コアを鋳造する、
砥石コアの製造方法。
A method of manufacturing a substantially disc-shaped grindstone core used for a grindstone rotated about a grindstone rotation axis,
As the material for the grindstone core, aluminum (Al) containing 20% by weight or more of silicon (Si) is used,
Casting the grinding stone core using a semi-solid die casting method,
A method for manufacturing a grinding wheel core.
砥石回転軸回りに回転させる砥石に用いる略円盤形状の砥石コアの製造方法であって、
前記砥石コアの材料として、30重量%以上かつ40重量%以下のケイ素(Si)を含有するアルミニウム(Al)を用い、
セミソリッドダイキャスト法を用いて前記砥石コアを鋳造する、
砥石コアの製造方法。
A method of manufacturing a substantially disc-shaped grindstone core used for a grindstone rotated about a grindstone rotation axis,
As the material for the grindstone core, aluminum (Al) containing 30 wt% or more and 40 wt% or less of silicon (Si) is used,
Casting the grinding stone core using a semi-solid die casting method,
A method for manufacturing a grinding wheel core.
請求項1または2に記載の砥石コアの製造方法であって、
前記セミソリッドダイキャスト法を用いて鋳造した時点において、前記砥石コアの外周面には複数の溝が形成されている、
砥石コアの製造方法。
It is a manufacturing method of a whetstone core according to claim 1 or 2,
At the time of casting using the semi-solid die casting method, a plurality of grooves are formed on the outer peripheral surface of the grindstone core,
A method for manufacturing a grinding wheel core.
請求項3に記載の砥石コアの製造方法にて鋳造した砥石コアを用いた砥石の製造方法であって、
前記砥石コアの外周面に形成されている溝に接着剤を充填させるステップ、及び、
接着剤を充填させた溝の上から、砥粒を含む砥石セグメントを貼り付けるステップとからなる砥石の製造方法。

A method for producing a grindstone using a grindstone core cast by the method for producing a grindstone core according to claim 3,
Filling the groove formed in the outer peripheral surface of the grindstone core with an adhesive; and
A method for producing a grindstone comprising a step of attaching a grindstone segment containing abrasive grains from above a groove filled with an adhesive.

JP2009238392A 2009-10-15 2009-10-15 Manufacturing method of grinding wheel core and manufacturing method of grinding wheel Expired - Fee Related JP5499619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238392A JP5499619B2 (en) 2009-10-15 2009-10-15 Manufacturing method of grinding wheel core and manufacturing method of grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238392A JP5499619B2 (en) 2009-10-15 2009-10-15 Manufacturing method of grinding wheel core and manufacturing method of grinding wheel

Publications (2)

Publication Number Publication Date
JP2011083857A true JP2011083857A (en) 2011-04-28
JP5499619B2 JP5499619B2 (en) 2014-05-21

Family

ID=44077201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238392A Expired - Fee Related JP5499619B2 (en) 2009-10-15 2009-10-15 Manufacturing method of grinding wheel core and manufacturing method of grinding wheel

Country Status (1)

Country Link
JP (1) JP5499619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751463B1 (en) * 2015-10-16 2017-06-27 김명수 Press-in molding method of non-ferrous metal and the machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213966A (en) * 1986-03-14 1987-09-19 Mitsubishi Heavy Ind Ltd Manufacture of grinding wheel
JPH07116963A (en) * 1993-10-27 1995-05-09 Toyoda Mach Works Ltd Grinding wheel
JPH08294868A (en) * 1995-04-26 1996-11-12 Ee M Technol:Kk Grinding/polishing tool and manufacture thereof
JPH0938827A (en) * 1995-07-31 1997-02-10 Aisin Seiki Co Ltd Outside spline grindstone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213966A (en) * 1986-03-14 1987-09-19 Mitsubishi Heavy Ind Ltd Manufacture of grinding wheel
JPH07116963A (en) * 1993-10-27 1995-05-09 Toyoda Mach Works Ltd Grinding wheel
JPH08294868A (en) * 1995-04-26 1996-11-12 Ee M Technol:Kk Grinding/polishing tool and manufacture thereof
JPH0938827A (en) * 1995-07-31 1997-02-10 Aisin Seiki Co Ltd Outside spline grindstone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751463B1 (en) * 2015-10-16 2017-06-27 김명수 Press-in molding method of non-ferrous metal and the machine

Also Published As

Publication number Publication date
JP5499619B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
CN102407286B (en) Manufacture the method for brake component
CN1898614A (en) Balance wheel, balance spring and other components and assemblies for a mechanical oscillator system, and methods of manufacture
CN102691772A (en) Gear of starting motor of automobile engine and preparation method of gear
KR102118543B1 (en) Briquette roller and method for producing same
CN107931523A (en) A kind of small-medium size single crystal blade wax module tree structure and preparation method thereof
CN207723419U (en) A kind of small-medium size single crystal blade group tree construction
CN1695890A (en) Vacuum brazing method for preparing metal based ultrathin cutting piece made from diamond
JP5499619B2 (en) Manufacturing method of grinding wheel core and manufacturing method of grinding wheel
CN106180705A (en) A kind of method for preparing powder metallurgy
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
CN109774130A (en) A kind of 3D printing forming graphite chill and preparation method thereof
JP2006278919A (en) Hog-backed rare earth sintered magnet, manufacturing method therefor, and molding die for rare earth sintered magnet
CN103009271A (en) One side tapered diamond resin grinding wheel and production process thereof
CN106041089B (en) The unrestrained manufacturing method for oozing burning Ti-Al-Cu-Sn-Ni micropore skives
JP3135517B2 (en) Manufacturing method of superabrasive metal bond whetstone
CN104550966B (en) A kind of resintering of high-wearing feature polycrystalline diamond wire drawing die presses manufacture craft again
JP2000141231A (en) Base disc type grinding wheel
CN105855517A (en) Production method of wear-resisting castings
JP2996441B2 (en) Manufacturing method of gear type dresser
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JP2015062982A (en) Grindstone base and production method thereof
JP3667723B2 (en) Manufacturing method of tire mold
JP3359482B2 (en) Super abrasive wheel and method of manufacturing the same
JP2004122229A (en) Method for forming structural member
JPH11228150A (en) Manufacture of glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees