JP2011083729A - Composite separation membrane and method for manufacturing the same - Google Patents
Composite separation membrane and method for manufacturing the same Download PDFInfo
- Publication number
- JP2011083729A JP2011083729A JP2009239648A JP2009239648A JP2011083729A JP 2011083729 A JP2011083729 A JP 2011083729A JP 2009239648 A JP2009239648 A JP 2009239648A JP 2009239648 A JP2009239648 A JP 2009239648A JP 2011083729 A JP2011083729 A JP 2011083729A
- Authority
- JP
- Japan
- Prior art keywords
- porous support
- inorganic porous
- separation membrane
- organic polymer
- composite separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、無機材料からなる支持体と有機材料からなる膜とを備える複合分離膜、及びその製造方法に関する。 The present invention relates to a composite separation membrane comprising a support made of an inorganic material and a membrane made of an organic material, and a method for producing the same.
環境改善や省エネルギーの観点から、各種ガス等の混合物から特定のガス等を瀘過分離する分離膜の開発が進められている。例えば、炭素膜や、ポリスルホン膜、シリコーン膜、ポリアミド膜、ポリイミド膜等の有機高分子膜が、分離膜として知られている。このような分離膜は、実用上、主たる分離性能を発揮する膜自体の部分(単に膜という)だけでは使用出来ず、一般に、それを支持する支持体(基材ともいう)ととともに、複合構造を形成し、複合膜(複合分離膜)として用いられる。 From the viewpoint of environmental improvement and energy saving, the development of separation membranes for filtering and separating specific gases from a mixture of various gases is underway. For example, carbon membranes, organic polymer membranes such as polysulfone membranes, silicone membranes, polyamide membranes, and polyimide membranes are known as separation membranes. Such a separation membrane cannot be used only in the part of the membrane itself that exhibits the main separation performance (simply referred to as a membrane) in practice, and generally has a composite structure together with a support (also referred to as a base material) that supports it. And used as a composite membrane (composite separation membrane).
例えば、特許文献1、2には、膜及び支持体がともに有機高分子材料からなる、複合膜が開示されている。特許文献1の複合膜は、例えばポリジオルガノシロキサンからなる多孔質膜を支持体として、それにフッ素高分子を含むグラフト共重合体からなる膜を配設したものであり、アルコール分離可能な分離膜である。 For example, Patent Documents 1 and 2 disclose composite membranes in which the membrane and the support are both made of an organic polymer material. The composite membrane of Patent Document 1, for example, is a separation membrane capable of separating alcohol, in which a porous membrane made of polydiorganosiloxane is used as a support, and a membrane made of a graft copolymer containing a fluorine polymer is disposed on the support. is there.
特許文献2の複合膜は、疎水性多孔質膜を支持体として、それに親水性の高分子ゲルからなる膜を配設したものであり、二酸化炭素(ガス)を分離可能な分離膜である。 The composite membrane of Patent Document 2 is a separation membrane capable of separating carbon dioxide (gas) in which a hydrophobic porous membrane is used as a support and a membrane made of a hydrophilic polymer gel is disposed thereon.
特許文献3には、無機材料からなる多孔質の基材(支持体)と、有機材料からなる分離膜(膜)と、からなる分離膜配設体(複合膜)が開示されている。この分離膜配設体における無機材料は例えばアルミナであり、好ましい有機材料は水溶性高分子である。この分離膜配設体は、アルコールを分離することが出来るものである。 Patent Document 3 discloses a separation membrane arrangement (composite membrane) comprising a porous base material (support) made of an inorganic material and a separation membrane (membrane) made of an organic material. The inorganic material in this separation membrane arrangement is alumina, for example, and the preferred organic material is a water-soluble polymer. This separation membrane arrangement body can separate alcohol.
特許文献4には、有機材料(ニトロセルロース)からなる多孔質の基材(支持体)を、有機材料(ポリオルガノシロキサン)からなる重合体溶液中に浸漬して、気体分離膜を製造する方法が開示されている。この製造方法は、特別な装置を必要とせずに、基材の細孔内でも薄い非多孔質の膜を形成することが出来るものである。 Patent Document 4 discloses a method for manufacturing a gas separation membrane by immersing a porous substrate (support) made of an organic material (nitrocellulose) in a polymer solution made of an organic material (polyorganosiloxane). Is disclosed. This manufacturing method can form a thin non-porous film even in the pores of the base material without requiring a special apparatus.
しかしながら、特許文献1、2、4に開示された複合膜のように、膜及び支持体がともに有機高分子材料からなるものであると、複合膜としての耐熱性や耐久性が、支持体の有機材料によって制限されるおそれがある。そして、有機材料は、炭化水素を含む雰囲気中では膨潤し易く、支持体として使用することが困難である。 However, if the membrane and the support are both made of an organic polymer material as in the composite membranes disclosed in Patent Documents 1, 2, and 4, the heat resistance and durability of the composite membrane are May be limited by organic materials. And an organic material is easy to swell in the atmosphere containing a hydrocarbon, and it is difficult to use it as a support body.
又、特許文献3に開示された複合膜のように、支持体(基材)が無機多孔質であっても、膜(有機分離膜)を形成する位置によっては、耐熱性や耐久性が損なわれるおそれがある。 In addition, like the composite membrane disclosed in Patent Document 3, even if the support (base material) is inorganic porous, depending on the position where the membrane (organic separation membrane) is formed, heat resistance and durability are impaired. There is a risk of being.
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題は、耐熱性や耐久性に優れ、成膜が容易であり、膜が薄膜であり高い透過性能を有し、炭化水素を含む雰囲気中でも膨潤し難い複合分離膜を提供することである。 The present invention has been made in view of such problems of the prior art, and its problems are excellent in heat resistance and durability, easy to form, and a thin film and high transmission performance. It is to provide a composite separation membrane that is difficult to swell even in an atmosphere containing hydrocarbon.
研究が重ねられた結果、無機多孔質支持体の細孔内に有機高分子膜を配設させ、表面に無機多孔質支持体の少なくとも一部が露出している複合分離膜によって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of repeated research, the above problem has been solved by a composite separation membrane in which an organic polymer membrane is disposed in the pores of an inorganic porous support and at least a part of the inorganic porous support is exposed on the surface. The inventors have found that it is possible to achieve this, and have completed the present invention.
即ち、先ず、本発明によれば、無機多孔質支持体と、その無機多孔質支持体の細孔内に配設された有機高分子膜と、を備え、その有機高分子膜の厚さが、0.1μm以上、10μm以下、であるとともに、表面に、無機多孔質支持体の少なくとも一部が露出している複合分離膜が提供される。 That is, first, according to the present invention, an inorganic porous support and an organic polymer film disposed in the pores of the inorganic porous support are provided, and the thickness of the organic polymer film is 0.1 μm or more and 10 μm or less, and at least a part of the inorganic porous support is exposed on the surface.
本発明に係る複合分離膜において、有機高分子膜を形成する高分子の平均分子量Mwと、無機多孔質支持体の表面の平均細孔径D[nm]とが、(Mw/2000)<D<5000、となる関係を満たすことが好ましい。 In the composite separation membrane according to the present invention, the average molecular weight Mw of the polymer forming the organic polymer membrane and the average pore diameter D [nm] of the surface of the inorganic porous support are (Mw / 2000) <D < It is preferable to satisfy the relationship of 5000.
上記関係は、Mw<2000D<10000000、と表現することも出来る。高分子とは、有機高分子化合物のことを指す。Mwと表現される通り、本発明にいう平均分子量は、重量平均分子量である。平均分子量は、よく知られた高分子であれば公知であり、又、例えば、光散乱法等によって測定することが出来る。 The above relationship can also be expressed as Mw <2000D <10000000. A polymer refers to an organic polymer compound. As expressed as Mw, the average molecular weight referred to in the present invention is a weight average molecular weight. The average molecular weight is known as long as it is a well-known polymer, and can be measured by, for example, a light scattering method.
有機高分子膜は無機多孔質支持体の細孔内に配設される。本発明は、有機高分子膜が、無機多孔質支持体の細孔内に確りと固定され、且つ、無機多孔質支持体の表面には殆ど露出していない複合分離膜であるが、有機高分子膜が、僅かに、無機多孔質支持体の表面に露出する態様を含む。無機多孔質支持体としては、その少なくとも一部が露出していればよいが、全て露出していてもよい。本発明における無機多孔質支持体の表面の平均細孔径は、パームポロメーターやナノパームポロメーターによって測定される値とする。 The organic polymer membrane is disposed in the pores of the inorganic porous support. The present invention is a composite separation membrane in which the organic polymer membrane is firmly fixed in the pores of the inorganic porous support and hardly exposed on the surface of the inorganic porous support. A mode in which the molecular film is slightly exposed on the surface of the inorganic porous support is included. As an inorganic porous support body, at least one part should just be exposed, but all may be exposed. The average pore diameter of the surface of the inorganic porous support in the present invention is a value measured by a palm porometer or a nano palm porometer.
無機多孔質支持体を形成する無機材料としては、セラミック又は金属を例示することが出来る。無機材料は、セラミックであることが、より好ましい。セラミックとしては、アルミナ、チタニア、シリカ、コージェライト、ジルコニア、ムライト等を挙げることが出来る。又、無機多孔質支持体の気孔率は、限定されるものではないが、20〜80%であることが好ましく、30〜70%であることが更に好ましい。 Examples of the inorganic material forming the inorganic porous support include ceramic or metal. More preferably, the inorganic material is ceramic. Examples of the ceramic include alumina, titania, silica, cordierite, zirconia, and mullite. The porosity of the inorganic porous support is not limited, but is preferably 20 to 80%, more preferably 30 to 70%.
無機多孔質支持体の表面の平均細孔径Dは、(Mw/2000)<D<5000、となる関係を満たす限りにおいて限定されない。この関係により、有機高分子膜を形成する高分子の平均分子量Mwから、自ずと一定の範囲に定まる平均細孔径Dは、0.01μm以上、5.0μm以下であることが好ましい。無機多孔質支持体は、単層構造であっても、複層構造であってもよい。無機多孔質支持体が複層構造である場合には、無機多孔質支持体の表面の平均細孔径Dが、有機高分子膜を形成する高分子の平均分子量Mwと、(Mw/2000)<D<5000、となる関係を満たせばよく、有機高分子膜と接しない内部においては、上記関係を満たさなくともよい。 The average pore diameter D on the surface of the inorganic porous support is not limited as long as the relationship of (Mw / 2000) <D <5000 is satisfied. From this relationship, it is preferable that the average pore diameter D naturally determined in a certain range from the average molecular weight Mw of the polymer forming the organic polymer film is 0.01 μm or more and 5.0 μm or less. The inorganic porous support may have a single layer structure or a multilayer structure. When the inorganic porous support has a multi-layer structure, the average pore diameter D of the surface of the inorganic porous support is such that the average molecular weight Mw of the polymer forming the organic polymer film is (Mw / 2000) < It is only necessary to satisfy the relationship of D <5000, and the above relationship does not need to be satisfied in the interior not in contact with the organic polymer film.
本発明に係る複合分離膜において、有機高分子膜を形成する高分子の平均分子量Mwと、無機多孔質支持体の表面の平均細孔径D[nm]とは、(Mw/2000)であり、且つ、D<5000であることを条件として、(Mw/1500)<Dとなる関係を満たすことが好ましく、(Mw/1000)<Dとなる関係を満たすことが特に好ましい。 In the composite separation membrane according to the present invention, the average molecular weight Mw of the polymer forming the organic polymer membrane and the average pore diameter D [nm] of the surface of the inorganic porous support are (Mw / 2000), In addition, on the condition that D <5000, it is preferable to satisfy the relationship of (Mw / 1500) <D, and it is particularly preferable to satisfy the relationship of (Mw / 1000) <D.
無機多孔質支持体の全体形状(複合分離膜としての形状も同じ)は特に限定されず、円筒、角筒等の筒(チューブ)状、円柱、角柱等の柱状等、円板状、多角形板状等の板状等を例示することが出来る。無機多孔質支持体の形状は、複合分離膜の使用目的等に合致するよう、適宜、決定すればよい。容積に対する有機高分子膜の面積比率を大きく出来ることから、好ましい形状としてモノリス形状を挙げることが出来る。又、無機多孔質支持体の大きさ(複合分離膜としての大きさも同じ)は特に限定されず、必要な強度を満たすとともに、分離対象である流体の透過性を損なわない範囲で、使用目的等に合わせて、適宜、決定すればよい。 The overall shape of the inorganic porous support (the same shape as the composite separation membrane) is not particularly limited, and is a cylinder (tube) such as a cylinder or a square cylinder, a column such as a cylinder or a prism, a disk, or a polygon. A plate shape such as a plate shape can be exemplified. The shape of the inorganic porous support may be appropriately determined so as to match the purpose of use of the composite separation membrane. Since the area ratio of the organic polymer film with respect to the volume can be increased, a monolith shape can be mentioned as a preferable shape. In addition, the size of the inorganic porous support (the same size as the composite separation membrane) is not particularly limited, and it satisfies the required strength and does not impair the permeability of the fluid to be separated. In accordance with the above, it may be determined as appropriate.
本発明に係る複合分離膜においては、上記無機多孔質支持体が、親水性を有することが好ましい。 In the composite separation membrane according to the present invention, the inorganic porous support is preferably hydrophilic.
換言すれば、無機多孔質支持体は、疎水性ではないことが好ましい。好ましい無機多孔質支持体は、セラミック製又は金属製のものであるが、多くの場合、セラミックや金属等からなる無機多孔質支持体は、親水性を備える。本発明における好ましい親水性の程度は、水の接触角が90°未満である。 In other words, the inorganic porous support is preferably not hydrophobic. A preferable inorganic porous support is made of ceramic or metal, but in many cases, the inorganic porous support made of ceramic, metal or the like has hydrophilicity. The preferred degree of hydrophilicity in the present invention is that the water contact angle is less than 90 °.
次に、本発明によれば、無機材料を用いて無機多孔質支持体を得て、その無機多孔質支持体の裏面から、圧力を印加しながら、その無機多孔質支持体の表面に、その無機多孔質支持体の表面の平均細孔径D[nm]に対し、10<(Mw/2000)<D<5000、となる関係を満たす平均分子量Mwの高分子を含有する有機高分子膜前駆体を配設し、その有機高分子膜前駆体を乾燥処理する過程を経て、無機多孔質支持体と、その無機多孔質支持体の細孔内に配設された有機高分子膜と、を備える複合分離膜を得る複合分離膜の製造方法が提供される。 Next, according to the present invention, an inorganic porous support is obtained using an inorganic material, and the pressure is applied to the surface of the inorganic porous support from the back surface of the inorganic porous support. Organic polymer membrane precursor containing a polymer having an average molecular weight Mw satisfying a relationship of 10 <(Mw / 2000) <D <5000 with respect to the average pore diameter D [nm] on the surface of the inorganic porous support. And a process of drying the organic polymer film precursor, and an inorganic porous support and an organic polymer film disposed in the pores of the inorganic porous support. A method for producing a composite separation membrane for obtaining a composite separation membrane is provided.
本発明に係る複合分離膜の製造方法において、上記圧力が、0.01MPa以上、1.00MPa以下であることが好ましい。この圧力は、窒素、ヘリウム等の不活性ガスの他、圧縮空気等によって印加することが出来る。 In the method for producing a composite separation membrane according to the present invention, the pressure is preferably 0.01 MPa or more and 1.00 MPa or less. This pressure can be applied by compressed air or the like in addition to an inert gas such as nitrogen or helium.
本発明に係る複合分離膜の製造方法は、本発明に係る複合分離膜を製造する手段として好適なものである。有機高分子膜前駆体を配設し、の一例は、有機高分子溶液を塗布すること、である。 The method for producing a composite separation membrane according to the present invention is suitable as a means for producing the composite separation membrane according to the present invention. An organic polymer film precursor is disposed, and one example is applying an organic polymer solution.
本発明に係る複合分離膜の製造方法において、有機高分子膜前駆体に含有される高分子の平均分子量Mwと、無機多孔質支持体の表面の平均細孔径D[nm]とは、(Mw/2000)であり、且つ、D<5000であることを条件として、(Mw/1500)<Dとなる関係を満たすことが好ましく、(Mw/1000)<Dとなる関係を満たすことがより好ましい。 In the method for producing a composite separation membrane according to the present invention, the average molecular weight Mw of the polymer contained in the organic polymer membrane precursor and the average pore diameter D [nm] of the surface of the inorganic porous support are (Mw / 2000) and satisfying the relationship of (Mw / 1500) <D, and more preferably satisfying the relationship of (Mw / 1000) <D, provided that D <5000. .
本発明に係る複合分離膜は、有機高分子膜が無機多孔質支持体の細孔内に配設されているので、有機高分子膜の熱分解が抑制され、複合分離膜としての耐熱性が高い。又、有機高分子膜は無機多孔質支持体の細孔内で拘束されることになるため、炭化水素等による有機高分子膜の膨潤を抑制することが出来、複合分離膜としての耐久性に優れる。 In the composite separation membrane according to the present invention, since the organic polymer membrane is disposed in the pores of the inorganic porous support, thermal decomposition of the organic polymer membrane is suppressed, and the heat resistance as the composite separation membrane is reduced. high. In addition, since the organic polymer membrane is constrained in the pores of the inorganic porous support, it is possible to suppress the swelling of the organic polymer membrane due to hydrocarbons and the like, and the durability as a composite separation membrane is improved. Excellent.
本発明に係る複合分離膜は、表面に、無機多孔質支持体の少なくとも一部が露出しているので、その無機多孔質支持体を、有機高分子膜への透過前のプレフィルタとして利用することが出来、有機高分子膜が保護される結果、膜のファウリングを防ぎ、耐久性に優れ、且つ、良好な分離性能を発揮するものとなる。 Since at least a part of the inorganic porous support is exposed on the surface of the composite separation membrane according to the present invention, the inorganic porous support is used as a prefilter before permeation into the organic polymer membrane. As a result, the organic polymer membrane is protected, so that fouling of the membrane is prevented, durability is excellent, and good separation performance is exhibited.
本発明に係る複合分離膜は、その好ましい態様において、有機高分子膜を形成する高分子の平均分子量Mwと、無機多孔質支持体の表面の平均細孔径D[nm]とが、(Mw/2000)<D<5000、となる関係を満たすので、無機多孔質支持体の細孔内へ有機高分子膜が殆ど浸入しており、且つ、良好に成膜されていて、有機高分子膜が、欠陥のない薄膜になっている。そして、本発明に係る複合分離膜によって実現される有機高分子膜の厚さは0.1μm以上10μm以下である。よって、本発明に係る複合分離膜は、分離膜として用いたときに、流速が大きくとれ且つ圧力損失は小さく、透過性に優れ、且つ、良好な分離性能を発揮する。(Mw/2000)<D<5000、の関係を満たさない場合には、無機多孔質支持体の細孔内に有機高分子膜が浸入し難くなり、分離膜としての耐久性が低下し易い。又、(Mw/2000)<D<5000であるから、当然に(Mw/2000)<5000となるが、この関係を満たさない場合(Mw≧10000000の場合)には、材料(有機高分子化合物)の溶解性の悪さに起因して、欠陥を有する有機高分子膜となり易い。 In a preferred embodiment of the composite separation membrane according to the present invention, the average molecular weight Mw of the polymer forming the organic polymer membrane and the average pore diameter D [nm] of the surface of the inorganic porous support are (Mw / 2000) <D <5000, the organic polymer film almost penetrates into the pores of the inorganic porous support, and the organic polymer film is well formed. A thin film without defects. The thickness of the organic polymer membrane realized by the composite separation membrane according to the present invention is 0.1 μm or more and 10 μm or less. Therefore, when the composite separation membrane according to the present invention is used as a separation membrane, the flow rate is large, the pressure loss is small, the permeability is excellent, and the good separation performance is exhibited. When the relationship of (Mw / 2000) <D <5000 is not satisfied, the organic polymer membrane does not easily enter into the pores of the inorganic porous support, and the durability as a separation membrane tends to decrease. Further, since (Mw / 2000) <D <5000, naturally, (Mw / 2000) <5000, but if this relationship is not satisfied (when Mw ≧ 10000000), the material (organic polymer compound) ), The organic polymer film having defects is likely to be obtained.
本発明に係る複合分離膜は、支持体がセラミックスや金属等の無機多孔質であるので、耐熱性や耐久性に優れている。複合膜としての耐熱性や耐久性が、支持体によって制限されることがない。又、炭化水素を含む雰囲気中でも、支持体が膨潤することはなく、使用可能である。 The composite separation membrane according to the present invention is excellent in heat resistance and durability because the support is an inorganic porous material such as ceramics or metal. The heat resistance and durability of the composite film are not limited by the support. Further, the support can be used in an atmosphere containing hydrocarbons without swelling.
本発明に係る複合分離膜は、有機高分子膜が、水溶性を示す高分子、又は、水溶性を示さない高分子、で形成することが出来るが、水溶性を示す高分子で形成されることがより好ましい。水溶性を示す高分子は、有機溶媒を用いずに使用することが出来るので、水溶性を示す高分子を使用すれば、複合分離膜の製造過程において環境負荷軽減に寄与するとともに、複合分離膜を製造し易くなる。このような水溶性を示す高分子の例として、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、ポリアクリル酸塩、ポリスルホン酸塩、ポリカルボン酸塩、ポリアミド、ポリエーテル、多糖類系ポリマーからなる高分子群から選ばれる何れかの高分子、又はその高分子の誘導体若しくは変性体である高分子、若しくはその高分子を少なくとも1種類以上含む共重合体である高分子を示すことができる。又、水溶性を示さない高分子の例として、ポリシロキサン、ポリスルホン、ポリイミド、ポリスチレン、ポリアクリロニトリル、ポリオレフィン、セルロース系ポリマーからなる高分子群から選ばれる何れかの高分子、又はその高分子の誘導体若しくは変性体である高分子、若しくはその高分子を少なくとも1種類以上含む共重合体である高分子を示すことができる。 In the composite separation membrane according to the present invention, the organic polymer membrane can be formed of a water-soluble polymer or a water-insoluble polymer, but is formed of a water-soluble polymer. It is more preferable. Since a water-soluble polymer can be used without using an organic solvent, the use of a water-soluble polymer contributes to reducing the environmental burden in the production process of the composite separation membrane, and the composite separation membrane. It becomes easy to manufacture. Examples of such water-soluble polymers include polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, polyacrylates, polysulfonates, polycarboxylates, polyamides, polyethers, and polysaccharide polymers. Or a polymer that is a derivative or modified body of the polymer, or a polymer that is a copolymer containing at least one kind of the polymer. In addition, as an example of the polymer that does not exhibit water solubility, any polymer selected from the group consisting of polysiloxane, polysulfone, polyimide, polystyrene, polyacrylonitrile, polyolefin, and cellulose polymer, or a derivative of the polymer Alternatively, a polymer which is a modified body, or a polymer which is a copolymer including at least one kind of the polymer can be shown.
本発明に係る複合分離膜の製造方法は、上記の本発明に係る複合分離膜を得ることが出来る点に、その効果が認められる。即ち、本発明に係る複合分離膜の製造方法は、無機多孔質支持体の裏面から、好ましくは0.01MPa以上、1.00MPa以下の圧力を印加しながら、その無機多孔質支持体の表面に、その無機多孔質支持体の表面の平均細孔径D[nm]に対し、(Mw/2000)<D<5000、となる関係を満たす平均分子量Mwの高分子を含有する有機高分子膜前駆体を配設し、その有機高分子膜前駆体を乾燥処理する過程を経て、複合分離膜を得るので、無機多孔質支持体の表面から細孔内へ有機高分子膜前駆体は浸入し易いが、一方、裏面側からは浸入が抑制されており、有機高分子膜を、無機多孔質支持体の細孔内に、透過性に優れるように薄く、ピンホール等の欠陥なく良好に、成膜することが出来る。(Mw/2000)<Dの関係を満たさない場合には、無機多孔質支持体の表面から細孔内へ有機高分子膜前駆体が浸入し難くなり、表面に配設されてしまう。(Mw/2000)<D<5000であるから、当然に(Mw/2000)<5000となるが、この関係を満たさない場合(Mw≧10000000の場合)には、有機高分子膜前駆体の溶解性が悪く、それに起因して成膜し難く、その結果、有機高分子膜に欠陥が生じ易い。 The effect of the method for producing a composite separation membrane according to the present invention is recognized in that the composite separation membrane according to the present invention can be obtained. That is, the method for producing a composite separation membrane according to the present invention is preferably applied to the surface of an inorganic porous support while applying a pressure of 0.01 MPa or more and 1.00 MPa or less from the back surface of the inorganic porous support. An organic polymer membrane precursor containing a polymer having an average molecular weight Mw satisfying the relationship of (Mw / 2000) <D <5000 with respect to the average pore diameter D [nm] of the surface of the inorganic porous support. The organic polymer membrane precursor is easy to penetrate into the pores from the surface of the inorganic porous support because a composite separation membrane is obtained through a process of drying the organic polymer membrane precursor. On the other hand, the infiltration from the back side is suppressed, and the organic polymer film is thinly formed in the pores of the inorganic porous support so as to be excellent in permeability, and well formed without defects such as pinholes. I can do it. When the relationship of (Mw / 2000) <D is not satisfied, the organic polymer film precursor does not easily enter the pores from the surface of the inorganic porous support and is disposed on the surface. Since (Mw / 2000) <D <5000, naturally, (Mw / 2000) <5000, but when this relationship is not satisfied (in the case of Mw ≧ 10000000), dissolution of the organic polymer film precursor Therefore, it is difficult to form a film, and as a result, defects are likely to occur in the organic polymer film.
以下、本発明の実施の形態について、適宜、図面を参酌しながら説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。例えば、図面は、好適な本発明の実施の形態を表すものであるが、本発明は図面に表される態様や図面に示される情報により制限されない。本発明を実施し又は検証する上では、本明細書中に記述されたものと同様の手段若しくは均等な手段が適用され得るが、好適な手段は以下に記述される手段である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention should not be construed as being limited to these, and those skilled in the art will be able to do so without departing from the scope of the present invention. Various changes, modifications and improvements can be made based on the knowledge. For example, the drawings show preferred embodiments of the present invention, but the present invention is not limited by the modes shown in the drawings or the information shown in the drawings. In practicing or verifying the present invention, means similar to or equivalent to those described in the present specification can be applied, but preferred means are those described below.
先ず、本発明に係る複合分離膜について説明する。図1に示される複合分離膜10は、無機多孔質支持体12と、その無機多孔質支持体12の細孔内に配設された有機高分子膜11と、を備える。有機高分子膜11は薄膜であり、無機多孔質支持体12の表面には殆ど露出せず、且つ、無機多孔質支持体12の内部深くにも殆ど入り込んでいない。換言すれば、有機高分子膜11は、無機多孔質支持体12の表面近傍の細孔内に配設されている。 First, the composite separation membrane according to the present invention will be described. A composite separation membrane 10 shown in FIG. 1 includes an inorganic porous support 12 and an organic polymer membrane 11 disposed in the pores of the inorganic porous support 12. The organic polymer film 11 is a thin film, and is hardly exposed on the surface of the inorganic porous support 12 and hardly enters deep inside the inorganic porous support 12. In other words, the organic polymer film 11 is disposed in the pores near the surface of the inorganic porous support 12.
これに対し、図2に示される従来の複合分離膜20は、無機多孔質支持体22と、その無機多孔質支持体22の表面に配設された有機高分子膜21と、を備えるものであり、有機高分子膜21は、無機多孔質支持体22の内部にも入り込み、全体として厚い有機高分子膜21となっている。 In contrast, the conventional composite separation membrane 20 shown in FIG. 2 includes an inorganic porous support 22 and an organic polymer membrane 21 disposed on the surface of the inorganic porous support 22. In addition, the organic polymer film 21 also enters the inside of the inorganic porous support 22, and the organic polymer film 21 is thick as a whole.
又、複合分離膜20では、無機多孔質支持体22の内部深くにも、膜化していない有機高分子が分散して存在する。これに対し、複合分離膜10では、膜化していない有機高分子は、無機多孔質支持体12の内部深くの細孔にはほとんど存在しない。 Further, in the composite separation membrane 20, the organic polymer that has not been formed into a film exists in a deep state inside the inorganic porous support 22. On the other hand, in the composite separation membrane 10, the organic polymer that is not formed into a membrane hardly exists in the pores deep inside the inorganic porous support 12.
複合分離膜10の無機多孔質支持体12は、その表面が(例えば)アルミナ粒子からなり、(例えば)気孔率が40%であり、(例えば)平均細孔径Dが0.1μm(100nm)の、構造体である。有機高分子膜11は、(例えば)平均分子量Mwが50000のポリエチレングリコールで形成されたものであり、その厚さは(例えば)3μmである。この場合に、D=100、(Mw/2000)=25、であるから、10<(Mw/2000)<D<5000、の関係が成立する。有機高分子膜11がポリエチレングリコールで形成された複合分離膜10は、(例えば)水−アルコールの分離膜として用いることが出来る。 The inorganic porous support 12 of the composite separation membrane 10 has a surface (for example) made of alumina particles, (for example) a porosity of 40%, and (for example) an average pore diameter D of 0.1 μm (100 nm). Is a structure. The organic polymer film 11 is (for example) formed of polyethylene glycol having an average molecular weight Mw of 50000 and has a thickness (for example) of 3 μm. In this case, since D = 100 and (Mw / 2000) = 25, the relationship 10 <(Mw / 2000) <D <5000 is established. The composite separation membrane 10 in which the organic polymer membrane 11 is formed of polyethylene glycol can be used as a water-alcohol separation membrane (for example).
次に、本発明に係る複合分離膜の製造方法について、上記の複合分離膜10を製造する場合を例にとって、説明する。本発明に係る複合分離膜の製造方法では、先ず、公知の手段に基づき、無機材料を用いて無機多孔質支持体12を得る。(例えば)アルミナ粒子を用いて所望の形状に成形した後、乾燥し、焼成すれば、無機多孔質支持体12が得られる。具体的には、(例えば)平均粒子径1μmのアルミナ粒子に、分散媒である水及び有機バインダと、必要ならば界面活性剤や可塑剤等を、添加し、混練して、成形原料を得て、それを所望の形状に成形し、乾燥し、焼成することによって、(例えば)平均細孔径Dが0.1μm(100nm)の無機多孔質支持体12を得ることが出来る。 Next, the manufacturing method of the composite separation membrane according to the present invention will be described taking the case of manufacturing the composite separation membrane 10 as an example. In the method for producing a composite separation membrane according to the present invention, first, an inorganic porous support 12 is obtained using an inorganic material based on known means. (For example) After forming into a desired shape using alumina particles, drying and firing, the inorganic porous support 12 is obtained. Specifically, (for example) water and an organic binder as a dispersion medium and, if necessary, a surfactant and a plasticizer are added to alumina particles having an average particle diameter of 1 μm, and kneaded to obtain a forming raw material. Then, the inorganic porous support 12 having an average pore diameter D of 0.1 μm (100 nm) can be obtained by forming it into a desired shape, drying and firing.
次に、得られた無機多孔質支持体12の平均細孔径D(=100)に対し、(Mw/2000)<D<5000となる関係を満たす、平均分子量Mwが50000の、ポリエチレングリコールを含有する有機高分子水溶液を作製し、これを、(例えば)窒素ガスを吹き込んで、無機多孔質支持体12の裏面から0.1MPaの圧力を印加しながら、無機多孔質支持体12の表面に、無機多孔質支持体12の細孔が閉塞するように塗布する。その後、乾燥処理すれば、無機多孔質支持体12の細孔内に有機高分子膜11が配設された複合分離膜を得ることが出来る。 Next, polyethylene glycol containing an average molecular weight Mw of 50000 satisfying the relationship of (Mw / 2000) <D <5000 with respect to the average pore diameter D (= 100) of the obtained inorganic porous support 12 is contained. An organic polymer aqueous solution is prepared, and this is applied to the surface of the inorganic porous support 12 while blowing a nitrogen gas (for example) and applying a pressure of 0.1 MPa from the back surface of the inorganic porous support 12. It coat | covers so that the pore of the inorganic porous support body 12 may block | close. Then, if it dry-processes, the composite separation membrane by which the organic polymer membrane 11 was arrange | positioned in the pore of the inorganic porous support body 12 can be obtained.
塗布する手段としては、スピンコート法、ディップコート法、キャスト法等を例示することが出来る。無機多孔質支持体12の細孔を閉塞させるには、繰り返し塗布すればよい。有機高分子水溶液における、ポリエチレングリコールの濃度は、1〜15質量%であることが好ましく、5〜10質量%程度であることが特に好ましい。有機高分子水溶液の粘度は、好ましくは1〜10000mPa・s、特に好ましくは5〜1000mPa・sである。乾燥処理は、(例えば)0〜150℃、好ましくは25〜100℃の温度で、(例えば)0.1〜24時間、好ましくは0.5〜5時間、行えばよい。 Examples of the means for applying include spin coating, dip coating, and casting. In order to close the pores of the inorganic porous support 12, it may be applied repeatedly. The concentration of polyethylene glycol in the organic polymer aqueous solution is preferably 1 to 15% by mass, and particularly preferably about 5 to 10% by mass. The viscosity of the organic polymer aqueous solution is preferably 1 to 10000 mPa · s, particularly preferably 5 to 1000 mPa · s. The drying treatment may be performed at a temperature of (for example) 0 to 150 ° C., preferably 25 to 100 ° C. for (for example) 0.1 to 24 hours, preferably 0.5 to 5 hours.
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
(実施例1)アルミナ粒子を用いて、外径10mm、長さ100mmの、円筒状の無機多孔質支持体(アルミナ多孔質支持体)を得た。その無機多孔質支持体の平均細孔径Dは0.1μm(100nm)であった。そして、平均分子量Mwが100000のポリビニルアルコール(PVA)水溶液を、濃度を5質量%として用意し、窒素ガスを無機多孔質支持体の裏面から吹き込み、0.1MPaの圧力を印加しながら、無機多孔質支持体の表面にPVA水溶液を塗布し、80℃で乾燥させることによって、無機多孔質支持体の細孔内に有機高分子膜(PVA膜)を成膜して、無機多孔質支持体の細孔内に配設された有機高分子膜を備える複合分離膜を得た。D=100、(Mw/2000)=50であるから、(Mw/2000)<D<5000、となる関係を満たす。 (Example 1) A cylindrical inorganic porous support (alumina porous support) having an outer diameter of 10 mm and a length of 100 mm was obtained using alumina particles. The average pore diameter D of the inorganic porous support was 0.1 μm (100 nm). An aqueous polyvinyl alcohol (PVA) solution having an average molecular weight Mw of 100,000 is prepared with a concentration of 5% by mass, nitrogen gas is blown from the back surface of the inorganic porous support, and a pressure of 0.1 MPa is applied while applying an inorganic porous material. An organic polymer membrane (PVA membrane) is formed in the pores of the inorganic porous support by applying a PVA aqueous solution to the surface of the porous support and drying at 80 ° C. A composite separation membrane having an organic polymer membrane disposed in the pores was obtained. Since D = 100 and (Mw / 2000) = 50, the relationship of (Mw / 2000) <D <5000 is satisfied.
尚、PVA膜の成膜は、無機多孔質支持体の表面の細孔が閉塞されるまで、塗布と乾燥を繰り返し行った。成膜後の膜表面(PVA水溶液を乾燥させた膜の表面)に、窒素ガスで0.8MPaの圧力を印加し、その状態で、膜裏面にリークする窒素ガスの量が100ml/min・m2以下となった段階で、無機多孔質支持体の細孔が閉塞された、と判断した。実施例1においては、最後の塗布と乾燥の後の、窒素ガスのリーク量は、84ml/min・m2であった。 The PVA film was repeatedly applied and dried until the pores on the surface of the inorganic porous support were closed. A pressure of 0.8 MPa is applied with nitrogen gas to the surface of the film after film formation (the surface of the film obtained by drying the PVA aqueous solution), and in this state, the amount of nitrogen gas leaking to the back surface of the film is 100 ml / min · m. It was judged that the pores of the inorganic porous support were clogged when it became 2 or less. In Example 1, the leak amount of nitrogen gas after the last application and drying was 84 ml / min · m 2 .
得られた複合分離膜について、電子顕微鏡を用いて微構造観察を行ったところ、無機多孔質支持体の細孔内に、膜厚が約5μmの有機高分子膜が成膜された構造となっていることが確認出来た。又、成膜の前後の重量を測定し、その変化から高分子の付着量を求めたところ、0.23mg/cm2であった。この高分子の付着量に基づけば、全ての高分子(PVA)が無機多孔質支持体の細孔内に存在していると考えられた。 When the microstructure of the obtained composite separation membrane was observed using an electron microscope, an organic polymer membrane having a thickness of about 5 μm was formed in the pores of the inorganic porous support. I was able to confirm. Moreover, when the weight before and after film-forming was measured and the adhesion amount of the polymer was calculated | required from the change, it was 0.23 mg / cm < 2 >. Based on the adhesion amount of this polymer, it was considered that all the polymers (PVA) were present in the pores of the inorganic porous support.
(実施例2)PVA水溶液の代わりに、平均分子量Mwが50000のポリエチレングリコール(PEG)水溶液を、濃度を10質量%として用いた。それ以外は、実施例1と同様にして、複合分離膜を作製した。D=100、(Mw/2000)=25であるから、10<(Mw/2000)<D<5000、となる関係を満たす。実施例2においては、最後の塗布と乾燥の後の、窒素ガスのリーク量は、91ml/min・m2であった。 (Example 2) Instead of the PVA aqueous solution, a polyethylene glycol (PEG) aqueous solution having an average molecular weight Mw of 50000 was used at a concentration of 10% by mass. Other than that was carried out similarly to Example 1, and produced the composite separation membrane. Since D = 100 and (Mw / 2000) = 25, the relationship of 10 <(Mw / 2000) <D <5000 is satisfied. In Example 2, the leak amount of nitrogen gas after the last application and drying was 91 ml / min · m 2 .
得られた複合分離膜について、電子顕微鏡を用いて微構造観察を行ったところ、無機多孔質支持体の細孔内に、膜厚が約5μmの有機高分子膜が成膜された構造となっていることが確認出来た。又、成膜の前後の重量を測定し、その変化から高分子の付着量を求めたところ、0.19mg/cm2であった。この高分子の付着量に基づけば、全ての高分子(PEG)が無機多孔質支持体の細孔内に存在していると考えられた。 When the microstructure of the obtained composite separation membrane was observed using an electron microscope, an organic polymer membrane having a thickness of about 5 μm was formed in the pores of the inorganic porous support. I was able to confirm. Moreover, when the weight before and after film-forming was measured and the adhesion amount of the polymer was calculated | required from the change, it was 0.19 mg / cm < 2 >. Based on the adhesion amount of this polymer, it was considered that all the polymer (PEG) was present in the pores of the inorganic porous support.
(実施例3)無機多孔質支持体の平均細孔径Dを3.0μm(3000nm)とした。そして、平均分子量Mwが2000000のPEG水溶液を、濃度を1質量%として用い、塗布時に印加する圧力を0.05MPaとした。これら以外は、実施例1と同様にして、複合分離膜を作製した。D=3000、(Mw/2000)=1000であるから、10<(Mw/2000)<D<5000、となる関係を満たす。実施例3においては、最後の塗布と乾燥の後の、窒素ガスのリーク量は、85ml/min・m2であった。 Example 3 The average pore diameter D of the inorganic porous support was set to 3.0 μm (3000 nm). Then, an aqueous PEG solution having an average molecular weight Mw of 2000000 was used at a concentration of 1% by mass, and the pressure applied during coating was 0.05 MPa. A composite separation membrane was prepared in the same manner as Example 1 except for these. Since D = 3000 and (Mw / 2000) = 1000, the relationship of 10 <(Mw / 2000) <D <5000 is satisfied. In Example 3, the leak amount of nitrogen gas after the last application and drying was 85 ml / min · m 2 .
得られた複合分離膜について、電子顕微鏡を用いて微構造観察を行ったところ、無機多孔質支持体の細孔内に、膜厚が約9μmの有機高分子膜が成膜された構造となっていることが確認出来た。又、成膜の前後の重量を測定し、その変化から高分子の付着量を求めたところ、0.38mg/cm2であった。この高分子の付着量に基づけば、全ての高分子(PEG)が無機多孔質支持体の細孔内に存在していると考えられた。 When the microstructure of the obtained composite separation membrane was observed using an electron microscope, an organic polymer membrane having a thickness of about 9 μm was formed in the pores of the inorganic porous support. I was able to confirm. Moreover, when the weight before and after film-forming was measured and the adhesion amount of the polymer was calculated | required from the change, it was 0.38 mg / cm < 2 >. Based on the adhesion amount of this polymer, it was considered that all the polymer (PEG) was present in the pores of the inorganic porous support.
(比較例1)無機多孔質支持体の表面にPVA水溶液を塗布するに際し、無機多孔質支持体の裏面から圧力を印加しなかった。それ以外は、実施例1と同様にして、複合分離膜を作製した。比較例1においては、最後の塗布と乾燥の後の、窒素ガスのリーク量は、79ml/min・m2であった。 (Comparative example 1) When applying the PVA aqueous solution to the surface of the inorganic porous support, no pressure was applied from the back surface of the inorganic porous support. Other than that was carried out similarly to Example 1, and produced the composite separation membrane. In Comparative Example 1, the amount of nitrogen gas leak after the last application and drying was 79 ml / min · m 2 .
得られた複合分離膜について、電子顕微鏡を用いて微構造観察を行ったところ、無機多孔質支持体の表面上に、膜厚が約2μmの有機高分子膜が成膜されていた。又、それだけでなく、無機多孔質支持体の内部にも奥深くまで、多量の高分子(PVA)が堆積していることが判明した。又、成膜の前後の重量を測定し、その変化から高分子の付着量を求めたところ、2.50mg/cm2であった。この高分子の付着量に基づけば、9割程度の高分子が、成膜せずに、分散して、無機多孔質支持体の内部の奥深くまで、浸入していると考えられた。 When the microstructure of the obtained composite separation membrane was observed using an electron microscope, an organic polymer membrane having a thickness of about 2 μm was formed on the surface of the inorganic porous support. In addition, it has been found that a large amount of polymer (PVA) is deposited deep inside the inorganic porous support. Further, the weight before and after film formation was measured, and the amount of polymer adhered was determined from the change, and found to be 2.50 mg / cm 2 . Based on the adhesion amount of the polymer, it was considered that about 90% of the polymer was dispersed without being deposited and penetrated deep inside the inorganic porous support.
(比較例2)無機多孔質支持体の表面にPEG水溶液を塗布するに際し、無機多孔質支持体の裏面から圧力を印加しなかった。それ以外は、実施例3と同様にして、複合分離膜を作製した。比較例2においては、成膜を10回繰り返しても、窒素ガスのリーク量が100ml/min・m2以下とならなかったため、それ以上の成膜を中止した。 (Comparative Example 2) When applying the aqueous PEG solution on the surface of the inorganic porous support, no pressure was applied from the back surface of the inorganic porous support. Other than that was carried out similarly to Example 3, and produced the composite separation membrane. In Comparative Example 2, even when the film formation was repeated 10 times, the leakage amount of nitrogen gas did not become 100 ml / min · m 2 or less.
得られた複合分離膜について、電子顕微鏡を用いて微構造観察を行ったところ、無機多孔質支持体の表面上には、有機高分子膜が確認されず、全ての高分子(PEG)が成膜せずに、分散して、無機多孔質支持体の内部の奥深くまで、浸入していると考えられた。 When the microstructure of the obtained composite separation membrane was observed using an electron microscope, no organic polymer membrane was confirmed on the surface of the inorganic porous support, and all the polymer (PEG) was formed. It was considered that the film was dispersed without being filmed and penetrated deep inside the inorganic porous support.
(考察)高分子の付着量の差から、比較例1と比べて、実施例1、2においては、1/5程度の高分子の付着量によって、無機多孔質支持体の細孔が閉塞されることがわかった。即ち、実施例1、2では、比較例1と比べて、大幅な薄膜化が可能となった。又、実施例3と比較例2との比較により、無機多孔質支持体の裏面から圧力を印加して、無機多孔質支持体の内部の奥深くへの高分子の浸入を抑制することにより、無機多孔質支持体の細孔閉塞が可能であることがわかった。 (Discussion) Due to the difference in the amount of polymer adhered, compared to Comparative Example 1, in Examples 1 and 2, the pores of the inorganic porous support were clogged by about 1/5 the amount of polymer adhered. I found out. That is, in Examples 1 and 2, compared to Comparative Example 1, a significant reduction in thickness was possible. Further, by comparing Example 3 and Comparative Example 2, by applying pressure from the back surface of the inorganic porous support to suppress the penetration of the polymer deep inside the inorganic porous support, It was found that the pores of the porous support can be closed.
本発明に係る複合分離膜及びその製造方法は、複数の物質(気体、液体等)の混合物から特定の物質(気体、液体等)を選択的に分離する分離用フィルタ及びそれを製造する手段として、好適に利用される。 The composite separation membrane and the manufacturing method thereof according to the present invention are a separation filter that selectively separates a specific substance (gas, liquid, etc.) from a mixture of a plurality of substances (gas, liquid, etc.) and means for producing the same. Are preferably used.
10 複合分離膜
11 有機高分子膜
12 無機多孔質支持体
20 複合分離膜
21 有機高分子膜
22 無機多孔質支持体
DESCRIPTION OF SYMBOLS 10 Composite separation membrane 11 Organic polymer membrane 12 Inorganic porous support body 20 Composite separation membrane 21 Organic polymer membrane 22 Inorganic porous support body
Claims (5)
その有機高分子膜の厚さが、0.1μm以上、10μm以下、であるとともに、
表面に、前記無機多孔質支持体の少なくとも一部が露出している複合分離膜。 An inorganic porous support, and an organic polymer membrane disposed in the pores of the inorganic porous support,
The organic polymer film has a thickness of 0.1 μm or more and 10 μm or less,
A composite separation membrane in which at least a part of the inorganic porous support is exposed on the surface.
(Mw/2000)<D<5000、となる関係を満たす請求項1に記載の複合分離膜。 The average molecular weight Mw of the polymer forming the organic polymer film and the average pore diameter D [nm] of the surface of the inorganic porous support are:
The composite separation membrane according to claim 1, satisfying a relationship of (Mw / 2000) <D <5000.
その無機多孔質支持体の裏面から、圧力を印加しながら、その無機多孔質支持体の表面に、その無機多孔質支持体の表面の平均細孔径D[nm]に対し、(Mw/2000)<D<5000、となる関係を満たす平均分子量Mwの高分子を含有する有機高分子膜前駆体を配設し、
その有機高分子膜前駆体を乾燥処理する過程を経て、
無機多孔質支持体と、その無機多孔質支持体の細孔内に配設された有機高分子膜と、を備える複合分離膜を得る複合分離膜の製造方法。 Obtain an inorganic porous support using an inorganic material,
While applying pressure from the back surface of the inorganic porous support, the surface of the inorganic porous support is compared with the average pore diameter D [nm] of the surface of the inorganic porous support (Mw / 2000). An organic polymer film precursor containing a polymer having an average molecular weight Mw satisfying the relationship of <D <5000 is disposed,
Through the process of drying the organic polymer film precursor,
A method for producing a composite separation membrane, comprising: obtaining a composite separation membrane comprising an inorganic porous support and an organic polymer membrane disposed in the pores of the inorganic porous support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239648A JP2011083729A (en) | 2009-10-16 | 2009-10-16 | Composite separation membrane and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009239648A JP2011083729A (en) | 2009-10-16 | 2009-10-16 | Composite separation membrane and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011083729A true JP2011083729A (en) | 2011-04-28 |
Family
ID=44077091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009239648A Pending JP2011083729A (en) | 2009-10-16 | 2009-10-16 | Composite separation membrane and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011083729A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS634804A (en) * | 1986-06-20 | 1988-01-09 | コミサリヤ タア レネジ アトミク | Ultrafiltration, super-filtration or desalting element and its production and use |
WO2007125944A1 (en) * | 2006-04-28 | 2007-11-08 | Asahi Kasei Chemicals Corporation | Gas separation membrane |
JP2009022902A (en) * | 2007-07-20 | 2009-02-05 | Noritake Co Ltd | Porous material, method for manufacturing the same, and gas separating device |
WO2009054460A1 (en) * | 2007-10-26 | 2009-04-30 | Asahi Kasei Chemicals Corporation | Gas separation membrane |
WO2009123088A1 (en) * | 2008-03-31 | 2009-10-08 | 東レ株式会社 | Separation membrane, method of producing the same and separation membrane module using the separation membrane |
-
2009
- 2009-10-16 JP JP2009239648A patent/JP2011083729A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS634804A (en) * | 1986-06-20 | 1988-01-09 | コミサリヤ タア レネジ アトミク | Ultrafiltration, super-filtration or desalting element and its production and use |
WO2007125944A1 (en) * | 2006-04-28 | 2007-11-08 | Asahi Kasei Chemicals Corporation | Gas separation membrane |
JP2009022902A (en) * | 2007-07-20 | 2009-02-05 | Noritake Co Ltd | Porous material, method for manufacturing the same, and gas separating device |
WO2009054460A1 (en) * | 2007-10-26 | 2009-04-30 | Asahi Kasei Chemicals Corporation | Gas separation membrane |
WO2009123088A1 (en) * | 2008-03-31 | 2009-10-08 | 東レ株式会社 | Separation membrane, method of producing the same and separation membrane module using the separation membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2066426B1 (en) | Method for preparing a porous inorganic coating on a porous support using certain pore formers | |
JP5335801B2 (en) | Polymer composite membrane structure | |
JP5469453B2 (en) | Ceramic filter and method for regenerating the same | |
US8481110B2 (en) | Methods of making inorganic membranes | |
JP2010528835A5 (en) | ||
WO2008010452A1 (en) | Ceramic filter | |
WO2011129253A1 (en) | Exhaust gas purification filter, and method for manufacturing exhaust gas purification filter | |
US9434650B2 (en) | Ceramic material | |
US11135553B2 (en) | Porous support, method for manufacturing porous support, separation membrane structure, and method for manufacturing separation membrane structure | |
JPWO2009001970A1 (en) | Separation membrane complex and method for producing separation membrane complex | |
US10183242B2 (en) | Porous inorganic membranes and method of manufacture | |
US4980062A (en) | Inorganic membrane | |
WO2013042262A1 (en) | Method for producing carbon film | |
JP2002066280A (en) | Gas separation filter and method for manufacturing the same | |
WO2015146488A1 (en) | Monolithic separation membrane structure, method for producing monolithic separation membrane structure, and method for dehydrating same | |
WO2016104048A1 (en) | Gas separation method | |
JP2009022902A (en) | Porous material, method for manufacturing the same, and gas separating device | |
JPWO2007116634A1 (en) | Porous multilayer structure bag tube shape | |
JP2011083729A (en) | Composite separation membrane and method for manufacturing the same | |
JP5467909B2 (en) | Carbon film manufacturing method | |
WO2012111792A1 (en) | Carbon film-coated composition and method for producing same | |
JP2011083728A (en) | Composite separation membrane and method for manufacturing the same | |
WO2016104049A1 (en) | Gas separation method | |
JPH06198148A (en) | Production of inorganic porous membrane | |
Wang et al. | Towards fabrication of low-cost carbon/ceramics membranes: substrate modification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20120816 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20130206 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20130219 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130625 |