JP2011082054A - Coke for negative electrode carbon material, anode carbon material, and lithium ion battery - Google Patents

Coke for negative electrode carbon material, anode carbon material, and lithium ion battery Download PDF

Info

Publication number
JP2011082054A
JP2011082054A JP2009234234A JP2009234234A JP2011082054A JP 2011082054 A JP2011082054 A JP 2011082054A JP 2009234234 A JP2009234234 A JP 2009234234A JP 2009234234 A JP2009234234 A JP 2009234234A JP 2011082054 A JP2011082054 A JP 2011082054A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon material
coke
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009234234A
Other languages
Japanese (ja)
Inventor
Akira Moriyama
亮 森山
Masaru Takei
勝 武井
Toshiaki Sogabe
敏明 曽我部
Akihiro Mabuchi
昭弘 馬淵
Koichi Morita
浩一 森田
Ryoichi Fujiwara
良一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2009234234A priority Critical patent/JP2011082054A/en
Publication of JP2011082054A publication Critical patent/JP2011082054A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode carbon material capable of restraining deterioration of capacity to the utmost and maintaining capacity at a high level, even with charge and discharge of a battery repeated at large current. <P>SOLUTION: The negative electrode carbon material for a lithium ion battery is prepared by heat-treating coke at about 2,100-2,700°C, wherein a cross-sectioned optical structure of the coke observed with a polarizing microscope is of an anisotropic structure formed with a fine-mosaic structure and a flow structure and an area ratio of both structures is: the former/the latter=10/90 to 70/30. In this carbon material, an average particle diameter (D50) is 6-20 μm, a specific surface area measured with a BET method is 3 m<SP>2</SP>/g or below, an interlayer distance d value (002) in X-ray diffraction is 0.3360-0.3395 nm, and a thickness La of a crystallite in an α-axis direction is 60-300 nm. The lithium ion battery having this negative electrode carbon material is suitable for a lithium ion battery for a hybrid vehicle or the like. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、負極炭素材の前駆体として有用なコークス、それを用いて得られる負極炭素材及びその製造方法、並びに前記負極炭素材を備えたリチウムイオン電池に関する。   The present invention relates to coke useful as a precursor of a negative electrode carbon material, a negative electrode carbon material obtained using the coke, a method for producing the same, and a lithium ion battery including the negative electrode carbon material.

負極材料として炭素材料、正極材料として金属カルコゲン化物、金属酸化物を用い、電解液として非プロトン性有機溶媒に種々の塩を溶解させた電解液を用いたリチウムイオン電池は、高エネルギー密度型電池の一種として注目され、盛んに研究が行われている。   Lithium-ion batteries using carbon materials as negative electrode materials, metal chalcogenides and metal oxides as positive electrode materials, and electrolytes in which various salts are dissolved in an aprotic organic solvent are used as high-energy density batteries. It is attracting attention as a kind of and is actively researched.

現在使用されているリチウムイオン電池用の負極材料は、最終製品の結晶状態に基づいて、黒鉛材料と難黒鉛化性炭素との2種類に大別できる。黒鉛材料は、天然黒鉛もしくは黒鉛結晶が発達しやすい易黒鉛化性炭素と呼ばれる炭素前駆体を2800℃以上で焼成して得られる人造黒鉛であり、黒鉛結晶性が高い状態にあるという特徴がある。一方、難黒鉛化性炭素は、結晶の発達が困難である難黒鉛化性炭素前駆体を1000℃前後で焼成することによって得られ、黒鉛結晶性が低い状態にあるという特徴がある。前者はリチウムイオン電池の負極材料として用いた場合、高容量密度が得られ、リチウムイオンの放出に伴う電位の変化が小さいという利点を有する。一方、後者はリチウムイオン電池の負極材料として用いた場合、急速充放電特性(入出力特性)が黒鉛材料に較べて優れているが、高容量密度が得られない上に不可逆容量が大きいという欠点を有する。   Currently used negative electrode materials for lithium ion batteries can be broadly classified into two types, graphite materials and non-graphitizable carbons, based on the crystalline state of the final product. The graphite material is artificial graphite obtained by firing a carbon precursor called natural graphitizable carbon, which is easy to develop natural graphite or graphite crystals, at a temperature of 2800 ° C. or higher, and is characterized by high graphite crystallinity. . On the other hand, non-graphitizable carbon is obtained by firing a non-graphitizable carbon precursor, which is difficult to develop crystals, at around 1000 ° C., and is characterized by low graphite crystallinity. When the former is used as a negative electrode material of a lithium ion battery, it has an advantage that a high capacity density is obtained and a change in potential accompanying the release of lithium ions is small. On the other hand, when the latter is used as a negative electrode material for a lithium ion battery, the rapid charge / discharge characteristics (input / output characteristics) are superior to those of graphite materials, but the high capacity density cannot be obtained and the irreversible capacity is large. Have

民生用小型リチウムイオン電池(例えば、携帯電話やノート型パソコンなどのモバイル機器用の電池など)では高容量密度の得られる黒鉛材料が負極材料として一般に用いられている。黒鉛材料の中でも、従来は人造黒鉛が主流であったが、コストの観点から、特開平04−368778号公報(特許文献1)、特開平04−370662号公報(特許文献2)などで提案されている技術により、天然黒鉛粒子の表面を修飾した黒鉛材料が主流となりつつある。   In a consumer-use small lithium ion battery (for example, a battery for a mobile device such as a mobile phone or a notebook personal computer), a graphite material having a high capacity density is generally used as a negative electrode material. Among graphite materials, artificial graphite has been the mainstream in the past, but from the viewpoint of cost, it has been proposed in Japanese Patent Application Laid-Open No. 04-368778 (Patent Document 1), Japanese Patent Application Laid-Open No. 04-370662 (Patent Document 2), and the like. By using the technology, graphite materials in which the surface of natural graphite particles is modified are becoming mainstream.

また、近年において、リチウムイオン電池は、電動工具やハイブリッド自動車などの電源としての応用検討もなされている。特に、自動車用電源として使用する場合には、急激な加速、減速に対応した入出力特性が重視される。このような用途でリチウムイオン電池を使用する場合には、電池に要求される特性が、前記のモバイル機器用とは異なるため、高結晶性を有する黒鉛材料では、十分にその要求性能を満足することができない。   In recent years, lithium ion batteries have been studied for application as power sources for electric tools and hybrid vehicles. In particular, when used as a power source for automobiles, input / output characteristics corresponding to rapid acceleration and deceleration are emphasized. When using a lithium ion battery for such an application, the characteristics required of the battery are different from those for the mobile device described above, so the graphite material having high crystallinity sufficiently satisfies the required performance. I can't.

そのため、電動工具やハイブリッド自動車のような用途のリチウムイオン電池では難黒鉛化性炭素を負極材料として使用することが検討されている。しかし、前記難黒鉛化性炭素は入出力特性を満足しても、高容量密度が得られない上に、不可逆容量が大きいという問題を有している。また、コスト面でも天然黒鉛粒子の表面を修飾した黒鉛材料に劣る。   Therefore, it has been studied to use non-graphitizable carbon as a negative electrode material in lithium ion batteries for applications such as electric tools and hybrid vehicles. However, the non-graphitizable carbon has a problem that even if the input / output characteristics are satisfied, a high capacity density cannot be obtained and the irreversible capacity is large. Moreover, it is inferior to the graphite material which modified the surface of the natural graphite particle also in terms of cost.

一方、特開2004−335132号公報(特許文献3)では、易黒鉛化性炭素前駆体を低温で熱処理することにより得られる黒鉛化過程の途上にある炭素を負極材料として使用することが提案されている。この文献には、c軸方向の結晶子の厚みLcが20nm以上60nm未満であり、a軸方向の結晶子の厚みLaがLcより小さい炭素材料が記載されている。しかし、このようなパラメータを有する炭素材料は、結晶の発達が不充分であり、放電容量が著しく低い。   On the other hand, Japanese Patent Application Laid-Open No. 2004-335132 (Patent Document 3) proposes to use carbon in the course of graphitization process obtained by heat-treating a graphitizable carbon precursor at a low temperature as a negative electrode material. ing. This document describes a carbon material in which the c-axis direction crystallite thickness Lc is 20 nm or more and less than 60 nm and the a-axis direction crystallite thickness La is smaller than Lc. However, the carbon material having such parameters has insufficient crystal development and a very low discharge capacity.

また、特開2005−135905号公報(特許文献4)及び特開2006−140138号公報(特許文献5)でも同様に、黒鉛化過程の途上にある炭素材料が提案されている。しかし、これらの炭素材料も、特許文献3と同様に放電容量が著しく低いという問題を有している。   Similarly, Japanese Unexamined Patent Application Publication No. 2005-135905 (Patent Document 4) and Japanese Unexamined Patent Application Publication No. 2006-140138 (Patent Document 5) propose carbon materials that are in the process of graphitization. However, these carbon materials also have a problem that the discharge capacity is extremely low as in Patent Document 3.

また、特開2002−270169号公報(特許文献6)には炭素前駆体に黒鉛化触媒であるホウ素を添加する手法が開示されている。しかし、この方法では、負極炭素材料に黒鉛化触媒由来の不純物が混入するという問題点も生じる。   Japanese Patent Laid-Open No. 2002-270169 (Patent Document 6) discloses a method of adding boron as a graphitization catalyst to a carbon precursor. However, this method also causes a problem that impurities derived from the graphitization catalyst are mixed into the negative electrode carbon material.

さらに、特開2007−149424号公報(特許文献7)では、メソフェーズ小球体を1500℃超2500℃未満の温度範囲で熱処理する方法が開示されている。しかし、この方法で得られる黒鉛化性炭素は、X線回折における層間距離d値(002)が0.3395nmを超えており、結晶の発達が不充分であり、放電容量が著しく低い。   Furthermore, Japanese Patent Application Laid-Open No. 2007-149424 (Patent Document 7) discloses a method of heat-treating mesophase microspheres in a temperature range of more than 1500 ° C. and less than 2500 ° C. However, the graphitizable carbon obtained by this method has an interlayer distance d value (002) in X-ray diffraction exceeding 0.3395 nm, insufficient crystal development, and a very low discharge capacity.

特開平04−368778号公報(特許請求の範囲)Japanese Patent Laid-Open No. 04-368778 (Claims) 特開平04−370662号公報(特許請求の範囲)Japanese Patent Laid-Open No. 04-370662 (Claims) 特開2004−335132号公報(特許請求の範囲、段落[0031][0032]、実施例)JP 2004-335132 A (claims, paragraphs [0031] [0032], examples) 特開2005−135905号公報(特許請求の範囲)Japanese Patent Laying-Open No. 2005-135905 (Claims) 特開2006−140138号公報(特許請求の範囲、段落[0052])JP 2006-140138 A (Claims, paragraph [0052]) 特開2002−270169号公報(特許請求の範囲)JP 2002-270169 (Claims) 特開2007−149424号公報(特許請求の範囲、段落[0022]、実施例)JP 2007-149424 A (Claims, paragraph [0022], Examples)

従って、本発明の目的は、大電流で電池の充放電を繰り返しても、容量の低下を極力抑制でき、高レベルで容量を維持できる負極炭素材の前駆体、それを用いて得られる負極炭素材及びその製造方法、並びに前記負極炭素材を備えたリチウムイオン電池を提供することにある。   Accordingly, an object of the present invention is to provide a precursor of a negative electrode carbon material that can suppress a decrease in capacity as much as possible and maintain a high level of capacity even when the battery is repeatedly charged and discharged with a large current, and a negative electrode carbon obtained using the precursor. It is providing the raw material, its manufacturing method, and the lithium ion battery provided with the said negative electrode carbon material.

本発明の他の目的は、リチウムイオンの拡散と保持とを両立でき、ハイブリッド車用リチウムイオン電池に適した負極炭素材の前駆体、それを用いて得られる負極炭素材及びその製造方法、並びに前記負極炭素材を備えたリチウムイオン電池を提供することにある。   Another object of the present invention is to achieve both diffusion and retention of lithium ions, a precursor of a negative electrode carbon material suitable for a lithium ion battery for a hybrid vehicle, a negative electrode carbon material obtained using the same, a method for producing the same, and It is providing the lithium ion battery provided with the said negative electrode carbon material.

本発明者らは、前記課題を達成するため鋭意検討した結果、特定の組織を有する前躯体を使用し、特定の熱処理を行うことにより、X線回折パラメータが従来の黒鉛材料とは異なる負極材料を製造することができた。この方法により得られた負極材料は、容量密度を極端に低下させることなく、大電流での充放電が可能な材料であった。すなわち、本発明者らは、このような特性を有する負極材料が、入出力特性が重視される近年のリチウムイオン電池用負極材料として適しており、前記黒鉛材料や難黒鉛化性炭素とは異なる優れた性能を有することを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have used a precursor having a specific structure and performed a specific heat treatment, whereby an X-ray diffraction parameter is different from that of a conventional graphite material. Could be manufactured. The negative electrode material obtained by this method was a material that could be charged and discharged with a large current without drastically reducing the capacity density. That is, the present inventors have found that the negative electrode material having such characteristics is suitable as a negative electrode material for lithium ion batteries in recent years in which input / output characteristics are important, and is different from the graphite material and non-graphitizable carbon. The present invention was completed by finding that it has excellent performance.

すなわち、本発明のコークスは、リチウムイオン電池用負極炭素材の前駆体であって、偏光顕微鏡で観察した断面の光学組織が、ファインモザイク組織と流れ組織とで形成された異方性組織であり、かつ両組織の面積割合が、前者/後者=10/90〜70/30である。前記ファインモザイク組織は、平均径10μm以下の微細領域の集合体で構成された組織であり、前記流れ組織は、平均径10μmを超える連続相で構成された組織であってもよい。ファインモザイク組織と流れ組織との面積割合は、前者/後者=15/85〜50/50程度であってもよい。本発明のコークスは、1100℃で熱処理したとき、X線回折の002回折線図形の半値幅(Δ2θ)が2.0〜6.0°程度であってもよい。さらに、1100℃で熱処理したとき、ラマン分光法で測定したR値が2.0〜3.0程度であってもよい。   That is, the coke of the present invention is a precursor of a negative electrode carbon material for a lithium ion battery, and an optical structure of a cross section observed with a polarizing microscope is an anisotropic structure formed by a fine mosaic structure and a flow structure. In addition, the area ratio of both tissues is the former / the latter = 10/90 to 70/30. The fine mosaic structure may be a structure composed of an assembly of fine regions having an average diameter of 10 μm or less, and the flow structure may be a structure composed of a continuous phase exceeding the average diameter of 10 μm. The area ratio between the fine mosaic structure and the flow structure may be about the former / the latter = 15/85 to 50/50. When the coke of the present invention is heat-treated at 1100 ° C., the half-value width (Δ2θ) of the 002 diffraction line pattern of X-ray diffraction may be about 2.0 to 6.0 °. Furthermore, when heat-treated at 1100 ° C., the R value measured by Raman spectroscopy may be about 2.0 to 3.0.

本発明のリチウムイオン電池用負極炭素材は、下記特性(1)〜(4)を充足する炭素材であってもよい。   The negative electrode carbon material for a lithium ion battery of the present invention may be a carbon material that satisfies the following characteristics (1) to (4).

(1)平均粒径(D50)が6〜20μm
(2)BET法により測定される比表面積が3m/g以下
(3)X線回折における層間距離d値(002)が0.3360〜0.3395nm
(4)a軸方向の結晶子の厚みLaが60〜300nm。
(1) Average particle diameter (D50) is 6 to 20 μm
(2) Specific surface area measured by BET method is 3 m 2 / g or less (3) Interlayer distance d value (002) in X-ray diffraction is 0.3360 to 0.3395 nm
(4) The crystallite thickness La in the a-axis direction is 60 to 300 nm.

本発明の負極炭素材は、X線回折における(101)回折ピークと(100)回折ピークとの強度比I(101)/I(100)が0.7〜1.5程度であってもよい。このような負極炭素材は、前記コークスを、例えば、2100〜2700℃程度で熱処理することにより得ることができる。本発明では、前記コークスを用いて、このような温度で焼成することにより、炭素網面の積層秩序性をある程度乱した乱層構造(三次元的規則性の低い乱層構造)を多く含む炭素材料とすることができる。   In the negative electrode carbon material of the present invention, the intensity ratio I (101) / I (100) between the (101) diffraction peak and the (100) diffraction peak in X-ray diffraction may be about 0.7 to 1.5. . Such a negative electrode carbon material can be obtained by heat-treating the coke at, for example, about 2100 to 2700 ° C. In the present invention, carbon containing a large amount of a turbulent structure (a turbulent structure with a low three-dimensional regularity) in which the stacking order of the carbon network surface is disturbed to some extent by firing at such a temperature using the coke. Can be a material.

さらに、本発明は、前記負極炭素材を備えたリチウムイオン電池(例えば、ハイブリッド自動車用リチウムイオン電池)も包含する。   Furthermore, the present invention includes a lithium ion battery (for example, a lithium ion battery for a hybrid vehicle) provided with the negative electrode carbon material.

本発明の負極炭素材は、特定のコークスを用いて得られ、制御された特定の結晶性を有しており、通常の黒鉛に比べて、乱層構造を多く含む炭素材料であるため、大電流での充放電が可能となる。特に、大電流で電池の充放電を繰り返しても、容量の低下を極力抑制でき、高レベルで容量を維持できる。そのため、リチウムイオンの拡散と保持との両立が要求される用途、例えば、自動車用電源などのリチウムイオン電池(特に、ハイブリッド車用リチウムイオン電池)の構成材料などとして有用である。   The negative electrode carbon material of the present invention is obtained by using a specific coke, has a specific controlled crystallinity, and is a carbon material that contains a larger number of turbostratic structures than ordinary graphite. Charging / discharging with current is possible. In particular, even when the battery is repeatedly charged and discharged with a large current, the reduction in capacity can be suppressed as much as possible, and the capacity can be maintained at a high level. Therefore, it is useful as a constituent material of a lithium ion battery (particularly, a lithium ion battery for a hybrid vehicle) such as a power source for automobiles that requires both lithium ion diffusion and retention.

図1は、実施例で用いたコークスAの偏光顕微鏡写真である。FIG. 1 is a polarizing micrograph of coke A used in the examples. 図2は、実施例で用いたコークスBの偏光顕微鏡写真である。FIG. 2 is a polarizing micrograph of coke B used in the examples. 図3は、実施例で用いたコークスCの偏光顕微鏡写真である。FIG. 3 is a polarizing micrograph of coke C used in the examples. 図4は、実施例で用いたコークスDの偏光顕微鏡写真である。FIG. 4 is a polarizing micrograph of coke D used in the examples.

[炭素材の前駆体(コークス)]
本発明のコークスは、リチウムイオン電池用負極炭素材の前駆体であって、偏光顕微鏡で観察した断面の光学組織が、ファインモザイク組織と流れ組織とで形成された異方性組織を有する。このようなコークスは、前記異方性組織を有する限り、特に製造方法は限定されないが、市販のニードルコークスやギルソナイトコークスは前記異方性組織を有しておらず、通常、後述するように、製造方法を調整することより得られる。
[Carbon material precursor (coke)]
The coke of this invention is a precursor of the negative electrode carbon material for lithium ion batteries, and the optical structure of the cross section observed with the polarization microscope has the anisotropic structure formed with the fine mosaic structure and the flow structure. As long as such coke has the anisotropic structure, the production method is not particularly limited, but commercially available needle coke and gilsonite coke do not have the anisotropic structure, and are usually described later. Further, it can be obtained by adjusting the manufacturing method.

コークスは、炭素質原料をディレードコーカー(遅延コークス化コーカー)などのコーキング装置によって350〜600℃の温度域で熱分解(コーキング)することによって固体残渣の生コークスが得られる。前記炭素質原料としては、例えば、石炭系ピッチ、石油系ピッチ、芳香族化合物、樹脂などの炭化水素を主成分とする原料が使用される。   Coke is obtained by pyrolyzing (coking) a carbonaceous raw material in a temperature range of 350 to 600 ° C. using a coking apparatus such as a delayed coker (delayed coke). As said carbonaceous raw material, the raw material which has hydrocarbons, such as coal pitch, petroleum pitch, an aromatic compound, and resin, as a main component is used, for example.

このようなコーキング工程では、一般的に、炭化水素を主成分とする原料が熱分解及び重縮合することにより、残渣の分子量が増加する。特に、炭化水素の中でも熱的に安定な芳香族炭化水素は重縮合により、平面構造を有する巨大な芳香族炭化水素へと転化する。さらに、平面構造を有する巨大な芳香族炭化水素は、分子間力によって互いに積層構造を形成することにより、光学的に等方性であった原料が異方性の生コークスへと変化する。このとき原料中にヘテロ元素と呼ばれる炭素や水素以外の元素が多く存在すると、芳香族炭化水素が平面構造を形成する際の立体障害となったり、積層構造を形成するための阻害要因となる。また、反応中残渣の粘度は、芳香族炭化水素の流動性を支配する重要な因子であり、粘度が高いと芳香族炭化水素の流動性が低くなるため、充分に発達した積層構造を形成できない。反応中における残渣の粘度を測定することは困難であるため、一般的に、原料のトルエン不溶分(TI)が反応中残渣の粘度を推定する指標として用いられる。TIが多いほど反応中残渣の粘度が高くなり、積層構造の発達が不十分な生コークスが得られる。   In such a coking process, the molecular weight of the residue generally increases due to thermal decomposition and polycondensation of the raw material mainly composed of hydrocarbon. In particular, among hydrocarbons, a thermally stable aromatic hydrocarbon is converted into a huge aromatic hydrocarbon having a planar structure by polycondensation. Furthermore, huge aromatic hydrocarbons having a planar structure form a laminated structure with each other by intermolecular force, whereby the optically isotropic raw material is changed to anisotropic raw coke. At this time, if a large amount of elements other than carbon and hydrogen called hetero elements are present in the raw material, the aromatic hydrocarbon becomes a steric hindrance when forming a planar structure, or becomes an obstructive factor for forming a laminated structure. In addition, the viscosity of the residue during the reaction is an important factor governing the fluidity of the aromatic hydrocarbon. If the viscosity is high, the fluidity of the aromatic hydrocarbon is lowered, so that a fully developed laminated structure cannot be formed. . Since it is difficult to measure the viscosity of the residue during the reaction, the toluene insoluble matter (TI) of the raw material is generally used as an index for estimating the viscosity of the residue during the reaction. As the TI increases, the viscosity of the residue during the reaction increases, and raw coke with insufficient development of the laminated structure can be obtained.

すなわち、本発明のコークスを製造するためには、原料の炭素質原料のヘテロ元素含量、TIを調整するのが好ましい。すなわち、本発明に使用される炭素質原料は、コークスの結晶性が過剰に高くなることを抑制するために、例えば、窒素分を0.1重量%以上(特に0.5〜2.0重量%)含み、かつTIを5重量%以上(特に10〜15重量%)含む原料を用いてもよい。窒素分を制御するために、原料としては前記ピッチの混合物を用いてもよい。例えば、石炭系ピッチは石油系ピッチよりも窒素分が多いことが知られている。そこで、石油系ピッチに石炭系ピッチを混合して窒素分を増加させることもできる。また、TIは蒸留や加熱処理による揮発分の除去によって増加し、溶剤抽出やろ過などの分離手段によって減少させることができるため、これらの処理を組み合わせて原料の性状を制御してもよい。   That is, in order to produce the coke of the present invention, it is preferable to adjust the heteroelement content and TI of the carbonaceous raw material. That is, the carbonaceous raw material used in the present invention contains, for example, a nitrogen content of 0.1% by weight or more (particularly 0.5 to 2.0% by weight) in order to prevent the coke crystallinity from becoming excessively high. %) And a raw material containing 5% by weight or more (particularly 10 to 15% by weight) of TI may be used. In order to control the nitrogen content, a mixture of the pitches may be used as a raw material. For example, it is known that coal-based pitch has more nitrogen than petroleum-based pitch. Therefore, the nitrogen content can be increased by mixing coal pitch with petroleum pitch. Moreover, since TI increases by removal of volatile components by distillation or heat treatment and can be reduced by separation means such as solvent extraction or filtration, the properties of the raw material may be controlled by combining these treatments.

次に、生コークスをロータリーキルンなどのカルサイナー(か焼装置)によって800〜1400℃の温度域で加熱(か焼)することによって、か焼コークスが得られる。本発明で製造する負極炭素材の前駆体であるコークスとしては、生コークス、か焼コークスのいずれのコークスを用いてもよい。   Next, calcined coke is obtained by heating (calcining) raw coke in a temperature range of 800 to 1400 ° C. by a calsiner (calcination apparatus) such as a rotary kiln. As coke which is a precursor of the negative electrode carbon material manufactured by this invention, you may use any coke of raw coke and calcined coke.

なお、本発明のコークスを製造するために、前記炭素質原料の調整に加えて、か焼温度などの加熱温度、加熱時間、雰囲気ガスの種類を調整することにより、コークスの組織を調整してもよい。   In order to produce the coke of the present invention, in addition to the adjustment of the carbonaceous raw material, the coke structure is adjusted by adjusting the heating temperature such as the calcination temperature, the heating time, and the type of the atmospheric gas. Also good.

本発明のコークスにおいて、偏光顕微鏡を用いて観察した光学組織は、ファインモザイク組織と流れ組織とで形成された異方性組織を有しており、このような光学組織は、例えば、倍率約200倍の偏光顕微鏡で観察することにより容易に特定(又は観察)できる。すなわち、本発明のコークスは、全ての組織が異方性組織で構成されており、この異方性組織は、サイズが10μm以下(例えば、1.0〜10μm程度)の微細組織がモザイク状に集合した不連続なファインモザイク組織(ハニカム状組織又は網目状組織)と、10μmを超える(例えば、10μmを超え500μm以下程度の)サイズを有する連続相を構成する流れ組織(連続組織又は塊状組織)との2種類の領域として観察できる。なお、前記サイズは、ファインモザイク組織、流れ組織が異方形状の領域である場合には、長径と短径との平均径を示す。   In the coke of the present invention, the optical structure observed using a polarizing microscope has an anisotropic structure formed by a fine mosaic structure and a flow structure. Such an optical structure has a magnification of about 200, for example. It can be easily identified (or observed) by observing with a double polarization microscope. That is, in the coke of the present invention, all the structures are composed of an anisotropic structure, and this anisotropic structure has a mosaic structure in which a fine structure having a size of 10 μm or less (for example, about 1.0 to 10 μm) is mosaic. A flow structure (continuous structure or block structure) constituting a discontinuous fine mosaic structure (honeycomb structure or network structure) and a continuous phase having a size of more than 10 μm (for example, more than 10 μm and less than 500 μm). And can be observed as two types of regions. In addition, the said size shows the average diameter of a long diameter and a short diameter, when a fine mosaic structure | tissue and a flow structure | tissue are areas of an anisotropic shape.

具体的に、コークスの光学組織に含まれるファインモザイク組織の割合を算出する方法としては、コークスを樹脂に埋め込み、表面を研磨後、観察倍率約200倍の偏光顕微鏡にて観察する。観察画像を一枚につき、44μm×34μmの面積を有するデジタル画像として約10枚の画像をコンピューターに取り込み、コンピューター上で2μm×2μmのマス目に分割する。分割したマス目を目視でファインモザイク組織と流れ組織とに分類し、1250個以上のマス目(5000μm以上)を検査し、ファインモザイク組織と認識されたマス目の個数を求めることにより、ファインモザイク組織の面積割合を算出する。 Specifically, as a method of calculating the ratio of the fine mosaic structure contained in the optical structure of coke, the coke is embedded in a resin, the surface is polished, and then observed with a polarizing microscope having an observation magnification of about 200 times. About 10 images are taken into a computer as digital images having an area of 44 μm × 34 μm per observation image, and divided into squares of 2 μm × 2 μm on the computer. The divided grids are visually classified into fine mosaic structures and flow structures, and 1250 or more grids (5000 μm 2 or more) are inspected to obtain the number of grids recognized as fine mosaic structures. The area ratio of the mosaic structure is calculated.

本発明のコークスにおいて、ファインモザイク組織と流れ組織との面積割合は、例えば、前者/後者=10/90〜70/30、好ましくは15/85〜60/40(例えば、15/85〜50/50)、さらに好ましくは20/80〜40/60(特に25/75〜35/65)程度である。ファインモザイク組織の面積割合が少なすぎるコークスから得られる負極炭素材は黒鉛結晶構造が発達し過ぎるため、リチウムイオンの出入りが困難である上に、前述のように積層構造が充分に発達したものであるため、この負極炭素材を用いて電池を作製すると、黒鉛の積層方向が電極シートと平行に並び易くなる。さらに、リチウムイオンはランダムに並んだ黒鉛の方が出入りし易いため、このような電池の高速充放電特性は低下する。一方、ファインモザイク組織の面積割合が多すぎると、熱処理して得られる負極炭素材はファインモザイク組織の界面を多く含んでおり、リチウムイオンの通り道は多いが、吸蔵するサイトが少なくなり、充放電の容量が低下する。   In the coke of the present invention, the area ratio between the fine mosaic structure and the flow structure is, for example, the former / the latter = 10/90 to 70/30, preferably 15/85 to 60/40 (for example, 15/85 to 50 / 50), more preferably about 20/80 to 40/60 (particularly 25/75 to 35/65). The negative carbon material obtained from coke with an area ratio of the fine mosaic structure that is too small is that the graphite crystal structure develops too much, so it is difficult for lithium ions to enter and exit, and the laminated structure is sufficiently developed as described above. For this reason, when a battery is produced using this negative electrode carbon material, the lamination direction of graphite is easily arranged in parallel with the electrode sheet. Furthermore, since lithium ions are more likely to come in and out of randomly arranged graphite, the high-speed charge / discharge characteristics of such a battery deteriorate. On the other hand, if the area ratio of the fine mosaic structure is too large, the negative electrode carbon material obtained by heat treatment contains many interfaces of the fine mosaic structure, and there are many paths for lithium ions, but the number of occlusion sites is reduced, and charge / discharge is performed. The capacity of is reduced.

このように、ファインモザイク組織と流れ組織とは、ファインモザイク組織の面積割合が多くなると、容量維持率の向上及び初期容量の低下が起こり、逆に少なくなると、初期容量の向上及び容量維持率の低下が起こる関係を有する。すなわち、容量維持率と初期容量との相反する特性を充足するためには、両組織の面積割合が前記範囲にある必要がある。特に、後述する実施例で記載された初期容量を230mAh/g以上に保持しつつ、容量維持率を90%以上とするために、両者の割合を、ファインモザイク組織/流れ組織=20/80〜40/60(特に25/75〜30/70)程度に調整してもよい。   As described above, when the area ratio of the fine mosaic structure and the fine mosaic structure increase, the capacity retention rate and the initial capacity decrease, and conversely, when the area ratio decreases, the initial capacity increases and the capacity maintenance rate increases. There is a relationship where a drop occurs. That is, in order to satisfy the contradictory characteristics of the capacity retention rate and the initial capacity, the area ratio of both tissues needs to be in the above range. In particular, in order to maintain a capacity retention rate of 90% or more while maintaining the initial capacity described in the examples described later at 230 mAh / g or more, the ratio between the two is fine mosaic structure / flow structure = 20 / 80- You may adjust to about 40/60 (especially 25 / 75-30 / 70).

本発明のコークスは、X線回折を測定したときに15〜35°に現れる002回折ピークの最大値の半分の値になるピーク幅Δ2θ(X線回折の002回折線図形の半値幅)は、例えば、2.0〜6.0°、好ましくは2.5〜5.5°、さらに好ましくは2.5〜5.0°(特に3.0〜4.5°)程度である。Δ2θが小さすぎると、熱処理によって、結晶が発達しすぎ、リチウムイオンの吸蔵サイトが増加することによってリチウムイオンが拡散できる割合が減少するため、リチウムイオンが出入りし難くなり、電池の高速充放電特性が低下する。一方、Δ2θが大きすぎると、熱処理して得られる負極炭素材の結晶性が低下し、リチウムイオンの吸蔵サイトが少ないため、充放電の容量が低下する。   The coke of the present invention has a peak width Δ2θ (half-value width of the 002 diffraction line figure of X-ray diffraction) that is half the maximum value of the 002 diffraction peak that appears at 15 to 35 ° when X-ray diffraction is measured. For example, it is about 2.0 to 6.0 °, preferably 2.5 to 5.5 °, more preferably about 2.5 to 5.0 ° (particularly 3.0 to 4.5 °). If Δ2θ is too small, the crystal develops too much due to heat treatment, and the rate at which lithium ions can be diffused decreases due to an increase in the number of occlusion sites of lithium ions. Decreases. On the other hand, if Δ2θ is too large, the crystallinity of the negative electrode carbon material obtained by heat treatment decreases, and the lithium ion storage sites are few, so the charge / discharge capacity decreases.

なお、本発明では、コークスのΔ2θの測定では、同一温度で熱処理した上で結晶構造を比較するために、一旦コークスを1100℃で熱処理して用いる。さらに、X線による002回折図形は、X線回折装置((株)リガク製、型式:RINT2500)で2θが5〜40°の範囲で測定し、15〜35°に現れる002回折ピークを解析する。ピークの最大値に対して半分の値になるピーク位置の間隔をピーク幅Δ2θとして計算により求める。   In the present invention, in the measurement of Δ2θ of coke, the coke is once heat-treated at 1100 ° C. in order to compare the crystal structure after heat-treatment at the same temperature. Furthermore, the 002 diffraction pattern by X-rays is measured in the range of 2θ of 5 to 40 ° with an X-ray diffractometer (manufactured by Rigaku Corporation, model: RINT 2500), and the 002 diffraction peak appearing at 15 to 35 ° is analyzed. . An interval between peak positions that is a half value with respect to the maximum value of the peak is obtained by calculation as a peak width Δ2θ.

本発明のコークスにおいて、ラマンスペクトル分析のR値(ラマン分光法で測定したR値)は、例えば、1.9〜3.0、好ましくは2.0〜3.0、さらに好ましくは2.0〜2.8(特に2.0〜2.5)程度である。R値が低すぎると、熱処理によって結晶が発達しすぎるため、電池の高速充放電特性が低下する。一方、R値が高すぎると、結晶性の低下により、電池の充放電の容量が低下する。   In the coke of the present invention, the R value of Raman spectrum analysis (R value measured by Raman spectroscopy) is, for example, 1.9 to 3.0, preferably 2.0 to 3.0, and more preferably 2.0. It is about -2.8 (especially 2.0-2.5). If the R value is too low, the crystal develops too much due to the heat treatment, and the high-speed charge / discharge characteristics of the battery deteriorate. On the other hand, when the R value is too high, the charge / discharge capacity of the battery decreases due to the decrease in crystallinity.

なお、R値も、前記X線測定の前処理と同様に、コークスを1100℃で熱処理したコークスについて、顕微ラマン分光装置(日本電子(株)製、JRS−SYS1000型)を用いて、以下の条件で測定し、次の方法で求める。すなわち、測定によって得られたスペクトルは、1360cm−1付近に存在するDバンド由来のピーク、1600cm−1付近に存在するD’バンド由来のピーク及び1580cm−1付近に存在するGバンド由来のピークの3つに分離し、Dバンドのピーク強度とGバンドのピーク強度の比(D/G)からR値を求める。 In addition, the R value is also the same as that of the pretreatment of the X-ray measurement, using a micro Raman spectroscope (manufactured by JEOL Ltd., JRS-SYS1000 type) for coke heat-treated at 1100 ° C. Measure under the conditions and obtain by the following method. That is, the spectrum obtained by the measurement is derived from D band present in the vicinity of 1360 cm -1 peak, the peak derived from G band exists in the vicinity of the peak and 1580 cm -1 derived from D 'band present in the vicinity of 1600 cm -1 The R value is determined from the ratio (D / G) between the peak intensity of the D band and the peak intensity of the G band.

励起光:Arイオンレーザー 514.4nm
励起光出力:20mW
対物鏡倍率:50倍
積算回数:1回
照射時間:120秒
測定方法:180°後方散乱
測定領域:800〜2000cm−1
波数校正:シリコン。
Excitation light: Ar ion laser 514.4 nm
Excitation light output: 20 mW
Objective mirror magnification: 50 times Integration count: 1 time Irradiation time: 120 seconds Measuring method: 180 ° backscattering Measurement area: 800 to 2000 cm −1
Wave number calibration: Silicon.

[負極炭素材]
本発明の負極炭素材は、前記コークスを熱処理又は焼成することによって得ることができる。熱処理は、通常、黒鉛化炉で行うことができ、黒鉛化炉としては、所定の温度に到達し得る炉であれば加熱方式や種類は特に限定されず、例えば、アチソン炉、直接通電黒鉛化炉、真空炉などが例示できる。なお、熱処理を行う前に粉砕機(ボールミル、ハンマーミルなど)などにより粉砕して、熱処理後に解砕・分級を行って、最終製品とする場合が多い。
[Negative carbon material]
The negative electrode carbon material of the present invention can be obtained by heat-treating or baking the coke. The heat treatment can usually be performed in a graphitization furnace, and the graphitization furnace is not particularly limited as long as it can reach a predetermined temperature. For example, an Acheson furnace, direct current graphitization A furnace, a vacuum furnace, etc. can be illustrated. In many cases, the pulverized product is pulverized by a pulverizer (ball mill, hammer mill, etc.) before heat treatment, and then crushed and classified after heat treatment to obtain a final product.

熱処理温度(又は最終到達温度)は、例えば、2100〜2700℃、好ましくは2100〜2500℃(例えば、2100〜2400℃)、さらに好ましくは2150〜2400℃(特に2200〜2350℃)程度である。熱処理温度が高すぎると、黒鉛化度を前記範囲に制御できなくなり、実質的に黒鉛を生成するため、大電流での充放電特性が大きく低下する。逆に、熱処理温度が低すぎると、黒鉛化度を前記範囲に制御できなくなり、結晶の発達が不十分となり、リチウムイオンの吸蔵サイトが急激に減少するため、放電容量の著しい低下が起こる。   The heat treatment temperature (or final temperature reached) is, for example, about 2100 to 2700 ° C., preferably about 2100 to 2500 ° C. (for example, 2100 to 2400 ° C.), more preferably about 2150 to 2400 ° C. (particularly about 2200 to 2350 ° C.). If the heat treatment temperature is too high, the degree of graphitization cannot be controlled within the above range, and graphite is substantially generated, so that the charge / discharge characteristics at a large current are greatly reduced. On the other hand, if the heat treatment temperature is too low, the degree of graphitization cannot be controlled within the above range, the crystal development becomes insufficient, and the lithium ion storage sites rapidly decrease, resulting in a significant decrease in discharge capacity.

本発明の負極炭素材は、前記コークスを用いて焼成温度を調整して熱処理することにより、炭素網面の積層秩序性をある程度乱した乱層構造(X線プロファイルにおいて100と101回折線が分離しない構造)を有する炭素とし、リチウムの拡散を容易にして、大電流での充放電が可能で、かつ充放電の容量維持率も向上できる。このような特性を有する負極炭素材は、(1)平均粒径(D50)、(2)BET法により測定される比表面積、(3)X線回折における層間距離d値(002)、(4)a軸方向の結晶子の厚みLaが、それぞれ、下記の数値範囲を充足する。本発明の負極炭素材は、これらの特性を充足することにより、黒鉛構造と乱層構造とが適度に存在するためか、リチウムイオンの拡散と保持という相反する特性を充足した新規な炭素材である。   The negative electrode carbon material of the present invention is formed by using the coke to adjust the firing temperature and heat-treat, thereby forming a turbulent structure in which the stacking order of the carbon network surface is disturbed to some extent (100 and 101 diffraction lines are separated in the X-ray profile). Carbon having a structure that does not) facilitates the diffusion of lithium, enables charge and discharge with a large current, and improves the capacity maintenance rate of charge and discharge. The negative electrode carbon material having such characteristics includes (1) average particle diameter (D50), (2) specific surface area measured by BET method, (3) interlayer distance d value in X-ray diffraction (002), (4 ) The thickness La of the crystallites in the a-axis direction satisfies the following numerical ranges, respectively. The negative electrode carbon material of the present invention is a novel carbon material satisfying the conflicting characteristics of diffusion and retention of lithium ions, because the graphite structure and the turbulent layer structure exist appropriately by satisfying these characteristics. is there.

本発明の負極炭素材において、炭素材の平均粒径(D50)は、例えば、6〜20μm、好ましくは6〜18μm、さらに好ましくは8〜16μm(特に9〜15μm)であってもよい。平均粒径が小さすぎると、比表面積が大きくなるため初期効率が低くなる。一方、平均粒径が大きすぎると、高出力対応の薄い電極を作成する場合、プレス時に炭素粒子が表面に突出したり、接触抵抗が高くなる。なお、炭素負極材の形状又は形態は、特に制限されず、無定形状、平板状(又は扁平状)、薄片状、粉粒状などであってもよいが、通常、粉粒状で使用する場合が多い。   In the negative electrode carbon material of the present invention, the average particle size (D50) of the carbon material may be, for example, 6 to 20 μm, preferably 6 to 18 μm, more preferably 8 to 16 μm (particularly 9 to 15 μm). If the average particle size is too small, the specific surface area becomes large and the initial efficiency is lowered. On the other hand, if the average particle size is too large, when producing a thin electrode for high output, the carbon particles protrude on the surface during pressing, or the contact resistance becomes high. The shape or form of the carbon negative electrode material is not particularly limited, and may be indeterminate, flat (or flat), flaky, granular, etc. Many.

BET法により測定される比表面積(窒素ガス吸着法)は、例えば、3m/g以下(例えば、0.3〜3m/g)、好ましくは0.5〜2.5m/g(例えば、1〜2.3m/g)、さらに好ましくは1.2〜2.2m/g(特に1.5〜2m/g)程度であってもよい。比表面積が大きすぎると、充電初期に電解液の分解する量が著しく多くなるため、初期効率が低下する。 The specific surface area (nitrogen gas adsorption method) measured by the BET method is, for example, 3 m 2 / g or less (for example, 0.3 to 3 m 2 / g), preferably 0.5 to 2.5 m 2 / g (for example, , 1~2.3m 2 / g), more preferably 1.2~2.2m 2 / g (or in particular 1.5 to 2 m 2 / g) approximately. If the specific surface area is too large, the amount of the electrolytic solution decomposed at the initial stage of charging is remarkably increased, so the initial efficiency is lowered.

X線回折における層間距離d値(002)は、例えば、0.3360〜0.3395nm、好ましくは0.3364〜0.3395nm、さらに好ましくは0.3370〜0.3395nm(特に0.3376〜0.3395nm)程度であってもよい。d値(002)が小さすぎると、結晶が発達し過ぎてリチウムイオンの吸蔵サイトが増加し、リチウムイオンが拡散できる割合が減少するため、入出力特性が低下する。一方、d値(002)が大きすぎると、リチウムイオンの吸蔵サイトが急激に減少するため、放電容量の著しい低下が起こる。   The interlayer distance d value (002) in X-ray diffraction is, for example, 0.3360 to 0.3395 nm, preferably 0.3364 to 0.3395 nm, more preferably 0.3370 to 0.3395 nm (particularly 0.3376 to 0). .3395 nm). If the d value (002) is too small, crystals will develop too much and the number of lithium ion occlusion sites will increase, and the rate at which lithium ions can diffuse will decrease, resulting in poor input / output characteristics. On the other hand, if the d value (002) is too large, the lithium ion storage sites are rapidly reduced, resulting in a significant reduction in discharge capacity.

a軸方向の結晶子の厚みLaは、例えば、60〜300nm、好ましくは60〜270nm、さらに好ましくは60〜200nm(特に70〜150nm)程度であってもよい。Laが小さすぎると、リチウムイオンが出入りするエッジ面の相対的な割合が増加し、リチウムイオンの吸蔵サイトが急激に減少するため、放電容量の著しい低下が起こる。一方、Laが大きすぎると、結晶が発達し過ぎて、リチウムイオンの出入りが困難となるため、入出力特性が低下する。   The thickness La of the crystallite in the a-axis direction may be, for example, about 60 to 300 nm, preferably 60 to 270 nm, and more preferably about 60 to 200 nm (particularly 70 to 150 nm). If La is too small, the relative proportion of the edge surface where lithium ions enter and exit increases, and the lithium ion storage sites rapidly decrease, resulting in a significant decrease in discharge capacity. On the other hand, if La is too large, crystals will develop too much and it will be difficult for lithium ions to enter and exit, resulting in poor input / output characteristics.

さらに、本発明の負極炭素材は、X線回折における(101)回折ピークと(100)回折ピークの強度比I(101)/I(100)が0.7〜1.5であってもよく、例えば、0.7〜1.2、好ましくは0.7〜1.0、さらに好ましくは0.7〜0.9程度であってもよい。I(101)/I(100)が小さすぎると、リチウムイオンの吸蔵サイトの減少により、放電容量が著しく低下する。一方、I(101)/I(100)が大きすぎると、結晶が発達し過ぎて入出力特性が低下する。   Further, the negative electrode carbon material of the present invention may have an intensity ratio I (101) / I (100) of (101) diffraction peak to (100) diffraction peak in X-ray diffraction of 0.7 to 1.5. For example, it may be about 0.7 to 1.2, preferably about 0.7 to 1.0, and more preferably about 0.7 to 0.9. If I (101) / I (100) is too small, the discharge capacity is remarkably lowered due to the decrease in the lithium ion storage sites. On the other hand, if I (101) / I (100) is too large, the crystal develops too much and the input / output characteristics deteriorate.

負極炭素材は、前述のように、コークスを熱処理することにより得られるが、熱処理後に前記特性を充足する炭素材を選択してもよい。例えば、コークスの中には、d値(002)が所定の範囲となるような熱処理条件を選択した場合、Laが所定の範囲を逸脱するコークス、又はこの逆の関係となるコークスが存在するため、このような場合には、熱処理後に前記特性を有する炭素材を選択することにより、本発明の負極炭素材を得ることができる。   As described above, the negative electrode carbon material is obtained by heat treating coke, but a carbon material satisfying the above characteristics may be selected after the heat treatment. For example, in the coke, when a heat treatment condition is selected such that the d value (002) is within a predetermined range, there is coke in which La deviates from the predetermined range or vice versa. In such a case, the negative electrode carbon material of the present invention can be obtained by selecting a carbon material having the above characteristics after the heat treatment.

[負極炭素材の製造方法]
本発明の負極炭素材は、リチウムイオン電池用負極(さらにはリチウムイオン電池)の構成材料として好適に使用できる。リチウムイオン電池用負極は、例えば、負極炭素材、バインダーなどを含む混合物を成形する方法、負極炭素材、溶媒、バインダーなどを含むペーストを負極集電体に塗布手段(ドクターブレードなど)を用いて塗布する方法などにより、任意の形状に形成できる。負極の形成においては、必要に応じて端子と組み合わせてもよい。
[Method for producing negative electrode carbon material]
The negative electrode carbon material of the present invention can be suitably used as a constituent material of a negative electrode for a lithium ion battery (further, a lithium ion battery). The negative electrode for a lithium ion battery is, for example, a method of forming a mixture containing a negative electrode carbon material, a binder, etc., a paste containing a negative electrode carbon material, a solvent, a binder, etc., on the negative electrode current collector using a coating means (such as a doctor blade). It can be formed into an arbitrary shape depending on the application method. In forming the negative electrode, it may be combined with a terminal as necessary.

負極集電体は、特に制限されず、公知の集電体、例えば、銅、アルミニウム、金、銀などの導電体で構成された金属箔などを使用することができる。   The negative electrode current collector is not particularly limited, and a known current collector, for example, a metal foil made of a conductor such as copper, aluminum, gold, or silver can be used.

ペーストを塗布する製造方法において、溶媒としては、通常、バインダーを溶解又は分散可能な溶媒が使用され、バインダー種類に応じて選択でき、水性バインダーの場合、水やアルコールなどの水性溶媒が使用でき、疎水性バインダーの場合、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミドなどの有機溶媒を使用できる。溶媒は、単独で又は2種以上組み合わせてもよい。溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、負極炭素材100重量部に対して、例えば、60〜150重量部程度、好ましくは60〜100重量部程度である。   In the production method of applying the paste, as the solvent, a solvent that can dissolve or disperse the binder is usually used, and can be selected according to the binder type. In the case of an aqueous binder, an aqueous solvent such as water or alcohol can be used, In the case of a hydrophobic binder, for example, an organic solvent such as N-methylpyrrolidone or N, N-dimethylformamide can be used. The solvents may be used alone or in combination of two or more. The amount of the solvent used is not particularly limited as long as it becomes a paste, and is, for example, about 60 to 150 parts by weight, preferably about 60 to 100 parts by weight with respect to 100 parts by weight of the negative electrode carbon material.

バインダーとしては、例えば、フッ素含有樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレンなど)、水性バインダー(水分散性の合成ゴムラテックス又はエマルジョンなど)などが例示できる。バインダーの使用量(分散液の場合には、固形分換算の使用量)は、特に限定されず、例えば、負極炭素材100重量部に対して、3〜20重量部、好ましくは5〜15重量部、さらに好ましくは5〜10重量部程度であってもよい。ペーストの調製方法は、特に制限されず、例えば、バインダーと溶媒との混合液(又は分散液)と、負極材料とを混合する方法などを例示することができる。   Examples of the binder include a fluorine-containing resin (such as polyvinylidene fluoride and polytetrafluoroethylene), an aqueous binder (such as a water-dispersible synthetic rubber latex or an emulsion), and the like. The amount of binder used (in the case of a dispersion, the amount used in terms of solid content) is not particularly limited, and is, for example, 3 to 20 parts by weight, preferably 5 to 15 parts by weight with respect to 100 parts by weight of the negative electrode carbon material. Part, more preferably about 5 to 10 parts by weight. The method for preparing the paste is not particularly limited, and examples thereof include a method of mixing a mixed liquid (or dispersion liquid) of a binder and a solvent and a negative electrode material.

なお、本発明の負極炭素材と、他の導電材(炭素質材料又は導電性炭素材)とを併用して、負極を製造してもよい。他の導電材の使用割合は、特に制限されないが、本発明の負極炭素材及び他の導電材の総量に対して、通常、1〜10重量%、好ましくは1〜5重量%程度である。他の導電材[例えば、カーボンブラック(例えば、アセチレンブラック、サーマルブラック、ファーネスブラック)などの炭素質材料]を併用することにより、電極としての導電性を向上させてもよい。他の導電材は、単独で又は2種以上組み合わせて使用できる。なお、他の導電材は、例えば、本発明の負極炭素材及び溶媒を含むペーストに混合し、このペーストを負極集電体に塗布する方法などにより、本発明の負極炭素材とともに有効に利用できる。   The negative electrode carbon material of the present invention may be used in combination with another conductive material (carbonaceous material or conductive carbon material) to produce a negative electrode. The use ratio of the other conductive material is not particularly limited, but is usually about 1 to 10% by weight, preferably about 1 to 5% by weight with respect to the total amount of the negative electrode carbon material of the present invention and the other conductive material. By using another conductive material [for example, a carbonaceous material such as carbon black (for example, acetylene black, thermal black, furnace black)], conductivity as an electrode may be improved. Other conductive materials can be used alone or in combination of two or more. The other conductive material can be effectively used together with the negative electrode carbon material of the present invention, for example, by mixing the paste with the negative electrode carbon material of the present invention and a solvent and applying this paste to the negative electrode current collector. .

前記ペーストの負極集電体への塗布量は特に制限されず、通常、5〜15mg/cm程度、好ましくは7〜13mg/cm程度である。また、負極集電体に塗布した膜の厚み(前記ペーストの膜厚)は、例えば、40〜100μm、好ましくは40〜80μm、さらに好ましくは40〜60μm程度である。 The amount of the paste applied to the negative electrode current collector is not particularly limited, and is usually about 5 to 15 mg / cm 2 , preferably about 7 to 13 mg / cm 2 . The thickness of the film applied to the negative electrode current collector (the film thickness of the paste) is, for example, about 40 to 100 μm, preferably about 40 to 80 μm, and more preferably about 40 to 60 μm.

前記ペーストの塗布方法は、特に限定されず、慣用の方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、リバースコーター、バーコーター、コンマコーター、ディップ・スクイズコーター、ダイコーター、グラビアコーター、マイクログラビアコーター、シルクスクリーンコーター法などが挙げられる。   The method for applying the paste is not particularly limited, and a conventional method such as a roll coater, an air knife coater, a blade coater, a rod coater, a reverse coater, a bar coater, a comma coater, a dip squeeze coater, a die coater, a gravure coater, Examples include a micro gravure coater and a silk screen coater method.

なお、塗布後、負極集電体には、乾燥処理を施してもよい。乾燥方法としては、特に限定されず、自然乾燥の他、真空乾燥、熱風、遠赤外線、マイクロ波などを利用してもよい。   Note that after the application, the negative electrode current collector may be subjected to a drying treatment. The drying method is not particularly limited, and vacuum drying, hot air, far infrared rays, microwaves, or the like may be used in addition to natural drying.

[リチウムイオン電池]
本発明の負極炭素材は、前述のように、負極の構成材料としてリチウムイオン電池を構成できる。特に、本発明の負極炭素材は、大電流での繰り返し充放電を可能とするためのリチウムイオン電池に適している。リチウムイオン電池は、前記負極(本発明の負極炭素材を含む負極)と、リチウムを吸蔵・放出可能な正極及び電解液とを組み合わせ、さらに、セパレータ(多孔質ポリプロピレン製不織布や多孔質ポリエチレン製不織布などのポリオレフィン系多孔質膜、炭素質セパレータなど)、集電体、ガスケット、封口板、ケースなどの電池構成要素を用い、常法により、組み立てることにより製造できる。なお、リチウムイオン電池の組立て方法の詳細は、例えば、特開平7−249411号公報に記載の方法などを参照することができる。
[Lithium ion battery]
As described above, the negative electrode carbon material of the present invention can constitute a lithium ion battery as a constituent material of the negative electrode. In particular, the negative electrode carbon material of the present invention is suitable for a lithium ion battery for enabling repeated charging and discharging with a large current. The lithium ion battery is a combination of the negative electrode (negative electrode containing the negative electrode carbon material of the present invention), a positive electrode capable of occluding and releasing lithium, and an electrolyte solution, and further a separator (a porous polypropylene nonwoven fabric or a porous polyethylene nonwoven fabric). Polyolefin-based porous membranes, carbonaceous separators, etc.), current collectors, gaskets, sealing plates, cases, and other battery components, and can be manufactured by assembling in a conventional manner. For details of the method of assembling the lithium ion battery, for example, the method described in JP-A-7-249411 can be referred to.

正極は、特に制限されず、公知の正極が使用でき、例えば、正極集電体、正極活物質、導電材などで構成できる。正極集電体としては、例えば、アルミニウム、銅、金、銀などの導電体で構成された金属箔などを例示できる。正極活物質としては、例えば、リチウム複合酸化物(LiCoO、LiNiO、スピネル構造のLiMnなどなど)などを用いることができる。 A positive electrode in particular is not restrict | limited, A well-known positive electrode can be used, For example, it can comprise with a positive electrode collector, a positive electrode active material, a electrically conductive material etc. Examples of the positive electrode current collector include a metal foil made of a conductor such as aluminum, copper, gold, and silver. As the positive electrode active material, for example, a lithium composite oxide (such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 having a spinel structure) or the like can be used.

また、電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン、スルホラン、1,2−ジメトキシエタン、ジメチルスルホキシド、アセトニトリル、N,N−ジメチルホルムアミド、ジエチレングリコール、ジメチルエーテルなどの非プロトン性溶媒などが例示できる。また、電解液は、これらの非プロトン性溶媒に、LiPF,LiClO,LiBFなどの溶媒和しにくいアニオンを生成する塩を溶解させた溶液も含まれる。電解液は、単独で又は2種以上組み合わせてもよい。好ましい電解液には、強い還元雰囲気でも安定な溶媒テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソランのような強い還元雰囲気でも安定なエーテル系溶媒や、前記非プロトン性溶媒(好ましくは2種以上の混合溶媒)に、前記例示の塩を溶解させた溶液などが含まれる。 Examples of the electrolytic solution include propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, 1,2-dimethoxy. Examples thereof include aprotic solvents such as ethane, dimethyl sulfoxide, acetonitrile, N, N-dimethylformamide, diethylene glycol, and dimethyl ether. The electrolyte also includes a solution in which a salt that generates an anion that is difficult to solvate, such as LiPF 6 , LiClO 4 , LiBF 4 , is dissolved in these aprotic solvents. The electrolyte solutions may be used alone or in combination of two or more. Preferred electrolytes include ether solvents that are stable even in a strong reducing atmosphere, such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, and aprotic solvents (preferably two types). The above mixed solvent) includes a solution in which the exemplified salt is dissolved.

なお、リチウムイオン電池は、円筒型、角型、ボタン型など任意の形状又は形態とすることができる。   Note that the lithium ion battery can have any shape or form such as a cylindrical shape, a square shape, or a button shape.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、以下の例において、「部」又は「%」は、特にことわりのない限り、重量基準であり、実施例及び比較例で得られたコークス及び炭素材の評価方法を以下に示す。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, “part” or “%” is based on weight unless otherwise specified, and the evaluation methods for coke and carbon materials obtained in Examples and Comparative Examples are shown below.

[コークスに含まれるファインモザイク組織の面積割合算出方法]
コークスを樹脂に埋め込み、表面を研磨後、観察倍率約200倍の偏光顕微鏡にて観察する。観察画像を一枚につき、44μm×34μmの面積を有するデジタル画像として約10枚の画像をコンピューターに取り込み、コンピューター上で2μm×2μmのマス目に分割する。分割したマス目を目視でファインモザイク組織とそれ以外に分類し、1250個以上のマス目(5000μm以上)を検査し、ファインモザイク組織と認識されたマス目の個数を求めることにより、ファインモザイク組織の面積割合を算出する。
[Method for calculating area ratio of fine mosaic structure contained in coke]
Coke is embedded in resin, the surface is polished, and then observed with a polarizing microscope having an observation magnification of about 200 times. About 10 images are taken into a computer as digital images having an area of 44 μm × 34 μm per observation image, and divided into squares of 2 μm × 2 μm on the computer. The divided squares are visually classified into fine mosaic structures and the others, and 1250 or more squares (5000 μm 2 or more) are inspected to obtain the number of squares recognized as fine mosaic tissues. Calculate the area ratio of the tissue.

[コークスのΔ2θ算出方法]
同一温度で熱処理した上で結晶構造を比較するために、1100℃に熱処理したコークスをX線回折により分析する。X線による002回折図形は、X線回折装置((株)リガク製、型式:RINT2500)で2θが5〜40°の範囲で測定し、15〜35°に現れる002回折ピークを解析する。ピークの最大値に対して半分の値になるピーク位置の間隔をピーク幅Δ2θとして計算により求める。
[Calculation method for Δ2θ of coke]
In order to compare the crystal structure after heat treatment at the same temperature, the coke heat treated at 1100 ° C. is analyzed by X-ray diffraction. The 002 diffraction pattern by X-rays is measured with an X-ray diffractometer (manufactured by Rigaku Corporation, model: RINT2500) in the range of 2θ of 5 to 40 °, and the 002 diffraction peak appearing at 15 to 35 ° is analyzed. An interval between peak positions that is a half value with respect to the maximum value of the peak is obtained by calculation as a peak width Δ2θ.

[コークスのR値算出方法]
1100℃で熱処理したコークスを顕微ラマン分光装置((株)日本電子製、JRS−SYS1000型)で以下の測定条件で測定する。
[Coke R value calculation method]
Coke heat-treated at 1100 ° C. is measured with a microscopic Raman spectroscope (manufactured by JEOL Ltd., JRS-SYS1000 type) under the following measurement conditions.

励起光:Arイオンレーザー 514.4nm
励起光出力:20mW
対物鏡倍率:50倍
積算回数:1回
照射時間:120秒
測定方法:180°後方散乱
測定領域:800〜2000cm−1
波数校正:シリコン
Excitation light: Ar ion laser 514.4 nm
Excitation light output: 20 mW
Objective mirror magnification: 50 times Integration count: 1 time Irradiation time: 120 seconds Measuring method: 180 ° backscattering Measurement area: 800 to 2000 cm −1
Wave number calibration: Silicon

測定によって得られたスペクトルを1360cm−1付近に存在するDバンド由来のピーク、1600cm−1付近に存在するD’バンド由来のピークおよび1580cm−1付近に存在するGバンド由来のピークの3つに分離しDバンドのピーク強度とGバンドのピーク強度の比(D/G)からR値を求める。 A spectrum obtained by measuring a peak derived from D band present in the vicinity of 1360 cm -1, the three peaks from G band present in peak and 1580cm around -1 from D 'band present in the vicinity of 1600 cm -1 Separately, the R value is obtained from the ratio (D / G) of the peak intensity of the D band and the peak intensity of the G band.

表1に炭素負極材の前駆体であるコークスの物性を評価した結果を示す。さらに、表1に示すコークスA〜Dの光学組織を偏光顕微鏡で観察した結果(写真)を、それぞれ図1〜4に示す。   Table 1 shows the results of evaluating the physical properties of coke, which is a precursor of the carbon negative electrode material. Furthermore, the result (photograph) which observed the optical structure of coke AD shown in Table 1 with the polarizing microscope is shown in FIGS. 1-4, respectively.

[負極炭素材のX線回折測定法及び解析法]
実施例及び比較例において、X線広角回折装置((株)リガク製、型式:RINT2500)を用いて、次のようにして負極炭素材の結晶構造を評価した。
[X-ray diffraction measurement method and analysis method of negative electrode carbon material]
In Examples and Comparative Examples, the crystal structure of the negative electrode carbon material was evaluated as follows using an X-ray wide-angle diffractometer (manufactured by Rigaku Corporation, model: RINT 2500).

まず、200メッシュ以下に粉砕した負極炭素材を約0.1g計り取り、サンプルを受ける窪み(20×16×0.5mm)を備えたガラス製サンプルホルダー(35×50×1mm)に仕込み、平らなガラス板で圧密した。圧密した後、表面を平らにしたサンプルを前記装置にセットして測定した。測定条件は以下の通りである。   First, weigh about 0.1 g of the negative electrode carbon material pulverized to 200 mesh or less, and put it in a glass sample holder (35 × 50 × 1 mm) equipped with a recess (20 × 16 × 0.5 mm) for receiving the sample. Consolidation with a simple glass plate. After consolidation, a sample with a flat surface was set in the apparatus and measured. The measurement conditions are as follows.

管電圧:40kV
管電流:200mA
ゴニオ半径:185mm
走査軸:2θ/θ
ステップ:0.02
計数時間:1秒
測定方法:FT
繰り返し回数:1回
Tube voltage: 40 kV
Tube current: 200 mA
Gonio radius: 185mm
Scanning axis: 2θ / θ
Step: 0.02
Counting time: 1 second Measuring method: FT
Repeat count: 1 time

X線のスキャン範囲を10〜90°まで行い、42.5°付近に見られる(100)回折線ピークの強度I(100)と、44.5°付近に見られる(101)回折線ピークの強度I(101)を調べることによって、強度I(101)/I(100)を求めた。   The X-ray scanning range is 10 to 90 °, and the intensity I (100) of the (100) diffraction line peak seen near 42.5 ° and the (101) diffraction line peak seen near 44.5 ° The intensity I (101) / I (100) was obtained by examining the intensity I (101).

また、結晶子サイズの測定は、学振法に従って行った。標準シリコンとしては、NIST650b Silicon Powder XRD Spacing (U.S. Department of commerce National Institute of standards and Technology)を用いるとともに、解析ソフトとしては、Carbon Analyzer G series((株)菱化システム)を用いて、d(002)、La(110)を算出した。   The crystallite size was measured according to the Gakushin method. As standard silicon, NIST650b Silicon Powder XRD Spacing (US Department of Commerce of National Institute of Technology and Rhizo System) is used as analysis software, and Carbon Analysis is used as analysis software. d (002) and La (110) were calculated.

[負極炭素材の粒径の測定]
粒度分析計(日機装(株)製、マイクロトラックHRA)」を用いて、粒子の粒度分布及び平均粒径D50を測定した。
[Measurement of particle size of anode carbon material]
Using a particle size analyzer (Nikkiso Co., Ltd., Microtrac HRA), the particle size distribution and average particle size D50 of the particles were measured.

[負極材料の比表面積の測定]
窒素吸着BET比表面積測定装置(カンタークローム社製、NOVA2000)を用いて比表面積を測定した。
[Measurement of specific surface area of negative electrode material]
The specific surface area was measured using a nitrogen adsorption BET specific surface area measuring apparatus (manufactured by Canterchrome, NOVA2000).

[負極体の作製]
得られた負極炭素材に、5%のポリフッ化ビニリデンを加え、N−メチル−2−ピロリドンを溶媒として混合することにより、スラリー状にした。その後、ドクターブレードを用いて、銅箔上にそのスラリーを塗布した。得られた積層体を乾燥後、ロールプレスを行ない、ロールプレス後の厚みが40μmの電極を作製した。このようにして得られた電極を110℃で6時間真空乾燥した。
[Production of negative electrode body]
To the obtained negative electrode carbon material, 5% polyvinylidene fluoride was added, and N-methyl-2-pyrrolidone was mixed as a solvent to form a slurry. Then, the slurry was apply | coated on copper foil using the doctor blade. The obtained laminate was dried and then roll pressed to produce an electrode having a thickness of 40 μm after roll pressing. The electrode thus obtained was vacuum-dried at 110 ° C. for 6 hours.

[電池の作製]
得られた負極体の他、対極としてLi金属箔を、電解液としてエチレンカーボネートとエチルメチルカーボネートとの混合溶媒(体積比1:2)にLiPFを1mol/Lの割合で溶解した溶解液を用い、セパレータとしてポリプロピレン不織布を用いて、ラミネートセルを作製した。
[Production of battery]
In addition to the obtained negative electrode body, a Li metal foil was used as a counter electrode, and a solution obtained by dissolving LiPF 6 at a ratio of 1 mol / L in a mixed solvent of ethylene carbonate and ethyl methyl carbonate (volume ratio 1: 2) as an electrolyte solution. A laminate cell was prepared using a polypropylene nonwoven fabric as a separator.

実施例1
表1に示すコークスAを粉砕し、平均粒径(D50)10μmとした後、粉砕物を自己発生ガス雰囲気下、温度2170℃で熱処理し、負極炭素材を調製し、リチウムイオン電池を作製した。
Example 1
Coke A shown in Table 1 was pulverized to an average particle size (D50) of 10 μm, and the pulverized product was heat-treated in a self-generated gas atmosphere at a temperature of 2170 ° C. to prepare a negative electrode carbon material to produce a lithium ion battery. .

実施例2及び比較例1〜2
コークスAの代わりに表1に示すコークスB〜Dを用いる以外は実施例1と同様の方法で負極炭素材を調製し、リチウムイオン電池を作製した。
Example 2 and Comparative Examples 1-2
A negative electrode carbon material was prepared in the same manner as in Example 1 except that cokes B to D shown in Table 1 were used instead of coke A, and a lithium ion battery was produced.

実施例3〜6及び比較例3〜4
熱処理温度を表2に示す温度に変更する以外は実施例1と同様の方法で負極炭素材を調製し、リチウムイオン電池を作製した。
Examples 3-6 and Comparative Examples 3-4
A negative electrode carbon material was prepared in the same manner as in Example 1 except that the heat treatment temperature was changed to the temperature shown in Table 2, and a lithium ion battery was produced.

実施例7〜8及び比較例5〜6
粉砕したコークスAの平均粒径(D50)を表2に示す粒径にする以外は実施例1と同様の方法で負極炭素材を調製し、リチウムイオン電池を作製した。
Examples 7-8 and Comparative Examples 5-6
A negative electrode carbon material was prepared in the same manner as in Example 1 except that the average particle size (D50) of the pulverized coke A was changed to the particle size shown in Table 2, and a lithium ion battery was produced.

実施例9〜10
粉砕したコークスAの平均粒径(D50)を表2に示す粒径にする以外は実施例3と同様の方法で負極炭素材を調製し、リチウムイオン電池を作製した。
Examples 9-10
A negative electrode carbon material was prepared in the same manner as in Example 3 except that the average particle size (D50) of the pulverized coke A was changed to the particle size shown in Table 2, and a lithium ion battery was produced.

実施例11
粉砕したコークスAの平均粒径(D50)を20μmにする以外は実施例6と同様の方法で負極炭素材を調製し、リチウムイオン電池を作製した。
Example 11
A negative electrode carbon material was prepared in the same manner as in Example 6 except that the average particle size (D50) of the pulverized coke A was 20 μm, and a lithium ion battery was produced.

比較例7
コークスの代わりに、平均粒径12μmのメソカーボンマイクロビーズ(MCMB)を使用する以外は実施例1と同様の方法でリチウムイオン電池を作製した。
Comparative Example 7
A lithium ion battery was produced in the same manner as in Example 1 except that mesocarbon microbeads (MCMB) having an average particle size of 12 μm were used instead of coke.

比較例8
熱処理したコークスの代わりに、平均粒径12μmの天然黒鉛を使用し、温度2800℃で熱処理する以外は実施例1と同様の方法でリチウムイオン電池を作製した。
Comparative Example 8
A lithium ion battery was produced in the same manner as in Example 1 except that natural graphite having an average particle size of 12 μm was used in place of the heat-treated coke and the heat treatment was performed at a temperature of 2800 ° C.

[電池特性の測定]
実施例1〜11及び比較例1〜8で得られたリチウムイオン電池の充放電特性を以下のようにして測定した。
[Measurement of battery characteristics]
The charge / discharge characteristics of the lithium ion batteries obtained in Examples 1 to 11 and Comparative Examples 1 to 8 were measured as follows.

まず、実施例1〜11及び比較例1〜8のリチウムイオン電池を、環境温度(25℃)下、0.3C(0.27mA/cm)で定電流+定電圧でフル充電したときの容量を充電容量とする。充電後、0.3Cで1.2Vまで放電させ、その時の放電容量を初期容量とし、充電容量に対する初期容量の割合を初期効率(初期充放電効率)として求めた。そして、同じセルを用いて、0.3Cで定電流+定電圧でフル充電した後、10C(9.0mA/cm)で1.2Vまで放電させ、その時の放電容量を初期容量に対する割合を容量維持率(%)として、負極炭素材のX線回折パラメータとともに表2にまとめて示した。 First, when the lithium ion batteries of Examples 1 to 11 and Comparative Examples 1 to 8 were fully charged with a constant current and a constant voltage at 0.3 C (0.27 mA / cm 2 ) under an environmental temperature (25 ° C.). The capacity is the charge capacity. After charging, the battery was discharged at 0.3 C to 1.2 V, the discharge capacity at that time was defined as the initial capacity, and the ratio of the initial capacity to the charge capacity was determined as the initial efficiency (initial charge / discharge efficiency). Then, using the same cell, fully charged with constant current + constant voltage at 0.3 C, discharged to 1.2 V at 10 C (9.0 mA / cm 2 ), and the ratio of the discharge capacity at that time to the initial capacity was The capacity retention rate (%) is shown in Table 2 together with the X-ray diffraction parameters of the negative electrode carbon material.

(試験結果)
実施例1〜11の電池では、容量維持率がそれぞれ、94.2%、94.5%、92.7%、87.5%、86.8%、85.5%、96.3%、95.4%、95.2%、93.5%、88.0%と高く、高出力が維持されていた。
(Test results)
In the batteries of Examples 1 to 11, the capacity retention rates were 94.2%, 94.5%, 92.7%, 87.5%, 86.8%, 85.5%, 96.3%, High output was maintained at 95.4%, 95.2%, 93.5%, and 88.0%.

一方、比較例1の電池では、同じ温度で熱処理した実施例1と比較して結晶が発達し過ぎているため、容量維持率が86.7%であり、著しく低下した。   On the other hand, in the battery of Comparative Example 1, since the crystal was developed too much as compared with Example 1 that was heat-treated at the same temperature, the capacity retention rate was 86.7%, which was remarkably lowered.

比較例2の電池では、容量維持率は95.2%と高出力が維持されているものの、同じ温度で熱処理した実施例1と比較して結晶の発達が不充分であるため、初期容量が226mAh/gであり、放電容量が著しく低下した。   In the battery of Comparative Example 2, although the capacity retention rate was maintained at 95.2% and high output, the crystal capacity was insufficient compared with Example 1 heat-treated at the same temperature, so the initial capacity was It was 226 mAh / g, and the discharge capacity was significantly reduced.

比較例3の電池では、熱処理温度が低いため、結晶の発達が不充分であるため、初期容量が225mAh/gであり、放電容量が著しく低下した。   In the battery of Comparative Example 3, since the heat treatment temperature was low, the crystal was not sufficiently developed, so the initial capacity was 225 mAh / g, and the discharge capacity was significantly reduced.

比較例4の電池では、熱処理温度が高いため、結晶が発達し過ぎているため、容量維持率が58.6%であり、出力特性の大幅な低下が見られた。   In the battery of Comparative Example 4, since the heat treatment temperature was high and the crystals were excessively developed, the capacity retention rate was 58.6%, and the output characteristics were significantly reduced.

比較例5の電池では、平均粒径(D50)が小さく、比表面積が高いため、初期効率が90.7%であり、著しく低下した。   In the battery of Comparative Example 5, since the average particle size (D50) was small and the specific surface area was high, the initial efficiency was 90.7%, which was remarkably reduced.

比較例6の電池では、電池特性的には満足しているものの、平均粒径(D50)が20μmを超えており、電極作製のプレス時に粒子の突出が一部に見られた。   In the battery of Comparative Example 6, although the battery characteristics were satisfactory, the average particle size (D50) exceeded 20 μm, and some of the particles were seen during electrode production pressing.

MCMBを用いた比較例7の電池では、結晶が発達し過ぎているため、初期効率も低く、容量維持率も52.7%と、出力特性が大きく劣る結果となった。   In the battery of Comparative Example 7 using MCMB, since the crystals were excessively developed, the initial efficiency was low and the capacity retention rate was 52.7%, which resulted in a greatly inferior output characteristic.

天然黒鉛を用いた比較例8の電池も同様に、結晶が発達し過ぎているため、初期効率も低く、容量維持率も35.8%と、出力特性が大きく劣る結果となった。   Similarly, in the battery of Comparative Example 8 using natural graphite, since the crystals were excessively developed, the initial efficiency was low and the capacity retention rate was 35.8%, which resulted in greatly inferior output characteristics.

すなわち、モザイク組織の割合やΔ2θまたR値が特定の範囲であるコークスを用い、黒鉛化度(および結晶子サイズ)、粒径を所定の範囲に制御することにより、高負荷の充放電特性に優れたリチウムイオン電池用負極炭素材となることが実証された。   That is, by using coke with a mosaic structure ratio, Δ2θ, and R value in specific ranges, and controlling the degree of graphitization (and crystallite size) and particle size to predetermined ranges, high charge / discharge characteristics can be achieved. It was proved to be an excellent negative electrode carbon material for lithium ion batteries.

本発明の負極炭素材によれば、大電流での充放電においても、容量を極端に低下させることなく、高いレベルで負極の容量を維持できる。そのため、本発明の負極炭素材及びその前駆体は、大電流での充放電が可能となり、このような特性が要求される用途、例えば、電子機器、電気機器、自動車(ハイブリッド自動車、大型自動車など)、電力貯蔵などの電源や補助電源用のリチウムイオン電池(特に、ハイブリッド自動車用リチウムイオン電池)などに有効に利用できる。   According to the negative electrode carbon material of the present invention, the capacity of the negative electrode can be maintained at a high level without extremely reducing the capacity even during charge / discharge with a large current. Therefore, the negative electrode carbon material and the precursor thereof of the present invention can be charged / discharged with a large current, and applications such as electronic devices, electrical devices, automobiles (hybrid vehicles, large vehicles, etc.) are required. ), Lithium-ion batteries for power storage and auxiliary power supplies (particularly lithium-ion batteries for hybrid vehicles).

Claims (12)

リチウムイオン電池用負極炭素材の前駆体であって、偏光顕微鏡で観察した断面の光学組織が、ファインモザイク組織と流れ組織とで形成された異方性組織であり、かつ両組織の面積割合が、前者/後者=10/90〜70/30であるコークス。   A precursor of a negative electrode carbon material for a lithium ion battery, wherein an optical structure of a cross section observed with a polarizing microscope is an anisotropic structure formed by a fine mosaic structure and a flow structure, and an area ratio of both structures is Coke where the former / the latter = 10/90 to 70/30. ファインモザイク組織が、平均径10μm以下の微細領域の集合体で構成された組織であり、流れ組織が、平均径10μmを超える連続相で構成された組織である請求項1記載のコークス。   The coke according to claim 1, wherein the fine mosaic structure is a structure composed of an aggregate of fine regions having an average diameter of 10 µm or less, and the flow structure is a structure composed of a continuous phase having an average diameter exceeding 10 µm. ファインモザイク組織と流れ組織との面積割合が、前者/後者=15/85〜50/50である請求項1又は2記載のコークス。   The coke according to claim 1 or 2, wherein the area ratio between the fine mosaic structure and the flow structure is the former / the latter = 15/85 to 50/50. 1100℃で熱処理したとき、X線回折の002回折線図形の半値幅(Δ2θ)が2.0〜6.0°である請求項1〜3のいずれかに記載のコークス。   The coke according to any one of claims 1 to 3, wherein a half width (Δ2θ) of a 002 diffraction line figure of X-ray diffraction is 2.0 to 6.0 ° when heat-treated at 1100 ° C. 1100℃で熱処理したとき、ラマン分光法で測定したR値が2.0〜3.0である請求項1〜4のいずれかに記載のコークス。   The coke according to any one of claims 1 to 4, wherein when heat-treated at 1100 ° C, the R value measured by Raman spectroscopy is 2.0 to 3.0. 下記特性(1)〜(4)を充足するリチウムイオン電池用負極炭素材。
(1)平均粒径(D50)が6〜20μm
(2)BET法により測定される比表面積が3m/g以下
(3)X線回折における層間距離d値(002)が0.3360〜0.3395nm
(4)a軸方向の結晶子の厚みLaが60〜300nm
A negative electrode carbon material for a lithium ion battery satisfying the following characteristics (1) to (4).
(1) Average particle diameter (D50) is 6 to 20 μm
(2) Specific surface area measured by BET method is 3 m 2 / g or less (3) Interlayer distance d value (002) in X-ray diffraction is 0.3360 to 0.3395 nm
(4) The crystallite thickness La in the a-axis direction is 60 to 300 nm.
X線回折における(101)回折ピークと(100)回折ピークとの強度比I(101)/I(100)が0.7〜1.5である請求項6記載の負極炭素材。   The negative electrode carbon material according to claim 6, wherein an intensity ratio I (101) / I (100) between a (101) diffraction peak and a (100) diffraction peak in X-ray diffraction is 0.7 to 1.5. 請求項1〜5のいずれかに記載のコークスを熱処理して得られる負極炭素材。   The negative electrode carbon material obtained by heat-processing the coke in any one of Claims 1-5. 熱処理温度が2100〜2700℃である請求項8記載の負極炭素材。   The negative electrode carbon material according to claim 8, wherein the heat treatment temperature is 2100 to 2700 ° C. 下記特性(1)〜(4)を充足し、かつX線回折における(101)回折ピークと(100)回折ピークとの強度比I(101)/I(100)が0.7〜1.5である請求項8又は9記載の負極炭素材。
(1)平均粒径(D50)が6〜20μm
(2)BET法により測定される比表面積が3m/g以下
(3)X線回折における層間距離d値(002)が0.3360〜0.3395nm
(4)a軸方向の結晶子の厚みLaが60〜300nm
The following characteristics (1) to (4) are satisfied, and the intensity ratio I (101) / I (100) between the (101) diffraction peak and the (100) diffraction peak in X-ray diffraction is 0.7 to 1.5. The negative electrode carbon material according to claim 8 or 9.
(1) Average particle diameter (D50) is 6 to 20 μm
(2) Specific surface area measured by BET method is 3 m 2 / g or less (3) Interlayer distance d value (002) in X-ray diffraction is 0.3360 to 0.3395 nm
(4) The crystallite thickness La in the a-axis direction is 60 to 300 nm.
請求項6〜10のいずれかに記載の負極炭素材を備えたリチウムイオン電池。   The lithium ion battery provided with the negative electrode carbon material in any one of Claims 6-10. ハイブリッド自動車用リチウムイオン電池である請求項11記載のリチウムイオン電池。   The lithium ion battery according to claim 11, which is a lithium ion battery for a hybrid vehicle.
JP2009234234A 2009-10-08 2009-10-08 Coke for negative electrode carbon material, anode carbon material, and lithium ion battery Pending JP2011082054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234234A JP2011082054A (en) 2009-10-08 2009-10-08 Coke for negative electrode carbon material, anode carbon material, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234234A JP2011082054A (en) 2009-10-08 2009-10-08 Coke for negative electrode carbon material, anode carbon material, and lithium ion battery

Publications (1)

Publication Number Publication Date
JP2011082054A true JP2011082054A (en) 2011-04-21

Family

ID=44075903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234234A Pending JP2011082054A (en) 2009-10-08 2009-10-08 Coke for negative electrode carbon material, anode carbon material, and lithium ion battery

Country Status (1)

Country Link
JP (1) JP2011082054A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002477A1 (en) 2012-06-29 2014-01-03 エム・ティー・カーボン株式会社 Graphite material for negative electrode of lithium-ion rechargeable battery, lithium-ion rechargeable battery using same, and method for producing graphite material for lithium-ion rechargeable battery
WO2014119776A1 (en) * 2013-02-04 2014-08-07 昭和電工株式会社 Graphite powder for negative electrode active material of lithium-ion secondary battery
JP2015069818A (en) * 2013-09-27 2015-04-13 昭和電工株式会社 Coke, electrode active material and battery
JPWO2013080379A1 (en) * 2011-12-02 2015-04-27 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
WO2016129557A1 (en) * 2015-02-09 2016-08-18 昭和電工株式会社 Carbon material, method for producing same, and use for same
JP2018156931A (en) * 2017-03-17 2018-10-04 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019510714A (en) * 2016-01-29 2019-04-18 エスジーエル・カーボン・エスイー Catalytically active additive for coke derived from petroleum or coal
US10615406B2 (en) 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087893A (en) * 1994-06-15 1996-01-12 Sumitomo Metal Ind Ltd Carbonaceous negative electrode material for lithium secondary battery
JP2000353511A (en) * 1999-06-09 2000-12-19 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2006140138A (en) * 2004-10-12 2006-06-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery of high output type
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery
JP2009059676A (en) * 2007-08-30 2009-03-19 Nippon Carbon Co Ltd Negative electrode active material for lithium ion secondary battery and negative electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087893A (en) * 1994-06-15 1996-01-12 Sumitomo Metal Ind Ltd Carbonaceous negative electrode material for lithium secondary battery
JP2000353511A (en) * 1999-06-09 2000-12-19 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP2006140138A (en) * 2004-10-12 2006-06-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery of high output type
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery
JP2009059676A (en) * 2007-08-30 2009-03-19 Nippon Carbon Co Ltd Negative electrode active material for lithium ion secondary battery and negative electrode

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013080379A1 (en) * 2011-12-02 2015-04-27 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
US9831490B2 (en) 2012-06-29 2017-11-28 Mt Carbon Co., Ltd. Graphite material for negative electrode of lithium-ion secondary battery, lithium-ion secondary battery including the graphite material, and method of manufacturing graphite material for lithium-ion secondary battery
WO2014002477A1 (en) 2012-06-29 2014-01-03 エム・ティー・カーボン株式会社 Graphite material for negative electrode of lithium-ion rechargeable battery, lithium-ion rechargeable battery using same, and method for producing graphite material for lithium-ion rechargeable battery
CN104412427A (en) * 2012-06-29 2015-03-11 Mt碳素株式会社 Graphite material for negative electrode of lithium-ion rechargeable battery, lithium-ion rechargeable battery using same, and method for producing graphite material for lithium-ion rechargeable battery
WO2014119776A1 (en) * 2013-02-04 2014-08-07 昭和電工株式会社 Graphite powder for negative electrode active material of lithium-ion secondary battery
US9997769B2 (en) 2013-02-04 2018-06-12 Showa Denko K.K. Graphite power for negative electrode active material of lithium-ion secondary battery
US10522821B2 (en) 2013-02-04 2019-12-31 Showa Denko K.K. Graphite power for negative electrode active material of lithium-ion secondary battery
JP2015069818A (en) * 2013-09-27 2015-04-13 昭和電工株式会社 Coke, electrode active material and battery
JPWO2016129557A1 (en) * 2015-02-09 2017-11-16 昭和電工株式会社 Carbon material, its production method and its use
WO2016129557A1 (en) * 2015-02-09 2016-08-18 昭和電工株式会社 Carbon material, method for producing same, and use for same
CN107250037B (en) * 2015-02-09 2019-07-19 昭和电工株式会社 Carbon material, its manufacturing method with and application thereof
US10377633B2 (en) 2015-02-09 2019-08-13 Showa Denko K.K. Carbon material, method for producing same, and use for same
CN107250037A (en) * 2015-02-09 2017-10-13 昭和电工株式会社 Carbon material, its manufacture method with and application thereof
JP2019510714A (en) * 2016-01-29 2019-04-18 エスジーエル・カーボン・エスイー Catalytically active additive for coke derived from petroleum or coal
JP2018156931A (en) * 2017-03-17 2018-10-04 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10615406B2 (en) 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7024439B2 (en) 2017-03-17 2022-02-24 Tdk株式会社 Negative negative for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6536630B2 (en) Negative electrode material for lithium ion secondary battery, method of manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN115939379B (en) Negative electrode material for lithium ion secondary battery, method for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10854871B2 (en) Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP5359140B2 (en) Lithium transition metal compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5589489B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
CN102769130A (en) Lithium transition metal-type compound powder
JP2011082054A (en) Coke for negative electrode carbon material, anode carbon material, and lithium ion battery
JP5333963B2 (en) Negative electrode active material for lithium ion secondary battery and negative electrode using the same
WO2005031899A1 (en) Lithium composite oxide particle for lithium secondary battery positive electrode material and containing the same, positive electrode for lithium secondary battery and lithium secondary battery
EP1967493A1 (en) Composite graphite particles and lithium rechargeable battery using the same
KR20150074295A (en) Method of preparing artificial graphite negative electrode material for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same
US20180009665A1 (en) Carbon material, method for producing same, and use for same
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP6981471B2 (en) A method for manufacturing a negative electrode material for a lithium ion secondary battery, and a negative electrode material for a lithium ion secondary battery.
WO2020141573A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary batterυ
JP6170795B2 (en) Electrode active material, method for producing electrode active material, electrode material, electrode paste, electrode and battery
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
US20230084916A1 (en) Negative electrode material for lithium-ion secondary battery and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
TW201822394A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016100208A (en) Negative electrode material for lithium ion secondary batteries, lithium ion secondary battery negative electrode and lithium ion secondary battery
CN116438691A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701