JP2011083696A - Solid-liquid separator - Google Patents

Solid-liquid separator Download PDF

Info

Publication number
JP2011083696A
JP2011083696A JP2009238183A JP2009238183A JP2011083696A JP 2011083696 A JP2011083696 A JP 2011083696A JP 2009238183 A JP2009238183 A JP 2009238183A JP 2009238183 A JP2009238183 A JP 2009238183A JP 2011083696 A JP2011083696 A JP 2011083696A
Authority
JP
Japan
Prior art keywords
impurities
hydrocyclone
solid
inner cylinder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009238183A
Other languages
Japanese (ja)
Inventor
Tokusuke Hayami
徳介 早見
Taku Menju
卓 毛受
Mii Fukuda
美意 福田
Yasushi Yamamoto
泰 山本
Taizo Uchimura
泰造 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009238183A priority Critical patent/JP2011083696A/en
Publication of JP2011083696A publication Critical patent/JP2011083696A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-liquid separator, which improves an impurity-separation capacity from raw water and prevents the separated impurities from mixing again into treated water. <P>SOLUTION: The solid-liquid separator includes a liquid cyclone 11 allowing impurities contained in the raw water to settle out utilizing centrifugal force in swirling the raw water containing the impurities, an inlet pipe 10 connected to the upper part of the liquid cyclone and flowing the raw water into the liquid cyclone such that the raw water turn to a swirling flow, an impurity-recovering part 18 connected to the lower part of the liquid cyclone and recovering the settled impurities from the liquid cyclone, a barricade 16, 16E, 16F, 16G which blocks the returning of the recovered impurities from the impurity-recovering part to the liquid cyclone, an outlet pipe 20 connected to the upper part of the liquid cyclone and flowing out treated water after the settled impurities are recovered by the impurity-recovering part from the liquid cyclone, and an inner cylinder 30, 30B, 30C, 30D provided rotatably around the axis of the liquid cyclone in a lower flow passage of the liquid cyclone. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原水から不純物を分離除去する固液分離装置に関する。   The present invention relates to a solid-liquid separator that separates and removes impurities from raw water.

水処理プロセスの一例として、重力沈降、凝集沈殿または加圧浮上等の固液分離処理が利用されている。   As an example of the water treatment process, a solid-liquid separation process such as gravity sedimentation, coagulation sedimentation, or pressurized flotation is used.

重力沈降や凝集沈殿では、沈降槽内に原水を流入し、原水に含まれる分離対象の不純物と水との比重の違いを利用して、水よりも比重の大きい不純物を沈降させた後に上澄を処理水とすることで、原水から不純物と処理水とを分離している。この場合、沈降速度は不純物の比重や大きさによって異なる。例えば、沈降速度の遅い不純物の場合、沈降槽の容積を大きくして沈降速度を上げるか、あるいは傾斜管や傾斜板を利用して沈降効率を上げることで、沈降速度の向上を図ることがなされている。一方、このように傾斜管や傾斜板を利用して沈降効率を上げたとしても、依然として沈降槽において1時間以上の滞留時間が必要であり、滞留時間の短縮には限界があるばかりでなく、沈降槽の容積の大きさにも問題がある。   In gravity sedimentation or coagulation sedimentation, raw water flows into the sedimentation tank, and the impurities that have a higher specific gravity than water are settled using the difference in specific gravity between the impurities to be separated and the water contained in the raw water. By using as the treated water, impurities and treated water are separated from the raw water. In this case, the sedimentation speed varies depending on the specific gravity and size of the impurities. For example, in the case of impurities with a slow sedimentation rate, the sedimentation rate can be improved by increasing the sedimentation rate by increasing the volume of the sedimentation tank, or by increasing the sedimentation efficiency using an inclined pipe or inclined plate. ing. On the other hand, even if the sedimentation efficiency is increased by using an inclined tube or an inclined plate as described above, a residence time of 1 hour or more is still required in the sedimentation tank, and not only there is a limit to shortening the residence time, There is also a problem with the size of the sedimentation tank.

また、加圧浮上では、不純物の比重が小さい固形物質や油脂等のように浮上性がある場合、分離液の循環水等に空気を加圧溶解して分離糟に流入させ、発生した微細気泡を不純物に付着させて浮上分離することで、原水から不純物と処理水とを分離している。この加圧浮上では、気泡を付着させた不純物の上昇速度は、速くても200mm/minである。したがって、加圧浮上でも処理時間が長くなる問題があった。   In addition, in the case of pressurized levitation, if there is levitation such as solid substances or fats and oils where the specific gravity of impurities is small, fine bubbles are generated by injecting air into the circulating water of the separation liquid and flowing it into the separation tank The impurities and the treated water are separated from the raw water by adhering to the impurities and floating and separating them. In this pressurized levitation, the rising speed of the impurities with bubbles attached is at most 200 mm / min. Therefore, there is a problem that the processing time becomes long even when the pressure is lifted.

上述したように、従来の重量沈降や加圧浮上で問題であった処理速度を短縮するため、例えば特許文献1には原水を容器内で旋回させて遠心力を利用して不純物を遠心分離する装置が記載されている。   As described above, in order to shorten the processing speed which has been a problem in conventional weight settling and pressure flotation, for example, Patent Document 1 discloses that raw water is swirled in a container and impurities are centrifuged using centrifugal force. An apparatus is described.

特開平11-333320号公報Japanese Patent Laid-Open No. 11-333320

しかしながら、従来の固液分離装置では、強い遠心力を得るためには旋回流を高速にする必要があり、高速の流れによって、一度分離した不純物が巻き上がり、処理水に再混入する問題を生じる。とくに不純物のうち、アルミ・鉄などの凝集剤や高分子の凝集助剤を用いて生じさせた凝集フロックは、低強度で脆弱であることから壊れやすく、高速水流がサイクロン内壁や周囲の付属品に衝突したときに壊れて微小な粒子となり、処理水に再混入して流出しやすい。また、フロックは比重が水の比重より僅かに大きいにすぎないものであるので、いったん沈降したものであっても浮上しやすい傾向にある。このため、低強度で小比重のフロックの再混入・流出を防止することがユーザーから強く要望されている。   However, in the conventional solid-liquid separation device, in order to obtain a strong centrifugal force, it is necessary to make the swirl flow high speed, and the high-speed flow causes a problem that impurities once separated are rolled up and re-mixed into the treated water. . Among the impurities, the flocs produced by using agglomerating agents such as aluminum and iron and polymer coagulant aids are fragile because they are low in strength and fragile, and high-speed water currents are attached to the inner wall of the cyclone and surrounding accessories. When it collides with the water, it breaks down into fine particles that easily re-mix into the treated water and flow out. Further, since the specific gravity of the floc is only slightly larger than the specific gravity of water, even if it has settled once, it tends to float. For this reason, there is a strong demand from users to prevent re-mixing and outflow of flocs with low strength and low specific gravity.

本発明は上記課題を解決するためになされたものであり、原水からの不純物分離能力の向上と、分離した不純物の処理水への再混入を防止する固液分離装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has an object to provide an improved solid-liquid separation apparatus that improves the ability to separate impurities from raw water and prevents re-mixing of separated impurities into treated water. To do.

(1)本発明に係る固液分離装置は、不純物を含む原水を旋回させたときの遠心力を利用して原水に含まれる不純物を沈降させる液体サイクロンと、前記液体サイクロンの上部に接続され、原水が旋回流となるように前記液体サイクロンに原水を流入させる流入管と、前記液体サイクロンの下部に接続され、沈降した不純物を前記液体サイクロンから回収する不純物回収部と、回収した不純物が前記不純物回収部から前記液体サイクロンのほうへ戻るのを阻止する障害物と、前記液体サイクロンの上部に接続され、沈降した不純物が前記不純物回収部に回収された後の処理水を前記液体サイクロンから流出させる流出管と、前記液体サイクロンの下部流路において前記液体サイクロンの軸まわりに回転可能に設けられた内筒と、を有することを特徴とする。   (1) The solid-liquid separation device according to the present invention is connected to a liquid cyclone that precipitates impurities contained in the raw water using centrifugal force when the raw water containing impurities is swirled, and an upper part of the liquid cyclone, An inflow pipe for allowing the raw water to flow into the hydrocyclone so that the raw water turns into a swirl, an impurity recovery part connected to the lower part of the liquid cyclone and recovering the settled impurities from the liquid cyclone, and the recovered impurities are the impurities An obstacle that prevents the liquid cyclone from returning to the liquid cyclone and an upper portion of the liquid cyclone that is connected to the liquid cyclone and drains the treated water after the settled impurities are collected by the impurity recovery unit. An outflow pipe, and an inner cylinder rotatably provided around the axis of the liquid cyclone in the lower flow path of the liquid cyclone And features.

本発明では、旋回流が液体サイクロンの下部流路を通過する際に、その旋回流に伴って内筒が回転し、旋回流の速度と内筒の速度との相対速度差が小さくなり、旋回流に伴われて移動する不純物(フロック)が内筒表面に接触するときの衝撃力が緩和されて不純物(フロック)が壊れ難くなる。これにより不純物(フロック)が処理水に再混入して流出することが抑えられ、不純物の分離回収率が向上する。   In the present invention, when the swirl flow passes through the lower flow path of the hydrocyclone, the inner cylinder rotates with the swirl flow, and the relative speed difference between the swirl flow speed and the inner cylinder speed becomes smaller. The impact force when the impurity (floc) moving along with the flow contacts the inner cylinder surface is alleviated, and the impurity (floc) becomes difficult to break. As a result, the impurities (floc) are prevented from re-mixing into the treated water and flowing out, and the impurity recovery rate is improved.

(2)(1)の発明において、内筒を液体サイクロンに回転可能に支持する軸受を有することが好ましい。内筒が軽量であれば、液体サイクロンの内壁との間のすべり摩擦に抗して旋回流から受ける力で内筒が回転できるが、軸受により内筒と液体サイクロン内壁との間のすべり摩擦を転がり摩擦に転換することで、円筒をさらに円滑に回転させることができる。   (2) In the invention of (1), it is preferable to have a bearing that rotatably supports the inner cylinder on the hydrocyclone. If the inner cylinder is lightweight, the inner cylinder can be rotated by the force received from the swirling flow against the sliding friction between the inner wall of the hydrocyclone, but the bearing can reduce the sliding friction between the inner cylinder and the inner wall of the hydrocyclone. By converting to rolling friction, the cylinder can be rotated more smoothly.

(3)(1)または(2)のいずれか1の発明において、内筒が旋回流を受けて回転力とする羽根を有することが好ましい(図3、図4)。内筒に羽根を付けることで、内筒が旋回流のエネルギを受けやすくなり、円筒をさらに速い速度で回転させることができる。   (3) In the invention of any one of (1) and (2), it is preferable that the inner cylinder has a blade that receives a swirling flow and has a rotational force (FIGS. 3 and 4). By attaching blades to the inner cylinder, the inner cylinder is likely to receive the energy of the swirling flow, and the cylinder can be rotated at a higher speed.

(4)(1)乃至(3)のいずれか1の発明において、障害物を液体サイクロンに回転可能に支持する軸受を有することが好ましい(図7)。旋回流が液体サイクロンの下部流路を経て不純物回収部へ移行する際に障害物に衝突するが、その旋回流に伴って障害物が回転し、旋回流の速度と障害物の速度との相対速度差が小さくなり、旋回流に伴われて移動する不純物(フロック)が障害物の表面に接触するときの衝撃力が緩和されて不純物(フロック)が壊れ難くなる。これにより不純物(フロック)が処理水に再混入して流出することが抑えられ、不純物の分離回収率が向上する。   (4) In any one of the inventions (1) to (3), it is preferable to have a bearing that rotatably supports an obstacle on the hydrocyclone (FIG. 7). When the swirl flow passes through the lower flow path of the hydrocyclone to the impurity recovery section, it collides with the obstacle, but the obstruction rotates with the swirl flow, and the relative speed between the swirl flow speed and the obstacle speed The speed difference is reduced, and the impact force when the impurity (floc) moving with the swirling flow comes into contact with the surface of the obstacle is mitigated, and the impurity (floc) becomes difficult to break. As a result, the impurities (floc) are prevented from re-mixing into the treated water and flowing out, and the impurity recovery rate is improved.

(5)(1)乃至(4)のいずれか1の発明において、障害物が旋回流を受けて回転力とする羽根を有することが好ましい(図9、図10)。障害物に羽根を付けることで、障害物が旋回流のエネルギを受けやすくなり、障害物をさらに速い速度で回転させることができる。   (5) In any one of the inventions (1) to (4), it is preferable that the obstacle has a blade that receives a swirling flow and has a rotational force (FIGS. 9 and 10). By attaching the blades to the obstacle, the obstacle easily receives the energy of the swirling flow, and the obstacle can be rotated at a higher speed.

(6)(1)乃至(5)のいずれか1の発明において、液体サイクロンの外側から内筒に旋回流と同じ向きの回転力を付与する回転外力付与手段をさらに有することが好ましい。回転外力付与手段により内筒に旋回流と同じ向きの回転力(外力)を付与すると、円筒をさらに速い速度で回転させることができる。回転外力付与手段として例えば永久磁石や電磁石を用いることができる(図5、図6)。   (6) In any one of the inventions (1) to (5), it is preferable to further include a rotating external force applying means for applying a rotating force in the same direction as the swirling flow from the outside of the hydrocyclone to the inner cylinder. When the rotational force (external force) in the same direction as the swirling flow is applied to the inner cylinder by the rotating external force applying means, the cylinder can be rotated at a higher speed. For example, a permanent magnet or an electromagnet can be used as the rotational external force applying means (FIGS. 5 and 6).

(7)(1)乃至(6)のいずれか1の発明において、液体サイクロンの外側から障害物に旋回流と同じ向きの回転力を付与する回転外力付与手段をさらに有することが好ましい。回転外力付与手段により障害物に旋回流と同じ向きの回転力(外力)を付与すると、障害物をさらに速い速度で回転させることができる。回転外力付与手段として例えば永久磁石や電磁石を用いることができる(図11)。   (7) In the invention according to any one of (1) to (6), it is preferable to further include a rotating external force applying means for applying a rotating force in the same direction as the swirling flow to the obstacle from the outside of the hydrocyclone. When a rotational force (external force) in the same direction as the swirl flow is applied to the obstacle by the rotating external force applying means, the obstacle can be rotated at a higher speed. For example, a permanent magnet or an electromagnet can be used as the rotational external force applying means (FIG. 11).

本発明によれば、旋回流が液体サイクロンの下部流路を通過する際に、その旋回流に伴って内筒が回転し、旋回流の速度と内筒の速度との相対速度差が小さくなり、旋回流に伴われて移動する不純物が内筒表面に接触するときの衝撃力が緩和されて不純物が壊れ難くなるため、不純物が処理水に再混入して流出することが抑えられ、不純物の分離回収率が向上する。   According to the present invention, when the swirl flow passes through the lower flow path of the hydrocyclone, the inner cylinder rotates with the swirl flow, and the relative speed difference between the speed of the swirl flow and the speed of the inner cylinder becomes small. , The impact force when the impurities moving along with the swirl flow come into contact with the inner cylinder surface is mitigated and the impurities are less likely to break. Separation recovery rate is improved.

本発明の第1の実施形態に係る固液分離装置を示す内部透視断面図。The internal perspective sectional drawing which shows the solid-liquid separation apparatus which concerns on the 1st Embodiment of this invention. 図1の矢視A-Aから見た障害物を示す平面図。The top view which shows the obstruction seen from arrow AA of FIG. 本発明の第2の実施形態に係る固液分離装置の要部を示す内部透視断面図。The internal see-through | perspective sectional drawing which shows the principal part of the solid-liquid separator which concerns on the 2nd Embodiment of this invention. 図3の矢視B-Bから見た内筒の下部に取り付けた羽根を示す平面図。The top view which shows the blade | wing attached to the lower part of the inner cylinder seen from arrow BB of FIG. 本発明の第3の実施形態に係る固液分離装置を示す縦断面ブロック図。The longitudinal cross-sectional block diagram which shows the solid-liquid separator which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る固液分離装置を示す横断面ブロック図。The cross-sectional block diagram which shows the solid-liquid separator which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る固液分離装置の要部を示す内部透視断面図。The internal see-through | perspective sectional drawing which shows the principal part of the solid-liquid separator which concerns on the 5th Embodiment of this invention. (a)は図7の矢視E-Eから見た障害物を示す平面図、(b)は図7の障害物を拡大して示す斜視図。(A) is a top view which shows the obstruction seen from arrow EE of FIG. 7, (b) is a perspective view which expands and shows the obstruction of FIG. 本発明の第6の実施形態に係る固液分離装置の要部を示す内部透視断面図。The internal see-through | perspective sectional drawing which shows the principal part of the solid-liquid separator which concerns on the 6th Embodiment of this invention. 図9の矢視F-Fから見た障害物の下部に取り付けた羽根を示す平面図。The top view which shows the blade | wing attached to the lower part of the obstruction seen from the arrow FF of FIG. 本発明の第7の実施形態に係る固液分離装置の要部を示す縦断面ブロック図。The longitudinal cross-sectional block diagram which shows the principal part of the solid-liquid separator which concerns on the 7th Embodiment of this invention.

以下、添付の図面を参照して本発明を実施する最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

(第1の実施形態)
図1と図2を参照して本発明の第1の実施形態を説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.

本実施形態の固液分離装置1Aは、粒子を含む原水が導入され、比重差を利用する遠心分離作用により原水から不純物粒子(砂粒、金属粉、フロックなど)を分離して不純物の少ない処理水を生成するための水処理装置である。不純物のうち金属粉と砂粒は、比重が2〜10程度であり、直径が数mmから数μm程度である。フロックは、比重が1より僅かに大きく、直径が数mmから数10μm程度である。   In the solid-liquid separation device 1A of this embodiment, raw water containing particles is introduced, and treated particles with less impurities are obtained by separating impurity particles (sand grains, metal powder, floc, etc.) from the raw water by centrifugal separation utilizing a specific gravity difference. Is a water treatment device for producing water. Among the impurities, the metal powder and sand particles have a specific gravity of about 2 to 10 and a diameter of about several millimeters to several micrometers. The floc has a specific gravity slightly larger than 1 and a diameter of about several millimeters to several tens of micrometers.

図1に示すように、第1の実施形態に係る固液分離装置1Aは、液体サイクロン11と、液体サイクロン11に原水を流入させる流入管10と、障害物16と、不純物回収部18と、処理水を液体サイクロン11から流出させる流出管20と、内筒30Aと、を備えている。   As shown in FIG. 1, the solid-liquid separation device 1A according to the first embodiment includes a liquid cyclone 11, an inflow pipe 10 for flowing raw water into the liquid cyclone 11, an obstacle 16, an impurity recovery unit 18, An outflow pipe 20 through which treated water flows out from the hydrocyclone 11 and an inner cylinder 30A are provided.

液体サイクロン11は、上部から順に円筒部12、円錐部13およびロート部14からなり、上方から下方へ移行するに従って縮径する縦長の筺体として形成されている。円筒部12は、液体サイクロン11のなかで最も内径が大きく、側周部に流入管10が連通し、上部開口に図示しない蓋が被せられている。流入管10は、円筒部12の内周面に接する接線に沿って外方に延び出している。円錐部13は、上部の内径が大きく、下方に移行するに従って内径が漸次小さくなっており、円筒部12の下部に連続している。ロート部14は、円錐形状の上半部と円筒形状の下半部とを組み合せて全体が漏斗形状と成るように形成され、円錐部13の下部に連続している。   The hydrocyclone 11 includes a cylindrical portion 12, a conical portion 13, and a funnel portion 14 in order from the top, and is formed as a vertically long casing that decreases in diameter as it moves from the top to the bottom. The cylindrical portion 12 has the largest inner diameter among the liquid cyclones 11, the inflow pipe 10 communicates with the side peripheral portion, and a lid (not shown) is covered on the upper opening. The inflow pipe 10 extends outward along a tangent line in contact with the inner peripheral surface of the cylindrical portion 12. The conical part 13 has a large inner diameter at the top and gradually decreases in diameter as it moves downward, and is continuous with the lower part of the cylindrical part 12. The funnel portion 14 is formed so that the entire upper half portion of the conical shape and the lower half portion of the cylindrical shape are combined to form a funnel shape, and is continuous with the lower portion of the conical portion 13.

障害物16は、不純物回収部18とロート部14との間の適所の流路に取り付けられ、回収した不純物が不純物回収部18から液体サイクロン11のほうへ戻るのを阻止する役割を有するものである。不純物回収部18とロート部14との間の流路であれば、障害物16をどの位置に取り付けてもよい。本実施形態の装置1Aでは、図1と図2に示すように、障害物16は、かご状のロッドからなる保持部17により保持された状態で不純物回収部18の入口(ロート部14の出口)近傍に配置されている。障害物16として円錐、円盤、円柱、三角錐、四角錐、矩形板など種々の形状のものを用いることができる。なお、障害物16の厚みは、限定しないが、薄過ぎる場合には、原水に与えられる圧力で破損しやすいため、原水に与えられる圧力や保持部17の保持力等に応じて定めるのが好ましい。   The obstacle 16 is attached to an appropriate flow path between the impurity recovery part 18 and the funnel part 14 and has a role of preventing the recovered impurities from returning from the impurity recovery part 18 toward the liquid cyclone 11. is there. As long as the flow path is between the impurity recovery part 18 and the funnel part 14, the obstacle 16 may be attached at any position. In the apparatus 1A of the present embodiment, as shown in FIG. 1 and FIG. 2, the obstacle 16 is held by a holding part 17 made of a cage-shaped rod, and is input to the impurity recovery part 18 (outlet of the funnel part 14). ) It is arranged in the vicinity. Various obstacles such as a cone, a disk, a cylinder, a triangular pyramid, a quadrangular pyramid, and a rectangular plate can be used as the obstacle 16. Although the thickness of the obstacle 16 is not limited, it is preferably determined according to the pressure applied to the raw water, the holding force of the holding unit 17 and the like because it is easily damaged by the pressure applied to the raw water if it is too thin. .

不純物回収部18は、液体サイクロン下部のロート部14に図示しないフランジ継手により接続され、沈降した不純物を液体サイクロン11から回収するものである。不純物回収部18の底部には排出ライン21が接続され、排出バルブ22を開けて回収不純物を不純物回収部18から図示しない再利用処理装置に排出するようになっている。   The impurity recovery part 18 is connected to the funnel part 14 below the hydrocyclone by a flange joint (not shown), and recovers the settled impurities from the liquid cyclone 11. A discharge line 21 is connected to the bottom of the impurity recovery unit 18, and a discharge valve 22 is opened to discharge the recovered impurities from the impurity recovery unit 18 to a reuse processing apparatus (not shown).

内筒30Aは、複数の軸受31を介して液体サイクロン11に軸まわりに回転可能に支持され、ロート部14および円錐部13の一部を覆うように、少なくともロート部14を覆うように配置されている。内筒30Aは、形状が液体サイクロン11の下部の形状にほぼ相似形であり、厚みは一様である。内筒30Aの材質は、耐食性と耐摩耗性に優れていれば、樹脂、合成ゴムまたは金属材料のいずれであってもよい。樹脂を内筒に用いる場合は、フッ素系樹脂、ポリアミド系樹脂、ポリブチレン系樹脂などを用いることができる。また、合成ゴムを内筒に用いる場合は、ニトリルブタジエン系ゴム、スチレンブタジエン系ゴム、ウレタン系ゴムなどを用いることができる。また、金属材料を内筒に用いる場合は、低合金鋼やステンレス鋼などの耐食性と耐摩耗性を兼ね備えた各種の金属材料を用いることができる。   The inner cylinder 30A is supported by the hydrocyclone 11 via a plurality of bearings 31 so as to be rotatable about the axis, and is disposed so as to cover at least the funnel part 14 so as to cover a part of the funnel part 14 and the conical part 13. ing. The inner cylinder 30A is substantially similar in shape to the lower part of the hydrocyclone 11, and has a uniform thickness. The material of the inner cylinder 30A may be any of resin, synthetic rubber, or metal material as long as it has excellent corrosion resistance and wear resistance. When the resin is used for the inner cylinder, a fluorine resin, a polyamide resin, a polybutylene resin, or the like can be used. When synthetic rubber is used for the inner cylinder, nitrile butadiene rubber, styrene butadiene rubber, urethane rubber, or the like can be used. Further, when a metal material is used for the inner cylinder, various metal materials having both corrosion resistance and wear resistance such as low alloy steel and stainless steel can be used.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

原水は、所定のポンプ圧力を付与された状態で流入管10から液体サイクロンの円筒部12内に流入し、円筒部12の内周壁に沿って流れの向きを変えられて旋回流となり、円錐部13の内周壁および内筒30Aの内周壁に沿って渦巻きながら下降する間に水より比重の大きいフロックなどの不純物が渦の中心に集まり、さらにロート部14において内筒30Aを回転させながら絞り込まれた狭い流路に吸い込まれ、内筒30Aと障害物16との間隙を通って不純物回収部18に流入する。これにより不純物(フロック等)が回収される。回収した不純物は、不純物回収部18から図示しない汚泥脱水機などに排出される。一方、不純物が分離された後の処理水は、上方の流出管20を通って次工程に送られる。   The raw water flows into the cylindrical portion 12 of the hydrocyclone from the inlet pipe 10 in a state where a predetermined pump pressure is applied, and the direction of the flow is changed along the inner peripheral wall of the cylindrical portion 12 to form a swirling flow. While swirling along the inner peripheral wall of 13 and the inner peripheral wall of the inner cylinder 30A, impurities such as floc having a specific gravity greater than that of water gather at the center of the vortex, and are further narrowed down while rotating the inner cylinder 30A in the funnel portion 14. Then, the gas is sucked into the narrow flow path and flows into the impurity recovery unit 18 through the gap between the inner cylinder 30 </ b> A and the obstacle 16. Thereby, impurities (such as floc) are recovered. The collected impurities are discharged from the impurity collecting unit 18 to a sludge dewatering machine (not shown). On the other hand, the treated water after the impurities are separated is sent to the next process through the upper outflow pipe 20.

不純物回収部18には、回収対象である不純物とともに、原水の一部も供給される。このとき、従来の装置では不純物回収部18に回収された不純物(フロック)は、原水の動きによって旋回しながら、壁面や障害物16にぶつかりながら不純物回収部18に回収される。このとき、壁面や障害物とフロックがぶつかる際に、流れと壁面・障害物との相対速度差が大きく、フロックが壊れる問題がある。しかし、本実施形態の装置1Aでは、図1に示すように、液体サイクロン11の下部において内筒30Aが回転するので、旋回流の速度と内筒30Aの速度との相対速度差が小さくなり、旋回流に伴われて移動するフロックが内筒30Aの表面に接触するときの衝撃力が緩和されてフロックが壊れ難くなる。   A part of the raw water is supplied to the impurity recovery unit 18 together with the impurities to be recovered. At this time, in the conventional apparatus, the impurities (floc) collected by the impurity collecting unit 18 are collected by the impurity collecting unit 18 while colliding with the wall surface and the obstacle 16 while turning by the movement of the raw water. At this time, when a wall or an obstacle and a floc collide, there is a problem that the relative speed difference between the flow and the wall / obstacle is large, and the floc is broken. However, in the apparatus 1A of the present embodiment, as shown in FIG. 1, since the inner cylinder 30A rotates in the lower part of the hydrocyclone 11, the relative speed difference between the speed of the swirling flow and the speed of the inner cylinder 30A becomes small. The impact force when the floc moving with the swirling flow comes into contact with the surface of the inner cylinder 30A is alleviated and the floc becomes difficult to break.

本実施形態の装置によれば、軸受により内筒と液体サイクロン内壁との間のすべり摩擦を転がり摩擦に転換することで、円筒を円滑に回転させることができ、低強度のフロックが壊されにくくなり、フロックが処理水に再混入して流出することが回避され、フロックの分離回収率が向上する。   According to the apparatus of the present embodiment, by converting the sliding friction between the inner cylinder and the hydrocyclone inner wall to rolling friction by the bearing, the cylinder can be smoothly rotated, and the low-strength floc is not easily broken. Thus, it is avoided that the floc is mixed into the treated water and flows out, and the floc separation and recovery rate is improved.

(第2の実施形態)
図3と図4を参照して本発明の第2の実施形態を説明する。なお、本実施形態が上記の実施形態と共通する部分の説明は省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. In addition, description of the part which this embodiment is in common with said embodiment is abbreviate | omitted.

本実施形態の固液分離装置1Bでは、図3に示すように、内筒30Bの下端部に羽根32を取り付けている。図4に示すように、4枚の羽根32が内筒30Bに90°等ピッチ間隔に配置されている。   In the solid-liquid separator 1B of the present embodiment, as shown in FIG. 3, a blade 32 is attached to the lower end portion of the inner cylinder 30B. As shown in FIG. 4, four blades 32 are arranged at equal pitch intervals of 90 ° on the inner cylinder 30B.

本実施形態の装置によれば、内筒に羽根を取り付けることで、内筒が旋回流のエネルギを受けやすくなり、内筒をさらに速い速度で回転させることができ、旋回流の速度と内筒の速度との相対速度差がさらに縮小され、旋回流に伴われて移動するフロックが内筒表面に接触するときの衝撃力が緩和され、フロックが壊れ難くなる。このためフロックの流出が抑えられ、フロック回収率が向上する。   According to the apparatus of the present embodiment, by attaching blades to the inner cylinder, the inner cylinder can easily receive the energy of the swirling flow, and the inner cylinder can be rotated at a higher speed. The relative speed difference with the speed is further reduced, the impact force when the floc moving with the swirling flow comes into contact with the inner cylinder surface is relaxed, and the floc becomes difficult to break. For this reason, the outflow of the floc is suppressed and the floc recovery rate is improved.

(第3の実施形態)
図5を参照して本発明の第3の実施形態を説明する。なお、本実施形態が上記の実施形態と共通する部分の説明は省略する。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. In addition, description of the part which this embodiment is in common with said embodiment is abbreviate | omitted.

本実施形態の固液分離装置1Cでは、内筒30Cの上部に1対の永久磁石33a,33bを対向する位置に取り付け、図示しない移動機構を備えた制御部35により動作が制御される他の1対の永久磁石34a,34bを液体サイクロン11の外側において対向する位置に移動可能に設けている。外側の永久磁石34a,34bは、制御部35の移動機構により液体サイクロンのまわりを周回移動されるようになっている。これら2組の永久磁石(33a,33b),(34a,34b)は、液体サイクロンの壁材を間に挟んで同じ高さレベルに配置されている。   In the solid-liquid separation device 1C of the present embodiment, a pair of permanent magnets 33a and 33b are attached to the opposed positions of the upper portion of the inner cylinder 30C, and the operation is controlled by a control unit 35 having a moving mechanism (not shown). A pair of permanent magnets 34 a and 34 b are provided so as to be movable to positions facing each other outside the hydrocyclone 11. The outer permanent magnets 34 a and 34 b are moved around the hydrocyclone by the moving mechanism of the control unit 35. These two sets of permanent magnets (33a, 33b) and (34a, 34b) are disposed at the same height level with the wall material of the hydrocyclone interposed therebetween.

本実施形態の装置の作用を説明する。   The operation of the apparatus of this embodiment will be described.

制御部35の移動機構により外側1対の永久磁石34a,34bを液体サイクロンのまわりに水の旋回流と同じ向きに周回移動させると、これらの磁力の変化に応じて内側1対の永久磁石33a,33bに電磁力が誘起される。電磁力が永久磁石33a,33bに誘起されることにより、内筒30Cに水の旋回流と同じ向きの回転力が付与される。   When the outer pair of permanent magnets 34a and 34b are moved around the hydrocyclone in the same direction as the swirling flow of water by the moving mechanism of the control unit 35, the inner pair of permanent magnets 33a is changed in accordance with the change in the magnetic force. 33b, an electromagnetic force is induced. When the electromagnetic force is induced in the permanent magnets 33a and 33b, a rotational force in the same direction as the swirling flow of water is applied to the inner cylinder 30C.

本実施形態の装置によれば、回転外力付与手段としての2組の永久磁石と移動機構を備えた制御部とにより内筒に旋回流と同じ向きの回転力(外力)を付与し、円筒をさらに速い速度、旋回流に近い速度で回転させることができる。このためフロックの崩壊が抑えられ、さらにフロック回収率が向上する。   According to the apparatus of this embodiment, two sets of permanent magnets as rotation external force applying means and a control unit having a moving mechanism are used to apply a rotational force (external force) in the same direction as the swirling flow to the inner cylinder. Further, it can be rotated at a high speed and a speed close to the swirl flow. For this reason, the collapse of the floc is suppressed, and the floc recovery rate is further improved.

(第4の実施形態)
図6を参照して本発明の第4の実施形態を説明する。なお、本実施形態が上記の実施形態と共通する部分の説明は省略する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIG. In addition, description of the part which this embodiment is in common with said embodiment is abbreviate | omitted.

本実施形態の固液分離装置1Dでは、内筒30Dの上部に2対(合計4個)の永久磁石(36a,36b),(36a,36b)を対向する位置に取り付け、制御部38により動作が制御される他の2対(合計4個)の電磁石(37a,37b),(37a,37b)を液体サイクロン11の外側において対向する位置に設けている。外側の電磁石(37a,37b),(37a,37b)は、制御部38により所定の周期で磁極を入れ替えるようになっている。これらの永久磁石(36a,36b),(36a,36b)および電磁石(37a,37b),(37a,37b)は、液体サイクロンの壁材を間に挟んで同じ高さレベルに配置されている。   In the solid-liquid separation device 1D of the present embodiment, two pairs (four in total) of permanent magnets (36a, 36b) and (36a, 36b) are attached to the upper portion of the inner cylinder 30D at opposite positions, and are operated by the control unit 38. The other two pairs (a total of four) of electromagnets (37a, 37b) and (37a, 37b) are controlled at positions facing each other outside the hydrocyclone 11. The outer electromagnets (37a, 37b) and (37a, 37b) are configured to replace the magnetic poles at a predetermined cycle by the control unit. These permanent magnets (36a, 36b), (36a, 36b) and electromagnets (37a, 37b), (37a, 37b) are arranged at the same height level with the wall material of the hydrocyclone interposed therebetween.

本実施形態の装置の作用を説明する。   The operation of the apparatus of this embodiment will be described.

制御部38により外側の電磁石(37a,37b),(37a,37b)の磁極を所定の周期で入れ替えると、これらの磁力の変化に応じて内側の永久磁石(36a,36b),(36a,36b)に電磁力が誘起される。電磁力が永久磁石(36a,36b),(36a,36b)に誘起されることにより、内筒30Dに水の旋回流と同じ向きの回転力が付与される。   When the magnetic poles of the outer electromagnets (37a, 37b), (37a, 37b) are replaced at a predetermined cycle by the control unit 38, the inner permanent magnets (36a, 36b), (36a, 36b) according to the change in the magnetic force. ) Electromagnetic force is induced. When the electromagnetic force is induced in the permanent magnets (36a, 36b), (36a, 36b), a rotational force in the same direction as the swirling flow of water is applied to the inner cylinder 30D.

本実施形態の装置によれば、回転外力付与手段としての2対の永久磁石と2対の電磁石と制御部とにより内筒に旋回流と同じ向きの回転力(外力)を付与し、円筒をさらに速い速度、旋回流に近い速度で回転させることができる。このためフロックの崩壊が抑えられ、さらにフロック回収率が向上する。   According to the apparatus of the present embodiment, the rotational force (external force) in the same direction as the swirling flow is imparted to the inner cylinder by the two pairs of permanent magnets, the two pairs of electromagnets and the control unit as the rotational external force imparting means. Further, it can be rotated at a high speed and a speed close to the swirl flow. For this reason, the collapse of the floc is suppressed, and the floc recovery rate is further improved.

(第5の実施形態)
図7と図8を参照して本発明の第5の実施形態を説明する。なお、本実施形態が上記の実施形態と共通する部分の説明は省略する。
(Fifth embodiment)
A fifth embodiment of the present invention will be described with reference to FIGS. In addition, description of the part which this embodiment is in common with said embodiment is abbreviate | omitted.

本実施形態の固液分離装置1Eでは、障害物16Eを支持する保持部17Eに軸受41を取り付け、障害物16Eを軸まわりに回転できるようにしている。また、障害物16Eは、図8の(a)と(b)に示すように、旋回流の向きと同じ向きのらせん状の溝16gが表面に形成されている。このような形状の溝16gにより旋回流のエネルギを障害物16Eが受けやすくなり、障害物16Eが円滑に回転するようになっている。   In the solid-liquid separator 1E of the present embodiment, the bearing 41 is attached to the holding portion 17E that supports the obstacle 16E so that the obstacle 16E can be rotated around the axis. Further, as shown in FIGS. 8A and 8B, the obstacle 16E has a spiral groove 16g formed on the surface in the same direction as the direction of the swirl flow. The groove 16g having such a shape makes it easy for the obstacle 16E to receive the energy of the swirling flow, and the obstacle 16E rotates smoothly.

本実施形態の装置によれば、旋回流が液体サイクロン下部を通過する際に、旋回流は内筒を回転させるとともに障害物も回転させるので、旋回流の速度と内筒の速度との相対速度差が小さくなるばかりでなく、さらに旋回流の速度と障害物の速度との相対速度差が小さくなり、旋回流に伴われて移動するフロックが内筒の表面に接触するときの衝撃力が緩和されてフロックが壊れ難くなる。このように本実施形態では、低強度のフロックがさらに壊されにくくなり、フロックが処理水に再混入して流出することが回避され、フロックの分離回収率が向上する。   According to the apparatus of the present embodiment, when the swirl flow passes through the lower part of the hydrocyclone, the swirl flow rotates the inner cylinder and also the obstacle, so the relative speed between the speed of the swirl flow and the speed of the inner cylinder. Not only does the difference become smaller, but the relative speed difference between the swirling flow speed and the obstacle speed also becomes smaller, and the impact force when the flock moving along with the swirling flow contacts the surface of the inner cylinder is reduced. It becomes difficult to break the frock. As described above, in this embodiment, the low-strength flocs are further prevented from being broken, and the flocs are prevented from being remixed in the treated water and flowing out, thereby improving the floc separation and recovery rate.

(第6の実施形態)
図9と図10を参照して本発明の第6の実施形態を説明する。なお、本実施形態が上記の実施形態と共通する部分の説明は省略する。
(Sixth embodiment)
A sixth embodiment of the present invention will be described with reference to FIGS. 9 and 10. In addition, description of the part which this embodiment is in common with said embodiment is abbreviate | omitted.

本実施形態の固液分離装置1Fでは、図9に示すように、障害物16Fの回転軸16aの下端に羽根43を取り付けている。図10に示すように、4枚の羽根43が障害物16Fに90°等ピッチ間隔に配置されている。なお、符号42は障害物16Fの回転軸16aを回転可能に支持する軸受である。   In the solid-liquid separation device 1F of the present embodiment, as shown in FIG. 9, a blade 43 is attached to the lower end of the rotating shaft 16a of the obstacle 16F. As shown in FIG. 10, four blades 43 are arranged on the obstacle 16F at equal intervals of 90 °. Reference numeral 42 denotes a bearing that rotatably supports the rotating shaft 16a of the obstacle 16F.

本実施形態の装置によれば、障害物に羽根を取り付けることで、障害物が旋回流のエネルギを受けやすくなり、障害物をさらに速い速度で回転させることができ、旋回流の速度と障害物の速度との相対速度差がさらに縮小され、旋回流に伴われて移動するフロックが障害物表面に接触するときの衝撃力が緩和され、フロックが壊れ難くなる。このためフロックの流出が抑えられ、さらにフロック回収率が向上する。   According to the apparatus of the present embodiment, by attaching blades to the obstacle, the obstacle easily receives swirl energy, and the obstacle can be rotated at a higher speed. The relative speed difference with the speed is further reduced, the impact force when the floc moving with the swirling flow comes into contact with the obstacle surface is relaxed, and the floc is hardly broken. For this reason, the outflow of the floc is suppressed and the floc recovery rate is further improved.

(第7の実施形態)
図11を参照して本発明の第7の実施形態を説明する。なお、本実施形態が上記の実施形態と共通する部分の説明は省略する。
(Seventh embodiment)
A seventh embodiment of the present invention will be described with reference to FIG. In addition, description of the part which this embodiment is in common with said embodiment is abbreviate | omitted.

本実施形態の固液分離装置1Gでは、図11に示すように、障害物16Gに2対(合計4個)の永久磁石(44a,44b),(44a,44b)を対向する位置に取り付け、制御部46により動作が制御される他の2対(合計4個)の電磁石(45a,45b),(45a,45b)を液体サイクロン11の外側において対向する位置に設けている。外側の電磁石(45a,45b),(45a,45b)は、制御部46により所定の周期で磁極を入れ替えるようになっている。これらの永久磁石(44a,44b),(44a,44b)および電磁石(45a,45b),(45a,45b)は、液体サイクロンの壁材を間に挟んで同じ高さレベルに配置されている。   In the solid-liquid separation device 1G of the present embodiment, as shown in FIG. 11, two pairs (four in total) of permanent magnets (44a, 44b) and (44a, 44b) are attached to the obstacle 16G so as to face each other. Two other pairs (four in total) of electromagnets (45a, 45b) and (45a, 45b) whose operations are controlled by the controller 46 are provided at positions facing each other outside the hydrocyclone 11. The outer electromagnets (45a, 45b), (45a, 45b) are configured to replace the magnetic poles at a predetermined cycle by the control unit 46. These permanent magnets (44a, 44b), (44a, 44b) and electromagnets (45a, 45b), (45a, 45b) are arranged at the same height level with the wall material of the hydrocyclone interposed therebetween.

本実施形態の装置の作用を説明する。   The operation of the apparatus of this embodiment will be described.

制御部46により外側の電磁石(45a,45b),(45a,45b)の磁極を所定の周期で入れ替えると、これらの磁力の変化に応じて内側の永久磁石(44a,44b),(44a,44b)に電磁力が誘起される。電磁力が永久磁石(45a,45b),(45a,45b)に誘起されることにより、障害物16Gに水の旋回流と同じ向きの回転力が付与される。   When the magnetic poles of the outer electromagnets (45a, 45b), (45a, 45b) are exchanged at a predetermined period by the control unit 46, the inner permanent magnets (44a, 44b), (44a, 44b) are changed according to the change in the magnetic force. ) Electromagnetic force is induced. When the electromagnetic force is induced in the permanent magnets (45a, 45b) and (45a, 45b), a rotational force in the same direction as the swirling flow of water is applied to the obstacle 16G.

本実施形態の装置によれば、回転外力付与手段としての2対の永久磁石と2対の電磁石と制御部とにより障害物に旋回流と同じ向きの回転力(外力)を付与し、障害物をさらに速い速度で回転させることができる。このためフロックの流出が抑えられ、さらにフロック回収率が向上する。   According to the apparatus of the present embodiment, the two pairs of permanent magnets, the two pairs of electromagnets, and the control unit as the rotation external force applying means apply a rotation force (external force) in the same direction as the swirling flow to the obstacle, Can be rotated at a faster speed. For this reason, the outflow of the floc is suppressed and the floc recovery rate is further improved.

1A〜1G…固液分離装置、10…流入管、
11…液体サイクロン、12…円筒部、13…円錐部、14…ロート部、
16,16E,16F,16G…障害物、16a…回転軸、16g…溝、
17,17E,17F,17G…保持部、
18…不純物回収部、
20…流出管、21…排出ライン、22…バルブ、
30A,30B,30C,30D…内筒、31…軸受、32…羽根、33a,33b,34b,34b…永久磁石、35…制御部、36a,36b…永久磁石、37b,37b…電磁石、38…制御部、
41,42…軸受、43…羽根、44a,44b…永久磁石、45a,45b…電磁石、46…制御部。
1A to 1G ... solid-liquid separator, 10 ... inflow pipe,
DESCRIPTION OF SYMBOLS 11 ... Hydrocyclone, 12 ... Cylindrical part, 13 ... Conical part, 14 ... Funnel part,
16, 16E, 16F, 16G ... obstacle, 16a ... rotating shaft, 16g ... groove,
17, 17E, 17F, 17G ... holding part,
18 ... Impurity recovery unit,
20 ... Outflow pipe, 21 ... Discharge line, 22 ... Valve,
30A, 30B, 30C, 30D ... inner cylinder, 31 ... bearing, 32 ... blade, 33a, 33b, 34b, 34b ... permanent magnet, 35 ... control unit, 36a, 36b ... permanent magnet, 37b, 37b ... electromagnet, 38 ... Control unit,
41, 42 ... bearings, 43 ... blades, 44a, 44b ... permanent magnets, 45a, 45b ... electromagnets, 46 ... control unit.

Claims (7)

不純物を含む原水を旋回させたときの遠心力を利用して原水に含まれる不純物を沈降させる液体サイクロンと、
前記液体サイクロンの上部に接続され、原水が旋回流となるように前記液体サイクロンに原水を流入させる流入管と、
前記液体サイクロンの下部に接続され、沈降した不純物を前記液体サイクロンから回収する不純物回収部と、
回収した不純物が前記不純物回収部から前記液体サイクロンのほうへ戻るのを阻止する障害物と、
前記液体サイクロンの上部に接続され、沈降した不純物が前記不純物回収部に回収された後の処理水を前記液体サイクロンから流出させる流出管と、
前記液体サイクロンの下部流路において前記液体サイクロンの軸まわりに回転可能に設けられた内筒と、
を具備することを特徴とする固液分離装置。
A hydrocyclone that sediments impurities contained in the raw water using centrifugal force when the raw water containing impurities is swirled;
An inflow pipe connected to the upper part of the hydrocyclone and allowing the raw water to flow into the hydrocyclone so that the raw water becomes a swirling flow;
An impurity recovery unit connected to a lower part of the hydrocyclone and recovering the settled impurities from the hydrocyclone;
An obstacle that prevents the recovered impurities from returning from the impurity recovery section toward the hydrocyclone;
An outflow pipe connected to the upper part of the hydrocyclone and for allowing the treated water after the settled impurities are collected in the impurity collecting section to flow out of the hydrocyclone;
An inner cylinder rotatably provided around the axis of the liquid cyclone in the lower flow path of the liquid cyclone;
A solid-liquid separation device comprising:
前記内筒を前記液体サイクロンに回転可能に支持する軸受を有することを特徴とする請求項1記載の固液分離装置。   The solid-liquid separator according to claim 1, further comprising a bearing that rotatably supports the inner cylinder on the liquid cyclone. 前記内筒が旋回流を受けて回転力とする羽根を有することを特徴とする請求項1又は2のいずれか1項記載の固液分離装置。   The solid-liquid separator according to any one of claims 1 and 2, wherein the inner cylinder has blades that receive a swirling flow and have a rotational force. 前記障害物を前記液体サイクロンに回転可能に支持する軸受を有することを特徴とする請求項1乃至3のいずれか1項記載の固液分離装置。   The solid-liquid separator according to any one of claims 1 to 3, further comprising a bearing that rotatably supports the obstacle on the liquid cyclone. 前記障害物が旋回流を受けて回転力とする羽根を有することを特徴とする請求項1乃至4のいずれか1項記載の固液分離装置。   The solid-liquid separator according to any one of claims 1 to 4, wherein the obstacle has blades that receive a swirling flow and have a rotational force. 前記液体サイクロンの外側から前記内筒に旋回流と同じ向きの回転力を付与する回転外力付与手段をさらに有することを特徴とする請求項1乃至5のいずれか1項記載の固液分離装置。   The solid-liquid separator according to any one of claims 1 to 5, further comprising a rotational external force imparting means for imparting a rotational force in the same direction as the swirling flow to the inner cylinder from the outside of the hydrocyclone. 前記液体サイクロンの外側から前記障害物に旋回流と同じ向きの回転力を付与する回転外力付与手段をさらに有することを特徴とする請求項1乃至6のいずれか1項記載の固液分離装置。   The solid-liquid separator according to any one of claims 1 to 6, further comprising a rotating external force applying means for applying a rotating force in the same direction as a swirling flow to the obstacle from the outside of the liquid cyclone.
JP2009238183A 2009-10-15 2009-10-15 Solid-liquid separator Pending JP2011083696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238183A JP2011083696A (en) 2009-10-15 2009-10-15 Solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238183A JP2011083696A (en) 2009-10-15 2009-10-15 Solid-liquid separator

Publications (1)

Publication Number Publication Date
JP2011083696A true JP2011083696A (en) 2011-04-28

Family

ID=44077063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238183A Pending JP2011083696A (en) 2009-10-15 2009-10-15 Solid-liquid separator

Country Status (1)

Country Link
JP (1) JP2011083696A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157515A1 (en) * 2011-05-19 2012-11-22 株式会社コガネイ Filter
US8961640B2 (en) 2011-05-19 2015-02-24 Koganei Corporation Filter
US8992648B2 (en) 2011-05-19 2015-03-31 Koganei Corporation Swirl flow generator
CN104771941A (en) * 2015-04-10 2015-07-15 胜利油田森诺胜利工程有限公司 Gas-liquid-solid separator for geothermal water and separating method of gas-liquid-solid separator
JP2015146951A (en) * 2014-02-07 2015-08-20 横河電子機器株式会社 Cleaning machine
US9233327B2 (en) 2011-12-01 2016-01-12 Koganei Corporation Filter
CN105236615A (en) * 2015-10-14 2016-01-13 攀钢集团成都钢钒有限公司 Deposition degreaser
KR101703959B1 (en) * 2016-10-13 2017-02-08 박진원 An apparatus for manufacturing urea solution and a method for manufacturing urea solution using the same
WO2017168861A1 (en) * 2016-03-28 2017-10-05 株式会社日立製作所 Magnetic cyclone device and treatment method for same
CN112811548A (en) * 2021-01-22 2021-05-18 北京华德创业环保设备有限公司 Rotational flow flocculation device and sedimentation tank with same
CN114453151A (en) * 2021-12-15 2022-05-10 连云港市农业科学院 Hydraulic cyclone for separating washed soil granularity
JP7432148B2 (en) 2020-05-13 2024-02-16 株式会社Ihi Loop seal inner cylinder support structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150466U (en) * 1974-10-16 1976-04-16
JP2002192018A (en) * 2000-12-27 2002-07-10 Yoshikou:Kk Cyclone
JP2002210389A (en) * 2001-01-22 2002-07-30 Ishikawajima Harima Heavy Ind Co Ltd Cyclone dust separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150466U (en) * 1974-10-16 1976-04-16
JP2002192018A (en) * 2000-12-27 2002-07-10 Yoshikou:Kk Cyclone
JP2002210389A (en) * 2001-01-22 2002-07-30 Ishikawajima Harima Heavy Ind Co Ltd Cyclone dust separator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157515A1 (en) * 2011-05-19 2012-11-22 株式会社コガネイ Filter
US8961640B2 (en) 2011-05-19 2015-02-24 Koganei Corporation Filter
US8992648B2 (en) 2011-05-19 2015-03-31 Koganei Corporation Swirl flow generator
JP5767322B2 (en) * 2011-05-19 2015-08-19 株式会社コガネイ filter
US9174225B2 (en) 2011-05-19 2015-11-03 Koganei Corporation Filter
US9233327B2 (en) 2011-12-01 2016-01-12 Koganei Corporation Filter
JP2015146951A (en) * 2014-02-07 2015-08-20 横河電子機器株式会社 Cleaning machine
CN104771941A (en) * 2015-04-10 2015-07-15 胜利油田森诺胜利工程有限公司 Gas-liquid-solid separator for geothermal water and separating method of gas-liquid-solid separator
CN105236615A (en) * 2015-10-14 2016-01-13 攀钢集团成都钢钒有限公司 Deposition degreaser
WO2017168861A1 (en) * 2016-03-28 2017-10-05 株式会社日立製作所 Magnetic cyclone device and treatment method for same
KR101703959B1 (en) * 2016-10-13 2017-02-08 박진원 An apparatus for manufacturing urea solution and a method for manufacturing urea solution using the same
JP7432148B2 (en) 2020-05-13 2024-02-16 株式会社Ihi Loop seal inner cylinder support structure
CN112811548A (en) * 2021-01-22 2021-05-18 北京华德创业环保设备有限公司 Rotational flow flocculation device and sedimentation tank with same
CN112811548B (en) * 2021-01-22 2022-07-19 北京华德创业环保设备有限公司 Rotational flow flocculation device and sedimentation tank with same
CN114453151A (en) * 2021-12-15 2022-05-10 连云港市农业科学院 Hydraulic cyclone for separating washed soil granularity
CN114453151B (en) * 2021-12-15 2023-08-04 连云港市农业科学院 Hydraulic cyclone for leaching soil granularity separation

Similar Documents

Publication Publication Date Title
JP2011083696A (en) Solid-liquid separator
JP4901830B2 (en) Solid-liquid separator
US8349177B2 (en) Solid-liquid separator
US20070039894A1 (en) Water treatment using magnetic and other field separation technologies
US20070023355A1 (en) Vortex separator for separating floating and settling substances from centrally inflowing storm-water
US8333283B2 (en) Cyclone separator
CN207187964U (en) A kind of hydrocyclone with rotary blade
CN100556552C (en) Vortex magnetic separator
US11338304B2 (en) Fluid separator device
CN107755101A (en) A kind of sleeping spiral shell sedimentation concentration centrifuge
CA2802519A1 (en) Centrifugal concentrator
CN204544488U (en) A kind of hydrocyclone
CN106669990A (en) Cyclone separator of oblique side-cutting cyclone water inlet structure
CN206965950U (en) A kind of concentration-type cyclone
JP2012245466A (en) Apparatus and method for clarifying waste liquid
JP2011083702A (en) Cleaning system for fluid to be treated
JP2014008487A (en) Sedimentary sand separation apparatus
KR101564972B1 (en) Apparatus for Extraction Natural Mineral Pigment using Difference of Specific Gravity from Water Current
CN209128239U (en) A kind of energy-saving magnetic medium solution wadding separating one-piece
KR102390455B1 (en) Sludge recovery apparatus
CN208757807U (en) A kind of dynamical water-oil separating duplex centrifugal machine
CN109095645B (en) Industrial rare earth wastewater treatment process
CN104481933A (en) LNG (liquefied natural gas) pump sump with impurity separation function
JP2009297677A (en) Magnetic granule separator
CN102225253B (en) Pendular sewage sedimentation acceleration basin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108