JP2011082030A - Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell - Google Patents

Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell Download PDF

Info

Publication number
JP2011082030A
JP2011082030A JP2009233606A JP2009233606A JP2011082030A JP 2011082030 A JP2011082030 A JP 2011082030A JP 2009233606 A JP2009233606 A JP 2009233606A JP 2009233606 A JP2009233606 A JP 2009233606A JP 2011082030 A JP2011082030 A JP 2011082030A
Authority
JP
Japan
Prior art keywords
disk
bus bar
shaped tool
wiring
bar wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009233606A
Other languages
Japanese (ja)
Inventor
Atsushi Fujita
藤田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009233606A priority Critical patent/JP2011082030A/en
Publication of JP2011082030A publication Critical patent/JP2011082030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an ultrasonic connecting device in which position displacement is suppressed and wiring is connected precisely. <P>SOLUTION: The ultrasonic connecting device (wiring connecting device of thin film solar cell) has a first disk (disc form tool) 1A and a second disk (disc form tool) 1B formed in a disc shape in which the outer peripheral parts are pushed to a bus bar wiring 15 and made to be vibrated ultrasonically and to rotatably move toward the longitudinal direction of the bus bar wiring 15, and the rear face electrode 14 is supersonically welded with the bus bar wiring 15. As for the first disk 1A and the second disk 1B, two spots are simultaneously welded that are apart by a prescribed distance in a direction intersecting at right angles with the moving direction of welding. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、超音波接続装置および薄膜太陽電池の配線接続に関するものである。   The present invention relates to an ultrasonic connection device and wiring connection of a thin film solar cell.

従来の薄膜太陽電池の配線接続方法では、直列接続された発電素子の両端部に露出させた導電性基体に対して、超音波溶接によりアルミニウムや銅等のメタルリボン線と導電性基体を配線接続する事例が開示されている(例えば、特許文献1参照)。   In the conventional thin film solar cell wiring connection method, a metal ribbon wire such as aluminum or copper is connected to the conductive substrate by ultrasonic welding to the conductive substrate exposed at both ends of the power generation elements connected in series. The example which does is disclosed (for example, refer patent document 1).

超音波溶接は、超音波シーム溶接機を用いて、ヘッドに適度な荷重をかけながら20〜50kHzでバスバー上に走らせることにより行われる。   Ultrasonic welding is performed by running on a bus bar at 20 to 50 kHz while applying an appropriate load to the head using an ultrasonic seam welder.

また、長尺な金属薄板を溶接する装置として、超音波振動する円盤状の工具の周面を長尺方向に回転移動しながら溶接する装置が知られている。たとえば特許文献2には、金属薄板の厚さを0.40mm以下、金属薄板の重ね合わせ部分の幅を1.5〜4.0mm、工具の加圧力を50kgf以上、および、工具の振幅を20μm以上に設定することで、金属薄板どうしを十分な強度で溶接することが示されている。溶接を進めていくにつれて重ね合わせ部分が工具の加圧力により離反するようにずれてしまうことがある。複数の超音波溶接機を重ね合わせ部分に隔離して配置して、溶接移動方向に隔離した2点で溶接すると重ね合わせ部分が離反するずれが生じないことが述べられている。   Further, as an apparatus for welding a long metal thin plate, an apparatus for welding while rotating a peripheral surface of a disk-shaped tool that vibrates ultrasonically in a long direction is known. For example, in Patent Document 2, the thickness of the metal thin plate is 0.40 mm or less, the width of the overlapping portion of the metal thin plates is 1.5 to 4.0 mm, the pressing force of the tool is 50 kgf or more, and the amplitude of the tool is 20 μm. It is shown that the metal sheets are welded with sufficient strength by setting the above. As welding progresses, the overlapped portion may be displaced so as to separate due to the pressing force of the tool. It is stated that when a plurality of ultrasonic welders are arranged separately in the overlapped portion and welded at two points separated in the welding movement direction, the overlapped portion is not separated.

特開2000−4034号公報JP 2000-4034 A 特開平7−9169号公報Japanese Patent Laid-Open No. 7-9169

しかしながら、上記従来の技術によれば、導電性基体にメタルリボン線等の配線を接続する配線接続方法にあっては、超音波を印加することで、配線材料が横ずれしてしまう問題点があり、超音波溶接する前にメタルリボン線を何らかの方法で固定するか、超音波印加時にずれないように位置決めすることが必要であった。   However, according to the above conventional technique, in the wiring connection method for connecting the wiring such as the metal ribbon line to the conductive substrate, there is a problem that the wiring material is laterally shifted by applying the ultrasonic wave. Before the ultrasonic welding, it is necessary to fix the metal ribbon wire by some method or to position it so that it does not shift when ultrasonic waves are applied.

上記、特許文献2の重ね合わせ部分の溶接移動方向に隔離した2点で溶接する方法においても、超音波印加時のずれを防ぐことは不十分であった。   Even in the above-described method of welding at two points separated in the welding movement direction of the overlapped portion of Patent Document 2, it is insufficient to prevent a shift during application of ultrasonic waves.

この発明は、上記のような問題点を解決するためになされたものであり、位置ずれを抑制して精度良く配線接続することができる超音波接続装置を得ることを目的としている。また、この超音波接続装置を薄膜太陽電池の配線に応用した薄膜太陽電池の配線接続装置、及びこの超音波接続装置を用いて行う薄膜太陽電池の配線接続方法を得ることを目的としている。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain an ultrasonic connection device capable of accurately performing wiring connection while suppressing displacement. Moreover, it aims at obtaining the wiring connection method of the thin film solar cell which applied this ultrasonic connection apparatus to the wiring of a thin film solar cell, and the thin film solar cell wiring connection method performed using this ultrasonic connection device.

上述した課題を解決し、目的を達成するために、本発明の超音波接続装置は、導電性基体に重ね合わされた長尺の金属薄板を長手方向に沿って導電性基体に超音波溶接する装置であり、円盤状を成し外周部を長尺金属薄板に押し当て超音波振動させながら長尺金属薄板の長手方向に回転移動させて、導電性基体と長尺金属薄板とを超音波溶接する円盤状工具を備えた超音波接続装置において、回転軸芯を概略一致させて対向して設けられた第1の円盤状工具と第2の円盤状工具とを有し、第1の円盤状工具と第2の円盤状工具は、溶接の移動方向と直交する方向に所定距離離れた2箇所を同時に溶接することを特徴とする。   In order to solve the above-described problems and achieve the object, the ultrasonic connecting apparatus of the present invention is an apparatus for ultrasonically welding a long thin metal plate superimposed on a conductive base to the conductive base along the longitudinal direction. The disk is formed and the outer periphery is pressed against a long metal thin plate and ultrasonically vibrated while rotating in the longitudinal direction of the long metal thin plate to ultrasonically weld the conductive substrate and the long metal thin plate. An ultrasonic connecting device provided with a disk-shaped tool, the first disk-shaped tool having a first disk-shaped tool and a second disk-shaped tool provided so as to face each other with their rotational axes substantially coincided with each other. And the second disk-shaped tool is characterized in that two locations separated by a predetermined distance in the direction orthogonal to the welding moving direction are welded simultaneously.

また、本発明の薄膜太陽電池の配線接続装置は、薄膜太陽電池の裏面電極に重ね合わされた長尺のバスバー配線を長手方向に沿って裏面電極に超音波溶接する装置であり、円盤状を成し外周部をバスバー配線に押し当て超音波振動させながらバスバー配線の長手方向に回転移動させて、裏面電極とバスバー配線とを超音波溶接する円盤状工具を備えた薄膜太陽電池の配線接続装置において、回転軸芯を概略一致させて対向して設けられた第1の円盤状工具と第2の円盤状工具とを有し、第1の円盤状工具と第2の円盤状工具は、溶接の移動方向と直交する方向に所定距離離れた2箇所を同時に溶接することを特徴とする。   The thin-film solar cell wiring connection device of the present invention is a device that ultrasonically welds the long bus bar wiring superimposed on the back electrode of the thin-film solar cell to the back electrode along the longitudinal direction. In a thin-film solar cell wiring connection device comprising a disk-like tool that ultrasonically welds the back electrode and the bus bar wiring by rotating the outer peripheral portion against the bus bar wiring and rotating in the longitudinal direction of the bus bar wiring while ultrasonically vibrating. , A first disk-shaped tool and a second disk-shaped tool provided so as to face each other with the rotation axis cores substantially coincided with each other. The first disk-shaped tool and the second disk-shaped tool are welded. Two locations separated by a predetermined distance in a direction perpendicular to the moving direction are welded simultaneously.

また、本発明の薄膜太陽電池の配線接続方法は、薄膜太陽電池の裏面電極と裏面電極に重ね合わされた長尺のバスバー配線とをバスバー配線の長手方向に沿って超音波溶接する薄膜太陽電池の配線接続方法において、回転軸芯を概略一致させて対向して設けられ、円盤状を成し外周部をバスバー配線に押し当て超音波振動させながらバスバー配線の長手方向に回転移動させて、裏面電極とバスバー配線とを超音波溶接する第1の円盤状工具と第2の円盤状工具とを用いて、バスバー配線の長手方向と直交する方向に所定距離離れた2箇所を同時に溶接することを特徴とする。   In addition, the thin film solar cell wiring connection method of the present invention includes a thin film solar cell that ultrasonically welds the back electrode of the thin film solar cell and the long bus bar wiring superimposed on the back electrode along the longitudinal direction of the bus bar wiring. In the wiring connection method, the rotating shaft cores are roughly opposed to each other and are arranged to face each other, forming a disk shape, pressing the outer peripheral portion against the bus bar wiring and rotating it in the longitudinal direction of the bus bar wiring while rotating the back bar electrode. The first disk-shaped tool and the second disk-shaped tool that ultrasonically weld the bus bar wiring and the bus bar wiring are simultaneously welded at two locations separated by a predetermined distance in the direction perpendicular to the longitudinal direction of the bus bar wiring. And

本発明によれば、第1の円盤状工具と第2の円盤状工具は、溶接の移動方向と直交する方向に所定距離離れた2箇所を同時に溶接するので、長尺の金属薄板(バスバー配線)に働く力のうち、金属薄板を溶接の移動方向と直交する方向にずらそうとする力が相殺され、金属薄板が横ずれすることがないという効果を有している。   According to the present invention, the first disk-shaped tool and the second disk-shaped tool are simultaneously welded at two locations separated by a predetermined distance in the direction orthogonal to the welding moving direction. ), The force to shift the metal thin plate in the direction perpendicular to the moving direction of the welding is offset, and the metal thin plate does not shift laterally.

図1は、単一の超音波ヘッドによるバスバー配線の接続を説明する斜視図である。FIG. 1 is a perspective view for explaining connection of bus bar wiring by a single ultrasonic head. 図2は、単一の超音波ヘッドの超音波溶接時にバスバー配線に作用する力のつりあいを考察するための断面図である。FIG. 2 is a cross-sectional view for considering the balance of forces acting on the bus bar wiring during ultrasonic welding of a single ultrasonic head. 図3は、単一の超音波ヘッドの超音波溶接時にディスクが傾いた場合の釣り合いを示す断面図である。FIG. 3 is a cross-sectional view showing the balance when the disk is tilted during ultrasonic welding of a single ultrasonic head. 図4は、本実施の形態の超音波接続装置の要部の斜視図である。FIG. 4 is a perspective view of a main part of the ultrasonic connection device of the present embodiment. 図5は、第1のディスクと第2のディスクの部分を側方から見た様子を示す模式図である。FIG. 5 is a schematic diagram showing a portion of the first disc and the second disc viewed from the side. 図6は、2つの超音波ヘッドの超音波溶接時にバスバー配線に作用する力のつりあいを考察するための断面図である。FIG. 6 is a cross-sectional view for considering the balance of forces acting on the bus bar wiring during ultrasonic welding of two ultrasonic heads.

以下に、本発明にかかる超音波接続装置、薄膜太陽電池の配線接続装置、及び薄膜太陽電池の配線接続方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an ultrasonic connection device, a thin film solar cell wiring connection device, and a thin film solar cell wiring connection method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態
図1は、単一の超音波ヘッドによるバスバー配線の接続を説明する斜視図である。超音波ヘッド5は、ディスク(円盤状工具)1、このディスク1を回転駆動するスピンドル2からなり、ディスク1の先端が裏面電極(導電性基体)14の上に位置決めされたバスバー配線(長尺の金属薄板)15に接している。ディスク1は、バスバー配線15に図1中矢印で示すような2つの力を印加する。すなわち、バスバー配線15を裏面電極14に押し付ける力P、バスバー配線15の短軸方向(図1中左右方向、スピンドル2の軸方向)超音波印加方向の力Uである。また、超音波ヘッドの移動速度Sに対応してディスク1が滑らず転がるようにスピンドル2を回転させている。
Embodiment FIG. 1 is a perspective view for explaining connection of bus bar wiring by a single ultrasonic head. The ultrasonic head 5 comprises a disk (disk-shaped tool) 1 and a spindle 2 that rotationally drives the disk 1. The metal thin plate 15). The disk 1 applies two forces as shown by arrows in FIG. That is, there are a force P for pressing the bus bar wiring 15 against the back electrode 14 and a force U in the ultrasonic application direction of the bus bar wiring 15 in the short axis direction (left and right direction in FIG. 1, the axial direction of the spindle 2). Further, the spindle 2 is rotated so that the disk 1 rolls without slipping corresponding to the moving speed S of the ultrasonic head.

図2は、超音波溶接時にバスバー配線に作用する力のつりあいを考察するための断面図である。押力P、超音波による力Uとする。ここで、超音波による力Uは次式で表される。   FIG. 2 is a cross-sectional view for considering the balance of forces acting on the bus bar wiring during ultrasonic welding. A pressing force P and an ultrasonic force U are used. Here, the ultrasonic force U is expressed by the following equation.

U=A・sin(ωt) 振幅A、角速度ω、時間t       U = A · sin (ωt) Amplitude A, angular velocity ω, time t

印加する超音波が理想的に一軸振動しており、バスバー配線15及び裏面電極14の表面が理想的に平坦で、表面接触状態が一様であれば、バスバー配線15に作用する力のうち、超音波による力Uは、バスバー配線15と裏面電極14との間の摩擦力μPとつりあい(μ:摩擦係数)、超音波溶接時にバスバー配線15がバスバー配線幅方向に横ずれすることはない。しかし、バスバー配線15及び裏面電極14の表面が理想的な平坦であっても、例えば、図3に示すように超音波ヘッド5(ディスク1)が被加工物に斜め20°で当接していれば、バスバー配線15に掛かる垂直成分の合力FPは、Pcos20°−Usin20°、水平成分の合力FSは、Ucos20°+Usin20°となる。横ずれしてしまうときの力の閾値は静止摩擦係数に依存するが、押し付け力Pが弱まり、横ずれさせる力Uが増大するので、横ズレが発生しやすくなる。さらに、実際には超音波振動が一軸振動ではなく楕円振動し、押し付け力P起因の摩擦力に打ち勝ってバスバー配線15が動いてしまうことになる。また、バスバー配線15が変形していたり、裏面電極14表面が不均一であったりすると、同様に、P、Uが生じて楕円振動を起し、バスバー配線が横ずれを起す。   If the applied ultrasonic wave is ideally uniaxially vibrated, the surfaces of the bus bar wiring 15 and the back electrode 14 are ideally flat, and the surface contact state is uniform, of the forces acting on the bus bar wiring 15, The ultrasonic force U balances with the friction force μP between the bus bar wiring 15 and the back electrode 14 (μ: friction coefficient), and the bus bar wiring 15 does not shift laterally in the bus bar wiring width direction during ultrasonic welding. However, even if the surfaces of the bus bar wiring 15 and the back electrode 14 are ideally flat, for example, as shown in FIG. 3, the ultrasonic head 5 (disk 1) may be in contact with the workpiece at an angle of 20 °. For example, the resultant force FP of the vertical component applied to the bus bar wiring 15 is Pcos 20 ° −Usin 20 °, and the resultant force FS of the horizontal component is Ucos 20 ° + Usin 20 °. Although the threshold value of the force at the time of lateral displacement depends on the coefficient of static friction, the pressing force P is weakened and the lateral displacement force U is increased, so that lateral displacement is likely to occur. Further, in practice, the ultrasonic vibration is elliptical vibration instead of uniaxial vibration, and the bus bar wiring 15 moves by overcoming the frictional force caused by the pressing force P. Further, when the bus bar wiring 15 is deformed or the surface of the back electrode 14 is non-uniform, P and U are similarly generated to cause elliptical vibration and the bus bar wiring is laterally displaced.

図4は、本実施の形態の超音波接続装置の要部の斜視図である(超音波溶接機本体は図示せず)。本実施の形態の超音波接続装置(薄膜太陽電池の配線接続装置)は、 薄膜太陽電池の裏面電極(導電性基体)14に重ね合わされた長尺のバスバー配線(金属薄板)15,16を長手方向に沿って裏面電極14に超音波溶接する(図4では、バスバー配線15を裏面電極14に溶接するところを示している)。   FIG. 4 is a perspective view of a main part of the ultrasonic connection device of the present embodiment (the ultrasonic welder main body is not shown). The ultrasonic connection device (wiring connection device for a thin film solar cell) according to the present embodiment has long bus bar wires (metal thin plates) 15 and 16 superimposed on a back electrode (conductive base) 14 of the thin film solar cell. Ultrasonic welding is performed on the back electrode 14 along the direction (FIG. 4 shows the welding of the bus bar wiring 15 to the back electrode 14).

超音波接続装置は、図示しない数値制御装置及び直交駆動軸機構により、ベッド上に載置された薄膜太陽電池20に対して相対的に移動可能とされた超音波ユニット10を有している。超音波ユニット10は、回転軸芯を概略一致させて対向して設けられた第1のヘッド5と第2のヘッド6と、これらを支えるコラム9とを含んで構成されている。第1のヘッド5は、第1のディスク(円盤状工具)1Aと、第1のディスク1Aを駆動するスピンドル2Aを有している。第2のヘッド6は、第1のディスク1Aに対向する第2のディスク(円盤状工具)1Bと、第2のディスク1Bを駆動するスピンドル2Bを有している。第1のヘッド5と第2のヘッド6は、個々に超音波発生源をもっている。   The ultrasonic connection device includes an ultrasonic unit 10 that is movable relative to the thin-film solar cell 20 placed on a bed by a numerical control device and an orthogonal drive shaft mechanism (not shown). The ultrasonic unit 10 is configured to include a first head 5 and a second head 6 that are provided to face each other with their rotational axes substantially coincided with each other, and a column 9 that supports them. The first head 5 has a first disk (disk-shaped tool) 1A and a spindle 2A for driving the first disk 1A. The second head 6 has a second disk (disk-shaped tool) 1B that faces the first disk 1A, and a spindle 2B that drives the second disk 1B. Each of the first head 5 and the second head 6 has an ultrasonic wave generation source.

薄膜太陽電池20は、ガラス基板11上に、透明電極12、薄膜発電層13、及び裏面電極14が、この順で重ねられるように形成されて作製され、最上位に重ねられたバスバー配線15,16により薄膜太陽電池20の外に電力を取り出す。一般に、透明電極12、薄膜発電層13、及び裏面電極14は細長い短冊状に形成され、透明電極12及び裏面電極14により短冊の短手方向に直列に接続され、接続方向両端部の裏面電極14に、電力を取り出すバスバー配線15が重ねられている。バスバー配線15はリボン状の金属薄板である。なお、裏面電極14に直接バスバー配線15が接続される場合だけでなく、裏面電極14や透明電極12に沿った他の電極が基板上に設けられ、この電極とバスバー配線15が接続される場合もある。バスバー配線15は、たとえば、アルミニウムや銅などの合金などの材料からなり、その厚みは、0.05〜0.2mm、幅2〜8mm、長さは1〜1.5m程度である。   The thin-film solar cell 20 is formed on the glass substrate 11 so that the transparent electrode 12, the thin-film power generation layer 13, and the back electrode 14 are stacked in this order, and the bus bar wiring 15, The electric power is taken out of the thin film solar cell 20 by 16. In general, the transparent electrode 12, the thin-film power generation layer 13, and the back electrode 14 are formed in an elongated strip shape, and are connected in series in the width direction of the strip by the transparent electrode 12 and the back electrode 14, and the back electrodes 14 at both ends in the connection direction. Further, a bus bar wiring 15 for taking out electric power is overlaid. The bus bar wiring 15 is a ribbon-like thin metal plate. Not only when the bus bar wiring 15 is directly connected to the back electrode 14, but also when another electrode along the back electrode 14 or the transparent electrode 12 is provided on the substrate, and this electrode and the bus bar wiring 15 are connected. There is also. The bus bar wiring 15 is made of a material such as an alloy such as aluminum or copper, and has a thickness of 0.05 to 0.2 mm, a width of 2 to 8 mm, and a length of about 1 to 1.5 m.

薄膜太陽電池20上にバスバー配線15を接続する工程では、まず、薄膜太陽電池20の電極上にバスバー配線15を載せ、次にバスバー配線15の上から第1のディスク1Aと第2のディスク1Bとを接触させて裏面電極14とバスバー配線15,16とを超音波溶接する。   In the step of connecting the bus bar wiring 15 on the thin film solar cell 20, first, the bus bar wiring 15 is placed on the electrode of the thin film solar cell 20, and then the first disk 1 </ b> A and the second disk 1 </ b> B from above the bus bar wiring 15. Are brought into contact with each other, and the back electrode 14 and the bus bar wirings 15 and 16 are ultrasonically welded.

超音波溶接では、超音波振動する対向する2つのディスク1A,1Bの外周部を同時にバスバー配線15に接触させるとともに、ディスク1Aが回転しながらバスバー配線15の長尺方向に移動する。従って2本の接合痕17が同時に形成され、バスバー配線15と裏面電極14が接続される。同時に接する2か所の位置間の方向は溶接の移動方向に対して直交する方向にある。   In the ultrasonic welding, the outer peripheral portions of two opposing disks 1A and 1B that are ultrasonically vibrated are simultaneously brought into contact with the bus bar wiring 15, and the disk 1A moves in the longitudinal direction of the bus bar wiring 15 while rotating. Accordingly, two bonding marks 17 are formed simultaneously, and the bus bar wiring 15 and the back electrode 14 are connected. The direction between two positions that are in contact with each other at the same time is in a direction orthogonal to the moving direction of welding.

対向するディスク1A,1B間の間隔は加工される物、つまり本実施の形態ではバスバー配線15の幅に応じて適当な間隔にする。たとえば、幅2mmのバスバー配線15を溶接する際には、ディスク1間の間隔を1〜1.5mm等とするとよい。また、種々のバスバー配線の幅への対応や、接着強度の最適化などのために、超音波接続装置には対向するディスク1A,1B間の間隔を調整する可変機構を備えると望ましい。   The interval between the opposing disks 1A and 1B is set to an appropriate interval according to the object to be processed, that is, the width of the bus bar wiring 15 in this embodiment. For example, when welding the bus bar wiring 15 having a width of 2 mm, the interval between the disks 1 may be set to 1 to 1.5 mm or the like. Further, in order to cope with various bus bar wiring widths and to optimize the adhesive strength, it is desirable that the ultrasonic connection device is provided with a variable mechanism for adjusting the distance between the opposing disks 1A and 1B.

図5は、第1のディスク1Aと第2のディスク1Bの部分を側方から見た様子を示す模式図である。第1のディスク1Aと第2のディスク1Bは対向して配置され、バスバー配線15に対して互いの傾きが相互に逆方向で大きさθが同じとなるようなハの字型に傾いている。本実施の形態の場合、第1のディスク1Aと第2のディスク1Bは、それぞれ、バスバー配線15の垂線に対して角度θをなすように配置されている。また、対向する第1のディスク1Aと第2のディスク1Bは、スピンドル2A,2Bの回転軸のガラス基板11への投影した振動方向に関して、位相をπ/2ずらして逆相振動するようにするとよい。例えば、図5中左側のディスク1にUL、右側ディスク1にURの振動を印加するようにする。   FIG. 5 is a schematic diagram showing a state where the first disk 1A and the second disk 1B are viewed from the side. The first disk 1A and the second disk 1B are arranged to face each other, and are inclined in a square shape so that the inclinations of the bus bar wiring 15 are opposite to each other and the size θ is the same. . In the case of the present embodiment, the first disk 1A and the second disk 1B are arranged so as to form an angle θ with respect to the normal of the bus bar wiring 15. Further, the first disk 1A and the second disk 1B facing each other are caused to vibrate in opposite phases with a phase shifted by π / 2 with respect to the vibration direction projected on the glass substrate 11 of the rotation axes of the spindles 2A and 2B. Good. For example, UL vibration is applied to the left disk 1 in FIG. 5 and UR vibration is applied to the right disk 1.

UL=A・sin(ωt)
UR=A・sin(ωt+π/2)
UL = A · sin (ωt)
UR = A · sin (ωt + π / 2)

次に、本実施の形態超音波接続装置の作用について説明する。図6は、2つの超音波ヘッドの超音波溶接時にバスバー配線に作用する力のつりあいを考察するための断面図である。バスバー配線15がディスク1A,1Bから受ける力のガラス基板11に垂直な成分と平行な成分をFP,FSで、左右を添え字L,Rで表すと、バスバー配線15が受ける力は以下のように表される。ここで、ディスク1A,1Bの傾斜角をθとする。   Next, the operation of the ultrasonic connection device of this embodiment will be described. FIG. 6 is a cross-sectional view for considering the balance of forces acting on the bus bar wiring during ultrasonic welding of two ultrasonic heads. When the components perpendicular to the glass substrate 11 of the force that the bus bar wiring 15 receives from the disks 1A and 1B are expressed by FP and FS and the left and right are expressed by the subscripts L and R, the force received by the bus bar wiring 15 is as follows. It is expressed in Here, the inclination angle of the disks 1A and 1B is θ.

図6左側ディスク1から受ける力に関して、
FPL=Pcos(θ)−ULsin(θ)
FSL=ULcos(θ)+Psin(θ)
図6右側ディスク1から受ける力に関して、
FPR=Pcos(θ)−URsin(θ)
FSR=URcos(θ)−Psin(θ)
Regarding the force received from the left disk 1 in FIG.
FPL = Pcos (θ) −ULsin (θ)
FSL = ULcos (θ) + Psin (θ)
Regarding the force received from the right disk 1 in FIG.
FPR = Pcos (θ) −URsin (θ)
FSR = URcos (θ) −Psin (θ)

バスバー配線15全体が受ける合力は、
垂直成分:FPL+FPR
=2× Pcos(θ)−{Asin(ωt)+Asin(ωt+π/2)}sin(θ)
=2× Pcos(θ)
水平成分:FSL+FSR
={Asin(ωt)cos(θ)+Asin(ωt+π/2)cos(θ)}+{Psin(θ)−Psin(θ)}
=0
The resultant force received by the entire bus bar wiring 15 is
Vertical component: FPL + FPR
= 2 × Pcos (θ) − {Asin (ωt) + Asin (ωt + π / 2)} sin (θ)
= 2 × Pcos (θ)
Horizontal component: FSL + FSR
= {Asin (ωt) cos (θ) + Asin (ωt + π / 2) cos (θ)} + {Psin (θ) −Psin (θ)}
= 0

となり、理想的には、バスバー配線15を押え付ける力は残るが、超音波による水平成分の力が相殺されて横ずれが生じないようにできる。ここで、理想的に第1のヘッド5と第2のヘッド6がバスバー配線15に接触していない場合、上記水平成分:FSL+FSRの式の第一項のところで差分が発生するが、その大きさは元の値(FSL,あるいはFSR)に比べ、十分小さくなる。また、第1のディスク1Aと第2のディスク1Bの位相が正確に逆位相となっていなくても、完全に同位相とならない限り、打消し合う効果がある。   Ideally, the force for pressing the bus bar wiring 15 remains, but the force of the horizontal component due to the ultrasonic waves is canceled out so that the lateral shift does not occur. Here, when the first head 5 and the second head 6 are ideally not in contact with the bus bar wiring 15, a difference occurs in the first term of the horizontal component: FSL + FSR formula. Is sufficiently smaller than the original value (FSL or FSR). Further, even if the phases of the first disk 1A and the second disk 1B are not exactly opposite in phase, there is an effect of canceling each other as long as they are not completely in phase.

なお、通常、個別の超音波発信源であれば、位相はずれているので、対向する第1のディスク1Aと第2のディスク1Bに別の超音波発信源の振動が伝わるようにすればよい。また、対向するディスクの超音波振動の位相を打ち消すようにずらす位相変調機構を備えれば、超音波発信源は共通であってもよい。さらに、本実施の形態の第1のディスク1Aと第2のディスク1Bは、逆ハの字型となるように傾くが、ハの字でも同様の効果がある。   In general, since the individual ultrasonic transmission sources are out of phase, the vibration of another ultrasonic transmission source may be transmitted to the first and second discs 1A and 1B facing each other. Further, if a phase modulation mechanism for shifting so as to cancel the phase of the ultrasonic vibration of the opposing disk is provided, the ultrasonic transmission source may be common. Further, the first disk 1A and the second disk 1B of the present embodiment are inclined so as to have an inverted C shape, but the same effect can be obtained with a C shape.

本実施の形態においては、対向する第1のディスク1Aと第2のディスク1Bの軸方向の振動によるバスバー配線15のずれが相殺されるため、優れた位置ずれ防止効果がある。また、2つの接続箇所が同時に形成され、接続強度が増す。また、同時に接する2か所の位置が移動方向に対して垂直で、バスバー配線15の端まで位置ずれに優れた対称な処理が可能である。   In the present embodiment, the displacement of the bus bar wiring 15 due to the vibrations in the axial direction of the first disk 1A and the second disk 1B facing each other is canceled out, so that there is an excellent positional displacement prevention effect. Also, two connection locations are formed simultaneously, increasing the connection strength. In addition, two positions that are in contact with each other at the same time are perpendicular to the moving direction, and symmetric processing with excellent positional deviation is possible up to the end of the bus bar wiring 15.

実際に適用した材料、加工条件を以下に示す。
材料
裏面電極: 300nm厚のAgと100nm厚のAlの積層膜
バスバー配線: 幅2mm、厚み0.1mmのアルミリボン線
The actual applied materials and processing conditions are shown below.
Material Back electrode: Laminated film of Ag of 300 nm thickness and Al of 100 nm thickness Bus bar wiring: Aluminum ribbon wire of 2 mm width and 0.1 mm thickness

加工条件
荷重: 1〜5kg
周波数:20〜60kHz
傾斜角:1〜10度、−1〜−10度
Processing conditions Load: 1-5kg
Frequency: 20-60kHz
Tilt angle: 1-10 degrees, -1-10 degrees

以上のように、本実施の形態の超音波接続装置(薄膜太陽電池の配線接続装置)は、円盤状を成し外周部をバスバー配線15に押し当て超音波振動させながらバスバー配線15の長手方向に回転移動させて、裏面電極14とバスバー配線15とを超音波溶接する第1のディスク(円盤状工具)1Aと第2のディスク(円盤状工具)1Bとを有し、第1のディスク1Aと第2のディスク1Bは、溶接の移動方向と直交する方向に所定距離離れた2箇所を同時に溶接する。バスバー配線15に働くスピンドル軸方向の力が相殺され、バスバー配線15が横ずれすることがない。   As described above, the ultrasonic connecting device (the thin film solar cell wiring connecting device) according to the present embodiment forms a disk shape, presses the outer peripheral portion against the bus bar wiring 15, and ultrasonically vibrates the bus bar wiring 15 in the longitudinal direction. The first disk 1A has a first disk (disk-shaped tool) 1A and a second disk (disk-shaped tool) 1B that ultrasonically welds the back electrode 14 and the bus bar wiring 15 to each other. And the second disk 1B are welded simultaneously at two locations separated by a predetermined distance in a direction orthogonal to the welding moving direction. The force in the spindle axis direction acting on the bus bar wiring 15 is canceled, and the bus bar wiring 15 is not laterally displaced.

また、第1のディスク1Aと第2のディスク1Bは、バスバー配線15に対して互いの傾きが相互に逆方向で大きさが同じとなるようなハの字型或いは逆ハの字型となるように傾いているので、バスバー配線15に働くスピンドル軸方向の力がさらに相殺され、バスバー配線15が横ずれすることがない。   In addition, the first disk 1A and the second disk 1B have a C shape or a reverse C shape in which the inclinations of the first and second disks 1A and 15B are opposite to each other and have the same size. Therefore, the force in the spindle axis direction acting on the bus bar wiring 15 is further canceled, and the bus bar wiring 15 is not laterally displaced.

さらにまた、第1のディスク1Aと第2のディスク1Bは、互いに逆相にて超音波振動するので、バスバー配線15に働くスピンドル軸方向の力がさらに相殺され、バスバー配線15が横ずれすることがさらになくなる。   Furthermore, since the first disk 1A and the second disk 1B are ultrasonically vibrated in opposite phases, the force in the spindle axis direction acting on the bus bar wiring 15 is further canceled, and the bus bar wiring 15 may be laterally displaced. Further disappear.

以上のように、本発明にかかる超音波接続装置は、導電性基体に重ね合わされた長尺の金属薄板を長手方向に沿って導電性基体に超音波溶接する装置の、特に円盤状を成し外周部を長尺金属薄板に押し当て超音波振動させながら長尺金属薄板の長手方向に回転移動させて、導電性基体と長尺金属薄板とを超音波溶接する円盤状工具を備えた超音波接続装置に適している。   As described above, the ultrasonic connecting device according to the present invention has a disk shape, in particular, of an apparatus that ultrasonically welds a long thin metal sheet superimposed on a conductive substrate to the conductive substrate along the longitudinal direction. Ultrasonic equipped with a disk-shaped tool that ultrasonically welds the conductive substrate and the long metal thin plate by rotating the outer peripheral portion against the long metal thin plate while rotating and moving in the longitudinal direction of the long metal thin plate Suitable for connecting devices.

1,1A,1B ディスク(円盤状工具)
2,2A,2B スピンドル
5 超音波ヘッド(左)
6 超音波ヘッド(右)
9 コラム
10 超音波ユニット
11 ガラス基板
12 透明電極
13 薄膜発電層
14 裏面電極(導電性基体)
15 バスバー配線(長尺の金属薄板)
17 接合痕
20 薄膜太陽電離
1,1A, 1B disc (disc-shaped tool)
2,2A, 2B Spindle 5 Ultrasonic head (left)
6 Ultrasonic head (right)
9 Column 10 Ultrasonic Unit 11 Glass Substrate 12 Transparent Electrode 13 Thin Film Power Generation Layer 14 Back Electrode (Conductive Substrate)
15 Busbar wiring (long metal sheet)
17 Bond marks 20 Thin film solar ionization

Claims (6)

導電性基体に重ね合わされた長尺の金属薄板を長手方向に沿って前記導電性基体に超音波溶接する装置であり、
円盤状を成し外周部を前記長尺金属薄板に押し当て超音波振動させながら前記長尺金属薄板の長手方向に回転移動させて、前記導電性基体と前記長尺金属薄板とを超音波溶接する円盤状工具を備えた超音波接続装置において、
回転軸芯を概略一致させて対向して設けられた第1の円盤状工具と第2の円盤状工具とを有し、
前記第1の円盤状工具と前記第2の円盤状工具は、溶接の移動方向と直交する方向に所定距離離れた2箇所を同時に溶接する
ことを特徴とする超音波接続装置。
An apparatus for ultrasonically welding a long thin metal sheet superposed on a conductive substrate to the conductive substrate along a longitudinal direction;
The conductive base and the long metal thin plate are ultrasonically welded by rotating in the longitudinal direction of the long metal thin plate while making a disk shape and pressing the outer peripheral portion against the long metal thin plate while vibrating ultrasonically. In an ultrasonic connecting device equipped with a disk-shaped tool that
A first disk-shaped tool and a second disk-shaped tool provided so as to be opposed to each other with the rotational axis cores substantially matched,
The ultrasonic connection device, wherein the first disk-shaped tool and the second disk-shaped tool are simultaneously welded at two locations separated by a predetermined distance in a direction orthogonal to a welding moving direction.
前記第1の円盤状工具と前記第2の円盤状工具は、前記長尺金属薄板に対して互いの傾きが相互に逆方向で大きさが同じとなるようなハの字型或いは逆ハの字型となるように傾いている
ことを特徴とする請求項1に記載の超音波接続装置。
The first disk-shaped tool and the second disk-shaped tool have a square shape or a reverse-shaped tool whose inclinations are opposite to each other in the opposite direction with respect to the long metal thin plate. The ultrasonic connection device according to claim 1, wherein the ultrasonic connection device is inclined so as to have a letter shape.
前記第1の円盤状工具と前記第2の円盤状工具は、互いに逆相にて超音波振動する
ことを特徴とする請求項1または2に記載の超音波接続装置。
The ultrasonic connection device according to claim 1 or 2, wherein the first disk-shaped tool and the second disk-shaped tool vibrate ultrasonically in mutually opposite phases.
前記導電性基体は、薄膜太陽電池の裏面電極であり、
前記長尺金属薄板は、前記裏面電極と接続されるバスバー配線である
ことを特徴とする請求項1から3のいずれか1つに記載の超音波接続装置。
The conductive substrate is a back electrode of a thin film solar cell,
The ultrasonic connection device according to any one of claims 1 to 3, wherein the long metal thin plate is a bus bar wiring connected to the back electrode.
薄膜太陽電池の裏面電極に重ね合わされた長尺のバスバー配線を長手方向に沿って前記裏面電極に超音波溶接する装置であり、
円盤状を成し外周部を前記バスバー配線に押し当て超音波振動させながら前記バスバー配線の長手方向に回転移動させて、前記裏面電極と前記バスバー配線とを超音波溶接する円盤状工具を備えた薄膜太陽電池の配線接続装置において、
回転軸芯を概略一致させて対向して設けられた第1の円盤状工具と第2の円盤状工具とを有し、
前記第1の円盤状工具と前記第2の円盤状工具は、溶接の移動方向と直交する方向に所定距離離れた2箇所を同時に溶接する
ことを特徴とする薄膜太陽電池の配線接続装置。
It is a device for ultrasonic welding the long bus bar wiring superimposed on the back electrode of the thin film solar cell to the back electrode along the longitudinal direction,
A disk-shaped tool is formed that ultrasonically welds the back electrode and the bus bar wiring by rotating in the longitudinal direction of the bus bar wiring while forming a disk shape and pressing the outer peripheral portion against the bus bar wiring while vibrating ultrasonically. In the thin-film solar cell wiring connection device,
A first disk-shaped tool and a second disk-shaped tool provided so as to be opposed to each other with the rotational axis cores substantially matched,
The first disk-shaped tool and the second disk-shaped tool are simultaneously welded at two locations separated by a predetermined distance in a direction orthogonal to the welding moving direction.
薄膜太陽電池の裏面電極と前記裏面電極に重ね合わされた長尺のバスバー配線とを前記バスバー配線の長手方向に沿って超音波溶接する薄膜太陽電池の配線接続方法において、 回転軸芯を概略一致させて対向して設けられ、円盤状を成し外周部を前記バスバー配線に押し当て超音波振動させながら前記バスバー配線の長手方向に回転移動させて、前記裏面電極と前記バスバー配線とを超音波溶接する第1の円盤状工具と第2の円盤状工具とを用いて、前記バスバー配線の長手方向と直交する方向に所定距離離れた2箇所を同時に溶接する
ことを特徴とする薄膜太陽電池の配線接続方法。
In a wiring connection method of a thin film solar cell in which a back electrode of a thin film solar cell and a long bus bar wiring superimposed on the back electrode are ultrasonically welded along a longitudinal direction of the bus bar wiring, The back electrode and the bus bar wiring are ultrasonically welded by rotating in the longitudinal direction of the bus bar wiring while ultrasonically vibrating the outer peripheral portion against the bus bar wiring. Wiring for a thin film solar cell characterized in that, using a first disk-shaped tool and a second disk-shaped tool, two locations that are separated by a predetermined distance in the direction orthogonal to the longitudinal direction of the bus bar wiring are simultaneously welded. Connection method.
JP2009233606A 2009-10-07 2009-10-07 Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell Pending JP2011082030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233606A JP2011082030A (en) 2009-10-07 2009-10-07 Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233606A JP2011082030A (en) 2009-10-07 2009-10-07 Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell

Publications (1)

Publication Number Publication Date
JP2011082030A true JP2011082030A (en) 2011-04-21

Family

ID=44075884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233606A Pending JP2011082030A (en) 2009-10-07 2009-10-07 Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP2011082030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004488A (en) * 2010-06-21 2012-01-05 Nippon Avionics Co Ltd Connecting method and connecting device of connecting member for solar cell
JP2012004182A (en) * 2010-06-14 2012-01-05 Nippon Avionics Co Ltd Connection method and apparatus for solar battery connecting member
CN108544075A (en) * 2018-06-28 2018-09-18 北京铂阳顶荣光伏科技有限公司 A kind of busbar welding system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004182A (en) * 2010-06-14 2012-01-05 Nippon Avionics Co Ltd Connection method and apparatus for solar battery connecting member
JP2012004488A (en) * 2010-06-21 2012-01-05 Nippon Avionics Co Ltd Connecting method and connecting device of connecting member for solar cell
CN108544075A (en) * 2018-06-28 2018-09-18 北京铂阳顶荣光伏科技有限公司 A kind of busbar welding system

Similar Documents

Publication Publication Date Title
JP4792945B2 (en) Ultrasonic bonding apparatus and bonded structure
TW476692B (en) Polishing pad and method of manufacture
JP5583179B2 (en) Bonding equipment
WO2010150350A1 (en) Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
JP2019005776A (en) Ultrasonic joining method, ultrasonic joining jig, and joint structure
JP2019013959A (en) Ultrasonic junction jig, junction structure and junction method
JP2011082030A (en) Ultrasonic connecting device, wire connecting device of thin film solar cell, and wiring connecting method of thin film solar cell
JP6480595B2 (en) Ultrasonic vibration bonding equipment
JP2009241120A (en) Ultrasonic metal bonding machine, metal sheet bonding method using the same, and bonded metal sheet obtained by using the ultrasonic metal bonding machine or the metal sheet bonding method
JP5195900B2 (en) Electronic component manufacturing apparatus and electronic component manufacturing method
JP4411172B2 (en) Parallel seam joining device
JP2004243402A (en) Metal foil joining method, and metal foil connecting device
JP2005001096A (en) Ultrasonic vibrating table
JP4609169B2 (en) Ultrasonic bonding method
JP2002231838A (en) Assembling method of package
JP7316864B2 (en) Ultrasonic stapler and ultrasonic welding method
JP5782720B2 (en) Ultrasonic bonding equipment
JP3986625B2 (en) Ultrasonic bonding of uneven metal materials
JP5151508B2 (en) Optical mirror device and optical mirror fixing method
JP5163677B2 (en) Optical scanning device and method of manufacturing optical scanning device
JP5879582B2 (en) Ultrasonic vibration welding apparatus and ultrasonic vibration welding apparatus
JP4119617B2 (en) Backing material for single-sided submerged arc welding
JP5335463B2 (en) Ultrasonic metal bonding machine
JP2544849B2 (en) Honeycomb panel and method for manufacturing honeycomb panel
JPS60155433A (en) Ultrasonic plastics continuous welder